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DIRECTIONS AND PROJECTIVE SHAPES!

By KANTI V. MARDIA AND VIC PATRANGENARU
University of Leeds and Texas Tech University

This paper deals with projective shape analysis, which is a study of finite
configurations of points modulo projective transformations. The topic has
various applications in machine vision. We introduce a convenient projective
shape space, as well as an appropriate coordinate system for this shape
space. For generic configurationskopoints inm dimensions, the resulting
projective shape space is identified as a produét-efn — 2 copies of axial
space®R P™. This identification leads to the need for developing multivariate
directional and multivariate axial analysis and we propose parametric
models, as well as nonparametric methods, for these areas. In particular,
we investigate the Fohet extrinsic mean for the multivariate axial case.
Asymptotic distributions of the appropriate parametric and nonparametric
tests are derived. We illustrate our methodology with examples from machine
vision.

1. Introduction. Consider a configuration of points iR™. “Shape” deals
with the residual structure of this configuration when certain transformations
are filtered out. More specifically, the shape of a configuration consists of its
equivalence class under a group of transformations. Important groups for machine
vision are the similarity group, the affine group and the projective group. Here
the group action describes the way in which an image is captured. For instance,
if two different images of the same scene are obtained using a pinhole camera,
the corresponding transformation between the two images is the composition of
two central projections, which is a projective transformation. If the two central
projections can be approximated by parallel projections, which is the case of
remote views of the same planar scene, the projective transformation can be
approximated by an affine transformation. Further, if these parallel projections
are orthogonal projections on the plane of the camera, this affine transformation
can be approximated by a similarity transformation. Therefore, the relationships
between these shapes are as follows: if two configurations have the same similarity
shape, then they automatically have the same affine shape; if they have the same
affine shape, they will have the same projective shape. For example, two squares
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of different sizes have the same similarity, affine and projective shape, whereas a
square and a rectangle have the same affine and projective shape but not the same
similarity shape. On the other hand, a square and a kite have the same projective
shape but not the same affine shape.

The word “shape” often refers in statistics to similarity shape where only the
effects of translation, scale and rotation have been filtered out (see, e.g., [4, 5]).
In recent years, substantial progress has been made in similarity shape analysis,
since appropriate shape space (e.g., Kendall's space) and shape coordinates (e.qg.,
Bookstein coordinates) have been available. A simple example of Bookstein
coordinates is for the shape of a triangle where the shape coordinates are obtained
after taking one of the vertices as the origin and rotating the triangle so that the
base of the triangle lies on theaxis, and then rescaling the base to the unit size.
The motivation behind such coordinate systems is similar to those in directional
statistics, where to analyze spherical data one requires a coordinate system such as
longitude and latitude (see, e.g., [18]).

Affine shape has also received some attention; see, for example, [10, 24].
Sparr [24] has shown that the space of affine shapes is a Grassmann manifold.
For affine shape in 2-D, we can obtain shape coordinates by using three points that
determine the direction and the origin of the axes, and the unit length between the
points on each of these two axes.

Progress in projective shape analysis has been somewhat slow by not having
a convenient shape space, though considerable work has appeared on projective
invariants (see, e.g., [11, 12, 20]). We propose a convenient projective shape space,
as well as an appropriate coordinate system for this shape space.

The plan of the paper is as follows. In Section 2 we propose our approach
in “projective shape analysis,” which has its basis on the idea of constructing a
projective frame selected from the points of a generic configuration. The resulting
projective shape space is a produckef m — 2 copies of axial spacé&P™. This
axial representation leads to various questions in multivariate directional statistics.
To address these questions, in Section 3 we first discuss some parametric models,
especially for the multivariate circular case. As a starting point, we consider
certain von Mises circular distributions. These provide good approximations to
marginal distributions on the circle of cross-ratios with normal errors at landmarks
(i.e., offset projective distributions), as argued through simulations in [11]. We
then treat the case of concentrated data by using a directional representation in
a tangent space. In particular, the procedure is illustrated by constructing a two-
sample test.

In Section 4 we consider estimation of certain means, both asymptotically
and through bootstrap methods. In particular, we treat the multivariate axial
case, highlighting the extrinsic mean; for = 1, the circular extrinsic mean
is well studied (see, e.g., [18]) and is generally referred to as mean direction.
Theorem 4.1 provides asymptotic distributions of certain test statistics required
for the estimation of the extrinsic mean of projective shapes for mnyand
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Corollary 4.1 provides some bootstrap approximations for these asymptotic
distributions. In Section 4 we also provide a two-sample test for extrinsic means
of projective shape through a bootstrapping result.

In Section 5 we illustrate our methodology through three examples in object
recognition. The first two examples concern building recognition and use circular
and univariate spherical statistics, whereas the third example is about face
recognition and uses bivariate spherical statistics. Of course, the realm of
applications is much wider, covering other types of multivariate axial data. In
Section 6 we present a strategy for general statistical shape analysis where the
shapes are regarded as orbits of certain Lie group actions on a direct product of a
number of copies of a manifold.

2. The projective shape space. Recall that the real projective spacenin
dimensionsRP™, is the set of axes going through the origin®f*+1. If X =
(x1, ..., x"*thH e R+ {0}, then

(X]=[XY: X% .. X" =X, 1#£0)

is a projective point in RP™; we will reserve the notatioft] for the projective
points throughout. In an alternative description, a pgint RP™ is given by
p=[zt:z%:... "1, where

A linear varietyv of dimensiond is given byv = {[x], x € V' \ 0}, whereV is a
(d + 1)-dimensional vector subspace®f'*+1. In particular, a projective linéis
a set associated with a vector plavén R+, [ = {[x], x € V \ 0}. A number of
points inR P are collinear if they lie on a projective line.

The Euclidean spacR™ can be embedded iRP™, preserving collinearity.
Such a standaraffine embedding, missing only a hyperplane at infinity, is

x=L ™) = ™.
This leads to the notion @&ffine or inhomogeneous coordinates of a point
p=[X]1=[Xx:...:x"™: x" ], xm+tl+o,

to be defined as

x1 xXm )

1 .2 my __
(x x5, ...,x )_(Xm+l""’Xm+l

as opposed to theomogeneous coordinates ofp, (X1,..., X"*1), which are

defined up to a multiplicative constant only. However, the coordinates of interest
in projective shape analysis are neither affine nor homogeneous. We need
coordinates that are invariant with respect to the group of projective (general linear)
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transformationsPGL(m). A projective transformation o of RP™ is defined in
terms of an(m + 1) x (m + 1) nonsingular matrixA € GL(m + 1, R) by

(XL xmH) = [AXL, . XY

The linear span of a subset BfP™ is the smallest linear variety containing that
subset. Note thdt points inRP™ with k > m + 2 are ingeneral position if their
linear span iRP™.

DEFINITION 2.1. Aprojective framein RP™ is an ordered system of + 2
points in general position.

In computer vision, a projective frame is callegbrajective basis by some au-
thors (Heyden [13], page 8; Faugeras and Luong [6], page 81jeLet ., e;+1)
be the standard basis &f"*1. Thestandard projective frame ig[e1], .. ., [em 1],
[e1 + -+ -+ em+1]). The last point of this frame is referred to as timit point.

PrRoPOSITION2.1. Given two projective frames 71 = (p1.1, ..., P1.m+2) and

m2 = (p2,1,..., P2.m+2), there is a unique B € PGL(m) with B(p1 ;) = p2 ;.
j=12,....,m+2.

A proof follows on noting that, given a projective frame= (p1, ..., pm12),
there is a unique € PGL(m) with

(21) a([e]]):pja j=1,...,m+1, a(ler+---+emy1l) = pms2.

REMARK 2.1. If £k > m + 2, we consider the seFG’;n consisting of
configurations of points(p1, ..., px) for which there is a subset of indices
i1 <--- <ipmgz2suchthatp;,..., pi,,,) is aprojective frame.

