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A COMPANION FOR THE KIEFER–WOLFOWITZ–BLUM
STOCHASTIC APPROXIMATION ALGORITHM

BY ABDELKADER MOKKADEM AND MARIANE PELLETIER

Université de Versailles–Saint-Quentin

A stochastic algorithm for the recursive approximation of the location θ

of a maximum of a regression function was introduced by Kiefer and Wol-
fowitz [Ann. Math. Statist. 23 (1952) 462–466] in the univariate framework,
and by Blum [Ann. Math. Statist. 25 (1954) 737–744] in the multivariate case.
The aim of this paper is to provide a companion algorithm to the Kiefer–
Wolfowitz–Blum algorithm, which allows one to simultaneously recursively
approximate the size µ of the maximum of the regression function. A pre-
cise study of the joint weak convergence rate of both algorithms is given; it
turns out that, unlike the location of the maximum, the size of the maximum
can be approximated by an algorithm which converges at the parametric rate.
Moreover, averaging leads to an asymptotically efficient algorithm for the
approximation of the couple (θ,µ).

1. Introduction. Consider two random variables X and Z with values in R
d

and R, respectively, that have unknown common distribution PX,Z . Assume that
the regression function f (·) = E(Z|X = ·) : Rd → R exists, is sufficiently smooth
and has a unique maximizer θ ∈ R

d ,

θ = arg max
x∈Rd

E(Z|X = x),

and assume that observations Z(x) of f (x) are available at any level x [Z(x) has
conditional distribution L(Z|X = x)]. Kiefer and Wolfowitz [15] (in the case d =
1) and Blum [1] (in the case d ≥ 1) have introduced an algorithm, which allows one
to recursively approximate θ . Their procedure consists in running the recursion

θn+1 = θn + anYn,(1)

where (an) is a positive nonrandom sequence that goes to zero as n goes to infinity,
and Yn is a (random) approximation of ∇f (θn), the gradient of f at the point θn.
More precisely, let (cn) be a positive nonrandom sequence that goes to zero, and
let (e1, . . . , ed) denote the canonical basis of R

d ; the approximation Yn introduced
by Kiefer and Wolfowitz [15] and Blum [1] is the d-dimensional vector

Yn = 1

2cn

{Z(θn + cnei) − Z(θn − cnei)}i∈{1,...,d}.
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Kiefer and Wolfowitz [15] proved the convergence in probability of θn to θ and
Blum [1] established its almost sure convergence. Their algorithm (1) has since
been widely studied and their pioneering work extended in many directions.
Among many, let us cite Fabian [11], Kushner and Clark [17], Hall and Heyde
[13], Ruppert [31], Chen [3], Spall [33, 34], Polyak and Tsybakov [30], Dippon
and Renz [8], Pelletier [26], Chen, Duncan and Pasik-Duncan [4] and Dippon [6].

As noted by Kiefer and Wolfowitz [15], the statistical importance of approxi-
mating the maximizer θ of the regression function f is obvious and need not be
discussed. Although the approximation of the size of the maximum, that is of the
parameter µ = f (θ), seems important as well, this problem has, as far as we know,
never been considered. The aim of this paper is to propose an algorithm, which by
using the approximation θn of θ defined by (1), allows one to simultaneously re-
cursively approximate µ by a sequence µn that converges almost surely to µ, and
to study the joint weak convergence rate of θn and µn.

The algorithm we present to approximate µ is defined by

µn+1 = (1 − ãn)µn + ãnỸn,(2)

where (ãn) is a positive nonrandom sequence that goes to zero as n goes to infin-
ity, and Ỹn is an approximation of f (θn). This approximation method has certain
similarities to the sequential procedure for estimating discontinuities of a regres-
sion function or surface proposed by Hall and Molchanov [14]. A first way to
approximate f (θn) is to take the average of the observations of f (θn + cnei) and
f (θn − cnei) used for the computation of Yn; all these observations or only a sym-
metric part of them may be used. More precisely, let S denote a (nonempty) subset
of {1,2, . . . , d}, and define the real-valued random sequence (Ỹn) by

Ỹn = 1

δ

∑
i∈S

{Z(θn + cnei) + Z(θn − cnei)},

where δ is twice the number of elements in S. Note that in the case the step size in
(2) is chosen such that (ãn) ≡ (n−1) and if S = {1,2, . . . , d}, then µn+1 is simply
the average of all the observations made for the approximation θn of θ , that is,

µn+1 = 1

n

n∑
k=1

Ỹk = 1

2dn

∑
i∈{1,2,...,d},k∈{1,2,...,n}

{Z(θk + ckei) + Z(θk − ckei)}.

We prove that, under suitable assumptions, µn converges almost surely to µ. More-
over, we study the weak convergence rate of the couple (θn − θ,µn − µ). As was
already well known, the optimal convergence rate of θn (which is n1/3) is ob-
tained by choosing in (1) (an) ≡ (a0n

−1) with adequate conditions on a0, and
(cn) ≡ (c0n

−1/6), c0 > 0; setting (ãn) ≡ (ã0n
−1), ã0 > 1/2, in (2) then makes µn

converge with the rate n1/3 also. Now, other choices of (cn) in (1) and (2) allow
one to obtain a convergence rate for µn close to (but less than) the parametric rate√

n; however, in this case, the convergence rate of θn becomes close to n1/4. This
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constatation makes clear the drawback of the double algorithm (1) and (2): when
choosing the sequence (cn) [or, in other words, the points where the observations
Z(θk ± ckei) of f (θk ± ckei) are taken], a compromise must be made since both
sequences θn and µn cannot simultaneously converge at the optimal rate.

The way to address this drawback is of course not to use the same sequence
(cn) (i.e., to use different observations) for the approximation of ∇f (θn) in (1) on
the one hand, and for the approximation of f (θn) in (2) on the other hand. More
precisely, let δ ≥ 1, Zi(θn), 1 ≤ i ≤ δ, be δ independent observations of f (θn), Ỹn

be the approximation of f (θn) defined by

Ỹn = 1

δ

δ∑
i=1

Zi(θn),(3)

and let the approximation algorithm for µ be defined as

µn+1 = (1 − ãn)µn + ãnỸn.(4)

We prove that the sequence µn defined in this way still converges almost surely
to µ. Moreover, we study the joint weak convergence rate of θn and µn defined
by (1) and (4), respectively. We prove in particular that if the stepsizes in (1)
and (4) are chosen such that (an) ≡ (a0n

−1), with adequate conditions on a0,
(cn) ≡ (c0n

−1/6), c0 > 0, and (ãn) ≡ (ã0n
−1), ã0 > 1/2, then (θn) converges with

its optimal rate n1/3, and (µn) with the parametric rate
√

n. Moreover, choosing
ã0 = 1 leads to the minimum asymptotic variance of (µn): when (ãn) ≡ (n−1),
the algorithm (4) is asymptotically efficient. Note that this case corresponds to the
case

µn+1 = 1

n

n∑
k=1

Ỹk = 1

δn

∑
i∈{1,2,...,δ},k∈{1,2,...,n}

Zi(θk).

