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CONVERGENCE RATES FOR BAYESIAN DENSITY ESTIMATION
OF INFINITE-DIMENSIONAL EXPONENTIAL FAMILIES

BY CATIA SCRICCIOLO

University “L. Bocconi,” Milan

We study the rate of convergence of posterior distributions in density
estimation problems for log-densities in periodic Sobolev classes character-
ized by a smoothness parameter p. The posterior expected density provides
a nonparametric estimation procedure attaining the optimal minimax rate of
convergence under Hellinger loss if the posterior distribution achieves the
optimal rate over certain uniformity classes. A prior on the density class of
interest is induced by a prior on the coefficients of the trigonometric series
expansion of the log-density. We show that when p is known, the posterior
distribution of a Gaussian prior achieves the optimal rate provided the prior
variances die off sufficiently rapidly. For a mixture of normal distributions,
the mixing weights on the dimension of the exponential family are assumed to
be bounded below by an exponentially decreasing sequence. To avoid the use
of infinite bases, we develop priors that cut off the series at a sample-size-
dependent truncation point. When the degree of smoothness is unknown, a
finite mixture of normal priors indexed by the smoothness parameter, which
is also assigned a prior, produces the best rate. A rate-adaptive estimator is
derived.

1. Introduction. Bayesian nonparametrics is a very rapidly developing area
of statistics. Several papers—including [1, 2, 4, 11, 14–18, 20, 21, 24–26]—have
been devoted to the investigation of asymptotic properties of posterior distributions
on infinite-dimensional parameter spaces.

The problem of estimating a density function f0 w.r.t. the Lebesgue measure λ

on the unit interval, given a sample of i.i.d. observations X1, . . . ,Xn from f0, is
considered from the Bayesian perspective. Suppose that the sampling probability
measure P0 lies in F , a class of absolutely continuous probability measures w.r.t.
λ, equipped with the Hellinger metric dH, the L2-distance between square-rooted
densities. Suppose, further, that the generic density is of the form

exp{θ(x)}∫ 1
0 exp{θ(t)}dt

, x ∈ [0,1],

with θ a square-integrable function in a periodic Sobolev class. We recall that for
any given integer p ≥ 1 and real L > 0, the Sobolev functional class W(p,L)
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comprises all square-integrable functions with absolutely continuous derivative of
order p − 1 and pth derivative bounded in L2-norm,

W(p,L) = {
θ ∈ L2[0,1] : θ(p−1) is abs. cont., ‖θ(p)‖2

2 < L2}
.

The periodic Sobolev class W per(p,L) is the following subclass of all periodic
functions with period 1 satisfying the boundary conditions indicated:

W per(p,L) = {
θ ∈ W(p,L) : θ(r)(0) = θ(r)(1), r = 0, . . . , p − 1

}
.

The problem is made discrete by representing a periodic Sobolev class as a Sobolev
ellipsoid of �2 via trigonometric series expansion. Let {φj (·), j = 0,1, . . .} be
the orthonormal trigonometric system of L2[0,1]. For x ∈ [0,1], φ0(x) ≡ 1 and
for k ≥ 1, φ2k−1(x) = √

2 sin(2πkx), φ2k(x) = √
2 cos(2πkx). For θ ∈ L2[0,1],

let θj = ∫ 1
0 θ(x)φj (x) dx, j ≥ 0, be the sequence of its Fourier coefficients. To

simplify the notation, let θ = (θ0, θ1, . . .), φ(·) = (φ0(·), φ1(·), . . .) and θ · φ(·) =∑∞
j=0 θjφj (·) = θ0 + ∑∞

j=1 θjφj (·). Each θ having the series expansion

θ(x) = θ ·φ(x) = θ0 +√
2

∞∑
k=1

[θ2k−1 sin(2πkx)+ θ2k cos(2πkx)], x ∈ [0,1],

lies in W per(p,L) if and only if θ belongs to the Sobolev ellipsoid of �2,

Ep(Q) =
{
θ ∈ �2 :

∞∑
j=0

v
2p
j θ2

j < Q

}
, Q = L2

π2p
,

with

v0 = 0, vj =
{

j + 1, for j odd,
j, for j even,

j = 1,2, . . . .

For Q = ∞, the Sobolev space {θ ∈ �2 :
∑∞

j=0 v
2p
j θ2

j < ∞} will be denoted by Ep .

Setting ψ(θ) = log(
∫ 1

0 exp {θ · φ(t)}dt), the generic density can be rewritten as

fθ (x) = exp
{
θ · φ(x) − ψ(θ)

} = exp {∑∞
j=1 θjφj (x)}∫ 1

0 exp {∑∞
j=1 θjφj (t)}dt

, x ∈ [0,1].

The form of fθ explains why F , which will also denote the density class {fθ , θ ∈
Ep(Q)}, is called an infinite-dimensional exponential family. Since fθ does not
depend on θ0, for any pair θ , θ ′ ∈ Ep(Q), the corresponding probability measures
Pθ , Pθ ′ are such that Pθ �= Pθ ′ if and only if θj �= θ ′

j for some j ≥ 1. Sequences
differing only in the first coordinate identify the same probability measure and,
thus, form an equivalence class. For instance, for f0 ∈ F , any θ0 ∈ Ep(Q) such
that fθ0 = f0 can be taken as a representative of the class. It is now useful to
highlight the fact that the fθ ’s are uniformly bounded and bounded away from
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zero. Let ‖φj‖∞ = sup0≤x≤1 |φj (x)| be the supremum norm of φj , j ≥ 0. Note
that ‖φj‖∞ = √

2 for all j ≥ 1. Setting

A =
∞∑

j=1

v
−2p
j , B = √

2QA,

for each θ ∈ Ep(Q) we have

‖θ · φ − θ0‖∞ ≤ √
2

∞∑
j=1

|θj | ≤
√

2

√√√√ ∞∑
j=1

v
2p
j θ2

j

√√√√ ∞∑
j=1

v
−2p
j < B < ∞.

Consequently, supθ∈Ep(Q) ‖fθ‖∞ < e2B . Thus, the Hellinger distance between any

pair Pθ ′, Pθ ∈ F , dH(Pθ ′,Pθ ) = {∫ 1
0 (

√
fθ ′ − √

fθ )
2 dλ}1/2, the Kullback–Leibler

divergence K(Pθ ′‖Pθ ) = K(fθ ′‖fθ ) = ∫ 1
0 fθ ′ log(fθ ′/fθ ) dλ and the L2-distance