From Proposition 2.1 X is an invariant generic subset 6f . It can be
shown by considering, for example, = 1, k = 4, that the corresponding shape
space is a manifold. Let us denote the projective shageofp2, ps, pa) € }‘Gf
byo.

Any projective shape is in one of the séfsy3, U124, U134 OF U234, Where, for
i<j<k,
(2.2) Uijk ={o|(pi, pj, pr) is a projective frame

Assumep, = [x,:1],r =1, 2, 3,4. Then, from (2.2) we may define the chafts;
by ¥ijk(0) = c(pi, pj, pk, p1), wherec(-) is a cross-ratio defined by

c(pis pj» Pk> 1) = {(xi — xi) (x — x )}/ {(xi — x;)(xp — xp) }
and{i, j, k,1} = {1, 2, 3, 4}. On permuting indices, we find that

Y134
124=—, 134=1— VY124, 234= —7.
4 Y123 v v v Y134—1
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Since the transition maps between these charts are differentiable, we conclude
that the projective shape space associated Wl@j‘ is a 1-D manifold. Projective

shape spaces associated witlX are expected to be more complicated. However,

we prefer to restrict ourselves to a subset of generic configurations, such that
the corresponding shape space has a natural structure of symmetric space (see
Proposition 2.3), and for which the computations can be carried out using standard
statistical packages.

DEFINITION 2.2. Theaxis of a point p € RP™ with respect to a projective
framew = (p1, ..., pme2) is defined asp™ = «~1(p), wherea € PGL(m) is
given by (2.1). A geometric interpretation pf is given below.

Assume f,,.2 € Rt is a representative gf,,o. Since(p1, ..., pmio) are
in general position,f,,+2 can be written in a uniqgue way as a Suffj4+2 =
fi+- -+ fmy1, where[f;]=p;,for j=1,...,m+1. The vectors, ..., fius1
form a basis oR”*1, and letf € R”*1 be a representative gf. Then we denote
vl ..., y"™tlasthe components gfwith respect to this basis. Note that since the
selection off,,+2 and of f is unique up to a multiplicative constant, the projective

representation of projective coordinates is displayed in Figure Infoet 1.
Figure 1(a) constructs the coordinatég Y, of f with respect to the frame
(Lf1], [f2], [f3]); Figure 1(b) shows the corresponding projective poifat Yo].

Let us assume that, ..., x,+2 are points in general position and let=
(xl,...,xm)T be an arbitrary point ifR™. In this notation the axis ok with
respect to the projective frame associated with- 2 pointsxy, ..., x,+2 is the
same as the axis gf = [x1:... :x™:1] with respect to(pa, ..., pmi2). Using
the above geometric interpretation, we determine the axis iafthe following
proposition.

PROPOSITION2.2. The projective axis of a point x is given by

(2.3) [21(x) 220 ... "o,
where
(2.4) d@=y@/ly®l.  j=L...m+1,
¥ () = v/ (x) /v (xm2),
(2.5) Yy = (), ...y W),
20 = (.. "), 1P =1
and

(2.6) v(x) = (vl(x), e, vm+1(x))T = U,;lp(x),
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(a)
p
P2 f p3
f2 f3
f4 P4
(b)
(0,Y?)
€, =(0’1)
' 1
(Y20) e, =(1,0)

FIG. 1. Projective coordinates for m = 1. (a) Projective frame = = (p1, p2, p3) and a projective
point p, (b) projective coordinates of p with respect to .
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with the (m + 1) x (m + 1) matrix
(27) Um = [p(xl)’ ---7p(xm+l)]»

where p(x) = (xT, 1T,

PROOF We note that there is a unique vectoe R”+L, 87 = (B1, ..., But1),
such thawlp(xl) + -+ Burip (Xm+1) = p(Xm+2). Namelyva,B = p(xm+2) OF
B=U-1p(xpi2) =v(xns2), SO that

(2.8) Bi = v (Ximi2), i=1...,m+1
Let A be the matrix
(2.9) A = U, diag(8).

If (e1,...,ems1) Iis the standard basis foR”™*1, then Ae; = Bip(x),
i=1...,m+ 1, andA(e1 + -+ + epn+1) = p(xma2). This means that the
projective transformatiorw, given by a([x]) = [Ax], has the properties that
alei]l=[px)],i=1,...,m+ 1, andafer + - - - + em+1] = [p(xm+2)]. Hence,
from Definition 2.2 it now follows that the homogeneous projective coordinates of
[p(x)] are given by

(2.10) y(x) =A"1p(x).
From (2.8) and (2.9) we have

, 1 1
y(x) = dlag(a, e ﬂ—ﬂ)U,;lp(x)

—di -1
B dlag(vl(xm—i-Z) Y Um+1(xm+2))Um px).

Hence, using the definition af(x) given by (2.6), (2.5) follows. OJ
REMARK 2.2. We will say thaty(x) are the projective coordinates ofwith

respect to the projective frame generated’by ..., x,,+2), and note thafz(x)]
defined by (2.3) is the corresponding pointRi™.

REMARK 2.3. Note that we have(x;) =¢;,i =1,...,m+ 1.

Let G(k, m) denote the set of all ordered systemscgioints (p1, ..., px) for
which (p1, ..., pma2) is a projective framek > m + 2. PGL(m) acts onG (k, m)
by a(p1, ..., pr) = (ap1, ..., app).

DEFINITION 2.3. The projective shape spa&=¥ or space ofprojective
k—adsin RP™ is the quotientG (k, m)/PGL(m).
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PrOPOSITION2.3. PE’,; is a manifold diffeomorphic with (RP™)4, where
g=k—m—2.

PROOF We defineF: PXX — (RP™)4 by
F((p1. ..., pr)y modPGL(m)) = (pp13.---» PR)-

=Pty pmt2), ¥ =) 1. 12",

wherez(x;) = (z1(x;), ..., 2" P T,z =L i=m +3, ..., k, andz(-) is
given by (2.3).

The mappingF is a well-defined diffeomorphism betweés* and a product
of real projective spaces.

Note that (2.11) defines aaxial representation of the projective shape. In this
representation, fon = 1 we can write (2.11) ap;.’ =[e!%i], whereg; is the angle

of an axis. Then doubling; takes us to an oriented directiefi/ € S1. Further, we
assume thati, x», x3 yield a projective framer and[x : 1] is an arbitrary point on
the projective line. Following the above algorithm for projective coordinates, from
(2.5) and (2.6) we get

(2.11)

1 X X2 2 o X1—X

v (X)—Xl_xz, v (X)—Xl_xz,

Y=ot vte), YA = v3) /vP(xa).
Thus, from (2.4) we have

Alx) = Y 2(x) = y2(x)
{Y(x0))2 + (y2(x)2 /2 {02+ (y2(x))2) /2

or, equivalently,
212 10y — i’ 200y — L,
@) TV Tod T T e
where

_ 2 N 2y12
X X X X

X3 — X2 X1 — X3
That is, we can write

2.13)  p"=[t) 2], zHx) =cosp(x), 22(x) =sing (x).

This representation of projective coordinates is displayed in Figure 2. Note that on
eliminatingx from y1(x) andy?(x), we get(xz — x2)y*(x) + (x1 — x3)y?(x) =

x1 — x2. Sincexy # x» # x3, this equation of a line in the plang!(x), y2(x))
confirms that the angleé (x) lies between 0 angd. [
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(a)
P
X2 X% Xi
Xo X X3 X4
(b)

z(x)

o(x)

FiG. 2. Projective coordinate of a point on a Euclidean line (a) shows the embedding of an affine
line in the projective line and the projective points corresponding to the points on the real line;
(b) shows the projective coordinate of the point p = [x : 1] = [X] with respect to the projective frame
p1 = [X1], p2 = [X2], p3 = [¥3] and the corresponding angle of this projective coordinate, ¢ (x),
which should be doubled to get the point 6 (x) on thecircle.
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ExAMPLE 2.1. We now illustrate our coordinate system for a problem studied
in machine vision by Heyden [13], pages 33—34. He has considered a configuration
of five points from two images of a rectangular sheet of paper. The five points form
a cross. For the first image the coordinates are

x1=(69,53), x2=(39133),  x3=(626402,
x4 = (69,430, x5 = (344 322).

