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OPTIMAL AND EFFICIENT CROSSOVER DESIGNS FOR
COMPARING TEST TREATMENTS WITH
A CONTROL TREATMENT

By A. S. HEDAYAT! AND MIN YANG?
University of lllinois at Chicago and University of Nebraska-Lincoln

This paper deals exclusively with crossover designs for the purpose of
comparingt test treatments with a control treatment when the number of
periods is no larger than+ 1. Among other results it specifies sufficient
conditions for a crossover design to be simultaneously A-optimal and
MV-optimal in a very large and appealing class of crossover designs. It is
expected that these optimal designs are highly efficient in the entire class
of crossover designs. Some computationally useful tools are given and used
to build assorted small optimal and efficient crossover designs. The model
robustness of these newly discovered crossover designs is discussed.

1. Introduction. Crossover designs, where experimental units are used in two
or more (p) periods for the purpose of evaluating and studying two or more (
treatments, have proven effective in a wide range of applications in agriculture,
sensory testing and especially in phase | and phase Il pharmaceutical clinical
trials. The rigorous study of these designs and their optimality and efficiency has
a history of at least 30 years. These optimality and efficiency results are almost all
for those situations where all treatment comparisons are equally important. Some
published works include Hedayat and Afsarinejad (1975, 1978), Cheng and Wu
(1980), Kunert (1983, 1984), Hedayat and Zhao (1990), Stufken (1991), Carriere
and Reinsel (1993), Matthews (1994), Kushner (1997, 1998), Kunert and Stufken
(2002) and Hedayat and Stufken (2003). Recently Hedayat and Yang (2003, 2004)
have obtained additional results for balanced uniform designs and the designs
suggested by Stufken (1991). We refer the readers to the excellent expository
review paper by Stufken (1996) for additional references.

In many pharmaceutical studies, experimenters are more interested in the
comparisons betweenexperimental test treatments and an established standard
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916 A. S. HEDAYAT AND M. YANG

or control treatment. In our study we shall designate the class of all such designs
based orr test treatments, a control treatment andxperimental units each
used inp periods by2;1, ,. Unfortunately, the published literature contains
very few useable results related to this very important problem. Perhaps the
associated mathematical difficulties could be a major reason for this lack of
useful published results. Majumdar (1988) considered A-optimal and MV-optimal
crossover designs for comparing several test treatments with a control treatment
and established that some known strongly balanced crossover designs can
be combinatorially modified to obtain optimal designs for this problem. But
Majumdar’s result is limited to the situation where= w?, p = m(w? + w) and

m > 2. The first nontrivial case will be =4 andp = 12. In crossover designs,

for a variety of reasons, usually it is undesirable to have large numbers of periods.
In many cases, the experimenter is interested in designs in which the number of
periods is less than or equal to the number of total treatments, thatis,+ 1.
When p = 2, Hedayat and Zhao (1990) studied this problem and obtained useful
results.

Throughout this article, unless otherwise specified, we always assume
3<p<=<t+1. The main purpose of this paper is to identify and construct
crossover designs which are simultaneously A-optimal and MV-optimal in some
desirable class of designs in termstdést treatments versus a control treatment.
Section 2 introduces the model and the notation. Section 3 contains four lemmas
which provide useful mathematical tools for research on optimal crossover designs
in general. The main result is presented in Section 4. Some assorted examples are
given in Section 5. Section 6 discusses further issues and indicates some important
open problems. The Appendix contains a series of propositions which are used in
Sections 4 and 5.

2. Model of response. Selection of an appropriate model of response for
the data gathered under a crossover desig®ip , , is rather difficult and
complicated. While several models have been introduced in the literature, the
model which has been maostly entertained by design theorists is the traditional
homoscedastic, additive and fixed effects model which, in the notation of Hedayat
and Afsarinejad (1975), can be written as

2.1) Yiku = 1+ g + Bu + Tak,u) + Pdk—1,u) + €ku>

k=1....,p;u=1,...,n,

whereY i, denotes the response from umin periodk to which treatmend/ (k, u)
was assigned. In this modglis the general meamy, is the effect due to periok,

Bu is the effect due to unik, 74 . is the direct effect oti(k, u), pak—1.u) 1S
the carryover or residual effect of treatmeltk — 1, #) on the response observed
on unity in periodk (by conventionp,o,.) = 0) and thee,’s are independently
normally distributed errors with mean 0 and variance Recently another model
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has been introduced into the literature by Afsarinejad and Hedayat (2002) and
some optimal designs have been identified. Kunert and Stufken (2002) used this
new model of Afsarinejad and Hedayat and obtained additional optimal designs
under this model.

Hereafter we shall designate thetest treatments by ,2,...,r and the
control treatment by 0. Throughout this paper, for each dedigwe adopt the
notationng;y, ndiu, laik, Maij, rdi,» Fai andrgo to denote the number of times that
treatment is assigned to uniiz, the number of times this happens in the first
p — 1 periods associated with, the number of times treatmenis assigned to
periodk, the number of times treatments immediately preceded by treatment
the total replication of treatmeitin then experimental units, the total replication
of treatment limited to the firstp — 1 periods in the design and the total replication
of control treatment O limited to periods 2 tq respectively.