‖fθ ′ − fθ‖2 are equivalent and can be interchangeably used as loss functions.
The problem of estimating densities from exponential families has been studied

by Crain [7–10] from the frequentist perspective, where log-densities are generated
by Legendre polynomials on [−1,1]. Verdinelli and Wasserman [21] have used the
same model for Bayesian goodness-of-fit testing. Our goal is to develop Bayesian
density estimators attaining the optimal rate of convergence in the minimax sense
under Hellinger loss, which is well known to be n−p/(2p+1) (see, for example,
[25], Corollary 1, page 1574),

inf
f̂ ∈Sn

sup
fθ∈F

E
n
θ [K(fθ‖f̂ )] 
 inf

f̂ ∈Sn

sup
fθ∈F

E
n
θ

[
d2

H(fθ , f̂ )
]


 inf
f̂ ∈Sn

sup
fθ∈F

E
n
θ

[‖fθ − f̂ ‖2
2
] 
 n−2p/(2p+1),

where Sn is the set of all estimators f̂ for densities fθ in F based on n ob-
servations and the expectation is taken over the n-fold product measure of Pθ .
By writing an 
 bn, we mean that both an � bn and bn � an, where an � bn if
an = O(bn), namely, if there exists a constant c such that an ≤ cbn for all large n.
Hereafter, all symbols O and o will refer to asymptotics as n → ∞. The posterior
expected density, which will be referred to as the Bayes estimator and denoted
by f̂n in what follows, is a natural and common procedure for density estimation.
From the general theory concerning posterior rates of convergence, it is known
that if the posterior distribution on F converges at the exponential rate e−Cnε2

n ,
where εn is a positive sequence such that εn → 0 and nε2

n → ∞ as n → ∞, then
the Bayes estimator converges to the true density f0 in the Hellinger distance at
least as fast as εn (see, e.g., [14], pages 506–507). Therefore, it suffices to put
priors on F such that the corresponding posterior distributions converge expo-
nentially fast at the optimal rate n−p/(2p+1). Recall that for P0 ∈ F , if �n is a
prior on F possibly depending on the sample size, the posterior converges at rate
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εn (relative to dH) if for every positive sequence Mn → ∞ such that Mnεn → 0,
�n(H

c
εn

(P0)|X1, . . . ,Xn) → 0 as n → ∞, in probability or almost surely when
sampling from P0, where Hc

εn
(P0) = {Pθ ∈ F :dH(P0,Pθ ) > Mnεn}. Since any

prior on Ep(Q) induces a prior on F via the map θ �→ fθ , we can conveniently
work with priors for the Fourier coefficients. Hereafter, we state a sufficient con-
dition for posterior convergence at the optimal rate. The proof, deferred to the
Appendix, relies on the fact that, in the present setting, Hellinger neighborhoods
of P0 translate into �2-neighborhoods of θ0.

THEOREM 1. Let πn be a sequence of priors on Ep(Q) and �n the se-
quence of priors induced on F . Suppose θ0 ∈ Ep(Q). Let B2

1 = e−8B and
εn = n−p/(2p+1). If for constants c1, c2 > 0,

πn

({
θ :

∞∑
j=1

(θj − θ0,j )
2 ≤ B2

1ε2
n

})
≥ c2e

−c1nε2
n,(1)

then for a sufficiently large constant M > 0,

�n({Pθ :dH(P0,Pθ ) > Mεn}|X1, . . . ,Xn) → 0 as n → ∞,

P ∞
0 -almost surely, where P ∞

0 denotes the infinite product measure of P0.

We develop several priors yielding Bayes estimators that attain the optimal
minimax rate. Preliminary ascertainment of consistency is based on results by
Barron, Schervish and Wasserman [2], Walker and Hjort [23] and Walker [22],
who have addressed the issue of consistency of posterior distributions for infinite-
dimensional exponential families generated by orthonormal systems of bounded
basis functions where the θj ’s are independent, zero-mean normals with vari-
ances chosen to ensure that fθ is a density with prior probability one. Then
K(P0‖λ) < ∞ is a sufficient condition for strong consistency.

We begin by considering the case where p is known. In Section 2, we show
that a sample-size-dependent prior constructed from an infinite product of normals
achieves the optimal rate provided the variances decay sufficiently fast. The cor-
responding Bayes estimator attains the minimax rate over Sobolev ellipsoids. As
shown in Section 3, it is also attained by the posterior expected density arising
from a mixture of normals with mixing weights on the family dimension k that
are bounded below by a sequence exponentially decaying in k. Both estimators
involve infinitely many basis functions. Thus, the need arises to develop priors on
finite sets of coefficients. This implies truncating the series at a maximum num-
ber of components that is allowed to grow with sample size. Approximate density
estimators are derived in Section 4. In Section 5, we consider the case where the
degree of smoothness of f0 is unknown. A prior on the smoothness parameter is
assigned that has finite support. Normal priors with dimension depending on the
smoothness parameter are combined into an overall distribution whose posterior is
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seen to converge at the best rate. An adaptive estimator is constructed. Adaptive
convergence rates for posterior distributions on infinite-dimensional exponential
families generated by wavelets with coefficients in a Besov space have been stud-
ied by Huang [16]. The relationship between our work and this article is considered
in Section 6, along with some other closing remarks.

2. Priors constructed from infinite normals. A prior for θ results from as-
suming independent, zero-mean normal coordinates. If we take θj ∼ N(0, τ 2

j ),

j ≥ 0, with
∑∞

j=0 τ 2
j < ∞, then the τ 2

j ’s must be specified so that the infinite prod-
uct measure gives positive probability to Ep . Hereafter, we shall use �x� (�x�) to
mean the greatest (least) integer less (greater) than or equal to x. For each n ≥ 1,
let εn = n−p/(2p+1) and define Nn = �(8Q/(B2

1ε2
n))

1/(2p)�, with B2
1 = e−8B as

before. We omit the subscript n in Nn. Let τ 2
0 = 0, which corresponds to a point

mass at zero for the prior of θ0. Also, let τ 2
j = σ 2v

−2q
j , with q = p + 1/2 for

j = 1, . . . ,N , and q = 2p + α, with α > 1/2, for j ≥ N + 1. With this choice,

∞∑
j=0

v
2p
j τ 2

j = σ 2
N∑

j=1

v
2p
j v

−(2p+1)
j + σ 2

∞∑
j=N+1

v
2p
j v

−(4p+2α)
j < ∞,

hence,
∑∞

j=0 v
2p
j θ2

j converges almost surely; see (5.13) in [26], page 541. Let µn

denote the sample-size-dependent prior

µn(θ) = δ0 ×
N∏

j=1

1

σv
−(p+1/2)
j

φ

(
θj

σv
−(p+1/2)
j

)

×
∞∏

j=N+1

1

σv
−(2p+α)
j

φ

(
θj

σv
−(2p+α)
j

)
, θ ∈ R

∞,

where δ0 denotes a point mass at zero, φ stands for the standard normal density
and R

∞ is the space of sequences of real numbers. Let πn be the restriction of µn

to Ep(Q),

πn(θ) = IEp(Q)(θ)µn(θ)

µn(Ep(Q))
, θ ∈ R

∞.(2)

We prove that the posterior of �n, the prior induced on F by πn, converges at
optimal rate. Henceforth, we may set σ 2 = 1 without loss of generality because
the results of the following theorem and Corollary 1 are not affected by the value
of σ 2 up to constants.

THEOREM 2. If θ0 ∈ Ep(Q), then for a sufficiently large constant M > 0,

�n

({Pθ :dH(P0,Pθ ) > Mn−p/(2p+1)}|X1, . . . ,Xn

) → 0 as n → ∞,

P ∞
0 -almost surely.
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PROOF. By virtue of Theorem 1, we only need to show that condition (1) is
satisfied. Clearly,

Jn � πn

({
θ :

∞∑
j=1

(θj − θ0,j )
2 ≤ B2

1ε2
n

})

≥ µn

({
θ ∈ Ep(Q) :

∞∑
j=1

(θj − θ0,j )
2 ≤ B2

1ε2
n

})
.

We show that for all large n,

Jn ≥ µn(En),(3)

where

En =
{
θ :

N∑
j=1

(θj − θ0,j )
2 ≤ B2

1ε2
n

C0
,

∞∑
j=N+1

v
2p
j θ2

j ≤ B2
1ε2

n

8

}

with C0 a positive constant depending on θ0 to be suitably chosen as will be pre-
scribed. To prove (3), it suffices to show that for each θ ∈ En,

(i) θ ∈ Ep(Q);
(ii)

∑∞
j=1(θj − θ0,j )

2 < B2
1ε2

n.

