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ON THE BENJAMINI–HOCHBERG METHOD

BY J. A. FERREIRA1 AND A. H. ZWINDERMAN

University of Amsterdam

We investigate the properties of the Benjamini–Hochberg method for
multiple testing and of a variant of Storey’s generalization of it, extending
and complementing the asymptotic and exact results available in the litera-
ture. Results are obtained under two different sets of assumptions and include
asymptotic and exact expressions and bounds for the proportion of rejections,
the proportion of incorrect rejections out of all rejections and two other pro-
portions used to quantify the efficacy of the method.

1. Introduction. Let X = {X1,X2, . . . ,Xm} be a set of m random vari-
ables defined on a probability space (�,F ,P ) such that, for some positive in-
teger m0 ≤ m, each of X1,X2, . . . ,Xm0 has distribution function (d.f.) F and
Xm0+1, . . . ,Xm all have d.f.’s different from F , and consider the problem of choos-
ing a set R ⊆ X in such a way that the random variable (r.v.)

�1,m = Sm

Rm ∨ 1
,

where Rm = #R and Sm = #(R ∩ {X1, . . . ,Xm0}), is guaranteed to be small in
some probabilistic sense. In more ordinary language, the problem is that of dis-
covering observations in X which do not have d.f. F without incurring a high
proportion of incorrect rejections—the proportion �1,m of rejected observations
which in fact come from F .

Benjamini and Hochberg [2] have proposed a method of choosing R specif-
ically aimed at discovering r.v.’s taking values in the interval [0,1] that tend to
be smaller than standard uniform r.v.’s and which, given δ > 0, guarantees that
E(�1,m) ≤ δ under certain conditions. The method consists of fixing q ∈ [0,1],
computing

Rm = max
{
i :Xi:m ≤ q

i

m

}
,(1.1)

where 0 ≤ X1:m ≤ · · · ≤ Xm:m ≤ 1 denote the order statistics of X, and set-
ting R = {X1:m, . . . ,XRm:m}. In its simplest form, the Benjamini–Hochberg the-
orem states that if R is chosen according to this procedure and X1,X2, . . . ,Xm0
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are independent and standard uniform and independent of Xm0+1, . . . ,Xm, then
E(�1,m) = qγ , where γ := m0/m, a property usually expressed by saying that
the Benjamini–Hochberg procedure controls the false discovery rate—the number
E(�1,m).

The Benjamini–Hochberg procedure seems somewhat mysterious from (1.1)
alone; an explanation as to why it does work in the appropriate circumstances will
be given below.

Benjamini and Hochberg [2] formulated their ideas in the context of multiple
testing. Here, rejecting observations in X is interpreted as rejecting hypotheses
among m null hypotheses H 1

0 , . . . ,Hm
0 , of which only the first m0 are true, on the

basis of p-values X1, . . . ,Xm that result from the observation of certain test sta-
tistics Y1, . . . , Ym. Although the hypotheses tested may be arbitrary, the p-values
are assumed to be given by Xi = 1 − Fi(Yi), where Fi is the d.f. of Yi under Hi

0;
furthermore, in the most general case considered by Sarkar [15] X1,X2, . . . ,Xm0

need not be independent and are only assumed to be sub-uniform in the sense that
P(Xi ≤ x) ≤ x for all x ∈ [0,1]. [Note: In general, P(Xi ≤ x) ≥ x, rather than
P(Xi ≤ x) ≤ x: If F is a d.f. and F−1(u) = min{t :F(t) ≥ u} then F(t) ≥ u ⇔
t ≥ F−1(u), and F(F−1(u)−) ≤ u; therefore, P(Xi ≤ x) = P(Fi(Yi) ≥ 1 − x) =
P(Yi ≥ F−1

i (1 − x)) = 1 − Fi(F
−1
i (1 − x)−) ≥ x with equality for all x if and

only if Fi is continuous. Thus (see, e.g., the proof of Theorem 2.1), under the as-
sumptions usually made in the literature, the Benjamini–Hochberg theorem actu-
ally states that E(�1,m) ≥ qγ . If the method is modified by using strict inequality
in (1.1) and the p-values are defined by Xi = Fi(Yi) (which represents no loss
of generality), then E(�1,m) ≤ qγ with equality if Y1, . . . , Ym0 are continuous,
because P(Xi < x) = P(Fi(Yi) < x) = P(Yi < F−1

i (x)) = Fi(F
−1
i (x)−) ≤ x.]

Most common multiple testing procedures tend to be either too conservative
or too liberal—they either miss the chance of detecting many false hypotheses
in the fear of incorrectly rejecting one hypothesis (the case of the Bonferroni
method), or they incur a very large proportion of false positives in the greed of
finding significant results (the case of “uncritical testing,” in which all hypotheses
yielding p-values below q , say, are rejected). Benjamini and Hochberg’s [2] moti-
vation in proposing to control the false discovery rate was to achieve a balance be-
tween these two extremes: in many problems—especially in those involving many
hypotheses—it is acceptable to incorrectly reject some hypotheses as long as they
make up only a small proportion of all the hypotheses rejected; and allowing for
this proportion of false positives yields a substantial proportion of true discoveries.
We were led to the Benjamini–Hochberg approach to multiple testing by consider-
ing one such problem: “gene discovery” in the context of heart disease, where the
objective is to discover genetic variables which determine or influence a number of
phenotypical variables. “Gene expression” studies provide other examples of prob-
lems where the control of the false discovery rate is important; see, for example,
Tusher, Tibshirani and Chu [22], Dudoit, Schaffer and Boldrick [7], Reiner, Yeku-
tieli and Benjamini [14], Fan et al. [8] and McLachlan, Do and Ambroise [12].
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Some of these authors actually use variants of the Benjamini–Hochberg method
based on estimating the proportion of incorrect rejections out of all rejections that
result from rejecting all p-values below t as a function of t , a procedure which for
t = qRm/m is equivalent to Benjamini and Hochberg’s.

As outlined in our first paragraph, the problem of choosing R in a way that con-
trols �1,m seems to arise in other contexts as well. For instance, in data analyses
of “contaminated” data, where a majority of elements form a sample from some
population but a minority do not, R records those observations thought to be “out-
liers,” and it is naturally of interest to seek a choice of R that keeps �1,m small
so that not too many of the good observations are thrown away. In the more gen-
eral formulation, the variables Xm0+1, . . . ,Xm need not behave in a more extreme
way than X1, . . . ,Xm0 ; they simply have d.f.’s that differ from F , and the problem,
then, can be further translated into that of identifying a mixture of two populations
given the knowledge of the law describing one of them. This is a useful point of
view in that it helps us to put the Benjamini–Hochberg method into a context of
goodness of fit, which is not just more general but also illuminating as far as the
workings and the limitations of the method are concerned. More specifically, the
problem could, in principle, be solved by choosing R as the subset of X for which
a goodness of fit test of F performed with X \ R yields the smallest discrepancy
among the discrepancies based on all subsets of X. As we shall see, what the
Benjamini–Hochberg method does is just this, except that the subsets considered
are of the form {X1:m, . . . ,Xr:m} for some r .