In matrix notation we can write model (2.1) for the total observations as

(2.2) Yo=pl+Pa+UB+ Tytg+ Fapa + e,

whereY; = (Yq11, Yao1, ... Yapn)', @ = (a1, ..., p), B=(B1, ..., Bn) s Ta =

(0, ..., )y pa = (po,....,p)s e = (e1r,e21,....epn), P =1, ® I,, U =

L @1y, Ty =Ty, ..., T),) and Fy = (F),,..., F,,) . Here Ty, stands for
the p x (r + 1) period-treatment incidence matrix for umitunder design/ and
F4, = LTy, with the p x p matrix L defined as

( O1x(p—1) 0 )
Ip-1nx(p-1 Op-1)x1

The information matrixCy, for direct effectsty; = (1p,..., 7;)’, can now be
expressed as

Cy=Tjpr"([P|UIFq)Tu.
where pt-(X) = I — pr(X) and p(X) = X (X'X)~ X',

3. Preliminary lemmas. For comparing test treatments with a control, the
most frequently used optimality criterion is A-optimality. An A-optimal design
minimizes)_;_, Var,(; — o). Let M, be the information matrix for the contrast
vector (t1 — 10, ..., 7 — 79). Then an A-optimal design for this contrast vector
is a design which minimizes ﬂ’Md_l). Another optimality criterion, which is
associated with A-optimality, is MV-optimality. An MV-optimal design minimizes
Max;—1 .. Varg(f; — To). The following well-known lemma indicates that an

.....

A-optimal design is also an MV-optimal design.

LEMMA 1. An A-optimal design is also an MV-optimal design if its informa-
tion matrix, M, isa completely symmetric matrix.

Lemma 2 points out a well-known algebraic relation between the two informa-
tion matricesC,; and M.
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LEMMA 2. Theinformation matrix M, can be obtained from the information
matrix C,; by

3.1 My;=V'C,V,
where V isthe (r + 1) x ¢t matrix, defined as

(let )

Itxt '

Thus, M; can be simply obtained from C; by deleting the first row and the first
column of Cj.

From Lemma 2, we can explore the algebraic propertiesfgfvia C,;. But
unfortunately,C; for our problem is very complicated to deal with. It is known
that when all test treatments and the control treatment are uniform in periods, that
is, test treatments and the control treatment appear equally often in each period,
we can ignore the impact of the period effectsdp. This property is highly
desirable when all test treatments and the control treatment are equally important.
But when only the comparisons between test treatments and the control treatment
are considered, this property is no longer desirable. In the latter case it is expected
that the control treatment should have more replications than each test treatment.
Lemma 3 shows that we can still ignore the period effects even if the replication
of each test treatment and the control treatment are different. We state this result
without a proof.

LEMMA 3. For any crossover designd,
(3.2) Cq =T pr-(U)Ty — T;pr-(U)F4(F;pr-(U)Fs)” Fypr-(U)Ty,

with equality for a crossover design with I, =rgi/p,i =0, ..., t.

Notice that the uniformity in periods is just a special case of the stated condition.
To find an A-optimal design, one needs to find a design that minimiz(M;rlr).

One way to achieve this is first to find the miw,,,, , Tr(Md‘l) and then
characterize the design that achieves this minimum value. Although Lemma 2
can help in simplifying the calculation aof; 2, it is still difficult to find the

MiNge, 1,0, Tr(M; ). The main difficulty is that for a general designone can-
not write down the explicit expression of(Md‘l). Lemma 4 shows a method for

finding the explicit expression of the achievable lower bound fQMld‘rl) for a
very broad and general class of crossover designs.

LEMMA 4. For anydesignd inwhich 0 < 750 < n(p — 1), we have
r—1 1

T > —=+ =,

X0 Yo
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where
o t(np —rao— (1/p) X0 _1 34 _1nZ ) — (rao— (1/p) Y1 _1n?,)
0 ((t—1)
t 1 n
- {fp<2<mdii - = aniuﬁdiu)
i=1 p u=1
2
1/. -1 12
+ - (rdo _L rd0 — mqo0 + — Z ndOu”dOu)) }
! p P,

. -1
><{(t—l)[n(p—l)(pt—l—1)—(pt—f+P—2)fdo+Zﬁczzou” ;

u=1
1

1 2
Yo= — ”do——zndou
t pu:l

2
1 n
- {P[n(l? —1) —raol (mzoo -=> ndouﬁdou>

u=1

n 2
~ (A p—1 1
+ prao\ a0 — » rdo — mqoo + — Z N d0uM dOu
u=1

-1
: [np(p 170 — 729 —n(p — l)anoL,” .

u=1

Further, Tr(M;Y) = % + )io will hold when the following conditions are
satisfied:
() laik =rai/p,i=0,...,1,
(i) T)pr-(U)T,, T)prt(U)F; and F)prt(U)F,; are invariant under any
per mutation of test treatments,
(i) each test treatment appears at most once in each of » first p — 1 periods.

PROOF It can be shown that the eIements]TQprL(U)Td at positions(i, i)
and(i, j) (i # j) arerq; — %Zﬁzlnﬁiu and—% "y naiunaju, respectively; the
elementinT pri(U)F, at position(i, j) is mgij — % Y n—1Ndiulidju; the elements
in Fd pri(U)F, at positions(i, i) and (i, j) (i # j) arerg; — —Zu 172, and

-5 Zuzl Ngiuldju, respectively.
LetS1=1,,S>2,...,Sy bethesetofall x¢ permutation matrices on the set of
¢ test treatments, Wheﬂé =1!. DefineM,; = ¥ Z ~15'M4S;. By Lemma 2.2 of
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Majumdar and Notz (1983)y; is superior toM,; under the A-criterion. Define

< _ 1 let -
S,_(OtXl S, ), i=1...,N.

Then S; = 41, S2, ..., Sy will constitute the set of all(z + 1) x (+ + 1)
permutation matrices on the set of all treatments leaving the control treatment
unchanged. It can be easily verified taV'C,V S; = V'S;'C48; V.