The striking aspect of our result on (4) is that, whereas approximation of the
size of the maximum of a regression function is typically a nonparametric prob-
lem, and although the stochastic approximation algorithm (4) uses approximation
of the location of the maximum of the regression function θn (which itself does
not converge with the parametric rate), the convergence rate we obtain for the se-
quence µn is the parametric rate

√
n. This is explained by the fact that although

µn depends (through Ỹn) on θn, the quantity which actually is involved in the con-
vergence rate of (µn) is ‖θn − θ‖2, and, for suitable choices of (an) and (cn), this
quantity goes to zero faster than

√
n. [Of course, this is still true in the framework

of the double algorithm (1) and (2), but in this case the convergence rate of (µn)

depends on (cn) and is less than
√

n.]
Now, as is well known, the choice of the step size (an) ≡ (a0n

−1) in (1) is the
one which leads to the optimal convergence rate of θn, but it induces conditions
on a0 which are difficult to handle because of dependence on an unknown para-
meter [see (9) in the sequel]. The well known approach used to obtain optimal
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convergence rates for stochastic approximation algorithms without a tedious con-
dition on the step size is to use the averaging principle independently introduced by
Ruppert [32] and Polyak [28]. Their averaging procedure, which has been widely
discussed and extended (see, among many others, Yin [35], Delyon and Juditsky
[5], Polyak and Juditsky [29], Kushner and Yang [18], Le Breton [19], Le Breton
and Novikov [20], Dippon and Renz [7, 8] and Pelletier [27]), allows one to obtain
asymptotically efficient algorithms, that is, algorithms which not only converge at
the optimal rate, but also have an optimal asymptotic covariance matrix. This pro-
cedure consists in (i) running the approximation algorithm by using slower step
sizes and (ii) computing a suitable average of the approximations obtained in (i).

Let us now give our scheme to efficiently approximate θ and µ simultaneously.
First, we apply the averaging principle to the approximating algorithm (1) of θ by
proceeding as follows. Let the step size (an) in (1) satisfy limn→∞ nan = ∞, let
the sequence (θk) be defined by the algorithm (1) and set

θn = 1∑n
k=1 c2

k

n∑
k=1

c2
kθk.(5)

It is well known that the sequence (θn) is asymptotically efficient (see, e.g., [8]).
Then, to approximate µ efficiently, we can just set (ãn) ≡ (n−1) in (4) since this
algorithm is asymptotically efficient (see the comments below Theorem 2). How-
ever, when adding observations of f , it seems more natural to take the observations
at the point θn (rather than at θn) since θn converges to θ faster than θn does. That
is the reason why we let δ ≥ 1, Zi(θn), 1 ≤ i ≤ δ, be δ independent observations
of f (θn), Yn be the approximation of f (θn) defined by

Yn = 1

δ

δ∑
i=1

Zi(θn),(6)

and let the approximation algorithm for µ be defined as

µn+1 =
(

1 − 1

n

)
µn + 1

n
Yn.(7)

The consistency of µn defined by (7) is obvious; we study the joint weak asymp-
totic behavior of θn and µn defined by (5) and (7). We prove in particular that by
setting (cn) ≡ (c0n

−1/6) in (1), we obtain simultaneously the asymptotic efficiency
of both sequences (θn) and (µn).

Let us finally mention that, in the case where no additional observations are
taken to approximate µ, we can of course also average the algorithm (1). However,
we shall point out that when the only parameter of interest in the double algorithm
(1) and (2) is µ, it is preferable not to do so. As a matter of fact, we show there
are possible choices of (an) for which there is no tedious condition on a0, and
which lead to better convergence rates for (µn) than those which can be reached
by averaging θn.
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2. Assumptions and main results. Let us first define the class of positive
sequences that will be used in the statement of our assumptions.

DEFINITION 1. Let α ∈ R and (vn) be a nonrandom positive sequence. We
say that (vn) ∈ GS(α) if

lim
n→∞n

[
1 − vn−1

vn

]
= α.(8)

Condition (8) was introduced by Galambos and Seneta [12] to define regu-
larly varying sequences (see also [2]). Typical sequences in GS(α) are, for a ∈ R,
nα(logn)a , nα(log logn)a , and so on.

Set

W+
n,i = Z(θn + cnei) − f (θn + cnei),

W−
n,i = Z(θn − cnei) − f (θn − cnei),

Wn,i = Zi(θn) − f (θn),

Wn,i = Zi(θn) − f (θn).

(The notation Wn,i (resp. Wn,i ) is useful only in the case (µn) is defined by (4)
[resp. by (7)].) In order to state our assumptions in a compact way, we introduce
the sequence (bn) defined as

(bn) ≡
{

(cn), in the case (µn) is defined by (2),
0, in the case (µn) is defined by (4) or by (7),

and set

Un,i =



0, in the case (µn) is defined by (2),
Wn,i, in the case (µn) is defined by (4),
Wn,i, in the case (µn) is defined by (7).

The assumptions to which we shall refer in the sequel are the following.

(A1) limn→∞ θn = θ a.s.
(A2) f is three-times continuously differentiable in a neighborhood of θ , where

the Hessian D2f (θ) of f at θ is negative definite with maximal eigenvalue
−L(θ) < 0.

(A3) Let Gn be the σ -field spanned by {W+
m,i,W

−
p,j ,Uq,k 1 ≤ i, j ≤ d, 1 ≤ k ≤

δ, 1 ≤ m,p,q ≤ n − 1}.
(i) W+

n,i , W−
n,j and Un,k (i, j ∈ {1, . . . , d}, k ∈ {1, . . . , δ}) are indepen-

dent conditionally on Gn.
(ii) For some σ > 0, Var(Z|X = x) = σ 2 for all x ∈ R

d , while, for some
m > 2, supx∈Rd E(|Z|m|X = x) < ∞.

(A4) (i) There exists α ∈]max{1/2,2/m},1] such that (an) ∈ GS(−α).
(ii) There exists τ ∈]0, α/2[ such that (cn) ∈ GS(−τ).
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(iii) limn→∞ nan ∈]max{1−2τ
2L(θ) ,

2τ
L(θ) },∞].

(iv) There exists α̃ ∈]max{1/2,2/m},1] such that (ãn) ∈ GS(−α̃).

(v) • In the case limn→∞ ã−1
n b4

n = 0, we have limn→∞ ã
−1/2
n an ×

log(
∑n

k=1 ak)/c
2
n = 0 and limn→∞ ã−1

n c8
n = 0.

• In the case limn→∞ ã−1
n b4

n ∈]0,∞], we have
∑

ãnb
4
n < ∞ and

limn→∞ an log(
∑n

k=1 ak)/c
4
n = 0.

(vi) limn→∞ nãn ∈]1
2 ,∞].