The first four points are the corners and the last one is the center of the cross.
Herem = 2 and, from (2.7) we have, on registering with respect to the fregme
x2 andxa:

69 591 62
Up,=|53 33 402|.
1 1 1

Hence, from (2.6) we find that(x4)” = (1.0683 —1.0862 1.0180 andv(xs)’ =
(0.5057,0.0095 0.4848. Thus, from (2.4) and (2.5) we get the following
spherical representation of the projective shape:

z(x5) =[0.7050:-0.0131:07092 = z1, sayl

Similarly, for the second image we havwg = (334,69), x2 = (732 290,
x3 = (428 504), x4 = (43,200, x5 = (373 243), leading to

2(xs) =[0.7074:—0.0060:07067 =z,  say

We will return to these coordinates in Example 4.1.

We now describe the alternative representation of projective shape due to
Goodall and Mardia [11] and show the connection between the two represen-
tations. In their representation the projective shape&mt ..., px) € Gk, m)
is uniquely determined by its projective invariants. In fact, the projective co-
ordinates, with respect t@ps, ..., pnt2) and the projective invariants j;),
j=1...,m;i=m+3,...,k, determine each other by tlevariant represen-
tation

(2.14) p?:[tlgitzi:... i 21],

so that theith projective coordinate is ;. Whenm = 1, 2, let us consider their
invariant representation. Fer = 1, from (2.12) and (2.13) we have

X—X2 X1—X

(2.15) pr=[x:1" = [ } = [c(x1, x2, x3, x) 1 1].

X3 — X2 ' X1 — X3
This equation shows that the projective coordinatecofl] with respect tor in our
representation [viz., equation (2.13)] and the cross-kdtig, x», x3, x) determine
each other. Here could be any of thé& — 3 points. Form = 2 we now assume
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thatxy, xo, ..., xx arek points inRP2, k > 4. Letzlj =z/(x;),i =5,...,k. Then
the invariantsy; andy; in (2.14) are the cross-ratios

1 2
(2.16) w=3, =3

i g
where(y; andiy; are the cross-ratios determined on a transversal by the pen-
cil of lines joining the pointx; to the pointsxz, x3, x4, x; and by the pencil
of lines joining the pointxy to the pointsxy, x3, x4, x;, respectively. There are
some parallel ideas between coordinates for similarity shape, affine shape and
the projective shape considered here. We now give registration frames for the
three shapes in 2-D. Let us consider planar similarity shape. The shape can
be registered using two points; for example, we can use the registration frame
with the points(0,0) and (1, 0). Figure 3(a) shows the original configuration
for k = 4 and Figure 3(b) shows its Bookstein coordinates. Figure 3(c) is dis-
cussed below. In the case of affine shape (“intermediate” between similarity shape
and projective shape), we can choose the registration frame consisting of the
three points(0, 0), (1, 0) and (0, 1). In projective shape in 2-D, using homoge-
neous coordinates, we can select the registration frame consisting of the points
(0,0),(1,0),(0,1) and (1,1). In inhomogeneous coordinates, the registration
frame corresponds to the poings, 0, 0), (0, 1,0), (0,0,1) and(1,1,1) in 3-D.
The steps in projective shape registration for 1-D and 2-D are as follows:

Casem =1.

1.0. Start with a configuration @f points.

1.1. Register each of the lakt— 3 points with respect to first three points
leading to (2.6).

1.2. Transform these registered points by (2.4), leading to one point on the
Cartesian produd P! x --- x RP! of k — 3 copies ofR P1, that is, the projective
shape of a linear configuration bfpoints is equivalent té — 3 axes inR?.

1.3. Transform thesk — 3 axes to directions by doubling the angles. Thus, we
get an observation on@ — 3)-dimensional torus.

Figure 3(c) gives a schematic diagram of these first two steps=ob.

Casem = 2.

2.0. Start with a configuration @f points.

2.1. Register the projective coordinates of the kast4 points with respect to
the first four points, say.

2.2. Transform these registered points leading to one point on the Cartesian
productRP?2 x --- x RP2 of k — 4 copies ofR P2, that is, the projective shape of
a planar configuration df points is equivalent té — 4 axes inR2.
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(a)

1.0

0.5

0.0
I
X
X

o
TN I I I I
-1.0 00 05 1.0

Fic. 3. (a)Smilarity shape: four pointsin 2-D with the two base points marked by “ x,” and the

“w_n

other by “o.” (b) Bookstein registration for Figure 3(a)with respect to the frame (—%, 0) and (%, 0).

These schematic constructions are displayed in Figure 4 fer2 andk = 6.
Note that unlike the case = 1, for m = 2, RP2 cannot be visualized in three
dimensions, as we need at least four dimensions to immerse the real projective
plane into a Euclidean space without double points (see [25], pages |-9-I-13).
A rigorous geometric construction fat = 1 andk = 4 has already been given
in Figures 1 and 2.
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()

VI
OO DO

Torus

FiG. 3. (Continued). (c) Projective shape: schematic diagram for five points in R1 and their
registration steps.

In the subsequent discussion, we will work on the axtabordinates derived
from the projective coordinates with respect to the framéx, ..., x;,+2).
From now on thez-coordinates will be written agX| = ([x1], ..., [x4]), which
corresponds to ain + 1) x g matrix. In the case of the directional representation
(for concentrated data), we will writ€ = (x1, ..., x,) when there is no ambiguity.

3. Spherical distributions for projective shape. We have shown in Propo-
sition 2.3 that the projective shape bflandmarks inm dimensions can be rep-
resented by axial variables given by (2.3). Thus, we could use appropriate axial
distributions developed in directional statistics as models for projective shape (see,
e.g., [18]). Simulation studies performed by Goodall and Mardia [11] suggest that
von Mises distributions are appropriate approximations to the angular version of
the cross-ratios under isotropic normal variation at landmarks; see their chi-square
plots in Figures 9 and 10. Also, various applications are given in that paper. That
is, form = 1 andk = 4, the angl® = 2¢ can be considered to have the von Mises
distribution with probability density function

f(0; 1, k) = (2 Io(k)} "L explk cosd — )}, 0 €(0,2r],k >0,

whereu € (0, 2] is the mean directiorng is the concentration parameter and
Io(k) is the modified Bessel function of the first kind and order zero.
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(a)
o)
X X
X
X
O
(b)
2
o RP
X X \L
Axis in 3-D
X X
o RP?
Axis in 3-D

FIG. 4. (a)Sx pointsin R? and (b) a schematic representation of their projective coordinates.
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In general, foin = 1 and any number of landmarkswe require a multivariate
von Mises distribution on the torus (after doubling the angles). Mardia [17]
proposed the following family of bivariate von Mises densities:

const x exp{k1CosH1 + ko COSH2 + k3 COSH1 COSH
~+ k4 C0S01 SiNB2 + k5 SiN61 COSH2 + kg SiNB1 SN} .

The distribution could be generalized by mappiig— 61 — 1 andfy — 62 — v.
A particular density of interest is proportional to

exp{k1co0961 — u) + k2C0962 — v) — k3C09H1 — U — B2 + v)},

where —m < 01,60 < m,—m < u,v <m,k1 >0, ko > 0 and k1 > k3 > 0,

k2 > k3 > 0. The density has the advantage that the parameters here have no
redundancy for large concentration since the distribution tends to a full bivariate
normal distribution. For another member of this family, see [23]. A multivariate
extension of the distribution for variables, ..., 6, can be written down with
density proportional to

exp{Xas costs + X by Sinby + Xag, COSH; COSH;
(3.1)
+ Y by cOSYs SiNG; + X gy SiNG; SiNG, },

whereay, = by = ¢5s =0, by £ by, ands, t=1,...,4q.