By Lemma 2, we have

Z[e
M=

N
'Y / Q! R VA 744
(33) My;=— ZSVCdVS_NZVS, cds,v_v{
i=1 i=1 1
By (3.2) and Proposition 1 of Kunert and Martin (2000), we have

§/cd§,-}v.

N
ZE/Cdgi < Z (T pr-(U) Ty
i=1 i=1
— T} pr-(U) Fy(F) pr-(U) F4) ™~ F)pri(U)T,)S;

N
(3.4) Z (1) pr-(U)T,)S;

(i (T;pr-(U)Fy)S )(ﬁ‘ (Fjpr-(U)Fy)S >_

X <Z S (F} prL(U)Td)§,~).

i=1
The equality sign in (3.4) will hold when (iJsix = r4i/p, i =0,...,t, and
(i) T)pr-(U) T4, T)prt(U)F, and F, prt(U) F, are invariant under any permu-
tatlon of test treatments Then by utlllzmg the definition$f we observe that
S S Tt )T Si, X 8 (T pr-(U) Fa)S; and 3074 5 (Fy pr(U) x
F,;)S; have the form

am fmJlXt )
35 ( . m=123,
(3.5) cmdix1 (b —em)lixi +emJix:

respectively. It can be shown that i1, S;' (7 pr-(U) T, S;,
1 2
a1 =N|rqgo— —anou ,
P
N
b=~ (np —rgo— = Z an,u),

Mlll
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for YN | S/ (T pr-(U) Fy)S;,

1 -
az = N(’"dOO 5 > ndoundou>,

u=1

N 1 3
ba = " Z(ma’ii 5 > ndiundiu>,

i=1 u=1
az
Q=——,
t
N{. p—1 12
fo=—|rao— rdo —maoo+ = Y Ndoufidou |,
t p P,
ba+ fa.
e =— ;
r—1

and fory_L, i (F pr-(U) Fa) i,

a3z = (’”dO— - anou>,

u=1

(n<p D)o L zznm),

ultl

N p—-1
c3= f3= ( Fao+ — anou),

t

N |p-—
e3_t(t—l)! o anou

—1
(n(p —1) —Fa0) + Zzndm}

u 1i=1
Thus, it is easy to see that when the control treatment is kept in the same positions,
ZlNzl Si'(FL’l pri(U)F,)S; will be maximized under the Loewner ordering when
each test treatment appears at most once in eacliict p — 1 periods, that is,

5 S a c3J
(3-6) ZSZI(FL; prL(U)Fd)Sl < ( 3 - ~ 3J1xt ) >,
i=1

c3fix1 (bz—e3)lix +e3Jix;
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with b3 = MrE=DT0l0=D andgy = ;N (220 — L300 id,, — L2 (n %
(p— 1) —rq0)}- When O< Fyo < n(p — 1), it can be easny verified thaztg >0,
b3 > &3 andasbs + (r — 1)azés — t03 > 0. So the right-hand side of (3.6) is a
positive definite matrix and its inverse has the same matrix form as in (3.6) when
as, bs, cz andeg are replaced by, ba, c4 andeg. Here
_ b3+ (1 — )é3
a353 + (t — Dazesz — l‘cg’

a3153 + (t — 2)azez — (t — 1)C§

4= - ,
(b3 — &3)(aghg + (1 — 1)agés — tc5)
- —<3
~ agbs + (1 — agéz — 13’
2 ~
Cp — aze
eq= 3 3€3

(b3 — &3)(azhz + (t — Dagés —tcd)

The inverse matrix of the right-hand side of (3.6) can be expresséd-ag4J/,
where

D— <a4 —c4 O1x: >
Orx1 (ba—ea)lixi + (ea—ca)Jixi )

Notice thatcs > 0 due tocz < 0, and we have

N
(ZS‘/(T; pr%U)Fd)SZ)

i=1

N -/ N
(3.7) (Z (F,prt(U)Fy)S )(Z derL(U)Td)>

(Z (T)pr-(U)Fy)S ) (Z derL(U)Td)>

The equality sign in the above inequality will hold whig: = r40/p and each
test treatment appears at most once in eachfivét p — 1 periods. By (3.3), (3.4),
(3.7) and by direct calculations, we have

My <My < My,

and the equality signs hold when the three conditions in Lemma 4 are satisfied.
HereM; =xI + yJ, where

I b 2(b
_N[ 1—e1— (b2 —e2)"(ba — ea)]
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1
y= N[el — 5(ag — cq) — ea(by — ez — f2)(ba— eq) — f2(eq— ca)l.

Thus, to reach our conclusion, it is enough to show that the eigenvaluk of

arexo with multiplicity # — 1 andyo with multiplicity 1.

SinceM, = xI + yJ, its eigenvalues are with multiplicity # — 1 andx + ¢y
with multiplicity 1. It is easy to check thakby — eq = 1/(b3 — €3), bp — e2 =
(tba + f2)/(t — 1) andby — eq = (1%b1 — a1)/(t(t — 1)). By direct calculations,

we obtainx = xg.