We start with (i). Let 0 < δ0 ≤ Q be such that
∑∞

j=0 v
2p
j θ2

0,j = Q − δ0. By
Schwarz’s inequality,

∞∑
j=0

v
2p
j θ2

j ≤
N∑

j=1

v
2p
j (θj − θ0,j )

2 +
N∑

j=1

v
2p
j θ2

0,j

+ 2

√√√√√ N∑
j=1

v
2p
j (θj − θ0,j )2

√√√√√ N∑
j=1

v
2p
j θ2

0,j +
∞∑

j=N+1

v
2p
j θ2

j

≤ (N + 1)2p B2
1ε2

n

C0
+ (Q − δ0)

+ 2

√
(N + 1)2p

B2
1ε2

n

C0
(Q − δ0) + B2

1ε2
n

8
.

Note that if x > 0, then for 0 < K ≤ x,

(�x� + 1)2p ≤ �x�2p

(
1 + 1

K

)2p

≤ (x + 1)2p

(
1 + 1

K

)2p

≤ x2p

(
1 + 1

K

)4p

.

Fix K ≥ 1 and let n1 be the smallest n such that 1 ≤ K ≤ (8Q/(B2
1ε2

n))
1/(2p). For

n ≥ n1,

(N + 1)2p ≤ 8Q

B2
1ε2

n

(
1 + 1

K

)4p

≤ 16p 8Q

B2
1ε2

n

.
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Fix 0 < η0 ≤ (
√

Q − √
Q − δ0) and define C0 = 16p+1Q/η2

0. Let n2 be the
smallest n such that B2

1ε2
n/8 < η2

0/2. Obviously, n2 depends on η0. For each
n ≥ n̄ = max{n1, n2},

∞∑
j=0

v
2p
j θ2

j <
η2

0

2
+ (Q − δ0) + 2η0

√
Q − δ0

2
+ η2

0

2
≤ (η0 + √

Q − δ0)
2 ≤ Q,

which proves (i). We now turn to (ii). Using the inequality (a + b)2 ≤ 2(a2 + b2),
since C0 > 2, we have

∞∑
j=1

(θj − θ0,j )
2 <

B2
1ε2

n

C0
+ 2

∞∑
j=N+1

v
2p
j θ2

j + 2N−2p
∞∑

j=N+1

v
2p
j θ2

0,j

<
3B2

1ε2
n

4
+ 2N−2pQ ≤ B2

1ε2
n.

Hence, both (i) and (ii) are satisfied for all n ≥ n̄. We now find a lower bound
on µn(En). By independence of the θj ’s,

Jn ≥ Pr

({
(θ1, . . . , θN) :

N∑
j=1

(θj − θ0,j )
2 ≤ B2

1ε2
n

C0

})

× Pr

({
(θN+1, θN+2, . . .) :

∞∑
j=N+1

v
2p
j θ2

j ≤ B2
1ε2

n

8

})

� J1,n × J2,n.

Reasoning as in Lemma 4 of Shen and Wasserman [19], page 711, we obtain that

J1,n > e−(2Q+p+1/2)N2−(p+1)N Pr

(
N∑

j=1

V 2
j ≤ 2

B2
1ε2

n

C0
(2N)2p+1

)
,(4)

where V1, . . . , VN are independent, standard normal random variables. The proba-
bility on the right-hand side of (4) can be bounded below using Stirling’s approxi-
mation. For ease of notation, let ξ2

n = B2
1ε2

n/C0 and d = p + 1/2. Then

Pr

(
N∑

j=1

V 2
j ≤ 2(2N)2dξ2

n

)
� e−(2N)2dξ2

n (2N)dNξN
n

(N/2)N/2−1e−N/2
√

πN
.

Noting that (2N)2dξ2
n ≤ (16p+1Q/C0)N = η2

0N , we obtain that

J1,n � e−cN ,
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where c = 2Q+p+η2
0 − 1

2 log(η2
0/24p+1) > 0. Let us consider J2,n. By Markov’s

inequality,

J2,n ≥ 1 − 8

B2
1ε2

n

∞∑
j=N+1

v
2p
j E[θ2

j ]

≥ 1 − 8

B2
1ε2

n

∞∑
j=N+1

j−(2p+2α) > 1 − 8Q/2

B2
1ε2

nN
2p

≥ 1

2

for all large n. Combining lower bounds on J1,n and J2,n, we obtain that for c1 =
2c(8Q/B2

1 )1/(2p) and all large n,

Jn ≥ J1,n × J2,n � e−c1nε2
n,

which completes the proof. �

COROLLARY 1. If f̂n is the Bayes estimator arising from the prior (2), then
for any 0 < Q′ < Q,

sup
θ0∈Ep(Q′)

E
n
θ0

[
d2

H(fθ0, f̂n)
] 
 n−2p/(2p+1).

PROOF. Note that for each θ0 ∈ Ep(Q′), choosing 0 < η ≤ (
√

Q − √
Q′),

Theorem 2 applies with constants that do not depend on the specific point θ0.
Thus, as a byproduct of Theorem A.1, for suitable constants M , C, c > 0 and
sufficiently large n,

sup
θ0∈Ep(Q′)

E
n
θ0

[�n({Pθ :dH(Pθ0,Pθ ) > Mεn}|X1, . . . ,Xn)] ≤ Ce−cnε2
n .

By Theorem 5 of Shen and Wasserman [19], page 694,

sup
θ0∈Ep(Q′)

E
n
θ0

[
d2

H(fθ0, f̂n)
] ≤ M2ε2

n + 2Ce−cnε2
n � ε2

n,

which, combined with

ε2
n � sup

θ0∈Ep(Q′)
E

n
θ0

[
d2

H(fθ0, f̂n)
]
,

yields the assertion. �

REMARK 1. Corollary 1 shows that the prior (2) yields a Bayes density esti-
mator attaining the optimal minimax rate over any ellipsoid Ep(Q′), with Q′ < Q.
Theorem 2 and Corollary 1 are of interest because they establish that, for the prob-
lem under consideration, in contrast to the infinitely many normal means problem
considered in [26], a sample-size-dependent direct Gaussian prior yields a Bayes
estimator attaining the optimal minimax rate provided the prior variances die off
sufficiently rapidly.
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3. Sieve priors. In this section, we consider sieve priors restricted to Ep(Q).
Sieve priors have been used by Zhao [26] and Shen and Wasserman [19]. The
basic idea is to put a prior on the dimension of the exponential family, here-
after denoted by k. Before describing the hierarchical structure of a sieve prior,
we introduce some more notation. Henceforth, for any integer N ≥ 1, let θN =
(θ0, . . . , θN,0,0, . . .) denote a sequence such that all but possibly the first N + 1
coordinates are equal to zero. Also, let Ep,N(Q) = {θN :

∑N
j=0 v

2p
j θ2

j < Q}.
Clearly, Ep,N(Q) ⊆ Ep(Q).

(i) Conditionally on k ≥ 1 and θ , for each n ≥ 1, the random variables
X1, . . . ,Xn are i.i.d., with density

fθ (x) = exp {∑k
j=1 θjφj (x)}∫ 1

0 exp {∑k
j=1 θjφj (s)}ds

, x ∈ [0,1];

(ii) conditionally on k, the sequence θ has distribution µk , which makes the coor-
dinates independent and such that θ0 ≡ 0, θj ∼ N(0, v

−(2p+1)
j ), j = 1, . . . , k,

and θj is degenerate at 0 for all j > k;
(iii) the exponential family dimension k has distribution {λ(k), k = 1,2, . . .} with

λ(k) ≥ Ae−γ k , k ≥ 1, for some A, γ > 0.