For concentrated projective shape data of configuratiospaiints in general
position (x1, ..., x;) where(xy, ..., x,12) yields a projective frame ifR"™, one
may simply consider a multivariate directional representation,,+3), . . ., z(xz)),
wherez(x;) € S are defined by (2.3). If there is no ambiguity, we will denote the
vector(z(xm43), . .., z(xx)) as(xy, ..., xg). A projective shape is represented as a
point in a direct product of copies ofS”. We now consider models qi8™)4.

Didtributions in the tangent space. Form = 1, let y; be the mean direction
of ,,s =1,...,q. Then fory, =0, ay,, = b, =0, by =0 and largeuy, it can be
shown thatsinfy, ..., sing,) is N (0, X), whereX is the “asymptotic” covariance
which depends on the population parameters. If the apgie not zero, then we
have approximately

(3.2) (SinB1 — 1), ..., siN@B, — y,))" ~ N, ).

This approximation can be extended to spherical variablesfor 1. Let X =
(x1,...,x4) be an(m + 1) x g random matrix withx; € S™. Note that these’s

are not to be confused with the notation elsewhere in the paper. Suppoge that
is the mean directional vector ®f, s = 1, ..., ¢, and letu = (i1, ..., y) denote
the population mean directional matrix &f. Then define the spherical tangent
coordinates ok, by

(3.3) vs= —pusulxs,  s=1,....q.
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For the circular case witlasT = (Sindy, COsY;) andMsT = (sinys, COSys), we have
vy = Sin(Bs — ys)es, Whereeg is a unit tangent vector atg,s = 1,...,¢. Then
for concentrated data, it is plausible to extend (3.2) to the joint distribution of
v1,..., Vs, Which has a multivariate normal with zero mean vector and some
covariance matrix. Such tangent approximations are commonly used in shape
analysis (see, e.g., [5], Chapter 7) and found to be very effective in practice. We
now give a few results without any proof since their proofs are similar to those in
shape analysis.

LetX;,i =1,...,n, bearandom sample from the population with random ma-
trix X, whereX; = (x; 1, ..., x; 4). We estimate the population multivariate mean
directional matrix, by the sample mean directional matyix= (i1, ..., flg),

whereji;,i =1,...,q, are the standard spherical sample mean directions. Let
Vis=1[I— [:LS[:LZ]X,"S, s=1,...,q. Further, letv andS be, respectively, the sam-
ple mean and covariance matrix @f = (fzfl, o, f)fq)T,i =1,...,n. Then the

Mahalanobis distance squar@f = 77 S~¢ has rankM = mgq, whereS~ is the
Moore—Penrose generalized inverseSof

PrRopPOSITION3.1. For concentrated data the approximate distribution of
Hotelling's T2 statistic is given by
n—M
T?="—"—=D%~ Fynn,

and the asymptotic distribution of 72 is x2,, where M = mgq.

Tangent space inference. Using the above strategy, we now construct a two-
sample Hotelling'sT? test. LetXy;,i =1,...,n1, andXy;, j=1,...,n2, be two
independent samples, wheXe; andX»; are two(m + 1) x ¢ matrices where each
column lies inS™. Suppose that1 and o are the respective mean population
matrices. We wish to test the hypotheses

Ho:pyi=p2 VS. Hi:iug# upo.
Let 4 be the matrix of the combined (sample) mean directions given by
(A1, fig). Let
(34) Vi,s = Vi llsllsT]xli,s’ Wjs = Vi ﬁs‘ﬁZ]XZj,s'v

wherei =1,...,n1,j=1,...,n2,s =1,...,q, and Xy; = (x1;,1,...,X1i ),

X2j = (x2j.1, ..., x2j,4). Assuming that these two independent samples are from
the normal populations in this tangent space with the same covariance matrix, we
find that the Mahalanobis distance squared betweamdw is

D’=0—-w)TS™ (0 —w),
where v is the mg x 1 vector of the means o(fv{l,...,qu)T,i =1,...,n1.
The mean vectoiv is similarly defined for the second sample. Furttser,is the
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Moore—Penrose generalized inverseSof (n151 + n2S52)/(n1 + no — 2), where
S1 andS> are the sample covariance matrices. Note that the raskoiM .

PROPOSITION 3.2. For concentrated data the two-sample Hotelling's 72
dtatistic is given by
2 nino(n1+ny— M — l)D2

(3-5)  (mi+n)(n1+ny—20M°

and under Ho, T2 is approximately distributed as FM ny4n,—m—1. A general
distribution for nonconcentrated axial data could be taken as a multivariate
Bingham distribution.

4. An extrinsic mean. Here, we define an appropriate location parameter for
a probability distribution orP =X . Then for a random samplé(s, .. ., X,,) from a
given probability distribution?, we find a consistent estimator for the population
location and derive its asymptotic distribution. We assume that a distance
on P is specified. Through this distangeit is possible to define an index
of dispersion. Given a probability measu on P, following the general
treatment of Fréchet [9] (see also [15]), we defineyfar P XX , the function

(4.1) Foly) = E[pA(X, y)] = f p2(x, ) O(dx).
Pk

Assume there is a uniquee PE,’; such that in&epzf,; Fo() = Fo(y); such a
y is said to be thé&réchet population mean, y := .

REMARK 4.1. For any probability measur@ on R the mean is always
unique. In general, this is true for a probability measureP3f , but there are
some exceptions. For example, for the uniform distributionSér= sz with
chord distance defined by

p?(e?, ey =1~ cogb — ),

we haveFy (y) = 2r for any pointy on S%; thusy is not unique in this case.

LetYq, Y2, ...,Y, be independeﬂt and identically distributed random variables
with probability measur® and letQ,, be the empirical probability measure

~ 1

The Fréchet sample mean set is the setis = {§ € PEf, Fp () =inf Fg ()}

If iz has a unique element, this element is called the Fréchet sample mean and
is labelledY . Further, Ziezold [29] has established the strong consistency of the
Fréchet sample mean set on a compact metric space. Hence, from this result it
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follows that if u& exists, then any measurable choicdrom ¢ is a strongly
consistent estimator @f . If the mapping

j:pzk — EN
is an embedding into a Euclidean space and we use the chord digtance

p(p1, p2) =1j(p) — j(pDIl,  p1.p2€ P,

then the Fréchet mean is called therinsic mean and we denote it Qyg ;, or
write simply «g whenj is known. One of the main features required in selecting
an embedding is that the resulting mean is easily computable.

First, we consider the case @& 1 in our formulation, which has already been
studied in directional statistics (see [18, 21]). Note thatroe= 1 the extrinsic
mean of Q for a population of projective shapes corresponds to the standard
circular mean direction (see, e.g., [18], pages 29-30).

For m > 1, by Proposition 2.2 the spacEE;,’}Jr3 is identified with the
axial space RP™. We consider the embedding of RP™ into S(m + 1),
the space of symmetric matrices [16] given for the directional representation
[x] = {=£x, [lx]| =1} by

(4.3) j(xD) =xxT.

Here the Euclidean norm of a mattike S(m + 1) is given by||A||2 =trAAT , that
is, Aisan(m + 1) x (m + 1) symmetric matrix, and ifA = j ([x]) with ||x| =1,
then||A|| =1, A > 0and rankd = 1.