Comments on the assumptions. (1) Theorem 3 in [1] ensures that (A1) holds
under (A2)–(A4) and the following additional conditions: (i) α + τ > 1 and
2(α − τ) > 1; (ii) D2f is bounded; (iii) ∀δ > 0, sup‖x−θ‖≥δ f (x) < f (θ);
(iv) ∀ε > 0, ∃ρ(ε) > 0 such that ‖x − θ‖ ≥ ε ⇒ ‖∇f (x)‖ ≥ ρ(ε). Let us un-
derline that the conditions (i) on α and τ are satisfied as soon as α ∈]5/6,1] and
τ ∈ [1/6,1/4], which include the most interesting choices of step sizes, as we
shall see later on. Let us also mention that similar conditions, but which are less
restrictive on α and τ , can be found in [22] and [13]. Another kind of conditions
with particular emphasis on control theory applications is given in [9, 17, 21]. The
approach in these three references is to associate the approximation algorithm (1)
with a deterministic differential equation in terms of which conditions are given to
ensure (A1).

(2) Assumptions (A4)(i)–(iii) are the conditions on the step sizes required to
establish the weak convergence rate of θn; assumptions (A4)(iv)–(vi) are the addi-
tional ones needed for the consistency and for the weak convergence rate of µn.

(3) Condition (A4)(iii) [resp. (A4)(vi)] requires an = O(n−1) [resp. ãn =
O(n−1)] and, in the case (an) ≡ (a0n

−1) [resp. (ãn) ≡ (ã0n
−1)],

a0 > max
{

1 − 2τ

2L(θ)
; 2τ

L(θ)

}
,(9)

(resp. ã0 > 1/2). Set log1(n) = logn and, for j ≥ 1, logj+1(n) = log[logj (n)].
Our conditions allow the use of the step size (an) ≡ (a0[logp(n)]αn−1) introduced
by Koval and Schwabe [16]; this step size has the advantage to lead to conver-
gence rates very close to the ones obtained by using (a0n

−1), without requiring
the tedious condition (9) on a0.

(4) Assumption (A4)(v) is in particular satisfied as soon as the following condi-
tions hold:

• If limn→∞ ã−1
n b4

n = 0, then α̃
8 < τ < α

2 − α̃
4 .

• If limn→∞ ã−1
n b4

n ∈]0,∞], then 1−α̃
4 < τ < α

4 .

Our first result is the following proposition, which states the consistency of µn

in the case µn is defined either by (2) or by (4).

PROPOSITION 1. Let µn be defined either by (2) or by (4), and assume
(A1)–(A3) and (A4)(i)–(v) are satisfied. Then we have limn→∞ µn = µ a.s.
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In order to state the weak convergence rate of (θT
n ,µn)

T , we set

ξ (θ) = (1 − 2τ) lim
n→∞(nan)

−1,

ζ (θ) = 4τ lim
n→∞(nan)

−1,

ξ (µ) = lim
n→∞(nãn)

−1,

ζ (µ) = 4τ lim
n→∞(nãn)

−1,

�(θ) = −σ 2

4

[
D2f (θ) + ξ (θ)

2
Id

]−1

,(10)

�(θ) = −1

6

[
D2f (θ) + ζ (θ)

2
Id

]−1{
∂3f

∂x3
i

(θ)

}
1≤i≤d

,(11)

�(µ) = σ 2

δ(2 − ξ (µ))
,(12)

�(µ) = 2

(2 − ζ (µ))δ

∑
i∈S

∂2f

∂x2
i

(θ),(13)

where σ 2 is defined in (A3), and where Id denotes the d ×d identity matrix. Let us
underline that assumption (A4) implies that ξ (θ), ζ (θ) ∈ [0,2L(θ)[ and ξ (µ), ζ (µ) ∈
[0,2[; the parameters �(θ), �(θ), �(µ) and �(µ) are thus well defined.

We now state the joint weak convergence rate of θn and µn in the case µn where
is defined by the algorithm (2).

THEOREM 1. Let (µn) be defined by (2), and assume that (A1)–(A4) hold.

(1) If limn→∞ a−1
n c6

n = ∞ and if limn→∞ ã−1
n c4

n = ∞, then(
c−2
n (θn − θ)

c−2
n (µn − µ)

)
P→
(

�(θ)

�(µ)

)
.

(2) If there exists γ1 ≥ 0 such that limn→∞ a−1
n c6

n = γ1 and if limn→∞ ã−1
n c4

n =
∞, then (√

a−1
n c2

n(θn − θ)

c−2
n (µn − µ)

)
D→
(

Z
�(µ)

)
,

where Z is N (
√

γ1�
(θ),�(θ))-distributed.

(3) If limn→∞ a−1
n c6

n = ∞ and if there exists γ2 ≥ 0 such that limn→∞ ã−1
n c4

n =
γ2, then (

c−2
n (θn − θ)√
ã−1
n (µn − µ)

)
D→
(

�(θ)

Z′
)

,
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where Z′ is N (
√

γ2�
(µ),�(µ))-distributed.

(4) If there exist γ1 ≥ 0 and γ2 ≥ 0 such that limn→∞ a−1
n c6

n = γ1 and
limn→∞ ã−1

n c4
n = γ2, then(√

a−1
n c2

n(θn − θ)√
ã−1
n (µn − µ)

)
D→ N

((√
γ1�

(θ)

√
γ2�

(µ)

)
,

(
�(θ) 0

0 �(µ)

))
.

Comments on Theorem 1.
(1) As is already well known, the optimal convergence rate of (θn) is obtained by

choosing (an) ≡ (a0n
−1), a0 satisfying (9) and (cn) ≡ (n−1/6). In this framework,

the best convergence rate of (µn) is n1/3; it is obtained in the following ways:

• either (ãn) is chosen such that limn→∞ ã−1
n n−2/3 = ∞, the convergence rate of

(µn) being then given by part (2) of Theorem 1,
• or (ãn) ≡ (n−2/3), the convergence rate of (µn) being then given by part (4) of

Theorem 1.

(2) The optimal convergence rate of (µn) is close to (but less than)
√

n/ log logn.
More precisely, let (vn) ∈ GS(0) be such that limn→∞ vn = ∞. For (µn) to con-
verge with the rate

√
n/(vn log logn), one must choose (an) ≡ (a0n

−1), a0 satis-
fying (9), and

• either (ãn) ≡ (n−1) and (cn) ≡ (v
1/4
n [log logn]1/4n−1/4), the convergence rate

of (µn) being then given by part (2) of Theorem 1,
• or (ãn) ≡ (n−1vn log logn) and (cn) = O(ã

1/4
n ), the convergence rate of (µn)

being then given by part (4) of Theorem 1.

In this framework, the best convergence rate of (θn) is n1/4v
1/4
n [log logn]1/4.