Let π denote the restriction of the sieve prior µ = ∑∞
k=1 λ(k)µk to Ep(Q),

π(θ) = IEp(Q)(θ)µ(θ)

µ(Ep(Q))
, θ ∈ R

∞,(5)

where µ(Ep(Q)) = ∑∞
k=1 λ(k)µk(Ep,k(Q)). Next, we study the convergence rate

for the posterior of the prior � induced by π on F .

THEOREM 3. If θ0 ∈ Ep(Q), then for a sufficiently large constant M > 0,

�
({Pθ :dH(P0,Pθ ) > Mn−p/(2p+1)}|X1, . . . ,Xn

) → 0 as n → ∞,

P ∞
0 -almost surely.

PROOF. We appeal to Theorem 1. Note that for N = �(2Q/(B2
1ε2

n))
1/(2p)�,

∞∑
j=N+1

θ2
0,j < N−2p

∞∑
j=N+1

v
2p
j θ2

0,j < N−2pQ ≤ B2
1ε2

n/2.(a)

Let 0 < δ0 ≤ Q be such that
∑∞

j=0 v
2p
j θ2

0,j = Q − δ0. If n is sufficiently large so

that (2Q/(B2
1ε2

n))
1/(2p) ≥ 1 and B̄1 is a positive constant such that B̄2

1 < B2
1 (1 −
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√
1 − δ0/Q)2/24p+1, then{

θN ∈ Ep,N(Q) :
N∑

j=1

(θj − θ0,j )
2 ≤ B2

1ε2
n/2

}

⊇
{
θN :

N∑
j=1

(θj − θ0,j )
2 ≤ B̄2

1ε2
n

}
.

(b)

Using (a) and (b),

In � π

({
θ :

∞∑
j=1

(θj − θ0,j )
2 ≤ B2

1ε2
n

})

> λ(N)µN

({
θN ∈ Ep,N(Q) :

N∑
j=1

(θj − θ0,j )
2 +

∞∑
j=N+1

θ2
0,j ≤ B2

1ε2
n

})

≥ λ(N)µN

({
θN ∈ Ep,N(Q) :

N∑
j=1

(θj − θ0,j )
2 ≤ B2

1ε2
n/2

})

≥ λ(N)µN

({
θN :

N∑
j=1

(θj − θ0,j )
2 ≤ B̄2

1ε2
n

})
� λ(N)I1,n.

Let ζ 2
n = B̄2

1ε2
n and d = p + 1/2. Noting that (2N)2dζ 2

n ≤ (16dQB̄2
1/B2

1 )N and∑N
j=1 v2d

j θ2
0,j < 2QN , by Lemma 4 of Shen and Wasserman [19], page 711, and

using Stirling’s approximation, we obtain that

I1,n > e−(2Q+d)N2−(d+1/2)N 1

�(N/2)

∫ (2N)2dζ 2
n

0
zN/2−1e−z dz

� e−(2Q+d)N2−(d+1/2)N e−(2N)2dζ 2
n (2N)dNζN

n

(N/2)N/2−1e−N/2
√

πN
� e−cN ,

where c = 2Q + p + 16dQB̄2
1/B2

1 − 1
2 log(2QB̄2

1/B2
1 ) > 0. Therefore,

In > λ(N)I1,n � e−(γ+c)N ≥ e−2(γ+c)(2Q/B2
1 )1/(2p)ε

−1/p
n = e−c1nε2

n,(6)

with c1 = 2(γ + c)(2Q/B2
1 )1/(2p), and condition (1) is satisfied. �

REMARK 2. An examination of the proof of Theorem 3 reveals that posterior
convergence at the optimal rate depends on the assumed tail behavior of the mixing
weights, which are bounded below by an exponentially decreasing sequence. This
requirement is used in (6) to guarantee that εn-Hellinger-type neighborhoods of P0

have prior mass at least of the order of e−c1nε2
n .
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COROLLARY 2. If f̂n is the Bayes estimator arising from the prior (5), then
for any 0 < Q′ < Q,

sup
θ0∈Ep(Q′)

E
n
θ0

[
d2

H(fθ0, f̂n)
] 
 n−2p/(2p+1).

PROOF. It suffices to check that the convergence of the posterior is uniform
over Ep(Q′). More formally, for each θ0 ∈ Ep(Q′), Theorem 3 applies, with con-
stants depending only on Q and Q′, so that for suitable M , C, c > 0,

sup
θ0∈Ep(Q′)

E
n
θ0

[
�({Pθ :dH(Pθ0,Pθ ) > Mεn}|X1, . . . ,Xn)

] ≤ Ce−cnε2
n .

Note that for δ′ = Q − Q′ > 0, we have
∑∞

j=0 v
2p
j θ2

0,j < Q′ = Q − δ′ for all θ0 ∈
Ep(Q′). Thus, Theorem 3 applies with B̄2

1 < B2
1 (1 − √

1 − δ′/Q)2/24p+1. The
assertion then follows via reasoning similar to that used in the proof of Corollary 1.

�

REMARK 3. Corollary 2 demonstrates that the Bayes estimator attains the
minimax rate of convergence under Hellinger loss over any ellipsoid Ep(Q′), with
Q′ < Q.

4. Sample-size-dependent priors and density estimators. Bayes estimators
arising from priors (2) and (5) involve infinitely many terms. To avoid the use of
infinite bases, we define priors supported on exponential families whose dimension
varies with sample size at a carefully chosen rate. Let Nn be a sequence of positive
integers, to be specified below. To simplify the notation, we omit the subscript n

in Nn. For each n ≥ 1, let µN be the prior that makes the coordinates independent
and such that θ0 ≡ 0, θj ∼ N(0, v

−(2p+1)
j ), j = 1, . . . ,N , and θj is degenerate at

0 for all j > N . Let

πN(θN) = IEp,N (Q)(θN)µN(θN)

µN(Ep,N(Q))
, θN ∈ R

∞,(7)

be the restriction of µN to Ep,N(Q) and let �n denote the induced prior on Fn =
{fθN

, θN ∈ Ep,N(Q)}, where fθN
= eθN ·φ−ψ(θN).

THEOREM 4. Let N = �(2Q/B2
1 )1/(2p)n1/(2p+1)�. If θ0 ∈ Ep(Q), then for a

sufficiently large constant M > 0,

�n

({Pθ :dH(P0,Pθ ) > Mn−p/(2p+1)}|X1, . . . ,Xn

) → 0 as n → ∞,

P ∞
0 -almost surely.

PROOF. The proof of Theorem 3 carries over to this case with simple modifi-
cations. �
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REMARK 4. The assertion of Theorem 4 also holds true for the truncated sieve
prior

πn(θ) = IEp,N (Q)(θ)µn(θ)

µn(Ep,N(Q))
, θ ∈ R

∞,(8)

where for each n ≥ 1, µn = ∑N
k=1 λn(k)µk , with λn(k) ≥ A1e

−γ k , k = 1, . . . ,N ,
and

∑N
k=1 λn(k) = 1. A uniform version of Theorem 4 can be formulated for the

priors (7) and (8) so that the corresponding Bayes estimators attain the minimax
rate.

In the next proposition, approximations for the Bayes estimators arising from
the priors (7) and (8) are provided.