Now it suffices to show that + ¢ty = yg. Notice thaths + fo + (r — 1)e2 =0

and by the definitions af4, ba, c4 andeq, we have
1
X+ty= N[bl +(t —1)er — tcg(a4 —ca) — tf22(64 —ca) — f22(b4 —eq)]

_ar 1ch(b3+ (1 — Déz+c3) + ff(az +tc3)
Nt N[a3l;3 + (t — 1azez — tc%] '
By direct calculations, we obtain

s ~ N2 . . <
azhz + (1 — Dagés — 1c3 = P [nl?(l? — Digo—F2y—n(p—1) Z nczzo”}
u=1

3 ) N )
b3+ (t —1Dez+c3= E[n(p —1) —7q0l,

NT,
az+tcz= a'O.
p

Thusx +ty=yo. O

4. Optimal crossover designs for test treatments versus a control treat-
ment. In this section we will construct a family of crossover designs and prove
their optimality for comparing test treatments versus a control treatment over a
large class of designsin ;41 ,,, for whichl,or =rq0/p, k=1, ..., p (i.e., the
control treatment appears equally oftenpirperiods) andng,;; =0for0<i <t
(i.e., no treatment is allowed to be preceded by itself)inThe class of such de-
signs is denoted by, 1, ,. Before presenting the main theorem, we need some
preliminary lemmas. To make our notation simple, we define the following four

expressions:
1K 5
A1=t(p—VDmp —ra0) — plriao— ; Z”dOu
u=1

B (nt(p = 1) — tFg0 = Yop_1 Ndouitdon)®
n(p—D(pt —t—1) — (pt —t +p — Digo+ Y1 _1 7%,
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10 n(p — Dy naouiiaon)?
Ap= P(i’do - 2”50u> - u Lu=1/1d0ud0n :
u=1

n

np(p — Va0 — Fao —n(p — 1) Xoii_q g,
- nt(p —1) —17q0 — 3_;—1 MdOuid0u
n(p—(pt —1—1) — (pt =1+ p — g0+ Xy _1 o,
B n(p —1) Y1 _1naoultdou
np(p — Diao — g —n(p — 1) Y1 fido,
The next lemma provides a simpler lower bound than that in Lemma 4 for any

designd in A;41,,, . This lower bound depends only on the property of the control
treatment in the desiga.

®>2

LEMMA 5. Foranyd € A1, With fixed r40, we have

tt—12%p t
(4.1) e A e N
X1 1

Here
1 n
x1=1t(p—1(np —rqo) — P(rdo ~ min Z ”?m)
u=1

B [n1(p = 1) — tFg0 — MIN Y1 _q ngouiidoul®
n(p—1(pt—t—1)— (pt —t+ p—2igo+minY"_; i3,

and

1 & n(p — H(MINYE_; ngouiiaon)?
)’1:P<’”d0_ _mlnznc%Ou) - D7 =2 u=l ; L,; ~2
p o np(p — Drao —Fgo—n(p — 1) X _1 7150,

The equality in (4.1) will hold when the following two conditions are satisfied
in addition to the three conditions in Lemma 4:

) ngiu,i=1,....,t,u=1,...,n,areether Oor 1,
(i) Xr_in2,, X" _1naouiiao, @nd Y14 i3, are minimized.

Here, the minimizations of 3" _; nZ,,, >-"_1 naoufiqo. and Y'_, ii3,, are over
all possible designsd € A;41,,, p With fixed rgo.

PROOF.  Since for any desigd € A;41,,,p, With r40 = 0 Ornp, the contrasts
between test treatments and the control treatment are not estimable, thus only
designs with O< 730 < n(p — 1) are considered here. When<0r;0 < np,
from Lemma 4, we know that TM;%) > =1 + io with xp and yp as
defined in Lemma 4. By Proposition A.2 (for this and all other propositions
see the Appendix), we notice the} !_; 3" _ ngiuiigiv > t(n(p — 1) — Fq0) >
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> ndoufiaon. We also know thaing; =0,i =0,...,7, andrg = (p=Drao

P
Thus
1
x ,
O=rr—1np*
1
yO: _AZa
ip

and equality holds wheny;,,i =1,...,t,u =1,...,n, are either 0 or 1. So we
have

1 _tt=D%p tp
4.2 TrM;hy>— 224 2
(4.2) (M;™) > ™ +A2
By Proposition A.2, we have

n

> naouiiaou < nt(p — 1) — tiqo.
u=1

For anyd € A;y1.,,, With fixed rqo, let &1, &, and &3 be independent variables
satisfying the following inequalities:

n
£ > rryn< > n50u>,
u=1

n
mdin( > ndouﬁdou) <& =<nt(p—1) —trqo,

u=1

n
3> min( > ﬁf;o”)
d u=1
By Proposition A.6, we know that mji} ) _ 1”dou) ming (3_, _1 naourido.) and
ming (37 _ ndo )are fixed forglvem p andro.
Define A1, Ay, ®1 and ®, to be the corresponding values of;, As, ®1
and ©,, respectively, after replacing’_, n2,,, >"_; naoufiao, and Y "_ 1”(210u
by &1, & and &3, respectively, inA;, Ay, ®1 and ©,. Note that} ) _ lndOu’
Yo 1ndound0u and ZuzlndOu are not independent of each other, and thus the

set >°7 1nd0u’ > 1 Md0uNdOu, Zﬁzlﬁflw} is just a subset of&1, &2, £3}. Thus
for anyd € A;41.,,, With fixed r40, we have

_ (t(t—1)2 ) <t(t—1)2 )
min - 4+ > min [ ——— + ~— .
ZZ:lnczjousZZ:]_ndOltﬁdOu,ZZ:]_ ;1(2101, Al AZ §1,62.83 Al AZ
Define
1t —1)2%p

H ) ) ) - =~ -~
(rao, 81,52, 83) = X, + Az
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To reach our conclusion, it is sufficient to show that for fixggl H (r,0, £1, &2, £3)
is an increasing function df, & andés.
By direct calculation and Proposition A.3, we have

amrdo,&,sz,ss):tp<1 <f—1>) >0,

0&1 Z_% B A?