Let Hm denote the empirical d.f. of X; then (the second identity here is known
and has been used before in this context; e.g., see [1] and [9])

{Rm ≥ r} =
m⋃

k=r

{
Xk:m ≤ q

k

m

}

=
m⋃

k=r

{
m∑

j=1

1{Xj≤qk/m} ≥ k

}

=
m⋃

k=r

{
Hm

(
q

k

m

)
≥ k

m

}
(1.2)

=
m⋃

k=r

{
Hm(qk/m) − qk/m

qk/m
≥ 1 − q

q

}

=
{

max
t=qr/m,...,q(m−1)/m,q

Hm(t) − t

t
≥ 1 − q

q

}
,

r = 0,1, . . . ,m, so the procedure rejects the r lower order statistics if and only if

max
t=qr/m,...,q(m−1)/m,q

Hm(t) − t

t
≥ 1 − q

q
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and

max
t=q(r+1)/m,...,q(m−1)/m,q

Hm(t) − t

t
<

1 − q

q
.

In other words, the r lower order statistics are rejected whenever the goodness of
fit statistics

max
t=qk/m,...,q(m−1)/m,q

Hm(t) − t

t
≈ max

t∈[qk/m,q]
Hm(t) − t

t
,(1.3)

k = 1, . . . ,m, indicate a relatively big discrepancy between Hm and the uniform
d.f. over [qr/m,q], and a relatively small one over [q(r +1)/m,q], indicating that
most of the nonuniform observations lie in the interval (0, qr/m]; the standard for
comparison, (1 − q)/q , corresponds to the biggest discrepancy of (Hm(t) − t)/t

one could get at t = q , and the choice of q determines the interval (0, q] to be
“scanned” for discrepancies.

The function on the right-hand side in (1.3) is Rényi’s statistic, a well-known
goodness of fit statistic for testing the uniform distribution; it is a one-sided statistic
of the Kolmogorov–Smirnov type, devised to detect distributions with too much
mass in the lower tail, scaled by the standard uniform distribution in order to inflate
the discrepancies that occur at lower values.

From the version of the “ballot theorem” given on page 113 of [11], we
know that if X1, . . . ,Xm are independent standard uniform r.v.’s, then P(Hm(t) ≤
t/q ∀ t ∈ (0, q]) = 1 − q for all m ∈ N and q ∈ [0,1], from which it follows that
the probability that the Benjamini–Hochberg method yields no rejections satisfies
P(Rm < 1) ∼ 1 − P(sup0<t≤q(Hm(t) − t)/t ≥ (1 − q)/q) = 1 − q . Thus, if the
hypothesis that the variables are a standard uniform random sample is taken as the
null and the type I error is defined as the incorrect rejection of at least one p-value,
q can be interpreted as the approximate significance level. (We thank a referee for
posing a question which led to this observation.)

The connection between the Benjamini–Hochberg procedure and goodness of
fit has been hinted at by other authors (e.g., [5, 6, 13]), but this seems to be the
first explicit link to be exhibited. In their seminal work Benjamini and Hochberg
[2] provided some justification of the appropriateness of their method, and so did
Storey [18] in connection with one of the variants mentioned above; the present
explanation provides further insight into the workings of the method, as well as to
its domain of applicability.

The objective of this article is to investigate the main properties of the
Benjamini–Hochberg method, extending and complementing the results of Ben-
jamini and Hochberg [2], Genovese and Wasserman [9] and Storey, Taylor and
Siegmund [19], focusing particularly on its asymptotic aspects as m → ∞,
m1 := m − m0 → ∞ and γ remains fixed. In Section 2 we extend the Benjamini–
Hochberg theorem and prove some results on the convergence in probability of Rm

to infinity, and of �1,m to qγ , in what is essentially the setting originally adopted
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by Benjamini and Hochberg [2]: X1, . . . ,Xm0 are independent and sub-uniform,
and independent of Xm0+1, . . . ,Xm, but the latter can be anything. This set of
assumptions is very asymmetric in that too much is assumed from one set and
nothing is assumed from the other, but the results are potentially useful in a
number of practical situations. In fact, the proofs of Section 2 go through if the
assumptions just stated hold conditionally on a sigma field G ⊂ F , hence if
X1, . . . ,Xm0 are, for each m0, part of an infinite exchangeable sequence inde-
pendent of Xm0+1, . . . ,Xm, and so the results are more general than stated. (See
[4] and [15] for the Benjamini–Hochberg theorem under general dependence con-
ditions. Recent parallel developments in this area can be found in [10] and [17].)

But more interesting, perhaps, is that the results proved in Section 2 actually
hold in an asymptotic way under the rather general assumptions introduced by
Storey, Taylor and Siegmund [19]. These assumptions, which essentially amount
to the convergence of the sequence of empirical distributions, are more balanced
and seem more realistic. In our work in Sections 3 and 4 we adopt essentially
the assumptions of [19] and obtain results which are parallel to theirs, namely
about the convergence in probability of Rm/m and �1,m; our approach allows
some extensions and, we think, the quickest and most transparent treatment of the
main properties of the Benjamini–Hochberg method. The results of Section 3 are
extended in Section 4 to a slight modification of Storey’s [18] generalization of the
Benjamini–Hochberg method, whose practical relevance and range of applicability
are illustrated by the statements of Theorem 4.1.

Before proceeding, let us introduce two statistical measures often used to assess
the performance of the Benjamini–Hochberg method,

�2,m = Rm − Sm

m − m0
≡ Rm − Sm

m1
and �3,m = 1 − m0 − Sm

(m − Rm) ∨ 1
.

The first is the proportion of correctly rejected observations out of {Xm0+1, . . . ,

Xm}, and its expected value will be called average power, or simply power; it is
the most popular and perhaps most straightforward efficacy measure considered
in the literature. The second is the proportion of incorrect nonrejections among
nonrejections and has been introduced by Genovese and Wasserman [9] as a dual
quantity to �1,m; its expected value is called false nondiscovery rate. The latter
seems to be a particularly useful concept in the context of “outlier detection” men-
tioned above, where one would like to keep only a small number of outliers out of
all the observations judged to have come from F ; in the multiple testing context
it seems more difficult to interpret than average power; but see Proposition 2.3 for
an interpretation in terms of the Benjamini–Hochberg method.

2. Results in the original setting. Unless stated otherwise, X1, . . . ,Xm0 will
be assumed independent and such that P(Xi ≤ x) ≤ F(x) := x for x ∈ [0,1],
and independent of {Xm0+1, . . . ,Xm}. In the sequel, by X

(j)
i:m−j we shall mean
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the ith order statistic of the set X(j) := X \ {X1, . . . ,Xj }, j = 1, . . . ,m0, and by

R
(j)
m (X(j)) the number of rejections that result from applying to X(j) the modified

form of the Benjamini–Hochberg procedure obtained by replacing i on the right-
hand side of the inequalities in (1.1) by i + j ; we shall also write Rm = R

(0)
m (X),

Xi:m = X
(0)
i:m, X = X(0). By the standard uniform case, we mean the case where

X1, . . . ,Xm0 are standard uniform r.v.’s.
Our first result gives upper bounds on the moments of �1,m and Sm, and con-

tains Benjamini and Hochberg’s [2] theorem as a special case.