PROPOSITION 1. If for given (large) n, Q is such that µN(Ep,N(Q)) � 1
(µn(Ep,N(Q)) � 1), then the Bayes estimators arising from the priors (7) and (8)
can be approximated by

C1,n exp
{

1

2

N∑
j=1

φ2
j (x) + 2nφ̄jφj (x)

v
2p+1
j + n + 1

}
, x ∈ [0,1],(9)

and

C2,n

N∑
k=1

λn(k)ρn(k) exp

{
1

2

k∑
j=1

(φj (x) + nφ̄j )
2

v
2p+1
j + n + 1

}
, x ∈ [0,1],(10)

respectively, where N is defined as in Theorem 4, φ̄j = n−1 ∑n
i=1 φj (Xi), j =

1, . . . ,N , ρn(k) = ∏k
j=1(1 + (n + 1)v

−(2p+1)
j )−1/2, k = 1, . . . ,N , and C1,n, C2,n

stand for the normalizing constants.

PROOF. First, note that for given n, if Q is sufficiently large, then µN(Ep,N(Q))

� 1. To see this, observe that since θ0 is degenerate at zero, the probability
µN(Ep,N(Q)) is bounded below by the left tail of the chi-square distribution with
N degrees of freedom,

µN(Ep,N(Q)) ≥ µN

({
θN :

N∑
j=1

v
2p+1
j θ2

j < Q

})
= Pr(χ2

N < Q).

Similarly, µn(Ep,N(Q)) ≥ ∑N
k=1 λn(k)Pr(χ2

k < Q) ≥ Pr(χ2
N < Q) because the

chi-square distribution is stochastically increasing in its degrees of freedom. We
now derive (9). Setting Ln(fθN

) = ∏n
i=1 fθN

(Xi), the posterior expected density
can be written as

f̂n(x) = E[fθN
(x)Ln(fθN

)]∫ 1
0 E[fθN

(s)Ln(fθN
)]ds

, x ∈ [0,1],



ESTIMATION OF EXPONENTIAL FAMILIES 2909

FIG. 1. True density (solid line) and its approximate Bayes estimate (9) (dotted line) on the left.
True density (solid line) and its approximate Bayes estimate (10) (dotted line) on the right.

where E stands for expectation under the prior (7). Since µN(Ep,N(Q)) � 1, µN

can be thought of as a prior on R
N and

E[fθN
(x)Ln(fθN

)] �
∫

RN
fθN

(x)Ln(fθN
)µN(dθN), x ∈ [0,1].

Since n is large, we can proceed as in Corollary 1 of Lenk [17], pages 534–535 (see
also pages 541–542), and approximate e(n+1)ψ(θN) using the CLT. Straightforward
computations then lead to (9). Approximation (10) may be proved similarly. �

REMARK 5. The number of terms N = O(n1/(2p+1)) used in (9) and (10) is
of the same order as the dimension, say N∗, of the exponential family employed
to define the density estimator proposed by Barron and Sheu [3], when the log-
density is in the periodic Sobolev space W per(p,∞). Such an estimator, say f̂ ,
is defined to maximize the likelihood in the N∗-dimensional exponential family
and is shown to converge to f0 in the sense of relative entropy (Kullback–Leibler
divergence) at rate OP (n−2p/(2p+1)), that is, K(f0‖f̂ ) = OP (n−2p/(2p+1)).

The plots in Figure 1 show approximate Bayes estimates (9) on the left-hand
side and (10) on the right-hand side for the density function

exp {sin(πx)}∫ 1
0 exp {sin(πt)}dt

, x ∈ [0,1],

based on n = 500 observations. We took p = 2, N = O(n1/5) and λn(k) ∝ e−γ k ,
with γ = 0.1. Both estimates, which appear very similar, are close to the true
density.
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5. Rate adaptation. Thus far, we have assumed that the degree of smooth-
ness, p, of f0 is known. We now suppose that this is unknown and denote its value
by p0. In accordance with the Bayesian approach, we may consider p as a hyperpa-
rameter and assign it a prior distribution. Let P = {pm, . . . ,p−1,p0,p1, . . . , pm}
be a finite set of possible values for p, with 1 ≤ pm < · · · < p−1 < p0 < p1 <

· · · < pm. Let M = {m, . . . ,−1,0,1, . . . ,m} be the corresponding index set. For
any m ∈ M, let Nm = �n1/(2pm+1)�, where the subscript m is introduced to stress
the dependence on pm. We consider the following hierarchical prior. For each
n ≥ 1,

(i) conditionally on p = pm and θ , the random variables X1, . . . ,Xn are i.i.d.
with density

fθ (x) = exp {∑Nm

j=1 θjφj (x)}∫ 1
0 exp {∑Nm

j=1 θjφj (s)}ds
, x ∈ [0,1];

(ii) conditionally on p = pm, θ has distribution µNm , which makes the co-

ordinates independent and such that θ0 ≡ 0, θj ∼ N(0, v
−(2pm+1)
j ), j =

1, . . . ,Nm, and θj is degenerate at 0 for all j > Nm;
(iii) p has distribution w(m) = Pr(p = pm) > 0 for all m ∈ M.

The overall prior is πn = ∑
m∈M w(m)µNm . Let �n be the induced prior on⋃

m∈M{fθNm
, θNm ∈ R

∞}. Our goal is to show that this mixture prior achieves
the rate of convergence n−p0/(2p0+1) whenever θ0 ∈ Ep0 , with p0 ∈ P. We need
to introduce further notation. For each j ≥ 1, let E0[φj (X1)] and V0[φj (X1)]
be the expected value and variance of φj (X1) w.r.t. P0, respectively. Note that
E0[φj (X1)] ≤ √

2 and V0[φj (X1)] ≤ 2 for all j ≥ 1. The conditions

∞∑
j=1

v
2p0
j (E0[φj (X1)])2 < ∞,(11)

∞∑
j=1

V0[φj (X1)] < ∞(12)

are assumed to be in force in what follows. We are now in position to state the
main result of this section.

THEOREM 5. Suppose p0 ∈ P. If θ0 ∈ Ep0 satisfies conditions (11) and (12),
then for a sufficiently large constant M > 0,

�n

({Pθ :dH(P0,Pθ ) > Mn−p0/(2p0+1)}|X1, . . . ,Xn

) → 0

in P n
0 -probability as n → ∞.



ESTIMATION OF EXPONENTIAL FAMILIES 2911

PROOF. The idea is to show that the posterior mass will ultimately lie in a
Sobolev ellipsoid. This will drastically reduce the effective parameter space, al-
lowing us to apply the theory developed above. Let εn = n−p0/(2p0+1). Define
w(m) = w(m)/

∑
l≥0 w(l), for m = 0, . . . ,m, and let πn = ∑

m≥0 w(m)µNm . For
any Q > 0,

Un � �n

({Pθ :dH(P0,Pθ ) > Mεn}|X1, . . . ,Xn

)
= πn

({θ :dH(P0,Pθ ) > Mεn}|X1, . . . ,Xn

)
= Pr

({θ :dH(P0,Pθ ) > Mεn}, p < p0|X1, . . . ,Xn

)

+ Pr

({
θ :

N0∑
j=0

v
2p0
j θ2

j ≥ Q, dH(P0,Pθ ) > Mεn

}
, p ≥ p0

∣∣∣X1, . . . ,Xn

)

+ Pr

({
θ :

N0∑
j=0

v
2p0
j θ2

j < Q, dH(P0,Pθ ) > Mεn

}
, p ≥ p0

∣∣∣X1, . . . ,Xn

)

≤ Pr(p < p0|X1, . . . ,Xn)

+ πn

({
θ :

N0∑
j=0

v
2p0
j θ2

j ≥ Q

} ∣∣∣X1, . . . ,Xn

)

+ πn

({
θ :

N0∑
j=0

v
2p0
j θ2

j < Q, dH(P0,Pθ ) > Mεn

} ∣∣∣X1, . . . ,Xn

)

� U(1)
n + U(2)

n + U(3)
n .