Let [X], |X|| = 1 be a random vector iR P™. Then from [2] it follows that
the extrinsic population mean exists if the largest eigenvalug(afx ) is simple
(i.e., has multiplicity one). In this caser = [y], wherey is an eigenvector of
E(XXT) corresponding to the largest eigenvalue, wjth| = 1. Moreover, if
(X1, (IX-l=21),r=1,...,n, is a random sample from a probability measure
Q onRP™ and the extrinsic meang of Q exists, then the extrinsic sample mean
[X] is a strongly consistent estimator of: (Q). Note that when it exist§ X1z
is given by

(4.4) [X1g =[m],

wherem is a unit eigenvector o% > 1 X,XI' corresponding to the largest
eigenvalue. It may be noted that, in this cd3€] is also the maximum likelihood
estimator (MLE) for the mean of a Bingham distribution ([16, 21]) and for
the mean of the Dimroth—Watson distribution, whose density functioi Jais
proportional to expk(u - x)?), wherek is a constant. For these or more general
parametric families, MLE asymptotics or bootstrap methods [7] are commonly
used.
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ExamMpPLE 4.1. We find that the extrinsic sample mean shape of the two
projective shapes given in Example 2.1 is given by

[z]g =[0.7062:—0.0095:07080.

Sincen = 2, we have[z]ly = [Z]lg = [(z1 + z2)/2]. Heyden ([13], page 34)
obtained the reconstructed point in our spherical coordinatgs#&¥70 :—0.0071 :
0.7077 by using a deterministic method. The two answers are very similar, though
derived from two different methods.

The main argument for using the embeddingin (4.3) is that, for this
embedding, the extrinsic mean is easily computable via statistical packages with
routines to carry out eigenanalysis. Another advantage is that the mappng
equivariant as shown in [16], and leads to the following multivariate extension to
projective shapes.

If we use the axial representation of projective shapesk feim + 3 org > 1,
we can define an embeddirigof (RP™)? into (S(m + 1))4 in terms of:

(4.5) Je(xals oo gD = Glxals - - oL Jlxg D,

wherex, e R™*1 x| =1,s =1,...,¢. Again, it can be shown that if the largest
eigenvalues of each of thematrix components of (j;(Q)) are simple, then the
extrinsic meanu j, (Q) exists and is given by

(4.6) p=pwj (@)= ([yrim+ D1, ..., [ys(m + 1)),

wherey;(m + 1) is a unit eigenvector corresponding to the largest eigenvalue of
the sth component ofE (. (Q)). If Y,.,r =1,...,n, is a random sample fror@,
then in the axial representation

(47) Yr=([Xr,1],---,[Xr,q])a ||Xr,s||=1:S=1,...,q,

whereX, s is an(m + 1) x 1 vector and, is (m + 1) x g matrix. Consider the
matrix of sums of squares and products of entrieXof given by

l n
(48) Jy = ;ZX}’,SXZ:Sv
r=1

which is a well-definedm + 1) x (m + 1) matrix. Letd;(a) and g;(a) be the
eigenvalues in increasing order and the corresponding unit eigenvectfy, of
a=1,...,m+ 1. Then the extrinsic sample mean in this case is

(4.9) Yo £ =([g1(m+ D], ..., [gg(m + D)]).

For ¢ = 1, Y, ¢ reduces to the mean given in (4.4), namejy(m + 1) = m.
Arrange the pairs of indicegs,a),s =1,...,9,a =1,...,m, in their lexico-
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graphic order, and define tid¢ x M symmetric matrixG by
G (s.0),(1,b)
4100  =n"Ydsm+D) —dy(@) (d(m+1) — dy(0) "

n
x > (2] @Xrs) (g B)Xrr)(8] m+DX,5)(g] m+DX,0).
r=1

It can be shown that is a strongly consistent estimator of the covariance matrix
of ji(Q) restricted to the tangent space Rf(RP™)?) at ji (1), with respect to
the orthobasis determined by the eigenvec{o(s),s =1,...,q,a=1,...,m.

Let Dy = (gs(D), ..., gs(m)),s=1,...,q,sothatD, is an(m + 1) x m matrix.
If w=(yl,...,lyyD), wherey,, s =1,...,q, are unit column vectors iRm+1
we define a Hotelling™? type-statistic,

(4.11)  T?(Y: Q) =n({ D1.....v] DG ({ D1,....yI D)T.

Note that(leDl, cen, quDq) is a row vector. A proof of Theorem 4.1 regarding
the asymptotic distribution df (Y; Q) is available in a technical report of Mardia
and Patrangenaru [19]; the report also examines Fréchet’s intrinsic mean.

THEOREM4.1. Assume (Y,),r =1,...,n, isarandom sample from a prob-
ability measure Q on (RP™)4 asaboveand for s =1,...,q, let A;(a) and y;(a)
be the eigenvalues in increasing order and corresponding unit eigenvectors of
E[X1,X{ ].1fAs(m+1) > 0,5 =1,....q, aresimple, then T2(Y; Q) in (4.11)
converges weakly to 2.

The following result follows the technique of bootstrapping the distribution of
extrinsic sample means on a manifold [3].

COROLLARY 4.1. Let (Y,),r =1,...,n, be a random sample from Q on
(RP™)?, and let Y, = ([X,1],...,[X, gD, XX, j=1j=1,....q. Assume
that Q has a nonzero absolutely continuous component. For a random resam-
ple (Y{,...,Y)) from (Y1, ..., Y,), denote the eigenval ues of % "1 X;'jJ;’jf in
increasing order by d;(a),a =1,...,m + 1, and the corresponding unit eigen-
vectors by gi(a),a =1,...,m + 1. Let G* be the matrix obtained from G, by
substituting all the entries with x-entries. Then the bootstrap distribution function

of the statistic
@12 T*2(Y*, Qn) =n(g] (m+ DD}, ..., g} (m+1)D})
. X G*_l(g{(m+l)DI,...,g;(m+l)D;)T

approximates the true distribution of 72(Y; Q), given by (4.11),with an error of
order 0,(n=?).
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Inimaging applications, we may be given a template (population) mean in terms
of k landmarks. The aim could then be to test for identification, that is, to assess
if a given sample of images of a scene is from this population. Such a test can
be based asymptotically on the test statistic given in (4.11). For small samples we
need to use the bootstrapped statistic (4.12).

We compare extrinsic means of projective shapes with respect to the embedding
Jji of PZ’,; = (RP™Y in (S(m + 1))4. Using our axial representation, we reduce
this problem to axial statistics. Since fbr= 1, 2, up € (RP™)4, we set in axial
representatiom, = (ip,1, - . ., b,q). Without loss of generality, we may assume
that for eachj the angle between; ; anduy ; is % or less, and we consider the
unique rotatiorp,, ; € SO(m + 1) such thatp,, ;(1, ;) = u2,; and the restriction
of p, j to the orthocomplement of the plane determinediby andyu ; in R+l
is the identity.

The equality u1 = up is equivalent top,, s = Iy+1,s = 1,...,q, wWhere
Int+1is an (m + 1) x (m 4+ 1) identity matrix. AssumeY,),r =1,...,n1,
(Y2,),t =1, ...,np, are random samples frof1, Q», respectively. A consistent
estimator of the Lie group valued parametgr = (om.s,s =1,...,q) ISty =
(rms,s=1,...,q9), where, foreach =1, ..., q, s € O + 1) is the unique
rotation defined as above. This rotation brings the extrinsic sample means (mean
directions) in coincidence, that is, superimposes; onto mp . Herem, s is
the unit eigenvector OﬁleXr,aerT,as, whereY, , = ([Xra,1l, ..., [XraqD,
r=1...,mg,a=1 2.

Case for m = 2. A patrticular case of practical interest is when= 2. We
write here, for this particular casg, for p> andr for ro. Here we will consider
only the subcasé = 5, for which we give an application in the next section. To
test the equalityr1 = w2 amounts to testing

p = idRPZ’

where idg p2 is the identity map ofRP? in the group of isometried (RP?)

of RP2. Any isometryp of RP? can be represented in a unique way by a rotation
T € SO(3) of the angled, with 0 <6 < =, p([x]) = [T X]. Note that a rotation

T of the angled = & acts as the identitydy p2. If p # idrp2 and T € SO(3)
representgp, there is an orthonormal basig, V», V3 of R3 such thatl' (V3) = Va.