THEOREM 2.1. We have

E[(�1,m)k] ≤
k∑

j=1

(
q

m0

m

)
· · ·

(
q

m0 − j + 1

m

)
E

[(
j + R(j)

m

(
X(j)))j−k](2.1)

and

E(Sm
k) ≤

k∑
j=1

(
q

m0

m

)
· · ·

(
q

m0 − j + 1

m

)
E

[(
j + R(j)

m

(
X(j)))j ]

(2.2)

for k = 1,2, . . . ,m0, the inequalities being achieved for all q only in the standard
uniform case.

PROOF. We only prove (2.1); the proof of (2.2) is very similar. It will be
evident that there is no loss of generality in assuming that X1, . . . ,Xm0 have the
same distribution. Observe first that, for 0 ≤ r ≤ m (setting X0:m = 0), Rm = r ⇔
Xr:m ≤ q r

m
∧ Xs:m > q s

m
∀ s > r , and that, for 1 ≤ r ≤ m,{

X1 ≤ q
r

m
,Rm = r

}
=

{
X1 ≤ q

r

m
,Xr:m ≤ q

r

m
,Xs:m > q

s

m
∀ s > r

}
=

{
X1 ≤ q

r

m
,X

(1)
r−1:m−1 ≤ q

r

m
,X

(1)
s−1:m−1 > q

s

m
∀ s > r

}
=

{
X1 ≤ q

r

m
,X

(1)
r−1:m−1 ≤ q

r

m
,X

(1)
s:m−1 > q

s + 1

m
∀ s > r − 1

}
=

{
X1 ≤ q

r

m
,R(1)

m (X \ {X1}) = r − 1
}
.

Similarly, {
X1 ≤ q

r

m
, . . . ,Xj ≤ q

r

m
,Rm = r

}
=

{
X1 ≤ q

r

m
, . . . ,Xj ≤ q

r

m
,R(j)

m

(
X(j)) = r − j

}
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for r = j, j + 1, . . . ,m, j = 0,1, . . . ,m0. Thus, since {X1, . . . ,Xj } and X(j) are
independent if j ≤ m0, we have

E[(�1,m)k] =
m∑

r=1

E

(
Sk

m

rk
1{Rm(X)=r}

)

=
m∑

r=1

1

rk
E

[(
m0∑
s=1

1{Xs≤qr/m}
)k

1{Rm(X)=r}
]

=
m∑

r=1

k∑
j=1

m0 · · · (m0 − j + 1)

rk
E

[
1{X1≤qr/m,...,Xj≤qr/m}1{Rm(X)=r}

]

=
k∑

j=1

m∑
r=j

m0 · · · (m0 − j + 1)

rk

× E
[
1{X1≤qr/m,...,Xj≤qr/m,R

(j)
m (X(j))=r−j}

]
=

k∑
j=1

m∑
r=j

m0 · · · (m0 − j + 1)

rk

× E
[
1{X1≤qr/m,...,Xj≤qr/m}

]
E

[
1{R(j)

m (X(j))=r−j}
]

≤
k∑

j=1

m∑
r=j

m0 · · · (m0 − j + 1)

mj rk−j
qjE

[
1{R(j)

m (X(j))=r−j}
]

=
k∑

j=1

(
q

m0

m

)
· · ·

(
q

m0 − j + 1

m

)
E

[
m∑

r=j

r(j−k)1{R(j)
m (X(j))=r−j}

]

=
k∑

j=1

(
q

m0

m

)
· · ·

(
q

m0 − j + 1

m

)
E

[(
j + R(j)

m

(
X(j)))j−k]

,

equality holding for all q if and only if F is standard uniform. �

Setting k = 1 at each step of the argument yields what is perhaps the simplest
and most elementary available proof of the Benjamini–Hochberg theorem; Sarkar
[15] gives a proof using similar ideas in a more general setting, and Storey, Taylor
and Siegmund [19] give another simple proof based on the optional stopping the-
orem.

As the following proposition shows, Theorem 2.1 with k ≥ 2 can be used to
derive conclusions about the asymptotic properties of �1,m; the proof is given in
the Appendix.
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PROPOSITION 2.2. If Rm
P→ ∞, then

lim sup
m→∞

E[(�1,m)k] ≤ (qγ )k, k ∈ N;(2.3)

moreover, in the standard uniform case we have

Rm
P→ ∞ if and only if �1,m

P→ qγ.(2.4)

REMARKS. (i) One practical rule that follows from (2.4) is this: If with large
m one rejects a substantial (0.1, say, as opposed to 0.001) proportion Rm/m of the
sample (indicating Rm → ∞), then one can be sure that �1,m, the proportion of
incorrect rejections out of all rejections, is not only near, but is practically equal
to, the false discovery rate E(�1,m) = qγ .

(ii) Besides the false discovery rate, some authors consider E(Sm)/E(Rm ∨ 1),
sometimes called “marginal false discovery rate” (e.g., [20]). When k = 1, (2.2)
yields E(Sm)/E[(1+R

(1)
m (X(1))] ≤ qγ with equality in the standard uniform case,

which almost represents the control of E(Sm)/E(Rm ∨ 1). Since, as shown in
the proof of Proposition 2.2, R

(1)
m (X(1)) is asymptotically no smaller than Rm, it

follows that in the standard uniform case

lim
m→∞E

(
Sm

Rm ∨ 1

)
≡ qγ = lim

m→∞
E(Sm)

1 + E(R
(1)
m (X(1)))

≤ lim inf
m→∞

E(Sm)

1 + E(Rm)
≤ lim inf

m→∞
E(Sm)

E(Rm ∨ 1)

(an analogous statement with higher moments is also possible).

Because average power is an absolute quantity, there is nothing one can say
about it without some information on Xm0+1, . . . ,Xm. More precisely, all that one
can conclude from Proposition 2.2 is that, because Rm/m can be anything from
0 to 1 (as can be seen from the results of Section 3),

Rm − Sm

m1
= 1

1 − γ

Rm

m

(
1 − Sm

Rm ∨ 1

)
(hence its expected value) is somewhere between 0 and 1−qγ

1−γ
≥ 1, which, besides

the truism that average power is between 0 and 1, only tells us that Rm/m is
asymptotically bounded above by 1−γ

1−qγ
≤ 1.