If U
(r)
n

P→ 0 for r = 1,2,3, then Un
P→ 0, where all ‘in probability’ statements are

understood to be w.r.t. P n
0 . The proof is split into three main steps.

We begin by showing that U
(1)
n

P→ 0, namely, that the posterior probability of
selecting a model coarser than the best one tends to zero in probability. Note that if
p0 = 1, then U

(1)
n = Pr(p < 1|X1, . . . ,Xn) = 0 a.s. [P n

0 ] for all n ≥ 1. For p0 ≥ 2,
since w(m) > 0 for all m ∈ M,

U(1)
n <

1

w(0)

∑
m<0

w(m)

∫ ∏n
i=1 fθNm

(Xi)µNm(dθNm)∫ ∏n
i=1 fθN0

(Xi)µN0(dθN0)
,

where the set of integration is understood to be the whole domain. Let

Rm,n =
∫ ∏n

i=1 fθNm
(Xi)µNm(dθNm)∫ ∏n

i=1 fθN0
(Xi)µN0(dθN0)

.

Since P is a finite set, for some m∗ < 0,

U(1)
n <

1

w(0)

∑
m<0

w(m)Rm,n ≤ maxm<0 Rm,n

w(0)
= Rm∗,n

w(0)
� Sn

w(0)
.
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It suffices to show that Sn = oP (1). Using the approximation enψ(θNm) ≈
e
n(θ0+ 1

2
∑Nm

j=1 θ2
j ) which is valid for all m ∈ M and where an ≈ bn means that

an/bn → 1 as n → ∞, we obtain that Sn = Tn + oP (1), with

Tn =
N0∏
j=1

( n−1 + v
−(2p0+1)
j

n−1 + v
−(2pm+1)
j

)1/2

exp
{

1

2

N0∑
j=1

bj,n(φ̄j )
2
}

×
Nm∏

j=N0+1

(
1 + nv

−(2pm+1)
j

)−1/2 exp
{

1

2

Nm∑
j=N0+1

(nφ̄j )
2

n + v
2pm+1
j

}
,

where, for simplicity, we have written m instead of m∗ and where for m < 0,

bj,n = n2[(
n + v

2pm+1
j

)−1 − (
n + v

2p0+1
j

)−1]
> 0, 1 ≤ j ≤ N0, n ≥ 1.

For later use, note that

bj,n <

{
v

2p0+1
j , for n ≥ 1,

n, for 1 ≤ j ≤ N0.
(13)

Recalling the definition of φ̄j in Proposition 1, from the inequalities (φ̄j )
2 ≤

2(φ̄j − E0[φj (X1)])2 + 2(E0[φj (X1)])2, for all j ≥ 1, and x(1 + x)−1 ≤ log(1 +
x) ≤ x, valid for all x > −1, it follows that

Tn ≤ exp

{
1

2

N0∑
j=1

[
v

−(2p0+1)
j − v

−(2pm+1)
j

n−1 + v
−(2pm+1)
j

+ 2bj,n(E0[φj (X1)])2

]}

× exp

{
N0∑
j=1

bj,n

(
φ̄j − E0[φj (X1)])2

}

× exp

{
−1

2

Nm∑
j=N0+1

[
1

1 + n−1v
2pm+1
j

− 2n2(E0[φj (X1)])2

n + v
2pm+1
j

]}

× exp

{
Nm∑

j=N0+1

n2(φ̄j − E0[φj (X1)])2

n + v
2pm+1
j

}

� T (1)
n × T (2)

n × T (3)
n × T (4)

n .

If
∏4

s=1 T
(s)
n = oP (1), then Tn = oP (1) and, consequently, Sn = oP (1). We prove

that T
(1)
n = o(1). Let D0 = max{1,

∑∞
j=1 v

2p0
j (E0[φj (X1)])2}. Clearly, D0 < ∞

due to (11). Let n0 be the smallest n such that N0 ≥ 2. For n ≥ n0 and 1 ≤ kn < N0

to be specified shortly, recalling (13), we have
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N0∑
j=1

bj,n(E0[φj (X1)])2 < vkn

kn∑
j=1

v
2p0
j (E0[φj (X1)])2

+ nv
−2p0
kn

N0∑
j=kn+1

v
2p0
j (E0[φj (X1)])2

≤ vknD0 + nv
−2p0
kn

N0∑
j=kn+1

v
2p0
j (E0[φj (X1)])2.

Taking kn = �(128D0)
−1n1/(2p0+1)�, for n ≥ max{n0, n1}, with n1 the small-

est n such that (128D0)
−1n1/(2p0+1) ≥ 2, we have that vknD0 ≤ 1

64n1/(2p0+1)

and nv
−2p0
kn

≤ (128D0)
2p0n1/(2p0+1). For n ≥ max{n0, n1, n2}, with n2 the small-

est n such that
∑N0

j=kn+1 v
2p0
j (E0[φj (X1)])2 ≤ 1

64(128D0)
−2p0 , we obtain that∑N0

j=1 bj,n(E0[φj (X1)])2 < 1
32n1/(2p0+1). Now, note that for m < 0,

v
−(2p0+1)
j − v

−(2pm+1)
j ≤

{
0, for j ≥ 1,

−1
2v

−(2pm+1)
j , for j ≥ J = �21/[2(p0−p−1)]�,

so that

1

2

N0∑
j=1

v
−(2p0+1)
j − v

−(2pm+1)
j

n−1 + v
−(2pm+1)
j

< −1

4

�n1/(2p0+1)−1�∑
j=J

v
−(2pm+1)
j

n−1 + v
−(2pm+1)
j

.

For j ≤ �n1/(2p0+1) − 1�, we have n−1 < v
−(2pm+1)
j . Also, for n ≥ n3 =

�(2(J + 1))2p0+1�, we have J + 1 ≤ 1
2n1/(2p0+1). Thus, for n ≥ max{n0, n1,

n2, n3}, combining previous facts, we obtain that

0 ≤ T (1)
n < exp

{
−1

4

�n1/(2p0+1)−1�∑
j=J

v
−(2pm+1)
j

n−1 + v
−(2pm+1)
j

+ 1

32
n1/(2p0+1)

}

< exp
{
−1

8

(�n1/(2p0+1) − 1� − (J − 1)
) + 1

32
n1/(2p0+1)

}

≤ exp
{
− 1

32
n1/(2p0+1)

}
.

Hence, T
(1)
n → 0 as n → ∞. We claim that T

(2)
n

P→ 1. For any η > 0, by Markov’s
inequality,

P n
0

(
N0∑
j=1

bj,n

(
φ̄j − E0[φj (X1)])2

> η

)
<

1

η

N0∑
j=1

bj,n

n
V0[φj (X1)].
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By the reverse of Fatou’s lemma, the right-hand side goes to zero as n → ∞. To
see this, let µ denote the counting measure on N, endowed with the σ -field P(N)

of all subsets of N. For each n ≥ 1, letting

fn(s) = n−1bs,nV0[φs(X1)]I{1,...,N0}(s), s ≥ 1,

we can write
∑N0

j=1 n−1bj,nV0[φj (X1)] = ∫
N

fn(s)µ(ds). Note that {fn(·), n =
1,2, . . .} is a sequence of nonnegative, P(N)-measurable functions such that for
every n ≥ 1,

fn(s) < V0[φs(X1)], s ≥ 1,

with
∫
N

V0[φs(X1)]µ(ds) = ∑∞
j=1 V0[φj (X1)] < ∞, due to (12), and

lim
n→∞fn(s) = 0, s ≥ 1.