Also we have

dH ) — 1?6
(4.3) (rao. 61, 62,83) _ 2tp(~—§ (t ; 1) S0,
982 A5 A2
The last inequality holds Wheﬁl— > 7_11 due to Proposition A.3 and (A.10)

in Proposition A.5. Further, by applylng Proposition A.4 and (A.9) in Proposi-
tion A.5, the inequality still holds Wheﬁf;— I;T_ll-
By direct calculations, we have
OH(ra0.61.52.89) _ (@ - 1>2@%>
083 PARz X2 )
And by the same argument, we hai,{éM > 0. Therefore for a givenyo,

re Al) L4 Z’ will achieve the minimum value wheR, & andé&z are minimized.
Thus, the conclu3|on is obtained]

(4.4)

Next we will introduce some definitions which are similar to the definitions in
Kunert and Stufken (2002). A desighe ©2;41,,, is called:

() a balanced test-control incomplete block design for the direct effects (with
units as blocks) if (a) each test treatment 1 < ¢ appears equally often in the
design; (b) each test treatment appears in each unit at most once; (c) the number
of units where any two test treatmeritand j both appear is the same for every
i#j,1<i=<t, 1<j <t (d)the control treatment appears in each unit either
[’Z—O] or [r;’l—‘)] + 1 times; and (e) the number of units where the control treatment
appearg~] times and test treatmentappears is the same for everyl <.

(i) a balanced test-control incomplete block design for the carryover effects
(with units as blocks) if the firsp — 1 periods of the design form a balanced test-
control block design for the direct effects 1, ,—1.

(i) a balanced for test-control carryover effects design if (a) every test treatment
1 <i <t isimmediately preceded by every other test treatmentjl< r equally
often for everyi # j; (b) the control treatment is immediately preceded by
every test treatment £ i < r equally often; (c) every test treatment<li <t
is immediately preceded by the control treatment equally often, and no treatment
including the control is immediately preceded by itself.

(iv) a proportional frequency design for test-control on the periods if every test
treatment 1< i <r appears in every period exacﬂ#% times, and the control

treatment appears in every period exaég%/times.
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A designd* € Q;11,,, is called a totally balanced test-control incomplete
crossover design if:

(i) d*is a balanced test-control incomplete block design for the direct effects,

(i) d* is a balanced test-control incomplete block design for the carryover
effects,

(iii) d4* is balanced for test-control carryover effects,

(iv) d*is a proportional frequency design for test-control on the periods,

(v) the number of units where test treatmgrdppears once in the firgt— 1
periods and test treatmehtappears once is the same for every paj j; the
number of units where the control treatment app¢afq times in the firstp — 1
periods and test treatmentappears once is the same for every test treatment
1 <i <t; the number of units where test treatméndppears once in the first
p — 1 periods and the control treatment appdaf%] times is the same for every
test treatment i <rt.

Examples of such designs will be given in Section 5. The following lemma
summarizes some useful properties of a totally balanced test-control incomplete
crossover design.

LEMMA 6. Ifd isatotally balanced test-control incomplete crossover design,
then:

() liik =rai/p,i=0,....1,
(i) M, is a completely symmetric matrix [since T prt(U) Ty, T, prt(U)Fy
and F pri(U) F, areinvariant under any permutation of test treatments],
(i) Yu_g n20, "1 naouiiao, and Y _; i3, areminimized over the designs
with fixed r40.

We are now ready to summarize our findings in the following theorem.

THEOREM 1. For p <t + 1, a design d* is simultaneously A-optimal
and MV-optimal in A1, , if d* is a totally balanced test-control incomplete
crossover design and rg+g minimize the right-hand side of (4.1).

PROOF By Lemma 6, the conditions for the equality sign in Lemma 5 hold.
From Proposition A.6, we notice that nm=1n§0u, min}_"_4 naoufido. and
miny_"_, ii%,, are functions of4o. Thus we have

t(t —1)? t /1t —1)2 t
Tr(Mh = =D *) L. —p* = mm(i( )P + £) <Tr(M; Y,
X1 1 Tdo X1 yi

where xj and y; are the corresponding; and y1 whend is d*. The last
inequality holds due to Lemma 5. Thus desitjnis A-optimal. And since‘i\@;1 is
a completely symmetric matrix by Lemma 6, the MV-optimality of desifjin
follows by Lemma 1. O
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5. Assorted mathematical tools useful for the construction of optimal
crossover designs. While Theorem 1 specifies a set of sufficient conditions for
a crossover design to be simultaneously A-optimal and MV-optimal, it will not
provide any mathematical tools for constructing these designs. The purpose of this
section is to alleviate this deficiency and present some mathematical tools which in
conjunction with some simple computer programs can help in constructing these
designs. In practice, and p are given and the job of the statistician is to find an
optimal design for a given desirabte If we want to rely on Theorem 1, then we
are left with two tasks: first, to apply (A.13)—(A.15) in Proposition A.6 into the
right-hand side of (4.1) and run a simple computer program to find,tlevhich
minimizes the right-hand side of (4.1), and second, to build a totally balanced
test-control incomplete crossover desigrwhere the replication of the control
treatment in this design ig«o.

Our experience shows that the family of totally balanced test-control incomplete
crossover designs based onp and n contains very useful designs for our
problems ifr;o = n. We have observed that these designs are either optimal or at
least highly efficient. Thus we shall concentrate our effort on this class of crossover
designs. Not to leave the impression that the optimal designs are exclusively in
this class of designs, we shall at the end of this section exhibit two optimal designs
based on Theorem 1 wittyg # n. But, we should point out that the construction
of optimal designs with,o # n is not easy and we need more mathematical tools
in this area.