In contrast, E(�3,m), the false nondiscovery rate of Genovese and Wasser-
man [9], provides a relative measure of the performance of the Benjamini–
Hochberg method—it assesses the efficacy of the method in terms of the num-
ber of rejections—for which reason one can use a statement like (2.3) to obtain a
meaningful upper bound on �3,m (or on its moments):
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PROPOSITION 2.3. Suppose γ ∈ (0,1]. Then

E[(�3,m)l] ≤ (1 − γ )l + E[(�1,m)k]
γ k

, k, l ∈ N;(2.5)

moreover, if 0 ≤ q < 1,

Rm
P→ ∞ �⇒ lim sup

m→∞
E[(�3,m)l] ≤ (1 − γ )l, l ∈ N.(2.6)

PROOF. If Rm = 0, then �3,m = 1 − γ ; if Rm = m, then �3,m = 0; and if
Rm > 0, we have �3,m = 1 − mγ−Sm

m−Rm
≤ 1 − γ ⇔ Sm

Rm
≤ γ . Thus,

E[(�3,m)l] = (1 − γ )lP (Rm = 0) + E
(
�3,m1{Sm/Rm≤γ }1{Rm>0}

)
+ E

(
�3,m1{Sm/Rm>γ }1{Rm>0}

)
≤ (1 − γ )lP (Rm = 0) + (1 − γ )lP (Rm > 0) + E

(
1{�1,m>γ }

)
= (1 − γ )l + P(�1,m > γ ) ≤ (1 − γ )l + E[(�1,m)k]

γ k
.

By (2.5) and (2.3), lim supm→∞ E[(�3,m)l] ≤ (1 − γ )l + qk , and since k ∈ N is
arbitrary (2.6) follows. �

In words, (2.6) says that if Rm
P→ ∞, then, asymptotically, the expected pro-

portion of incorrect nonrejections in the Benjamini–Hochberg procedure with ar-
bitrary q ∈ [0,1) does not exceed the proportion 1 − γ of observations that ideally
one would like to reject. From a practical point of view, this seems to be a nice
“unbiasedness” property of the Benjamini–Hochberg method, one that should be
required from procedures for selecting R in general: at least in the limit, the pro-
portion of false hypotheses among those that pass unnoticed does not exceed the
proportion of false hypotheses that would go unnoticed if one simply considered
all hypotheses true from the start—if one did not even bother about investigat-
ing them—which is just another way of saying that we are better off applying the
Benjamini–Hochberg procedure than doing nothing.

For other results on �3,m and a definition of unbiasedness we refer the reader
to [16].

3. Asymptotic results under dependence. In what follows we assume that

Fm0(x) = 1

m0

m0∑
k=1

1{Xk≤x}
p→ F(x) := x(3.1)

and

Gm1(x) = 1

m1

m∑
k=m0+1

1{Xk≤x}
p→ G(x)(3.2)
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uniformly in x ∈ [0,1], where G is a d.f. concentrated on [0,1]. These are weak
versions of the Glivenko–Cantelli theorem; a result at the end of this section gives
some sufficient conditions for them to hold.

The following theorem extends Theorem 1 of [9], and in part also Theorem 5
of [19] in the case of the Benjamini–Hochberg method—as opposed to the case of
Storey’s [18] variant of it (see the Remark to Theorem 4.1 for a parallel result in
the case of what we call the Benjamini–Hochberg–Storey method).

THEOREM 3.1. Under conditions (3.1) and (3.2) we have, for k ∈ N,

ψ∗
q

(
q(1 − γ )

(1 − q)

)k

≤ lim inf
m→∞ E

[(
Rm

m

)k]

≤ lim sup
m→∞

E

[(
Rm

m

)k]

≤ ψ
∗
q

(
q(1 − γ )

(1 − q)

)k

,

where, for y ≥ 0,

ψ∗
q
(y) = min{x ∈ [0,1] :ψq(x) ≤ 1/y},

ψ
∗
q(y) = inf{x ∈ [0,1] :ψq(x) < 1/y}

and

ψq(x) = sup
qx≤t≤q

G(t) − t

t
, x ∈ [0,1].

In particular,

Rm

m

P→ ρ ≡ ρ(q, γ ) = ψ∗
q

(
q(1 − γ )

(1 − q)

)
(3.3)

whenever ψ∗
q (

q(1−γ )
(1−q)

) := ψ∗
q
(
q(1−γ )
(1−q)

) = ψ
∗
q(

q(1−γ )
(1−q)

), which will be the case if and

only if ψq does not assume the value (1−q)
q(1−γ )

over an interval.

PROOF. By (1.2) we have{
Rm

m
≥ x

}
=

{
max

t=q�mx�/m,...,q(m−1)/m,q

Hm(t) − t

t
≥ 1

q
− 1

}
for each x ∈ ((r − 1)/m, r/m], so with ψ

(m)
q (x) = maxt=q�mx�/m,...,,q

Hm(t)−t
t

,

E

[(
Rm

m

)k]
=

∫ 1

0
kxk−1P

(
ψ(m)

q (x) ≥ 1

q
− 1

)
dx.
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Since for each x > 0

max
t=q�mx�/m,...,q(m−1)/m,q

Fm0(t) − t

t
≤ max

qx≤t≤q

Fm0(t) − t

t

≤ 1

qx
max

qx≤t≤q

∣∣Fm0(t) − t
∣∣ P→ 0

and, similarly, maxt=q�mx�/m,...,q
Gm1 (t)−G(t)

t

P→ 0, we have

ψ(m)
q (x) = γ max

t=q�mx�/m,...,q

Fm0(t) − t

t
+ (1 − γ ) max

t=q�mx�/m,...,q

Gm1(t) − G(t)

t

+ (1 − γ ) max
t=q�mx�/m,...,q

G(t) − t

t

P→ (1 − γ ) max
qx≤t≤q

G(t) − t

t
.

Thus,

1((1−q)/(q(1−γ )),∞)(ψq(x)) ≤ lim inf
m→∞ P

(
ψ(m)

q (x) >
1

q
− 1

)

≤ lim sup
m→∞

P

(
ψ(m)

q (x) ≥ 1

q
− 1

)
≤ 1[(1−q)/(q(1−γ )),∞)(ψq(x))

for almost all x, whence∫ 1

0
kxk−11((1−q)/(q(1−γ )),∞)(ψq(x)) dx

≤ lim inf
m→∞ E

[(
Rm

m

)k]

≤ lim sup
m→∞

E

[(
Rm

m

)k]

≤
∫ 1

0
kxk−11[(1−q)/(q(1−γ )),∞)(ψq(x)) dx.