We set

H(p)=[(V1-T(V1), (V1 x T(V1)))"],

for p # idgp2 and H(idgpz) = [1:0:0:0. The mapH :1(RP?) — RP3 is
a well-defined isomorphism froni (RP?) to the axial spacéRP3. Modulo
the diffeomorphismH, the equalityus = w2 amounts toH (p) = [1:0:0:0.
The distribution of the resulting consistent estimatb(r) of H(p) is essen-
tially given in [1], Theorem 2.1. Assume neithef nor no is small compared
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with n = n1 + no. Let G(p) be the affine coordinates dff (p); if H(p) =
[Ho(p) : Hi(p) : H2(p) : H3(p)], then G(p) = (Gi(p), G2(p), G3(p)), with
G,(p) = H,(p)/Ho(p),a = 1,2,3. Using equation (5.13) of [1], page 489, it
turns out thak'/2(r — p) has asymptotically a trivariate Gaussian distribution and
is independent ot. Then by the delta method of Cramér (see, e.g., [7], page 45), it
follows that, under the null hypothesis, if there are two constantsy, such that
ny/n — cp, for b =1, 2, thenn¥2{G(r) — G(p)} has asymptotically a trivariate
Gaussian distribution which is independenkofConsequently, if we consider the
resamples under the empirical distributio?2{G (r*) — G (r)} by a nonpivotal
bootstrap, then this distribution will have asymptotically the same distribution as
that ofnY/2{G(r) — G(p)}.

Concentrated data case. For each projective coordinate from concentrated
projective shape data, we may select only one representative on the sphere.
Therefore, we may use the directional representation on a produgtcopies
of §™.

In this case, ifQ is a concentrated distribution q§™)4, Iet Up = (ﬁ, e,

Hu H) be the mean multivariate direction ang, = (| l” qu”) be the

correspondlng sample mean corresponding to a random safpple. ., v,),
yj = (le-, e yj) € (§™)4. The asymptotic distribution of, can be described

in terms of an orthonormal frame field;, 1(y1) ..,el,m(y )soneg (), ...,

eq.m(y?)) defined around;LD, here y = (y1,...,y9) € (§™)? and for each
a=1...,q,e.;(y* e, GO =46i,i,j=1,. m,whereea,i(y“)eRm“.Let
G(y) be theM by M matrix made ofy by ¢ square matrices of size, G,;(y),

where

n -a T =b T
cur=e (e (Z5) ) o2 )
b =n"HUF 151D (2(6 ETIRILCAET 9

i,j=1,...,m

We studentize the tangential component of the difference between the sample and
population directional means and obtain the following result.

THEOREM 4.2. Let yp — up = Za 12, 1da, j€a, ,( ) + v be the
decomposition of the difference between the directional sample mean and
directional mean into its tangentlal and normal components. If d, = (d, j)T
j=1...,m, and d = (d1,...,d,)T, then T2(Y,Q,up) = n dTG(y) Ld
convergeﬁweaklyto xZ.

REMARK 4.2. For concentrated data, Proposition 3.1 and Theorem 4.2 show
that asymptotically the squared norm of the Studentized sample mean and of the
Studentized extrinsic sample mean vector both hawﬁ distribution, whereVf is
the dimension of the projective shape space.
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COROLLARY 4.2. Assume Y;,...,Y,; is a random resample with replace-
ment of a random sample (Y3, ..., Y,) from a probability measure Q on (§™)4
such that p exists and Q has a unique absolutely continuous component with
respect to the volume measure of (S™)4. Let Q,, bethe empirical distribution, and
let d*, G(y*) bethe correspondmg bootstrap analogs of 4 and G(y) obtained by
substituting Y7, ..., Y, for Y1,...,Y,, Y for u, and Y* for Y. Then the distribu-
tion function of T2(Y 0, up) can be approximated by the bootstrap distribution
of T2(Y*, Qn, Yp) = nd*T G(Y*)~1d* with a coverage error of order 0, (n~?).

COROLLARY 4.3. A(1—«)100%bootstrap confidenceregionfor wp isgiven
by the following:

(@) Ru(Y) = {p € (SMI|T?(Y, Q, u) < T}?}, where T2 is the (1 — «)100%
percentile of the bootstrap distribution 72(Y*, 01, YD).

() Su(M) ={u=(u1,...., 1tg) € SHUTFY, Q) <T}5, j =1 ... q),
where T]*g/q is the (1 — )100% percentile of the bootstrap distribution T2(Y*

O, Yé) corresponding to the jth directional component only.

While Corollary 4.3(a) is useful whem =1 or M = 2 (see Example 5.1),
for larger values ofM the computations are very intensive. To decrease the
computational complexity, one may use Corollary 4.3(b), which is based on a
Bonferroni type of argument and gives the confidence region as a Cartesian product
of confidence regions for the directional componentsugf. This is used in
Example 5.3 below.

5. Applications. To illustrate our methodology, we consider machine vision
applications involving data extracted from photographs. In the first two examples
we use architectural features of two buildings, which form the preliminary stage of
object recognition. In the third example we consider a problem in face recognition
where two different views are available. We have assumed here that the coordinates
of points are already recorded from a digital image; image processing software
often has built-in procedures to extract coordinates of landmarks. There are various
algorithms in practice to carry out this task (see, e.g., [12]). Our main aim is
to show how we can use the one-sample and the two-sample tests when the
underlying hypotheses are plausible. We show the type of computations required
and indicate how the approximations work. We also examine how the parametric
and the nonparametric tests perform. In Example 5.1 the problem is illustrated
form =1,k =4 sog = 1 and involves circular statistics. In Example m2= 2,

k =5, whereas in Example 5:8 = 2, k = 6, sog = 1 andg = 2, respectively, so

that Example 5.2 involves the univariate spherical statistics, whereas Example 5.3
involves bivariate spherical statistics. These ideas can be extended to problems in
machine vision such as in identification, classification and so on. Note that in these
illustrative examples the number of landma#kkand the sample size happened

to be small, but the methods are applicable to any valuésaofin.
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Education building: view 1

Fic. 5. Oneview of the Education Building (University of Leeds) with four collinear points on four
consecutive windows marked by white rings at the centre of the windows of the first floor.

EXAMPLE 5.1. Inthis example we selected randomly five photographic views
of a building (the Education Building) from a large database of buildings at the
University of Leeds. One view is shown in Figure 5. It can be seen that the windows
are equi-spaced. We selected four landmarks which are four central points of four
consecutive windows (see Figure 5). The observed values of these landmarks are
given in Table 1. Note thathere=1,k=4,g=1andn =5

We fix the projective framer = ([x1:1], [x2:1], [x3:1]) and determine the
cross-ratiac and projective coordinate @f* of p = [x4:1] given by (2.15). After
doubling the angles, for each view, we get a directioiThese values are shown
in Table 1, together with the coordinates.

If the landmarks are equidistant, their cross-ratio4s4/3 and the correspond-
ing direction isép = 1.287 rad. Therefore, testing the hypothesis for projective
equidistance is equivalent to the problem

Hp:0 =09 vs. Hi:0 #0o.
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TABLE 1
Horizontal coordinates of collinear points on the Education Building
at 5 different views

View x1 x2 x3 x4 c ¢ 0

1 2290 357 483 61.10 1340 0.641 1.282
2 23.10 291 355 4250 1.338 0.642 1.284
3 4140 443 473 5070 1353 0.636 1.273
4 39.00 47.0 539 60.00 1337 0.642 1.285
5 4225 469 505 5385 1373 0.629 1.259

A parametric approach. Under the assumption of the von Mises distribution,
as in [11], we consider the Watson—Williams [28] test statistic

FO = (n — 1)(R — (costo, sinfp)R)/(n — R),

whereR is the length of the resultant column vec®r=}_"_,(coss;, sing,)T.
Under Hp, for concentrated datA is approximately distributed ak ,—1. For
this dataF Y was found to be 2.826, which hasvalue 0.168. Hence, we fail to
reject the null hypothesis at the 5% significance level.