(3) The tedious condition (9) on a0 can be avoided by choosing (an) ≡
(n−1 logp n). The convergence rate of (µn) is then close to (but less than)√

n/(logp n log logn). More precisely, let (vn) ∈ GS(0) be such that limn→∞ vn =
∞. For (µn) to converge with the rate

√
n/(vn logp n log logn), one can choose

• either (ãn) ≡ (n−1) and (cn) ≡ (v
1/4
n [logp n]1/4[log logn]1/4n−1/4), the conver-

gence rate of (µn) being then given by part (2) of Theorem 1,
• or (ãn) ≡ (n−1vn logp n log logn) and (cn) = O(ã

1/4
n ), the convergence rate of

(µn) being then given by part (4) of Theorem 1.

In this case, the best convergence rate of (θn) is n1/4v
1/4
n [log logn]1/4[logp n]−1/4.

The double algorithm (1) and (2) has thus two disadvantages: (i) it is not possi-
ble to choose a sequence (cn) such that the convergence rates of (θn) and (µn) are
simultaneously optimal; (ii) the sequence (µn) cannot converge at the parametric
rate.
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We now state the joint weak convergence rate of θn and µn in the case additional
observations are made for the computation of µn, that is, in the case (µn) is defined
by (4).

THEOREM 2. Let (µn) be defined by (4), and assume that (A1)–(A4) hold.

(1) If limn→∞ a−1
n c6

n = ∞, then(
c−2
n (θn − θ)√
ã−1
n (µn − µ)

)
D→
(

�(θ)

Z′
)

,

where Z′ is N (0,�(µ))-distributed.
(2) If there exists γ1 ≥ 0 such that limn→∞ a−1

n c6
n = γ1, then(√

a−1
n c2

n(θn − θ)√
ã−1
n (µn − µ)

)
D→ N

((√
γ1�

(θ)

0

)
,

(
�(θ) 0

0 �(µ)

))
.

Comments on Theorem 2. Set (an) ≡ (a0n
−1), a0 satisfying (9), (cn) ≡

(c0n
−1/6), c0 > 0, and (ãn) ≡ (ã0n

−1), ã0 > 1/2. Part (2) of Theorem 2 ensures
that (

n1/3(θn − θ)√
n(µn − µ)

)
D→ N

((
c2

0�
(θ)

0

)
,

(
a0c

−2
0 �(θ) 0

0 ã0�
(µ)

))
.

For this choice, θn converges with its optimal rate n1/3, and µn converges with the
parametric rate

√
n. Moreover, let us note that the asymptotic variance ã0�

(µ) =
ã2

0[2ã0 − 1]−1σ 2δ−1 reaches its minimum σ 2/δ for ã0 = 1; the algorithm (4) is
thus asymptotically efficient when (ãn) ≡ (n−1).

To state the joint asymptotic behavior of θn and µn defined in (5) and (7), we
need to introduce the notation

R(θ) = 1

6

{
∂3f

∂x3
i

(θ)

}
1≤i≤d

,(14)

as well as the following additional assumption.

(A5) (i) lim
n→∞

nan

log(
∑n

k=1 ak)
= ∞,

(ii) lim
n→∞

∑n
k=1 ak log(

∑k
j=1 aj )√∑n

k=1 c2
k

= 0,

(iii) lim
n→∞na2

nc
−6
n = ∞.

THEOREM 3. Let (µn) be defined by (7), and assume that (A1)–(A5) hold
with (ãn) ≡ (n−1).
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(1) If limn→∞ nc6
n = ∞, then

(
c−2
n (θn − θ)√
n(µn − µ)

)
D→

−

(
1 − 2τ

1 − 4τ

)
[D2f (θ)]−1R(θ)

Z′


 ,

where Z′ is N (0, σ 2/δ)-distributed.
(2) If limn→∞ nc6

n = 0, then(√
nc2

n(θn − θ)√
n(µn − µ)

)
D→ N


0,


 (1 − 2τ)σ 2

2
[D2f (θ)]−2 0

0 σ 2/δ




 .

(3) If there exists γ1 > 0 such that limn→∞ nc6
n = γ1, then(√

nc2
n(θn − θ)√

n(µn − µ)

)

D→ N


(−2γ

1/3
1 [D2f (θ)]−1R(θ)

0

)
,


 γ

1/3
1 σ 2

3
[D2f (θ)]−2 0

0 σ 2/δ




 .

Part (3) of Theorem 3 corresponds to the case where both θn and µn are asymp-
totically efficient: they converge with their respective optimal rates n1/3 and n1/2,
and their asymptotic covariance matrix is optimal (see, e.g., [8] for the optimality
of the asymptotic covariance matrix of θn). To obtain the result of the third part of
Theorem 3, one must choose (cn) ≡ (c0n

−1/6), c0 > 0, whereas different choices
of the step size (an) are possible. For instance, one may choose:

• either (an) ≡ (a0n
−α), a0 > 0, α ∈ ]5/6,1[,

• or (an) ≡ (a0n
−1[logn]α), a0 > 0, α > 0,

• or (an) ≡ (a0n
−1[log logn]α), a0 > 0, α > 1.

To conclude this section, let us mention that, in the case no additional observa-
tions are made to approximate µ, averaging the algorithm (1) reduces the optimal
convergence rate of the sequence (µn) then defined by (2). As a matter of fact, to
average θn, the step size (an) in (1) must be chosen such that

lim
n→∞nan/ log2 n = ∞(15)

[see assumption (A5)]. If the step size (ãn) in (2) is set equal to (n−1), then the
combination of (A4) and (15) induces the condition limn→∞ ã−1

n c4
n = ∞, so that,

in view of Theorem 1, c−2
n (µn − µ) converges to a degenerate distribution. More-

over, in this case the convergence rate (c−2
n ) is necessarily less than

√
n/(log2 n)2.

On the other hand, it is possible to choose (ãn) such that ã
−1/2
n (µn −µ) converges

to a Gaussian distribution. But, in this case also, because of the combination of
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(A4) and (15), the convergence rate (ã
−1/2
n ) is necessarily less than

√
n/(log2 n)2.

So, if the only parameter of interest in the double algorithm (1) and (2) is µ, it
is preferable not to average θn: choosing in (1) the step size (an) ≡ (n−1 logp n)

(with p > 2) introduced by Koval and Schwabe [16] allows one to get rid of the
tedious condition (9) on a0 and to obtain better convergence rates for (µn) than
those which can be achieved by averaging θn.

3. Proofs. Let us first state some elementary properties of the classes GS(α)

of sequences that will be used throughout the proofs.

• If (un) ∈ GS(α) and (vn) ∈ GS(β), then (unvn) ∈ GS(α + β).
• If (un) ∈ GS(α), then for all c ∈ R, (uc

n) ∈ GS(cα).
• If (un) ∈ GS(α), then for all ε > 0 and n large enough, nα−ε ≤ un ≤ nα+ε .
• If (un) ∈ GS(α) and

∑
un = ∞, then limn→∞ nun[∑n

k=1 uk]−1 = 1 + α.

Now, set

R
(θ)
n+1 = 1

2cn

{f (θn + cnei) − f (θn − cnei)}1≤i≤d − ∇f (θn),(16)

R
(µ)
n+1 =




1

δ

∑
i∈S

[f (θn + cnei) + f (θn − cnei)] − µ,

if (µn) is defined by (2),
f (θn) − µ, if (µn) is defined by (4).