Finally, from the definition of ψ∗
q

and the fact that ψq is a nonincreasing right-
continuous function, we see that∫

{x∈[0,1] : ψq(x)>(1−q)/(q(1−γ ))}
kxk−1 dx =

∫ ψ∗
q
(q(1−γ )/(1−q))

0
kxk−1 dx

= ψ∗
q

(
q(1 − γ )

(1 − q)

)k

,
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the analogous identity for ψ
∗
q following similarly. �

REMARKS. (i) Storey, Taylor and Siegmund [19] were the first to realize that
conditions like (3.1) and (3.2) are sufficient to derive asymptotic results about
Storey’s [18] variant of the Benjamini–Hochberg method. Storey, Taylor and Sieg-
mund [19] actually assume only F(x) ≤ x in (3.1); assuming F(x) = x, how-
ever, allows us to obtain simple and useful asymptotic expressions and bounds for
�1,m, �2,m and �3,m (see the corollaries to the theorem below and Theorem 4.1
later on) without sacrificing much in the domain of practical applicability of the
method. Storey, Taylor and Siegmund [19] also assume almost sure convergence
in (3.1) and (3.2); our results could as easily be formulated in terms of almost sure
convergence, but we find that convergence in probability is more natural in this
context—it seems easier to meet and is still very relevant in applications.

(ii) As pointed out by Genovese and Wasserman [9], (3.3) says that asymptot-
ically the Benjamini–Hochberg procedure rejects the observations (or hypotheses
whose p-values fall) below qρ. Thus, compared with the method of “uncritical
multiple testing” in which all hypotheses whose p-values fall below a critical
value q are rejected, the Benjamini–Hochberg method always rejects a smaller
proportion qρ(q, γ ) of hypotheses; on the other hand, because qρ(q, γ ) > q/m

for large m, it typically rejects many more hypotheses than the corresponding Bon-
ferroni procedure which, for finite m, consists of rejecting all observations below
q/m.

(iii) Suppose (3.3) holds. Then ρ(q, γ ) > 0 ⇔ maxqx≤t≤q
G(t)−t

t
≥ (1−q)

q(1−γ )
for

some x > 0, and it can be seen that

ρ(q, γ ) = q−1 sup
{
x ∈ [0,1] :

G(x) − x

x
>

(1 − q)

q(1 − γ )

}
,(3.4)

or qρ(q, γ ) = sup{x ∈ [0,1] : x
H(x)

< q}, in agreement with Theorem 5 of Storey,
Taylor and Siegmund [19]. Furthermore, it can be verified from (3.4) that ρ(q, γ )

is left-continuous in q for fixed γ , and, using the condition expressed right af-
ter (3.3), that it is right-continuous at q if ρ(q, γ ) > 0. Thus, q → ρ(q, γ ) is con-

tinuous on (q ′, q ′′) if ρ(q, γ ) > 0 ∀q ∈ (q ′, q ′′), in which case Rm/m
P→ ρ(q, γ )

uniformly on [q ′, q ′′]. (Rm/m is a nondecreasing right-continuous function of q .)

EXAMPLES. (i) Suppose G is degenerate at x0 ∈ [0,1). Then ψq(x) = −1 if
q < x0, ψq(x) = 1/x0 − 1 if qx ≤ x0 < q , and ψq(x) = 1/x − 1 if qx ≥ x0.

If x0 > q(1 − γ )/(1 − qγ ), that is, if 1/x0 − 1 < (1 − q)/[q(1 − γ )], then
ψ

∗
q(

q(1−γ )
(1−q)

) = 0, and hence ρ = 0.
If x0 < q(1 − γ )/(1 − qγ ), then the equation ψq(x) = (1 − q)/[q(1 − γ )] has

a unique solution given by x = (1 − γ )/(1 − qγ ), so (3.3) holds and

ρ(q, γ ) = ψ∗
q

(
q(1 − γ )

(1 − q)

)
= (1 − γ )

(1 − qγ )
.(3.5)
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Thus, ρ(q, γ ) > 0 if x0 < (1 − γ )/(1 − qγ ), that is, ρ > 0 if x0 is not “too large”
given the choice of q , in which case ρ is actually independent of x0, implying
that asymptotically the proportion of rejections and the efficacy of the procedure
depend only on γ and on the choice of q and not on the exact position of x0. In
fact, it can be checked by substitution of (3.5) into the expressions of the limits
obtained below in (3.8) that �2,m and 1 − �3,m both converge in probability to 1
when x0 < (1 − γ )/(1 − qγ ).

Since q can always be chosen so that x0 < (1 − γ )/(1 − qγ ), we see that in
this case the Benjamini–Hochberg procedure can always be made to work in an
asymptotically optimal way—in such a way that practically 100% of the observa-
tions from G will be spotted and �1,m is kept at qγ . In order to make use of this
optimality in practice, one needs to choose q appropriately, but this is easy if γ is
not too large, because the histogram will then have the shape of a scaled down
uniform density with a conspicuous peak at x0 (which is why the problem is easy
to solve even without using the Benjamini–Hochberg method).

In the borderline case where x0 = q(1 − γ )/(1 − qγ ), the theorem only tells
us that Rm/m is asymptotically somewhere between 0 and the right-hand side
of (3.5), because ψq(x) = (1 − q)/[q(1 − γ )] ≡ x0/q holds for all x ∈ (0, x0/q).
In fact, if X1, . . . ,Xm0 are independent standard uniform r.v.’s, we have

Rm

m

P→ (1 − γ )

2(1 − qγ )
.(3.6)

To see this, note that, after being sorted in ascending order, the sample consists of
a proportion Hm(x0−) of ordered uniforms below x0, followed by m − m0 copies
of x0, which are in turn followed by the remaining m(1 − Hm(x0)) ordered uni-
forms, so that the proportion of correctly rejected observations is always given by
(Rm−Sm)/m = max{i :m0Hm(x0−) < i ≤ m−m(1−Hm(x0)),mx0/q ≤ i}/m−
Hm(x0−). This is �= 0 and equals 1−γ if and only if mx0/q ≤ m−m(1−Hm(x0)),
or Fm0(x0)−x0 ≥ 0, which by our assumption happens with probability tending to

1/2. Thus, Rm−Sm

m

P→ 1−γ
2 , and therefore (3.6) holds by the fact that Sm/Rm → qγ ,

which follows by Proposition 2.2 (note that Rm
P→ ∞ necessarily).

Finally, we observe that in this borderline case �2,m and 1 − �3,m converge in
probability to 1/2 and 1 − (1 − γ )(1 − qγ )/[(1 − qγ ) + γ (1 − q)], respectively,
a calculation suggesting that �2,m is a more practically meaningful measure of
efficacy than 1 − �3,m.

(ii) Assume that G is concave and

G′+(0) = lim
x↓0

G(x)

x
> β where β = (1 − qγ )

q(1 − γ )
.

Since then G(0) = 0 and β ≥ 1, there exists a unique t∗ > 0 such that G(t∗) = βt∗;
moreover, t∗ ≤ q [because 1 ≥ G(t∗) = βt∗ = t∗

q
1−qγ
1−γ

and 1−qγ
1−γ

≥ 1 ⇒ t∗ ≤ q],
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and it becomes evident on geometric grounds that

max
t∗≤t≤q

G(t)

t
− 1 = G(t∗)

t∗
− 1 = β − 1 < max

qx≤t≤q

G(t)

t
− 1 ∀x ∈ (0, t∗/q);

thus,

ρ(q, γ ) = ψ∗
q

(
q(1 − γ )

(1 − q)

)
= ψ∗

q

(
1

β − 1

)
= t∗

q
.