Indeed, hereR = R/n = 0.99994, so that data is highly concentrated. Hence,
we can assume the tangent approximation of Section 3 is valid. Under this
assumption the one sampldest yields thep-value 0.170. So again we fail to
reject Hyp at the 5% significance level.

A nonparametric approach. Assume now that the population distributighis
arbitrary and has a mean directigop = exp(ifp). We consider the hypotheses

Ho:0p=6g Vvs. Hi:0p # 6.

Since the sample size=5 is very small, we base our-value on Corollary 4.1.
Using 5000 resample valuesﬁ?(Y*, Qn Yp), we found thep-value to be 0.201.
Thus, we again fail to rejedtp at the 5% significance level. In conclusion, we fail
to reject the equidistance hypothesis at the 5% level using either test.

EXAMPLE 5.2. In this example we illustrate the two sample testsifee 2
andk =5 so thatg = 1. Again, we have used the Leeds University Buildings
database. In addition to the Education Building used in the previous example,
we now consider an additional building—the Careers Building. Two groups of
identically positioned noncollinear landmarlds, Ao, Az, A4, As were marked
on five frontal photographs of the Education Building and four of the Careers
Building, so thatn; = 4 andn, = 5. One of the buildings with the landmarks
is shown in Figure 6.
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Careers building: view 1

FIG. 6. Oneview of the Careers Buildings (University of Leeds) with five landmarks.

We obtain the spherical coordinates of the landmarks for the two samples
following the calculations similar to those in Example 2.1, and these are given in

Table 2. Assessing this part of architectural similarity between the two buildings is

equivalent to performing a two-sample test for means. It is clear from our images
that the architectural style of the windows based on these landmarks is very similar.

We will also show that the Hotelling 2 test based on projective invariants leads to

a contradictory result, which indicates that we should prefer the use of the spherical

projective coordinates.

A parametric test. For the Education Building and for the Careers Building,

we find using Table 2 that the mean resultant lengths are 0.9997 and 0.9979,
respectively. Hence, the data are highly concentrated in projective shape space.

TABLE 2

Spherical coordinates for the Education Building ( five views) and the Careers Building ( four views)

View Education Building View CareersBuilding

1 0.8142 0.5547 0.1718 1 0.7859 0.5768 0.2228
2 0.8038 0.5610 0.1977 2 0.8170 0.5712 0.0791
3 0.8067 0.5591 0.1917 3 0.7639 0.6041 0.2268
4 0.8150 0.5513 0.1787 4 0.7893 0.5766 0.2110
5 0.7773 0.5890 0.2211
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Thus, we use Hotelling’s'? test in the tangent space given by (3.5). The combined
mean direction and the mean resultant lengths are

(0.7980 0.5722 0.1892, 0.9988

respectively. We find the value & for Hotelling’s T2 test is 2.6075, which i8> 6.
In fact, Pr(F2,6 > 2.6075 =~ 0.225 so that we fail to reject the null hypothesis.

A nonparametrictest. We selected the projective frame= ([A1:1], [A2: 1],
[A3:1],[A4:1]) and determined the coordinates of the views in the sample, using
a spherical representation; these spherical coordinates are displayed in Table 2.
Here the extrinsic sample mean projective shapes of views from the Education
Building and Careers Building are given in the spherical representatidh py=
[0.8037:05632:01922 andY; ¢ = [0.7907 : 05834 :01855, respectively. Now
consider the problem of estimating the distribution of the &i@) defined in
Section 4. Since the smaller sample size is 4, and the eigenanalysis has to be
repeated for each resample, we limited ourselves to 250 pseudorandom resamples
and determined the corresponding nonpivotal bootstrap distributiet(:df). The
corresponding distribution of@(r*) is displayed in Figure 7, which indicates that
the sample mean af () is close to(0, 0, 0).

The rotation that brings_’l,E in coincidence With72,E is identified with a 4-D
axis (see Section 4), which turns out to be

H(r) =[0.9997:—0.0077:00029:00231,

where we have used the dot product and cross-produdt @f and Y» . We
determined the coordinates of the distribution 0&8*) — G(r)) and, for this

3G3(r)

-5
3G2(r%) 0

FiG. 7. Affine view of the bootstrapped distribution of size 250 of the nonpivotal vector (3G1(r*),
3G2(r*), 3G3(r*)) used in the comparison of the projective shapes of five landmarks on the
Education and Careers Buildings.



DIRECTIONS AND PROJECTIVE SHAPES 1693

distribution, we successively sorted and trimmed the distribution@fr3) =
{3G1(r*), 3G2(r*), 3G 3(r*)} and obtained the following 93% simultaneous boot-
strap confidence intervalg-4.36, 3.02] for 3G1(r*), [—3.59, 2.67] for 3G2(r*),
[—2.70, 3.40] for 3G3(r*). This analysis shows tha0, 0, 0) is in the 93% per-
centile confidence region, that is, the identity is in the corresponding 93% boot-
strap confidence region far, on SO(3). Therefore, we falil to rejegt, = uo at
significance leved = 0.07.

A test based on invariants. Using Table 2, the projective invariantsandy,
defined at (2.16), are given below for the two buildings, respectively:

Education Building: (4.739, 3.229), (4.068, 2.838), (4.208, 2.917), (4.561,
3.083), (3.516, 2.664),

Careers Building: (3.527, 2.588), (10.325, 7.219), (3.369, 2.664), (3.741, 2.733)

We find that the observed value &f for the Hotelling 7’2 test is 12.22 and
P(F24 > 1222) = 0.0077 Thus, we reject the hypothesis of similarity between
the two buildings. This conclusion is quite different than the one we get using
projective spherical shape coordinates. Indeed, this aspect of the architecture is so
similar that we should be accepting the hypothesis. The difference is explained by
the fact that the data is not normal, and the test based on invariants is sensitive to
departures from normality.

ExAamMPLE 5.3. We now apply the method to a face recognition problem.
Figure 8(a) shows the seven frontal vieig = 7) of the same person (an actor
posing in different disguises) and Figure 8(b) shows his seven side vigws7).

We recorded six landmarks (four corners of the eyes, “canthus,” and two end

points of the lips, “mouth edge points”). Using the four eye-corner landmarks as

the projective frame, the Cartesian landmarks were converted into the directional
representation (bivariate spherical), leading to the spherical projective coordinates
x1 andxz in the same way as in Example 2.1. This data is displayed in Table 3.

A parametric test. First, it can be seen that, for frontal views, the mean
resultant lengths of; andx; are 0.9995, 0.9955, respectively, whereas for the side
views, the mean resultant lengths are 0.9995, 0.9996, respectively. These values
imply that the data is highly concentrated. For the combined data, the respective
mean resultant lengths are 0.9995, 0.9996. Thus, we could use the tangent space
to test the hypothesis that the two means are equal (Section 3). We find that the
combined mean directions are given by

Al =(0.68890.67350.2681), Al = (0.7015 0.6874 0.1882.