(17)

ε
(θ)
n+1 = 1

2{W+
n,i − W−

n,i}1≤i≤d
∈ R

d(18)

and

ε
(µ)
n+1 =




1

δ

∑
i∈S

[W+
n,i + W−

n,i], if (µn) is defined by (2),

1

δ

δ∑
i=1

Wn,i , if (µn) is defined by (4).
(19)

The recursive equation (1) can then be rewritten as

θn+1 = θn + an

[∇f (θn) + R
(θ)
n+1

]+ an

cn

ε
(θ)
n+1,(20)

and the algorithms (2) and (4) as

µn+1 = µn + ãn

[
(µ − µn) + R

(µ)
n+1

]+ ãnε
(µ)
n+1.(21)

These equations (20) and (21) can be viewed as particular stochastic approximation
algorithms used for the search of a zero of a given function [of the function ∇f for
(20) and of the function x �→ µ−x for (21)]. In Section 3.1, we state some prelim-
inary results on stochastic approximation algorithms used for the search of zeros of
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a function h that will be applied several times in the sequel; the proof of these pre-
liminary results can be found in the technical report arxiv:math.ST/0610487v1. In
Section 3.2 we establish an upper bound on the almost sure convergence rate of θn,
which will in particular be used to prove the strong consistency of µn. In Sec-
tion 3.3 we first prove Proposition 1, and then give an upper bound on the almost
sure convergence rate of µn defined either by (2) or by (4). Section 3.4 is devoted
to the proof of Theorems 1 and 2, and Section 3.5 to the proof of Theorem 3.

3.1. Some preliminary results on stochastic approximation algorithms. We
consider the stochastic approximation algorithm

Zn+1 = Zn + γn[h(Zn) + rn+1] + σnεn+1,(22)

where the random variables Z0, (rn)n≥1 and (εn)n≥1 are defined on a probability
space (�,A,P) equipped with a filtration F = (Fn), and the step sizes (γn) and
(σn) are two positive and nonrandom sequences that go to zero.

Stochastic approximation algorithms [such as (22)] used for the search of zeros
of a function h : Rd → R

d have been widely studied under various assumptions;
see [9, 23, 25] and the references therein. The object of this section is not to give
the most general existing result on (22), but only to precisely state the results we
shall use in the sequel for the study of (20) and (21); in particular, the hypotheses
below are not the most general ones, but are appropriate in our framework.

(H1) There exists z∗ ∈ R
d such that limn→∞ Zn = z∗ a.s.

(H2) h is differentiable at z∗, its Jacobian matrix H at z∗ is symmetric, negative
definite with maximal eigenvalue −L < 0, and there exists a neighborhood
of z∗ in which h(z) = H(z − z∗) + O(‖z − z∗‖2).

(H3) (i) E(εn+1|Fn) = 0 and there exists m > 2 such that supn≥0 E(‖εn+1‖m|
Fn) < ∞.

(ii) There exists a nonrandom, positive definite matrix � such that
limn→∞ E(εn+1ε

T
n+1|Fn) = � a.s.

(H4) rn+1 = R
(1)
n+1 +O(‖Zn − z∗‖2) a.s., and there exist ρ ∈ R

d and a nonrandom
sequence (un) such that:

(i) limn→∞
√

unR
(1)
n+1 = ρ a.s.

(ii) There exists u∗ > 0 such that (un) ∈ GS(u∗).
(H5) (i) There exist α ∈]max{1/2,2/m},1] and β > α/2 such that (γn) ∈

GS(−α) and (σn) ∈ GS(−β).
(ii) limn→∞ nγn ∈]max{2β−α

2L
, u∗

2L
},∞], where L and u∗ are defined in

(H2) and (H4)(ii), respectively.

The asymptotic behavior of the algorithm (22) is given by the behavior of the
sequences (Ln) and (�n) defined by

Ln+1 = e(
∑n

k=1 γk)H
n∑

k=1

e
−(
∑k

j=1 γj )H
σkεk+1,

http://arxiv.org/abs/math.ST/0610487v1


A COMPANION FOR THE KWB ALGORITHM 1761

�n+1 = (Zn+1 − z∗) − Ln+1.

In order to prove Proposition 1 and Theorems 1 and 2, we shall apply several times
the following two lemmas.

LEMMA 1 [A.s. upper bound of (Ln)]. Under hypotheses (H2), (H3) and

(H5), we have ‖Ln‖ = O(

√
γ −1
n σ 2

n log(
∑n

k=1 γk)) a.s.

LEMMA 2 [A.s. convergence rate of (�n)]. Under hypotheses (H1)–(H5), we

have limn→∞
√

un�n = −[H + ξ̃
2Id ]−1

ρ a.s.

Let us mention that, in particular, the combination of Lemmas 1 and 2 gives
straightforwardly the following upper bound of the a.s. convergence rate of Zn

toward z∗:

‖Zn − z∗‖ = O

(√√√√γ −1
n σ 2

n log

(
n∑

k=1

γk

)
+ u−1/2

n

)
a.s.(23)

To end this section, we now state a result concerning the averaged stochastic
approximation algorithm derived from (22); we set

Zn = 1∑n
k=1 γ 2

k σ−2
k

n∑
k=1

γ 2
k σ−2

k Zk

and assume the following additional condition holds:

(H6) (i) limn→∞
nγn

log(
∑n

k=1 γk)
= ∞.

(ii) limn→∞
∑n

k=1 γk log(
∑k

j=1 γj )√∑n
k=1 γ 2

k σ−2
k

= 0.

(iii) The sequence (un) defined in assumption (H4) satisfies

lim
n→∞nunσ

2
n = ∞, lim

n→∞

∑n
k=1 γ 2

k σ−2
k u−1

k√∑n
k=1 γ 2

k σ−2
k

= 0.

The asymptotic behavior of (Zn) is given by the behavior of the sequences (�n)

and (�n) defined by

�n+1 = − 1∑n
k=1 γ 2

k σ−2
k

H−1
n∑

k=1

γkσ
−1
k εk+1,

�n+1 = (Zn − z∗) − �n+1.

In Section 3.5, we shall apply several times the following lemma, which gives the
asymptotic almost sure behavior of (�n).
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LEMMA 3 [A.s. convergence rate of (�n)]. Assume that (H1)–(H6) hold.
(1) If limn→∞[nγ 2

n σ−2
n ]−1/2[∑n

k=1 γ 2
k σ−2

k u
−1/2
k ] = 0, then

lim
n→∞

√
nγ 2

n σ−2
n �n = 0 a.s.

(2) If the sequence ([nγ 2
n σ−2

n ]1/2[∑n
k=1 γ 2

k σ−2
k u

−1/2
k ]−1) is bounded, then

lim
n→∞

nγ 2
n σ−2

n∑n
k=1 γ 2

k σ−2
k u

−1/2
k

�n = −(1 − 2α + 2β)H−1ρ a.s.