Then

lim sup
n→∞

∫
N

fn(s)µ(ds) ≤
∫

N

lim sup
n→∞

fn(s)µ(ds) = 0.

Therefore,
∑N0

j=1 bj,n(φ̄j − E0[φj (X1)])2 P→ 0, and by the continuous mapping

theorem (CMT), T
(2)
n

P→ 1. We show that T
(3)
n = o(1). Let n4 be the smallest n

such that
∑∞

j=N0+1 v
2p0
j (E0[φj (X1)])2 ≤ 4−(p0+2) and n5 the smallest n such that

for m < 0, (Nm/N0 − 1) ≥ 1. Then for n ≥ max{n3, n4, n5},
0 ≤ T (3)

n < exp
{
− Nm − N0

2[1 + 22pm+1] + 4−(p0+2)n1/(2p0+1)

}

< exp
{
− 1

4p0+2 [2N0 − n1/(2p0+1)]
}

≤ exp
{
−n1/(2p0+1)

4p0+2

}
.

Thus, T
(3)
n → 0 as n → ∞. We prove that T

(4)
n = OP (1). For any η > 0, by

Markov’s inequality,

P n
0

(
Nm∑

j=N0+1

n2(φ̄j − E0[φj (X1)])2

n + v
2pm+1
j

> η

)
<

1

η

Nm∑
j=N0+1

V0[φj (X1)],

where the right-hand side goes to zero as n → ∞. By the CMT, T
(4)
n

P→ 1. Com-

bining all previous results, Tn
P→ 0, hence, U

(1)
n

P→ 0.
The second step consists in showing that for a sufficiently large Q, the posterior

probability of {θ :
∑N0

j=0 v
2p0
j θ2

j ≥ Q}, under the reduced prior πn, is asymptoti-
cally negligible in probability. Given any η > 0, by Markov’s inequality,

P n
0

(
U(2)

n > η
)
<

1

η
E

n
0

[
πn

({
θ :

N0∑
j=0

v
2p0
j θ2

j ≥ Q

} ∣∣∣X1, . . . ,Xn

)]

≤ 1

ηQ

N0∑
j=1

v
2p0
j E

n
0[E[θ2

j |X1, . . . ,Xn]],



ESTIMATION OF EXPONENTIAL FAMILIES 2915

where, for j = 1, . . . ,N0,

E[θ2
j |X1, . . . ,Xn] = ∑

m≥0

w(m|X1, . . . ,Xn)E[θ2
j |p = pm,X1, . . . ,Xn].

Note that conditionally on p = pm, m ∈ M,

E[θ2
j |p = pm,X1, . . . ,Xn] � 1

n + v
2pm+1
j

+ (nφ̄j )
2

(n + v
2pm+1
j )2

, j = 1, . . . ,Nm.

Thus, for j = 1, . . . ,N0,

E[θ2
j |X1, . . . ,Xn] � 1

n + v
2p0+1
j

+ (nφ̄j )
2

(n + v
2p0+1
j )2

.

Since n2
E

n
0[(φ̄j )

2] = nV0[φj (X1)]+n2(E0[φj (X1)])2, j ≥ 1, and
∑N0

j=1 v
2p0
j (n+

v
2p0+1
j )−1 < 22p0+1, we have

N0∑
j=1

v
2p0
j

(
1

n + v
2p0+1
j

+ n2
E

n
0[(φ̄j )

2]
(n + v

2p0+1
j )2

)

≤
N0∑
j=1

(v
2p0
j (1 + V0[φj (X1)])

n + v
2p0+1
j

+ v
2p0
j n2(E0[φj (X1)])2

(n + v
2p0+1
j )2

)

<

N0∑
j=1

3v
2p0
j

n + v
2p0+1
j

+
N0∑
j=1

v
2p0
j (E0[φj (X1)])2 < 3 × 22p0+1 + D0.

Therefore, the probability P n
0 (U

(2)
n > η) can be made arbitrarily small for

all large n by choosing sufficiently large Q. Let Q be sufficiently large that∑∞
j=0 v

2p0
j θ2

0,j < Q. For the same Q, define Hc
n = {θ :

∑N0
j=0 v

2p0
j θ2

j < Q,

dH(P0,Pθ ) > Mεn}. In the last step, it remains to be shown that the posterior
distribution of πn concentrates on P0-centered Hellinger balls at the best rate.
Precisely, we prove that U

(3)
n → 0, as n → ∞, a.s. [P ∞

0 ]. Note that

U(3)
n <

1

w(0)

∑
m≥0

w(m)

∫
Hc

n

∏n
i=1 fθNm

(Xi)µNm(dθNm)∫ ∏n
i=1 fθN0

(Xi)µN0(dθN0)
.

The numerator of the ratio in the summation on the right-hand side of the above
inequality can be bounded above using condition (16), as in the proof of The-
orem 1. To bound the denominator below, we can use the same arguments as
in the proof of Theorem 3, replacing N with N0 = �n1/(2p0+1)� and taking
B̄2

1 < min{B2
1/2, (

√
Q − √

Q − δ0)
2/16p0}. Then for n sufficiently large that



2916 C. SCRICCIOLO

∑∞
j=N0+1 v

2p0
j θ2

0,j ≤ B2
1/2, we have

µN0

({
θN0 ∈ Ep0,N0(Q) :

∞∑
j=1

(θj − θ0,j )
2 ≤ B2

1ε2
n

})

≥ µN0

({
θN0 :

N0∑
j=1

(θj − θ0,j )
2 ≤ B̄2

1ε2
n

})
� e−c1nε2

n,

with c1 depending on θ0. Thus, for a suitable constant c > 0, U
(3)
n � e−cnε2

n for all
but finitely many n along almost all sample paths when sampling from P0. This
completes the proof. �

REMARK 6. If f0 simultaneously has the series expansions

f0(x) = β0 · φ(x) = exp{θ0 · φ(x) − ψ(θ0)}, x ∈ [0,1],
where β0 = (β0,0, β0,1, . . .) has coordinates β0,0 = 1 and β0,j = E0[φj (X1)] for
j ≥ 1, then condition (11) implies that β0 lies in Ep0 .

REMARK 7. Since a finite set P of possible values for p is considered, the
choice of weights w(m) is not relevant. In the present asymptotic setting, any set
of positive weights achieves the same result.

Since the posterior distribution does not converge exponentially fast in Theo-
rem 5, the rate of convergence for the posterior expected density cannot be derived
as easily as in the previous cases. We therefore resort to another estimator that is
Bayesian in the sense that it is based on the posterior distribution. The following
construction closely follows that in [4], pages 544–545. For a positive sequence
δn → 0 as n → ∞, let Hδn(Pθ ) = {Pθ ′ :dH(Pθ ,Pθ ′) ≤ δn} and define

δ∗
n = inf

{
δn :�n(Hδn(Pθ )|X1, . . . ,Xn) ≥ 3/4 for some Pθ

}
.

Take any P̂n satisfying the condition

�n

(
Hδ∗

n+n−1(P̂n)|X1, . . . ,Xn

) ≥ 3/4.

As subsequently stated, such an estimator, whose definition does not require
knowledge of p0, attains the optimal pointwise rate of convergence n−p0/(2p0+1),
adapting to the unknown smoothness of the true density.

COROLLARY 3. If the conditions of Theorem 5 are satisfied, then for a suffi-
ciently large constant M > 0, P n

0 (dH(P0, P̂n) > Mn−p0/(2p0+1)) → 0 as n → ∞.