We calculated the tangent coordinates using (3.4), which, from (3.5), leads to the
value of F = 0.8269; this has ar-distribution with degrees of freedom 4 and 5.
SincePr(F49 > 0.8269 = 0.5402, there is strong evidence that these frontal and
side views are of the same person.
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(a)

(b)

FIG. 8. Photographs of an actor posing in different disguises. (a) Frontal views. (b) Sde views.
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TABLE 3
Bivariate spherical coordinates x1 = (x1, y1, z1) and x = (x3, y3, z3) corresponding
to the 14 views (1-7frontal, 8—14side) of the actor

View x% y% z% x% y% z%
1 0.700780 0.657783 0.276096 0.708981 0.676761 0.198344
2 0.685337 0.675546 0.271939 0.697420 0.691293 0.188996
3 0.688405 0.650635 0.320581 0.709839 0.669692 0.218266
4 0.690658 0.673332 0.263846 0.706231 0.681266 0.192651
5 0.691832 0.668204 0.273626 0.700515 0.685421 0.198688
6 0.688246 0.667378 0.284470 0.703869 0.680057 0.205158
7 0.681884 0.685515 0.255155 0.692303 0.697768 0.183948
8 0.679369 0.669555 0.300255 0.694591 0.683580 0.224191
9 0.686636 0.687718 0.235742 0.698689 0.696648 0.162835
10 0.684002 0.685272 0.250087 0.694651 0.701190 0.160603
11 0.667353 0.699274 0.256235 0.679292 0.713641 0.171112
12 0.717523 0.665701 0.204944 0.726679 0.673698 0.134419
13 0.694639 0.669937 0.262035 0.705996 0.686475 0.174132
14 0.723910 0.649280 0.233215 0.735734 0.656621 0.165965

A nonparametric test. The 95% pivotal bootstrap confidence region in the
mean bivariate spherical direction based on Corollary 4.3(b), using 1500 random
resamples was found to 5 o,5 = 3.21 and 757 o,5 = 1.84 and the statistics

Tf(yD, y), TZZ(yD, y) obtained, using the seven side views, were 1.54 and 1.33,
respectively. It is seen that the bivariate mean projective shape corresponding to
the seven side views falls in the 95% pivotal bootstrap confidence region for the
mean projective shape from frontal views. Thus, both methodologies lead to the
same conclusion.

REMARK 5.1. We have used an edge registration method in developing
the projective coordinates which are points in a curved space. The underlying
projective shape space has the features of Kendall’s shape space, since it is a
symmetric space. For large samples, the choice of edge registration will have
no influence on the analysis. For a similar discussion on the Bookstein shape
coordinates, see [5], page 30.

6. A strategy for general shape analysis. We now give a unified strategy
underlying the three statistical shape spaces: similarity, affine and projective,
leading to general statistical shape analysis. Each of these spaces is a space of
orbits (orbifolds) of group actions on a finite set of points on a manifold. In general
shape analysis, the group actions of interest are the following:

1. Inthe case of similarity shape the group of direct similarities or, more generally,
the groupCO(m) x R™ of conformal linear maps aR™, and the manifold
isR™.
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2. Inthe case of affine shape, the grdsip(m, R) x R™ of affine transformations
of R™ and the manifold iR™.

3. In the case of projective shape, the grd®@L(m,R) of projective trans-
formations of RP™ and the manifold iSRP™, or the pseudo-group action
of PGL(m, R) onRR”, regarded as the subgeP™ \ RP"~1 of RP™.

Note that the groups are hierarchically ordered in these three types of shape.

Let k be a fixed positive integer, and Ief, be the set of all configurations &f
labelled points ilR™ (or in RP™). AssumeG is a group of transformations &"
(or of RP™) that acts on the left o8 , via

g((x1, oy xw) = (g(x1), ..., g(x1)), ge€G,x=(x1,...,x;) €eR™.

The orbit G(x) of such a configurationx = (x1,...,x;) € @,’; is defined by
G(x) =: {g(x)|g € G}. Thefull G-shape space, GZF, is the set of allG-orbits,
Gk = (G(x),x = (x1,...,x) € CX}. Note that the similarity planar shape
spaceE’z‘ (see [14]) is not a full shape space, since the orbit ef (0, ...,0) is
removed from the fullC 0 (2) x R2-shape space. If this singular orbit is removed,
the corresponding shape space has the structure of a manifold, namely, the complex
projective spac€ Pk—2 = xk .

The strategy used for similarity shape or affine shape can be extended to the
general context by taking the following sequence of steps for any group action
on CX whose orbits are closed:

1. Identify (:’51 with R¥" via (x1,...,xt) — (x%,...,xT,...,x,},...,x,T),
xXj = (le., ...,x;"),j =1,...,k, and consider the topology aa,’; inherited
from the Euclidean topology dg*”.

2. Consider the quotient topology on the orbit space, and letr : X — Gk
be the quotient map. A subset of GZ* is open ifx~1(U) is open incX.

Recall that a subsét is genericif it is open and dense in the quotient topology.
Note that if 7 : €% — Gk is the quotient map, the® is generic ifz ~1(V)

is a generic subset i®X. Consider a generic subsaét C GE,’;Z that has a
homogeneous structure (see [27]) or even a structure of symmetric space.

3. Whenever possible, find generic shape spaces that admit homogeneous struc-
tures. In such a situation find an equivariant embeddin® @ito a Euclidean
space which yields easily computable extrinsic sample means.

4. Derive the distributions for marginal distributions ®resulting from noise at
landmark locations, and if these distributions are intractable, approximate them
with simpler distributions.

5. Determine asymptotic distributions of Fréchet sample mean® @nd, in
particular, of extrinsic sample means. Then use associated statistics to design
large sample confidence regions for population extrinsic means. For small
samples derive corresponding bootstrap distributions for sample means and
confidence regions.
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In this paper we introduced the projective shape space of configurations of
points in general position following this strategy. In this case, given that the
projective transformations iR™ form only a pseudogroup, it was more convenient
to regardR™ as an open affine set ®@P™, and to consider points iR P™
and the groupG = PGL(m). We considered the generic sBtC G (RP™)* of
projective shapes of configurationsiopoints inRP™ with k > m + 2 in general
position, for which the firstz + 2 of these points form a projective frameRP™.

This generic sefy was calledPx=* and we showed thaP=! is a manifold
diffeomorphic with(R P™)4, thus having a structure of homogeneous space. We
embedded this manifold in a space of matrices, and computed extrinsic sample
means and their asymptotic distributions and derived bootstrap results to deal with
small sample sizes. In the case of linear projective shapes, we also approximated
distributions on the space of projective shapes, resulting from noise at landmark
locations, by distributions that are easier to handle, thus completing the general
program presented above. In the case of planar similarity shapé,=fa2, the

group of similarities acts freely on the space of configuratiﬁfgisln general, if

the restriction of the action of the group on G,’; to a generic subset of orbits

is free, the dimension of each orbit is equal to the manifold dimension of the Lie
groupG. In this case one may locally select a submanifol@ffthat is transverse

to all the orbits, that is, ditG 2,’;) =km —dimG. Table 4 gives the dimensions of
similarity, affine and projective shape spaces. Note that the number of degrees of
freedom of the chi-square distributions needed for confidence regions of Fréchet
means is equal to the dimension@E¥,.

REMARK 6.1. Although less studied in statistics, projective shape analysis is
the most relevant in image analysis, since the pinhole camera principle is based on
central projections. Affine shape analysis and similarity shape analysis are valid
in image analysis only when such central projections can be approximated with
parallel projections, or even orthogonal projections.

REMARK 6.2. Comparison of projective shapes is made easier due to
homogeneity of the projective shape space. Recall that a sfgaséhomogeneous
if there is a Lie groupG of transformations such that, for any points,

TABLE 4
The appropriate dimensions for different shape spaces with k pointsin a configuration

Shape type Similarity Affine Projective
Group CO(m) x R™ Aff (m, R) PGL(m, R)
Dimension M +1 m(m + 1) m(m + 2)
Dimension of mk — "“’”TH) -1 mk —m —1) mk —m —2)

shape space
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x2 € M, there is ag € G with g(x1) = x2. In this way we may define a map
from M x M to G [which is what we did in Example 5.2, wheté( = PZS

and G = 0(3)] and the comparison of two means is transferredanThis
method of comparison of projective shapes can be used to compare means of two
populations on an arbitrary Riemannian homogeneous manifold and, in particular,
on a Grassmanian manifold. Indeed, recently a need for population means on
Grassmannian manifolds has arisen from signal processing; see [26].
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