Alternatively, by (3.4), qρ(q, γ ) is the smallest positive root of G(t) = βt , that is,
qρ(q, γ ) = t∗. This was first proved by Genovese and Wasserman [9].

(iii) For an example where G is not necessarily concave take G(x) = pxα +
(1 − p)xβ , 0 ≤ x ≤ 1, with α ∈ (0,1), β > 1, 0 < p < 1. Then (G(t) − t)/t =
ptα−1 + (1 − p)tβ−1 − 1, and from (3.4) we see that ρ > 0 always exists and
is uniquely determined by p(qρ)α−1 + (1 − p)(qρ)β−1 − 1 = (1−q)

q(1−γ )
, provided

q > 0.

Using Theorem 3.1, we can show that the conclusion of the Benjamini–
Hochberg theorem holds very generally in an asymptotic sense:

COROLLARY 3.2. Under the conditions of Theorem 3.1,

Rm

m

P→ ρ > 0 �⇒ �1,m
P→ qγ.(3.7)

PROOF. Since

�1,m = Sm

Rm ∨ 1
=

∑m0
i=1 1{Xi≤qRm/m}

Rm ∨ 1
= γ

(1/m0)
∑m0

i=1 1{Xi≤qRm/m}
(Rm ∨ 1)/m

,

we have for arbitrary ε ∈ (0, ρ), η ∈ (0,1),

γ
Fm0(q(ρ − ε))

ρ + ε
≤ �1,m ≤ γ

Fm0(q(ρ + ε))

ρ − ε
,

with probability at least 1 − η, which by (3.1) proves (3.7). �

The following statements are all direct consequences of the preceding results.

COROLLARY 3.3. Under the conditions of Theorem 3.1, Rm

m

P→ ρ(q, γ ) > 0
implies

Sm

m

P→ ρ(q, γ )qγ,

(3.8)

�2,m
P→ ρ(q, γ )

(1 − qγ )

(1 − γ )
and 1 − �3,m

P→ γ
(1 − qρ(q, γ ))

(1 − ρ(q, γ ))
.
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Because Rm/m, Sm/m, �1,m, �2,m and �3,m are proportions, all the above
statements about convergence in probability to a constant are equivalent to state-
ments about convergence in the mean (of any order), as well as to statements about
convergence of their moments. One consequence of this fact is that, under the con-
ditions of Theorem 3.1,

Rm

m

P→ ρ > 0 �⇒ lim
m→∞

E[Sm
k]

E[Rm
k] = lim

m→∞E

[(
Sm

Rm

)k]
= (qγ )k,

which implies that, asymptotically, the Benjamini–Hochberg method also controls
the “marginal false discovery rate” E(Sm)/E(Rm ∨ 1) [briefly mentioned in Re-
mark (ii) to Proposition 2.2].

We shall finish this section by giving an example of a rather general situation
in which statements like (3.1) and (3.2) hold true uniformly in x; a similar re-
sult (with a stronger conclusion) for stationary ergodic sequences has been given
by Tucker [21], for example. Let ξ1, ξ2, . . . be a sequence of r.v.’s on [0,1] with

d.f.’s G(1),G(2), . . . . Since for each x Gn(x) := n−1 ∑n
i=1 1{ξi≤x}

P→ G(x) if and

only if EGn(x) → G(x) and E(Gn(x)2) → G(x)2, we see that Gn(x)
P→ G(x) is

equivalent to

lim
n→∞

1

n

n∑
i=1

G(i)(x) = G(x) and lim
n→∞

1

n2

n∑
i �=j

P (ξi ≤ x, ξj ≤ x) = G(x)2.

The following sufficient condition combines this observation with a condition that
is much weaker than strong mixing.

PROPOSITION 3.4. Assume that, for each x,

G(x) := lim
n→∞

1

n

n∑
i=1

G(i)(x) and G(x−) := lim
n→∞

1

n

n∑
i=1

G(i)(x−)

exist, and there are subsequences {kn} and {αkn} such that kn → ∞, kn/n → 0
and αkn → 0 as n → ∞, and

sup
|i−j |≥kn

max{|P(ξi ≤ x, ξj ≤ x) − P(ξi ≤ x)P (ξj ≤ x)|,

|P(ξi < x, ξj < x) − P(ξi < x)P (ξj < x)|} ≤ αkn.

Then Gn
P→ G uniformly.

PROOF. That Gn(x)
P→ G(x) for fixed x follows from the fact that

limn→∞ 1
n2

∑n
i �=j P (ξi ≤ x)P (ξj ≤ x) = limn→∞( 1

n

∑n
i=1 P(ξi ≤ x))2 = G(x)2
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and from the inequalities∣∣∣∣∣ 1

n2

n∑
i �=j

P (ξi ≤ x, ξj ≤ x) − 1

n2

n∑
i �=j

P (ξi ≤ x)P (ξj ≤ x)

∣∣∣∣∣
≤

(
kn

n

)2

+ 1

n2

n∑
|i−j |≥kn

|P(ξi ≤ x, ξj ≤ x) − P(ξi ≤ x)P (ξj ≤ x)|

≤
(

kn

n

)2

+ αkn

(the right-hand side of which goes to zero as n → ∞ by assumption). The analo-
gous statement with < x in place of ≤ x and x− in place of x follows in the same
way. Finally, that these pointwise results imply uniform convergence is a classical
result. �

4. A modification of the method. It has been observed by several authors
that the Benjamini–Hochberg method tends to be conservative unless γ is rela-
tively close to 1. For if the value of γ cannot be guessed at, the only way one can
guarantee that E(�1,m) ≤ δ for a given δ > 0 is to apply the method with q = δ.
But if γ is actually smaller, say equal to 1/2, such a choice yields the overcautious
bound E(�1,m) ≤ δ/2 and the concomitant decrease in �2,m, which is an increas-
ing function of q . Although in some practical situations this is hardly a problem
because one has a reasonably good idea about the value of γ , from a general point
of view it is still a shortcoming one would like to eliminate.

These considerations have led Benjamini and Hochberg [3], Storey [18] and
Storey, Taylor and Siegmund [19], among others, to propose and study variants of
the Benjamini–Hochberg method which incorporate estimates of γ . Our objective
here will be to introduce another variant—very similar to Storey’s—and to study
some of its asymptotic properties. Questions related to the practical application of
the method [e.g., the problem of choosing x in (4.1) below] will be considered
elsewhere. Our assumptions and notation will be those of Section 3.