3.2. Upper bound of the a.s. convergence rate of θn. Set

sn =
n∑

k=1

ak,(24)

G = D2f (θ),(25)

L
(θ)
n+1 = esnG

n∑
k=1

ak

ck

e−skGε
(θ)
k+1,(26)

�
(θ)
n+1 = (θn+1 − θ) − L

(θ)
n+1.(27)

The application of Lemma 1 to the recursive equation (20) [with h ≡ ∇f ,
(γn) ≡ (an) and (σn) ≡ (anc

−1
n )] gives straightforwardly the following lemma.

LEMMA 4 [A.s. upper bound of (L
(θ)
n )]. Under assumptions (A2)(ii), (A3)

and (A4)(i)–(iii), we have ‖L(θ)
n ‖ = O(

√
anc

−2
n log sn) a.s.

Now, let R
(θ)
n+1,i denote the ith coordinate of R

(θ)
n+1 [defined in (16)]; we have

R
(θ)
n+1,i = 1

2cn

{[f (θn + cnei) − f (θn)] − [f (θn − cnei) − f (θn)]} − ∂f

∂xi

(θn)

= 1

2cn

{[
cn

∂f

∂xi

(θn) + c2
n

2

∂2f

∂x2
i

(θn) + c3
n

6

∂3f

∂x3
i

(θn) + o(c3
n)

]

−
[
−cn

∂f

∂xi

(θn) + c2
n

2

∂2f

∂x2
i

(θn) − c3
n

6

∂3f

∂x3
i

(θn) + o(c3
n)

]}
− ∂f

∂xi

(θn)

= c2
n

6

∂3f

∂x3
i

(θn) + o(c2
n),

and thus, in view of assumptions (A1) and (A2)(i), limn→∞ c−2
n R

(θ)
n+1 = R(θ) a.s.,

where R(θ) is defined in (14). The application of Lemma 2 [with (
√

un ) ≡ (c−2
n )

and ρ ≡ R(θ)] then gives the following lemma.
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LEMMA 5 [A.s. convergence rate of (�
(θ)
n )]. Under assumptions (A1)–(A3)

and (A4)(i)–(iii), we have limn→∞ c−2
n �

(θ)
n = �(θ) a.s. where �(θ) is defined

in (11).

Let us note that the combination of Lemmas 4 and 5 ensures that, under assump-
tions (A1)–(A3) and (A4)(i)–(iii),

‖θn − θ‖ = O
(√

anc
−2
n log sn + c2

n

)
a.s.(28)

3.3. On the a.s. asymptotic behavior of µn defined by (2) or (4). In the case
µn is defined either by (2) or by (4), the a.s. convergence of µn (resp. the a.s. con-
vergence rate of µn) is obtained by applying the Robbins–Monro theorem (resp.
Lemmas 1 and 2) to the recursive equation (21). Since the R

(µ)
n+1 term in (21) de-

pends on θn [see (17)], we first upper bound this perturbation term by using the
results of the previous section. To this end, we first note that in the case (µn) is
defined by (2), we have

R
(µ)
n+1 = 1

δ

∑
i∈S

{[
f (θn) + cn

∂f

∂xi

(θn) + c2
n

2

∂2f

∂x2
i

(θn) + o(c2
n)

]

+
[
f (θn) − cn

∂f

∂xi

(θn) + c2
n

2

∂2f

∂x2
i

(θn) + o(c2
n)

]}
− µ

= c2
n

δ

∑
i∈S

∂2f

∂x2
i

(θn) + o(c2
n) + [f (θn) − f (θ)](29)

= c2
n

δ

∑
i∈S

∂2f

∂x2
i

(θn) + o(c2
n) + O(‖θn − θ‖2)

= c2
n

δ

∑
i∈S

∂2f

∂x2
i

(θn) + o(c2
n) + O

(
an log sn

c2
n

)
a.s.

[where the last equality follows from the application of (28)]; in the case (µn) is
defined by (4), similar computations give

R
(µ)
n+1 = O

(
an log sn

c2
n

+ c4
n

)
a.s.(30)

In view of assumption (A4)(v), we deduce that:

• If limn→∞ ã−1
n b4

n = 0, then

lim
n→∞

√
ã−1
n R

(µ)
n+1 = 0 a.s.(31)
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• If limn→∞ ã−1
n b4

n ∈]0,∞], then

lim
n→∞

1

b2
n

R
(µ)
n+1 = 1

δ

∑
i∈S

∂2f

∂x2
i

(θ) a.s.(32)

We can now prove Proposition 1 and give an upper bound on the a.s. conver-
gence rate of µn.

3.3.1. Proof of Proposition 1.

• In the case limn→∞ ã−1
n b4

n = 0, we have, in view of (31), ãn|R(µ)
n+1|2 = O(ã2

n)

a.s., and thus, in view of (A4)(iv),
∑

ãn|R(µ)
n+1|2 < ∞ a.s.

• In the case limn→∞ ã−1
n b4

n ∈]0,∞], we have, in view of (32), ãn|R(µ)
n+1|2 =

O(ãnb
4
n) a.s., and thus, in view of (A4)(v),

∑
ãn|R(µ)

n+1|2 < ∞ a.s.

In both cases, the application of the Robbins–Monro theorem (see, e.g., [9],
page 61) ensures that

∑
ãn(µn − µ)2 < ∞ a.s. Since

∑
ãn = ∞ [see (A4)(vi)],

it follows that limn→∞ µn = µ a.s.

3.3.2. Upper bound on the a.s. convergence rate of µn defined by (2) or (4).
Set

s̃n =
n∑

k=1

ãk,(33)

L
(µ)
n+1 = e−s̃n

n∑
k=1

es̃k ãkε
(µ)
k+1,(34)

�
(µ)
n+1 = (µn+1 − µ) − L

(µ)
n+1(35)

[where ε
(µ)
n is defined in (19)]. The application of Lemma 1 to the recursive equa-

tion (21) [with h :x �→ µ−x, (γn) ≡ (ãn) and (σn) ≡ (ãn)] gives straightforwardly
the following lemma.

LEMMA 6 [A.s. upper bound of (L
(µ)
n )]. Under assumptions (A3), (A4)(iv)

and (A4)(vi), we have |L(µ)
n | = O(

√
ãn log s̃n ) a.s.

Moreover:

• if limn→∞ ã−1
n b4

n = 0, then, in view of (31), the application of Lemma 2 [with

(
√

un ) ≡ (

√
ã−1
n ) and ρ ≡ 0] gives the first part of Lemma 7 below;

• if limn→∞ ã−1
n b4

n ∈]0,∞], then, in view of (32), the application of Lemma 2

[with (
√

un ) ≡ (b−2
n ) and ρ ≡ 1

δ

∑
i∈S

∂2f

∂x2
i

(θ)] gives the second part of

Lemma 7 below.
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LEMMA 7 [A.s. convergence rate of (�
(µ)
n )]. Let (A1)–(A4) hold.