LEMMA 7. For given ¢, p, n and rgo = n, a totally balanced test-control
incomplete crossover design exists only if both “2=D gnd 2=D—-2n 5
. pt pt(t—1)
integers.

PrROOF  Notice that the conditio'2-Y) is an integer impliest. is also an
integer. This condition is necessary due to the uniformity for the test treatments on
the periods. The condition thé&;}%ﬁ)n is an integer is also necessary since the
design is balanced for test treatments. In fact, if the control treatment appears in the
first or the last period, then any test treatment will be preceded by every other test
treatmentp — 2 times. And if the control treatment appears in any other periods,
then any test treatment will be preceded by every other test treapnelttimes.

So, totally we havep — 1)(p — 2)% times that one test treatment is preceded by

every other test treatment. Thé%;%fiz)z)” must be an integer.[J

As we shall see soon, for many cases the necessary conditions in Lemma 7
become sufficient for the existence of totally balanced test-control incomplete
crossover designs. Lemmas 8 and 9 deal with cases for whieh+ 1 andp =¢.
As for the case op < r, we shall provide a very useful tool that could help in
developing such crossover designs.
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LEMMA 8. For givent, p=t+ 1, n and ryo = n, a totally balanced test-
control incomplete crossover design exists if there is a balanced uniform design

in Qt+l,n,p-

PROOF Simply replace treatment+ 1 in the balanced uniform design by
the control treatment. Then it is easy to see that the modified design is a totally
balanced test-control incomplete crossover design with the stated paraméters.

Notice that a necessary condition for the existence of a balanced uniform design
iN Q41,041 iSn = A(¢ + 1) for some positive integex. According to Higham
(1998), the class2;+1.,.+1 contains a balanced uniform design when eithés
an even multiple of + 1 ort + 1 is a composite number, that is, it can be written
as a product of two positive integers each larger than 1.

LEMMA 9. For givent, p =t¢, n and rgo = n, a totally balanced test-control
incomplete crossover design exists if (i) ;’—2 is an integer and ¢ is a composite
number, or (i) t% isan even integer and ¢ is a prime number.

ProOOF We shall give an explicit way of constructing these designs. By the
two conditions in the lemmd; is a multiple ofr whent is a composite number
and is an even multiple of whent is a prime number. Thus we can always
construct a balanced uniform designs ;.. The totally balanced test-control
incomplete crossover design with the stated parameters can be constructed in the
following way: (i) Construct a balanced uniform design®,/; ;. (ii) Replace
treatment 1 by the control treatment O in the balanced uniform design. (iii) Repeat
step (ii) for the remaining test treatments to produce in totalew designs.

(iv) Juxtapose the new designs into a single design. The resulting design is the
desired design.

For the casep < ¢, our experience shows that the following steps lead
successfully to a totally balanced test-control incomplete crossover design.

STeEP 1. Construct a balanced incomplete block (BIB) design basedtest
treatments in blocks of size— 1. Letb be the number of blocks in this BIB design
and number the blocks from 1 toin an arbitrary fashion.

STeP 2. Constructp arrays each of sizep by b. Fill the kth array,
k=12,..., p, in the following way. Fill the entiré cells in thekth row of this
array by the control treatment. Note that each oftmlumns of the array now
hasp — 1 empty cells. Fill thes& columns arbitrarily with theé blocks of the
BIB design. In this way we have producedarrays each filled with the control
treatment or the blocks of the BIB design. Juxtapose theagays into a bigp
by pb array.
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Step3. Shuffle the positions of the test treatments in each column of the array
produced in Step 2, for the purpose of converting phigy pb array into a totally
balanced test-control incomplete crossover design.

Although the preceding three steps cannot guarantee that in all cases a
totally balanced test-control incomplete crossover design will be produced, our
experience indicates that they are a very useful mathematical tool in building
such designs when they exist. Indeed, we have succeeded in constructing all small
totally balanced test-control incomplete crossover designs or designs which are
very close to such crossover designs.

In the sequel we present some interesting examples based on the tools presented
here. But first, a brief overview. For givenand p <t + 1 we can choosa
so that the two integer conditions in Lemma 7 are satisfied. Then we can apply
(A.13)—(A.15) in Proposition A.6 into the right-hand side of (4.1) and run a simple
computer program to find the«g which minimizes the right-hand side of (4.1).

If rg«0 = n, we can utilize Lemmas 8 and 9 as the steps for the cases

and construct a totally balanced test-control incomplete crossover design which
is simultaneously A-optimal and MV-optimal by Theorem 1. In cage # n,

we can compare the corresponding minimum value of the right-hand side of (4.1)
with the value whem,o = n. If the two values are very close, we can use Lemmas

8 and 9 as the steps for< ¢ to build a highly efficient crossover design. Ideally,
we should investigate to see if it is possible to construct an optimal design when
rg=0 # n.

We shall now concentrate on finding small size optimal designs for these
practically desirable cases, namelygi}= 3, (ii) p = 4 and (iii) p = 5. In addition,
we exhibit two optimal crossover designs whery # n. The general method of
constructing optimal crossover designs whg  » is very difficult and remains
open.

5.1. Smultaneous A-optimal and MV-optimal crossover designs for three
periods. Whenr = 2, 3 or 4, them: must be a multiple of 3, 9 or 18, respectively.
For the minimum values of which satisfy the integer conditions in Lemma 7,
we found thatrg«o = n. Unfortunately, there are no totally balanced test-control
incomplete crossover designs for either 2 andn = 3 orr =4 andn = 18. Thus,
we searched for optimal designs for the next allowable value e triedn = 6
fort = 2 andn = 36 forr = 4. Fortunatelyr;+o = 6 and 36, respectively, for these
situations and both designs can be easily constructed:. £@, the minimunmn
which satisfies the two integer conditions in Lemma 7 is 9. And indeed for this
caserg+o = 9. Example 1 exhibits one such optimal design for these parameters.