PROOF. See the proof of Theorem 4 in [4], page 545. �
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6. Closing remarks. This paper focuses on the estimation of densities in pe-
riodic Sobolev classes. The problem is approached through the use of an orthonor-
mal series expansion for the log-density with single priors on the coefficients. The
posterior expected density is shown to attain the optimal minimax rate of conver-
gence under Hellinger loss for several priors.

As mentioned in Remark 1, an interesting finding of the paper is that a sample-
size-dependent direct Gaussian prior leads to a Bayes estimator achieving the opti-
mal minimax rate in this problem, in contrast to the infinitely many normal means
problem investigated by Zhao [26], who has shown that there is no Gaussian prior
supported on Ep such that the corresponding Bayes estimator attains the optimal
minimax rate. Optimality for the Bayes density estimator follows from uniform
exponential convergence of the posterior distribution over suitable ellipsoids. In
the infinitely many normal means problem, the rate of convergence for the Bayes
estimator is derived directly from the study of the risk function and uniformity
holds over any Ep(Q) provided the power of the prior variances exactly matches
the assumed degree of smoothness, which is not the case if the prior is supported
on Ep .

Another interesting result concerns adaptation. We have shown that the pos-
terior distribution of a sample-size-dependent prior achieves the best pointwise
rate n−p0/(2p0+1), regardless of the value of p0 ∈ P, for every θ0 ∈ Ep0 satisfy-
ing conditions (11) and (12). In a recent paper, Huang [16] has obtained results on
posterior rates of convergence for density estimation using the method of exponen-
tials, with priors on the coefficients of the log-density expansion via wavelets, the
coefficients lying in a Besov space Bα

2,2 with α ∈ (0,1). This method is suitable for
estimating spatially inhomogeneous density functions, while we consider smooth,
periodic functions. Huang does not put a prior on α; instead she constructs a sieve
prior with mixing parameter given by the dimension of the exponential family and
the ball radius. Even though the rate she obtains has an extra (logn)1/2-factor, her
result is valid for all points in Bα

2,2. Our result, although achieving a better rate, is
restricted to points in Ep0 also satisfying the aforementioned conditions.

APPENDIX

LEMMA A.1. For any pair θ , θ ′ ∈ Ep(Q),

K(Pθ ′‖Pθ ) <
1

2
e4B

∞∑
j=1

(
θ ′
j − θj

)2
.(14)

Consequently,

d2
H(Pθ ′,Pθ )‖fθ ′/fθ‖∞ <

1

2
e8B

∞∑
j=1

(
θ ′
j − θj

)2
.(15)
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PROOF. We use inequality (3.2) from Lemma 1 of Barron and Sheu [3],
pages 1355–1356. If ‖ log(fθ ′/fθ )‖∞ < ∞, then for any constant c,

K(Pθ ′‖Pθ ) ≤ 1

2
e‖ log(fθ ′/fθ )−c‖∞

∫ 1

0
fθ ′(x)

(
log

fθ ′(x)

fθ (x)
− c

)2

dx.

Note that for any pair θ , θ ′ ∈ Ep(Q),

|[ψ(θ) − θ0] − [ψ(θ ′) − θ ′
0]| ≤ ‖(θ − θ ′) · φ − (θ0 − θ ′

0)‖∞ < 2B,

thus ∥∥∥∥log
fθ ′

fθ

∥∥∥∥∞
= ‖[(θ ′ − θ) · φ] + [ψ(θ) − ψ(θ ′)]‖∞ < 4B < ∞.

Take c = [ψ(θ) − θ0] − [ψ(θ ′) − θ ′
0]. Using the fact that supθ∈Ep(Q) ‖fθ‖∞ <

e2B and Parseval’s relation, we obtain (14). Obviously, the same bound holds for
K(Pθ‖Pθ ′). A similar remark applies to inequality (15), which follows from (14)
because d2

H(Pθ ′,Pθ ) ≤ K(Pθ ′‖Pθ ) and ‖fθ ′/fθ‖∞ < e4B . �

Theorem A.1 below is an almost sure version of Theorem 2.1 in [15], page 1239
(see also Theorem 2.2 in [14], page 505). Before stating the theorem, we recall that
if (S, d) is a semi-metric space and C a totally bounded subset of S, then for any
given ε > 0, the ε-packing number of C, denoted by D(ε,C,d), is defined as the
largest integer m such that there exists a set {s1, . . . , sm} ⊆ C with d(sk, sl) > ε for
all k, l = 1, . . . ,m, k �= l. The ε-capacity of (C, d) is defined as logD(ε, C, d).

THEOREM A.1. Let P be a class of probability measures that possess densi-
ties relative to some σ -finite reference measure ν on a sample space (X ,A ). Let d

stand for either the L1 or the Hellinger metric on P . Let �n be a sequence of pri-
ors on (P,B), where B is the Borel σ -field on P . For P0 ∈ P , let f0 denote its
density. Suppose that for positive sequences ε̄n, ε̃n → 0 with nmin{ε̄2

n, ε̃
2
n} → ∞

and
∑∞

n=1 exp(−Enε̃2
n) < ∞ for every E > 0, constants c1, c2, c3, c4 > 0 and sets

Pn ⊆ P , we have

logD(ε̄n,Pn, d) ≤ c1nε̄2
n,(16)

�n(P\Pn) ≤ c2e
−(c3+4)nε̃2

n,(17)

�n(N(P0; ε̃2
n)) ≥ c4e

−c3nε̃2
n,(18)

where N(P0; ε̃2
n) = {P :d2

H(P0,P )‖f0/fP ‖∞ ≤ ε̃2
n} with fP = dP/dν. Then, for

εn = max{ε̄n, ε̃n} and a sufficiently large constant M > 0, the posterior probability

�n

({P :d(P0,P ) > Mεn}|X1, . . . ,Xn

) → 0 as n → ∞,

P ∞
0 -almost surely.
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PROOF OF THEOREM 1. We appeal to Theorem A.1 and show that the con-
ditions listed earlier are satisfied for ε̄n = ε̃n = εn = n−p/(2p+1). Condition (16)
is verified for Pn = F . It is easily seen that for some constant K > 0 depend-
ing only on p and L,

∫ 1
0 (f

(p)
θ (x))2 dx < K2 for all θ ∈ Ep(Q). Besides, for

any pair Pθ ′,Pθ ∈ F such that dH(Pθ ′,Pθ ) > εn, a simple calculation shows that
‖fθ ′ − fθ‖∞ ≥ ‖fθ ′ − fθ‖2 > 2e−Bεn; see [5], page 252, for the monotone con-
vergence of the Lq -norm, q ≥ 1, to the essential supremum norm w.r.t. λ on [0,1],
‖ · ‖q ↑ ‖ · ‖L∞ . Then by a result due to Birman and Solomjak [6] (see also [20],
pages 22–23), for a suitable constant c > 0,

logD(εn,F , dH) ≤ logD(2e−Bεn,F ,‖ · ‖∞) ≤ cε−1/p
n = cnε2

n.

Condition (17) is trivially verified. Finally, recalling that B2
1 = e−8B , condi-

tion (18) follows from

c2e
−c1nε2

n ≤ πn

({
θ :

∞∑
j=1

(θj − θ0,j )
2 ≤ e−8Bε2

n

})

≤ πn

({
θ :d2

H(P0,Pθ )‖f0/fθ‖∞ ≤ ε2
n

}) = �n(N(P0; ε2
n)),

where (1) and (15) have been applied. �
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