The closer x gets to G−1(1), the tighter the inequality H(x) = γ x + (1 −
γ )G(x) ≤ γ x + (1 − γ ), or γ ≤ 1−H(x)

1−x
, becomes, which suggests taking

γm(x) = min
0≤t≤x

1 − Hm(t)

1 − t
,(4.1)

where x ∈ (0,1) is to be chosen, as an estimator of γ [note that, for fixed x ∈ (0,1),
γm(x) > 0 with probability tending to 1]. (Storey’s [18] estimator is defined by
(1 − Hm(x))/(1 − x) for a given x.) Because of the convergence of Hm to H , this
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γm(x) will typically be an overestimate of γ in the sense that, given ε > 0,

γm(x) = min
0≤t≤x

1 − Hm(t)

1 − t
> min

0≤t≤x

1 − H(t)

1 − t
− ε ≥ γ − ε,(4.2)

with high probability if m is large enough. On the other hand, if we put

κ(x) = min
0≤t≤x

1 − G(t)

1 − t
, x ∈ (0,1),

we see that γm(x) will typically not exceed γ by more than (1 − γ )κ(x):

γm(x) = γ min
0≤t≤x

1 − Fm0(t)

1 − t
+ (1 − γ ) min

0≤t≤x

1 − Gm1(t)

1 − t
(4.3)

< ε + γ + (1 − γ )κ(x),

with high probability for arbitrary ε > 0 if m is large enough.
For want of a better name, and because we are essentially using the ideas of

Benjamini and Hochberg [2] and Storey [18], we shall refer to the procedure
that consists of rejecting all observations smaller than or equal to XRm(qm(x,δ)):m,
where Rm(qm(x, δ)) = max{i :Xi:m ≤ qm(x, δ) i

m
}, qm(x, δ) = δ

γm(x)
and γm(x) is

defined by (4.1), as the Benjamini–Hochberg–Storey method.
The variable Rm of (1.1) will now be denoted by Rm(q) in order to indicate

its dependence on q in the Benjamini–Hochberg method, and similarly for the
other variables; for instance, we shall write �1,m(q) for �1,m, and �1,m(qm(x, δ))

for the proportion of incorrect rejections incurred by applying the Benjamini–
Hochberg–Storey method.

The following result shows that, with the modified method, one is able, in an
asymptotic sense, to keep the false discovery rate under control and at the same
time achieve greater average power than that provided by the Benjamini–Hochberg
procedure.

THEOREM 4.1. Let γ ∈ (0,1) and suppose δ > 0, x ∈ (0,1), q ′(x) and q ′′(x)

can be chosen so that

q ′(x) <
δ

γ + (1 − γ )κ(x)
≤ δ

γ
< q ′′(x)

and

Rm(q)

m

P→ ρ(q, γ ) > 0 ∀q ∈ [q ′(x), q ′′(x)].
Then

δ
γ

γ + (1 − γ )κ(x)
≤ lim inf

m→∞ E
[
�1,m

(
qm(x, δ)

)]
(4.4)

≤ lim sup
m→∞

E
[
�1,m

(
qm(x, δ)

)] ≤ δ
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and

ρ

(
δ

γ + (1 − γ )κ(x)
, γ

)
1 − δγ /(γ + (1 − γ )κ(x))

1 − γ

≤ lim inf
m→∞ E

[
�2,m

(
qm(x, δ)

)]
(4.5)

≤ lim sup
m→∞

E
[
�2,m

(
qm(x, δ)

)] ≤ ρ

(
δ

γ
, γ

)
(1 − δ)

(1 − γ )
.

PROOF. We know from Corollary 3.3 that we have

Rm(q)

m

P→ ρ(q, γ ) as well as
Sm(q)

m

P→ ρ(q, γ )qγ

∀q ∈ [q ′(x), q ′′(x)]; moreover, by Remark (iii) following Theorem 3.1, the con-
vergence here is uniform on [q ′(x), q ′′(x)]. It can be shown (and it is certainly
known) that if fn → f and gn → g uniformly, supt |f (t)| < ∞ and inft |g(t)| > 0,
then supt |fn(t)/gn(t) − f (t)/g(t)| → 0. Thus,

sup
q ′(x)≤q≤q ′′(x)

∣∣∣∣ Sm(q)

Rm(q) ∨ 1
− qγ

∣∣∣∣ = sup
q ′(x)≤q≤q ′′(x)

|�1,m(q) − qγ | P→ 0.(4.6)

Now fix ε ∈ (0, γ ), η ∈ (0,1) and m′ so large that

q ′(x) ≤ δ

γ + (1 − γ )κ(x) + ε
(4.7)

≤ qm(x, δ) ≡ δ

γm(x)
≤ δ

γ − ε
≤ q ′′(x),

with probability at least 1 − η if m ≥ m′, which is possible by (4.2), (4.3) and our
assumptions about q ′(x) and q ′′(x). Then for m ≥ m′

�1,m

(
qm(x, δ)

) ≤ sup
q ′(x)≤q≤q ′′(x)

|�1,m(q) − qγ | + δ
γ

γ − ε

holds with probability at least 1 − η. Since ε is arbitrarily small, this, combined
with (4.6), proves the inequality on the right-hand side in (4.4) as well as its version
in probability. The other inequality follows similarly.

To prove (4.5), we use the inequalities

Rm(δ/(γ + (1 − γ )κ(x) + ε)) − Sm(δ/(γ + (1 − γ )κ(x) + ε))

m − m0

≤ Rm(qm(x, δ)) − Sm(qm(x, δ))

m − m0

≤ Rm(δ/(γ − ε)) − Sm(δ/(γ − ε))

m − m0
,
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which hold whenever (4.7) is valid because Rm(q) − Sm(q) is nondecreasing in q ,
and the continuity of q → ρ(q, γ ) on [q ′(x), q ′′(x)]. �

REMARK. Under the assumptions of the theorem, we have qm(x, δ)
P→

q(x, δ) := δ
γ+(1−γ )κ(x)

and Rm(qm(x,δ))
m

P→ ρ(q(x, δ), γ ); thus, asymptotically, the
Benjamini–Hochberg–Storey method consists of rejecting all observations below
q(x, δ)ρ(q(x, δ), γ ).

EXAMPLES. (i) If G(x) = xα , x ∈ [0,1], α ∈ (0,1), then κ(x) = (1 −
xα)/(1 − x) because t → (1 − tα)/(1 − t) is decreasing. [In fact, if G has
a nonincreasing density function g, then 1 − G(t) = ∫ 1

t g(s) ds ≤ (1 − t)g(t),
or −g(t)(1 − t) + (1 − G(t)) < 0, which implies that the derivative of t →
(1 − G(t))/(1 − t) is negative.] In this case [see Example (ii) following Theo-
rem 3.1], it can be seen that ρ(q, γ ) = (q(1 − γ )/(1 − qγ ))1/(1−α)/q , which is
always positive for q > 0, and so we have explicit expressions for the bounds
in Theorem 4.1 that are valid for all x ∈ (0,1). Here we shall consider α = 0.1 in
two cases: (a) γ = 0.5, (b) γ = 0.9. The density h of H in case (a) is roughly in
agreement with the histogram shown in Figure 5.8 of [12]; that of case (b) is much
closer to the standard uniform density; they are both compared with the latter in
Figure 1.