ExaAMPLE 1. A-optimal and MV-optimal design fop = 3,r =3 andn =9:
000231231

123000123
231123000
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Whenr = 5, n must be a multiple of 30 and indead= 30 satisfies the integer
conditions in Lemma 7 ang«g = 30. Example 2 exhibits one such optimal design
for these parameters.

EXAMPLE 2. A-optimal and MV-optimal design fop = 3,7 =5 andn = 30:

000000000011453224351145322435
231124535400000000002311245354
114532243523112453540000000000

5.2. Smultaneous A-optimal and MV-optimal crossover designs for four
periods. We tried to construct these designs foe 3, 4, 5, 6, 7, 8 and 9. The
story is as follows. First, we note that the minimurfor these values afmust be a
multiple of 4, 16, 40, 40, 28, 224 and 48, respectively. So we tried the minimum
Fortunately, for all these caseso = n. We did not attempt to construct the design
for the case of = 8 andn = 224 due to the size of. For the remaining six cases
we succeeded in constructing optimal crossover designs in the form of Theorem 1.
Forr = 3 andn = 4, we can apply the technique in Lemma 8. Whesa 4
andn = 16, we can use the technigque of Lemma 9. And#fer 5 andn = 40,

t =6 andn =40, =7 andn = 28 andr = 9 andn = 48, we successfully used
the construction steps given after Lemma 9. We give samples of such designs in
Examples 3-6.

ExAMPLE 3. A-optimal and MV-optimal design fop = 4, = 5 andn = 40:

0000000000135242531413524253141234543215
1234543215000000000041352425315123454321
5123454321413524253100000000002345132154
2345132154352415314235241531420000000000

EXAMPLE 4. A-optimal and MV-optimal design fop = 4, t = 6 andn = 40:

0000000000145462353135321612644266512345
3532161264000000000042665123451454623531
1454623531426651234500000000003532161264
4266512345353216126414546235310000000000

EXAMPLE 5. A-optimal and MV-optimal design fgp =4, =7 andn = 28:

0000000345671212345674567123
1234567000000045671233456712
3456712456712300000001234567
4567123123456734567120000000
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ExAMPLE 6. A-optimal and MV-optimal design fop = 4, = 9 andn = 48:

000000000000693174258456825963147123147528369789
825963147123000000000000147528369789693174258456
693174258456147528369789000000000000825963147123
147528369789825963147123693174258456000000000000

5.3. Smultaneous A-optimal and MV-optimal crossover designs for five peri-
ods. We tried to build such designs for=4, 5, 6 and 7. For = 4, n must be a
multiple of 5 and the first: for which a totally balanced test-control incomplete
crossover design with;o = n exists isn = 10. For this value ofi, we found that
rqg+0 = n. The corresponding optimal design can be easily constructed using the
tools in Lemma 8. However, we like to point out that if we need a design with
biggern for this case, then;«g may not ben. In Example 10, we have exhibited
an optimal design witlh = 48 andr;«g = 60.

Whent = 5, n must be a multiple of 25. So far we have not been able to
construct a totally balanced test-control incomplete crossover desigmayithn
whenn = 25. However, we can construct such a design when50 by using the
tools in Lemma 8. Notice that when= 50, r;+o = 60 minimizes the right-hand
side of (4.1) and the corresponding minimum value.21Q79. Althoughr;o = 50
does not minimize the right-hand side of (4.1), its corresponding valu24209,
which is 995% efficient relative to the minimum value. So this design is highly
efficient or even optimal.

Whenr = 6, a totally balanced test-control incomplete crossover design will be
relatively very large since must be multiple of 75. We tried = 30 knowing that
we cannot use Theorem 1 to conclude optimality, but we hoped for a very efficient
design. Fom = 30, we foundrg«g = 30 and the corresponding minimum value
of the right-hand side of (4.1) is.86044. We used the construction steps after
Lemma 9 and found a highly efficient design. This design is given in Example 7.
For this designi, its Tr(Md‘l) = 0.55419, which is 98% efficient relative to the
minimum value. So this design is highly efficient or even optimal.

ExAamMPLE 7. Efficient design forp =5, + = 6 andrn = 30 with efficien-
cy = 99.3%:

000000612345234561345612561234
123456000000612345561234612345
612345234561000000234561234561
234561561234345612000000123456
561234345612456123612345000000

Whent = 7, n must be a multiple of 35. So far we have not succeeded
in constructing an optimal design in the form of a totally balanced test-control
incomplete crossover design withg = n = 35. However, we have been able to
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construct such a design far= 70. Forn = 70, we foundrs+g to be 70 and we
shall present one such design in Example 8. The design in Example 8 is split into
two partsd; andd» each based on = 35. While the union of the two designs

is optimal, each of them is a highly efficient design in the class of designs with
n = 35. Whem = 35, the minimum value of the right-hand side of (4.1).i81529

while Tr(M ") = 0.61904 and TeM,,") = 0.61927. Thust; is 9939% efficient
andds is 99.36% efficient.

ExAmMPLE 8. A-optimal and MV-optimal design fgp =5, =7 andn = 70:
d=d1Udo,

where

00000006712345234567171234566712345
23456710000000712345667123457123456
d1=67123457123456000000056712345671234
56712342345671567123400000002345671
71234565671234671234523456710000000

and

00000006712345567123471234566712345
56712340000000712345667123457123456
dp=67123457123456000000023456712345671
23456715671234234567100000005671234
71234562345671671234556712340000000

Before closing this section we shall present two totally balanced test-control
incomplete crossover designs for whielxq # n. Such designs are extremely
difficult to construct. Forp = 3, t = 7 andn = 49, we havery+g = 42 and for
p =>5,t =4 andn = 48, we have;+g = 60.