(1) If limn→∞ ã−1
n b4

n = 0, then limn→∞
√

ã−1
n �

(µ)
n = 0 a.s.

(2) If limn→∞ ã−1
n b4

n ∈]0,∞], then limn→∞ 1
b2
n
�

(µ)
n = �(µ) a.s., where �(µ) is

defined in (13).

Although only Lemmas 6 and 7 will be used in the sequel, we state here the
following proposition, which is obtained as a straightforward combination of these
two lemmas, and which is of independent interest.

PROPOSITION 2 [A.s. upper bound of (µn −µ)]. Under (A1)–(A4), we have:
(1) If limn→∞ ã−1

n b4
n = 0, then |µn − µ| = O(

√
ãn log s̃n) a.s.

(2) If limn→∞ ã−1
n b4

n ∈]0,∞], then |µn − µ| = O(
√

ãn log s̃n + b2
n) a.s.

3.4. Proof of Theorems 1 and 2. In view of the definition of L
(θ)
n , �

(θ)
n , L

(µ)
n

and �
(µ)
n [see (26), (27), (34) and (35), resp.], Theorems 1 and 2 are straight-

forward consequences of the combination of Lemmas 5 and 7 together with the
following lemma.

LEMMA 8 [Weak convergence rate of (L
(θ)
n ,L

(µ)
n )]. Under (A2)–(A4),(√

a−1
n c2

nL
(θ)
n√

ã−1
n L

(µ)
n

)
D→ N

(
0,

(
�(θ) 0

0 �(µ)

))
,

where �(θ) and �(µ) are defined in (10) and (12), respectively.

PROOF. Set

M
(n)
j =

(√
a−1
n c2

ne
snG 0

0
√

ã−1
n e−s̃n

) j∑
k=1

(
e−skGakc

−1
k ε

(θ)
k

es̃k ãkε
(µ)
k

)
.

For each n, M(n) = (M
(n)
j )j≥1 is a martingale whose predictable quadratic varia-

tion satisfies

〈M〉(n)
n =

(
A1,n A2,n

AT
2,n A4,n

)
with

A1,n = a−1
n c2

ne
snG

{
n∑

k=1

a2
kc

−2
k e−skGE

[
ε
(θ)
k

[
ε
(θ)
k

]T |Gk−1
]
e−skG

T

}
esnGT

,

A2,n = a−1/2
n ã−1/2

n cne
snGe−s̃n

{
n∑

k=1

akãkc
−1
k e−skGes̃kE

[
ε
(θ)
k ε

(µ)
k |Gk−1

]}
,

A4,n = ã−1
n e−2s̃n

{
n∑

k=1

ã2
ke

2s̃kE
[[

ε
(µ)
k

]2|Gk−1
]}

.
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Now, under assumption (A3), we have, in view of (18) and (19),

E
[
ε
(θ)
k

[
ε
(θ)
k

]T |Gk−1
]= σ 2Id

2
, E

[[
ε
(θ)
k

]T
ε
(µ)
k |Gk−1

]= 0 a.s.,

E
[[

ε
(µ)
k

]2|Gk−1
]= σ 2

δ
a.s.

It follows that A2,n = 0 and, by application of Lemma 4 in [24], limn→∞ A1,n =
�(θ) and limn→∞ A4,n = �(µ). We thus obtain

lim
n→∞〈M〉(n)

n =
(

�(θ) 0
0 �(µ)

)
a.s.

Moreover, in view of assumption (A3), we have

n∑
k=1

E
[∥∥M(n)

k − M
(n)
k−1

∥∥m|Gk−1
]

= O

(
n∑

k=1

(a−1
n c2

n)
m/2∥∥e(sn−sk)Gakc

−1
k

∥∥m +
n∑

k=1

ã−m/2
n e−m(s̃n−s̃k)ãm

k

)
a.s.

= O
(
w(θ)

n + w(µ)
n

)
a.s.

with

w(θ)
n = (a−1

n c2
n)

m/2e−mL(θ)sn

n∑
k=1

am
k c−m

k emL(θ)sk ,

w(µ)
n = ã−m/2

n e−ms̃n

n∑
k=1

ems̃k ãm
k .

Now, since (a−1
n c2

n) ∈ GS(α − 2τ), we note that

w
(θ)
n+1 =

[
a−1
n+1c

2
n+1

a−1
n c2

n

]m/2

e−mL(θ)an+1w(θ)
n + a

m/2
n+1

=
[
1 + α − 2τ

n + 1
+ o

(
1

n + 1

)]m/2[
1 − mL(θ)an+1 + o(an+1)

]
w(θ)

n + a
m/2
n+1

= [
1 + ξ (θ)an+1 + o(an+1)

]m/2[1 − mL(θ)an+1 + o(an+1)
]
w(θ)

n + a
m/2
n+1

=
[
1 + ξ (θ)m

2
an+1 + o(an+1)

][
1 − mL(θ)an+1 + o(an+1)

]
w(θ)

n + a
m/2
n+1

=
[
1 − m

(
L(θ) − ξ (θ)

2

)
an+1 + o(an+1)

]
w(θ)

n + a
m/2
n+1.
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Set A(θ) ∈]0,L(θ) − ξ (θ)/2[; for n large enough, we get∣∣w(θ)
n+1

∣∣≤ (1 − A(θ)an+1
)∣∣w(θ)

n

∣∣+ a
m/2
n+1,

and the application of Lemma 4.I.1 in [9] ensures that limn→∞ w
(θ)
n = 0. In the

same way, since (ã−1
n ) ∈ GS(−α̃), we have

w
(µ)
n+1 =

[
ãn+1

ãn

]−m/2

e−mãn+1w(µ)
n + ã

m/2
n+1

=
[
1 − α̃

n + 1
+ o

(
1

n + 1

)]−m/2

[1 − mãn+1 + o(ãn+1)]w(µ)
n + ã

m/2
n+1

= [
1 − ξ (µ)ãn+1 + o(ãn+1)

]−m/2[1 − mãn+1 + o(ãn+1)]w(µ)
n + ã

m/2
n+1

=
[
1 + ξ (µ)m

2
ãn+1 + o(ãn+1)

]
[1 − mãn+1 + o(ãn+1)]w(µ)

n + ã
m/2
n+1

=
[
1 − m

(
1 − ξ (µ)

2

)
an+1 + o(an+1)

]
w(µ)

n + a
m/2
n+1,

from which we deduce that limn→∞ w
(µ)
n = 0. It thus follows that

n∑
k=1

E
[∥∥M(n)

k − M
(n)
k−1

∥∥m|Gk−1
]= o(1) a.s.,

and the application of Lyapounov’s theorem gives

M(n)
n =

(√
a−1
n c2

n L
(θ)
n√

ã−1
n L

(µ)
n

)
D→ N

(
0,

(
�(θ) 0

0 �(µ)

))
,

which concludes the proof of Lemma 8. �

3.5. Proof of Theorem 3. Set

�
(θ)
n+1 = −1∑n

k=1 c2
k

G−1
n∑

k=1

ckε
(θ)
k+1,

�
(θ)
n+1 = (θn − θ) − �

(θ)
n+1,

ε
(µ)
k+1 = 1

δ

δ∑
i=1

Wk,i ,

�
(µ)
n+1 = 1

n

n∑
k=1

ε
(µ)
k+1,

�
(µ)
n+1 = (µn+1 − µ) − �

(µ)
n+1,
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where ε
(θ)
k and G are defined in (18) and (25), respectively. Theorem 3 follows

straightforwardly from the combination of the three following lemmas, which give
the a.s. convergence rate of (�

(θ)
n ), of (�

(µ)
n ) and the weak convergence rate of

(�
(θ)
n ,�

(µ)
n ), respectively.