The asymptotic average power and false discovery rate of the Benjamini–
Hochberg procedure are shown in Figure 2 as functions of q . In case (a), the choice
of q = 0.2 yields an asymptotic false discovery rate of 0.1 and an asymptotic aver-
age power of 0.784; in case (b), an asymptotic false discovery rate of 0.1 is guar-
anteed by taking q = 0.111, which yields an asymptotic average power of 0.614.

Figure 3 illustrates the adherence of the bounds in (4.5) as a function of x

when δ (the upper bound of the false discovery rate) is fixed at 0.1; as just seen,
in the ideal situation where γ is known, the power obtained by controlling the

FIG. 1. Densities of the standard uniform distribution and of the d.f. H : left panel: α = 0.1,
γ = 0.5, right panel: α = 0.1, γ = 0.9.
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FIG. 2. Asymptotic average power and false discovery rate of the Benjamini–Hochberg procedure
as functions of q: left panel: α = 0.1, γ = 0.5, right panel: α = 0.1, γ = 0.9.

false discovery rate at this level would be about 0.784 and 0.614 in the cases
γ = 0.5 and γ = 0.9, respectively. In each case, the asymptotic average power
of the Benjamini–Hochberg–Storey procedure with qm(x, δ) = 0.1/γm(x) lies be-
tween the two curves of Figure 3 and is rather close to the maximum average
power—achieved by setting q = δ/γ in the Benjamini–Hochberg procedure—
even for small values of x. However, since κ(x) → α as x ↑ 1, the lower bound
for asymptotic average power is always strictly below ρ(δ/(γ + (1−γ )α), γ )(1−
δ

γ
γ+(1−γ )α

)/(1−γ ), which in turn is always strictly below the asymptotic average
power of the Benjamini–Hochberg procedure with q = δ/γ .

The left-hand side of (4.4) approaches δ = 0.1 in a very similar way.
(ii) Suppose G(x) = xα1[0,x0)(x)+1[x0,∞)(x) for x0, α ∈ (0,1). Then ψq(x) =

(qx)α−1−1 if 0 ≤ x < x0/q and ψq(x) = 0 if x ≥ x0/q , so that ρ(q, γ ) is still pos-
itive and has the same expression as in (i) as long as (q(1−γ )/(1−qγ ))1/(1−α) ≤
x0, which can always be arranged by choosing a small enough q . Since κ(x) =
(1 − xα)/(1 − x) for x ∈ [0, x0) and κ(x) = 0 for x ∈ [x0,1), the lower bounds

FIG. 3. Upper and lower bounds on the asymptotic average power of the Ben-
jamini–Hochberg–Storey procedure as functions of x as given in (4.5): left panel: α = 0.1,
γ = 0.5, right panel: α = 0.1, γ = 0.9.
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on the average power of the Benjamini–Hochberg–Storey procedure as a function
of x coincide in this case with those shown in Figure 3 over the interval [0, x0),
but attain their maximum values over [x0,1); analogously, the lower bounds on the
false discovery rate attain the value of δ if x ∈ [x0,1).

In this case, therefore, using qm(x, δ) = δ/γm(x) with x ∈ [x0,1) in place of q in
the Benjamini–Hochberg procedure and choosing δ according to the conditions of
Theorem 4.1 is asymptotically equivalent to taking q = δ/γ and thus corresponds
to the ideal situation in which γ is known, the required upper bound for the false
discovery rate is δ, and the power is maximum.

APPENDIX: PROOF OF PROPOSITION 2.2

We first show that Rm
P→ ∞ ⇒ R

(j)
m (X(j))

P→ ∞ ∀ j . Observe that H ∗
m(t) :=

m−1 ∑m
i=2 1{Xi≤t+q/m} ≥ H̃m(t) := m−1 ∑m

i=2 1{Xi≤t} for all t , and that, by

definition of R
(1)
m (X(1)) and (1.2), we have{

R
(1)
m (X(1))

m − 1
≥ x

}
=

{
max

t=qr/m,...,q(m−1)/m

H ∗
m(t) − t

t
≥ 1

q
− 1

}
for x ∈ ((r − 1)/(m − 1), r/(m − 1)]. Since

max
t=qr/m,...,q(m−1)/m,q

H̃m(t) − t

t

= max
{

max
t=qr/m,...,q(m−1)/m

H̃m(t) − t

t
,
H̃m(q) − q

q

}

≤ max
{

max
t=qr/m,...,q(m−1)/m

H ∗
m(t) − t

t
,

H ∗
m(q(m − 1)/m) − q(m − 1)/m

q(m − 1)/m

(m − 1)

m
− 1

m

}
,

we have

1

q
− 1 ≤ max

t=qr/m,...,q(m−1)/m,q

H̃m(t) − t

t

�⇒ 1

q
− 1 ≤ max

t=qr/m,...,q(m−1)/m

H ∗
m(t) − t

t
,

and because supt |H̃m(t) − Hm(t)| → 0 with probability one (and q r
m

> qx/2), it

follows that P(Rm/m ≥ x(m − 1)/m) + ε ≤ P(R
(1)
m (X(1))/(m − 1) ≥ x) for suf-

ficiently large m and arbitrary ε > 0. This proves that Rm
P→ ∞ ⇒ R

(1)
m (X(1))

P→
∞; similar reasoning shows that R

(j)
m (X(j))

P→ ∞ ⇒ R
(j+1)
m (X(j+1))

P→ ∞.

Thus, Rm
P→ ∞ implies R

(j)
m (X(j))

P→ ∞ for each j , and by the bounded conver-
gence theorem E[(j + R

(j)
m (X(j)))j−k] → 0 whenever 1 ≤ j < k, so (2.3) follows
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from (2.1). In the standard uniform case equality holds in (2.3) with “lim” in place

of “lim sup,” whence �1,m
P→ qγ .

To prove the converse, we show that �1,m
P→ qγ ⇒ R

(1)
m (X(1))

P→ ∞ and

then that R
(1)
m (X(1))

P→ ∞ ⇒ Rm
P→ ∞. Suppose �1,m

P→ qγ , and assume
lim supm→∞ R

(1)
m (X(1)) ≤ C < ∞ in probability. Then (2.1) with k = 2 and in

the standard uniform case implies

lim inf
m→∞ E[�2

1,m] = qγ lim inf
m→∞ E

[
1

1 + R
(1)
m (X(1))

]
+ (qγ )2

≥ qγ

1 + C
+ (qγ )2 > (qγ )2,

which contradicts �1,m
P→ qγ ; thus, R

(1)
m (X(1))

P→ ∞. When k = 1, (2.2) in the
standard uniform case reads

E(Sm)

1 + E(R
(1)
m (X(1)))

= qγ.(A.1)

If Rm � P→ ∞ then Sm � P→ ∞, but then R
(1)
m (X(1))

P→ ∞ contradicts (A.1) when we

let m → ∞; thus we must have Rm
P→ ∞ if R

(1)
m (X(1))

P→ ∞.
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