LEMMA 9 [A.s. convergence rate of (�
(θ)
n )]. Let the assumptions of Theorem 3

hold, and recall that R(θ) is defined in (14).

(1) If limn→∞ nc6
n = ∞, then limn→∞ c−2

n �
(θ)
n = −(1−2τ

1−4τ
)G−1R(θ) a.s.

(2) If limn→∞ nc6
n = 0, then limn→∞

√
nc2

n �
(θ)
n = 0 a.s.

(3) If there exists γ > 0 such that limn→∞ nc6
n = γ , then limn→∞

√
nc2

n �
(θ)
n =

−2γ 1/3G−1R(θ) a.s.

LEMMA 10 [A.s. convergence rate of (�
(µ)
n )]. Under the assumptions of The-

orem 3 we have limn→∞
√

n�
(µ)
n+1 = 0 a.s.

LEMMA 11 [Weak convergence rate of (�
(θ)
n ,�

(µ)
n )]. Under the assumptions

of Theorem 3, we have

(√
nc2

n�
(θ)
n√

n�
(µ)
n

)
D→ N


0,




σ 2(1 − 2τ)

2
G−2 0

0
σ 2

δ




 .

PROOF OF LEMMA 9. Set (γn) ≡ (an), (σn) ≡ (anc
−1
n ), (un) ≡ (c−4

n ) and
ε ∈]0, (1 − 2τ)/2[. Since∑n

k=1 γ 2
k σ−2

k u−1
k√

nγ 2
n σ−2

n

=
∑n

k=1 c6
k√

nc2
n

= O

(
nε + nc6

n√
nc2

n

)
= o(1),

we can apply Lemma 3 to the recursive equation (20). Assumption (A4)(v) implies
limn→∞ nc4

n = ∞, and thus
∑

c4
n = ∞. Since (c4

n) ∈ GS(−4τ), we have

lim
n→∞

nc4
n∑n

k=1 c4
k

= 1 − 4τ.(36)

Consider the case limn→∞ nc6
n ∈]0,∞]. We then have τ ≤ 1/6 and it follows from

(36) that √
nγ 2

n σ−2
n∑n

k=1 γ 2
k σ−2

k u
−1/2
k

=
√

nc2
n∑n

k=1 c4
k

= O

(
1√
nc6

n

)
= O(1).
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The application of the second part of Lemma 3 then ensures that

lim
n→∞

nc2
n∑n

k=1 c4
k

�(θ)
n = −(1 − 2τ)G−1R(θ) a.s.,

and, applying (36) again, we obtain

lim
n→∞ c−2

n �(θ)
n = −

(
1 − 2τ

1 − 4τ

)
G−1R(θ) a.s.,(37)

which gives the first part of Lemma 9. Note that if limn→∞ nc6
n ∈]0,∞[, then

τ = 1/6; the third part of Lemma 9 follows straightforwardly from (37).
Now, consider the case limn→∞ nc6

n = 0. Set ε ∈]0, (1 − 2τ)/2[; using the fact
that (c4

n) ∈ GS(−4τ) with τ ≤ 1/4 and applying (36) in the case τ �= 1/4, we
obtain ∑n

k=1 γ 2
k σ−2

k u
−1/2
k√

nγ 2
n σ−2

n

=
∑n

k=1 c4
k√

nc2
n

= O

(
nε + nc4

n√
nc2

n

)
= o(1).

The application of the first part of Lemma 3 then ensures that limn→∞
√

nc2
n�

(θ)
n =

0 a.s., which concludes the proof of Lemma 9. �

PROOF OF LEMMA 10. We have

∣∣�(µ)
n+1

∣∣=
∣∣∣∣∣1n

n∑
k=1

[
1

δ

δ∑
i=1

Zi(θk)

]
− f (θ) − �

(µ)
n+1

∣∣∣∣∣
=
∣∣∣∣∣1n

n∑
k=1

[f (θk) − f (θ)]
∣∣∣∣∣

= O

(
1

n

n∑
k=1

‖θk − θ‖2
)

= O

(
1

n

n∑
k=1

[∥∥�(θ)
k+1

∥∥2 + ∥∥�(θ)
k+1

∥∥2])
.

By applying for instance Corollary 6.4.25 of [10], we get

∥∥∥∥∥
n∑

k=1

ckε
(θ)
k+1

∥∥∥∥∥= O

(√√√√ n∑
k=1

c2
k log log

(
n∑

k=1

c2
k

))
a.s.,

and thus ∥∥�(θ)
n+1

∥∥2 = O((nc2
n)

−1 log logn) a.s.
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The application of Lemma 9 then ensures that

∣∣�(µ)
n+1

∣∣= O

(
1

n

n∑
k=1

[c4
k + (kc2

k)
−1 log log k]

)
a.s.

= O
(
c4
n + (nc2

n)
−1 log logn

)
a.s.

In view of (A4)(v) (with bn = 0 and ãn = n−1), Lemma 10 follows. �

PROOF OF LEMMA 11. Set

M(n)
j =


−

(
n∑

k=1

c2
k

)−1/2

G−1 0

0 n−1/2


 j∑

k=1

(
ckε

(θ)
k

ε
(µ)
k

)
.

In view of (A3), for each n, M(n) = (M(n)
j )j≥1 is a martingale whose predictable

quadratic variation satisfies

〈M〉(n)
n =




σ 2

2
G−2 0

0
σ 2

δ


 a.s.

and we have
n∑

k=1

E
[∥∥M(n)

k − M(n)
k−1

∥∥m|Gk−1
]

= O

([
n∑

k=1

c2
k

]−m/2 n∑
k=1

cm
k + n1−m/2

)
a.s.

= o(1) a.s.

The application of Lyapounov’s theorem then ensures that

M(n)
n =



√√√√ n∑

k=1

c2
k�

(θ)
n

√
n �(µ)

n


 D→ N


0,




σ 2

2
G−2 0

0
σ 2

δ




 ,

and Lemma 11 follows from the fact that, since (c2
n) ∈ GS(−2τ) with τ > 1/2, we

have limn→∞ nc2
n[
∑n

k=1 c2
k]−1 = 1 − 2τ . �
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