EXAMPLE 9. A-optimal and MV-optimal design fop = 3,7 = 7 andn = 49:

0000000000000012345674562B456712312345674567123
34567121234567000000000000123456734567123456712
45671234567123345671234542000000000000001234567

ExAamMPLE 10. A-optimal and MV-optimal design fop =5, r = 4 and
n=48:

000012341234123400001234123412341234000012341234
123400002413241312340000241324132413241300002413
241324130000314224132413000031423142314231420000
314231423142000031423142314200000000432143214321
432143214321432143214321432143214321000000000000



934 A. S. HEDAYAT AND M. YANG

6. Discussion and closing remarks. In this article we imposed two condi-
tions on the class of competing designs: (i) In each design the control treatment
should appear equally often in allperiods. (ii) In each design no treatment is al-
lowed to be immediately followed by itself in any experimental unit (kg;,= 0,

i =0,1,...,1). Although the optimality of the newly discovered designs is over
this restricted class, we are highly confident that these designs are very efficient
over the entire class of designs. Indeed, for someandn these designs could be
optimal over the entire class. To support this optimism, we can see from Lemma 3
that for any desigrl/ in which condition (i) is not satisfied, (3.2) may become a
strict inequality. It is possible that this condition is a necessary condition for the
optimal design in the entire class and therefore the restricted condition (i) could
be removed. As for condition (ii), if14;; > 0 for some 1<i <t, xg in Lemma 4

may not yield a significantly bigger value since the gain in the second part will be
reduced by the loss in the first part. Consequently, we think the restricted condition
my;; =0 for all 1L <i <r could indeed be a necessary condition for the optimal
design, or at least the gain with the condition removed is very little. Further, if
mgoo > 0, the numerator o®, becomesi(p — 1) naouiidon — pmaoo) and®»

could be zero or negative. Thus, the corresponding inequalities (4.3) and (4.4)
may not be greater than zero for a general degigind consequently TMd_l)

may not be minimized wheR ngou740, OF Zﬁgou is minimized for fixedr,g. In

this situation, we may have to consider the relationship an@néw, > ngoundou

and)” ﬁﬁw We may find optimal designs for some special parameters, but we feel
it will be very difficult to find optimal designs for the general paramegetst + 1.

It is natural to postulate that there could be better designs than those we have
identified in this paper. While we do not have any general evidence for that,
what so far we can say is this. The designs characterized in this paper are highly
efficient if not optimal. We have substantial numerical evidence in support of this.
Here is a typical example from the assorted examples that we have produced in
our ongoing research in this area. Consider the cas€/, p = 4 andn = 28.

We used a computer along with some algebraic methods and searched for the
possible lower bound of TMd‘l) under the subclass of designs in which the
control treatment appears equally oftenzrperiods. We found that there could

be a design with 'I(er_l) equal to 1.02252. While we are not sure if there is a
design with such a trace, let us assume that there is one. Clearly this hypothetical
design is better than the A-optimal desigihwith Tr(Md‘l) = 1.02327 which we
displayed in Example 5 within the subclass, , , of designs for these, p

andn. But note that/* in Example 5 is at least 99.9% efficient in the larger class
without the restrictionn;; =0,i =0, 1, ...,7. This is not an isolated case, and as

we mentioned, we have observed this phenomenon in many cases.

Another important issue worth discussing here is the status of the model
robustness of the optimal and efficient designs discovered in this article. We
used carryover Model (2.1) while searching for optimal and efficient designs.
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It is quite possible that upon data collection and analysis we may discover that
another model could be more appropriate than Model (2.1). Consequently, the
optimal design which was used under the postulated Model (2.1) might no longer
be optimal or even efficient under the model specified in light of the data. Thus
it is prudent to recommend a design to the experimenter which is optimal or at
least efficient under several different likely models. For crossover studies several
simple and lower models than Model (2.1) have been used in practice. We shall
explore here how our designs in this article perform under the model without
carryover effects (two-way elimination model), the model which contains only
direct treatment effects and subject effects (one-way elimination model) and the
model which contains only direct treatment effects (zero-elimination model). In
Table 1 we have listed 15 designs of which 10 have already been displayed in
Section 5 and the remaining 5 can be obtained by the procedures in this paper.
This table lists the efficiency of each design under the carryover Model (2.1) in
the subclassA;;1,,,, Of designs §.), as well as zero-waye(), one-way é1),

and two-way ¢») elimination models in the unrestricted class of designs. The
efficiencieseg, e1 ande, are based on the result of Hedayat, Jacroux and Majumdar
(1988). It is clear that for most of these designs, if the design is A-optimal
under the carryover model, then it is also A-optimal under one-way and two-way
elimination models, and highly efficient under the zero-way elimination model.
Even an efficient design under the carryover model remains highly efficient under
the other three models. Notice that while Design 13 is highly efficient under the
carryover model, it is not that efficient under other models. The reason is this:
For computational simplicity this design was constructed ungge 50 while

TABLE 1
Efficiencies under different models

Design  p ¢ n ro ec (%)  eg (%) e (%) ex (%)

1 3 2 6 6 100 950 100 100

2 3 3 9 9 100 100 100 100

3 3 4 36 36 100 100 100 100

4 3 5 30 30 100 984 9985 9985

5 3 7 49 42 100 998 9997 9997

6 4 3 4 4 100 oM 9875 9875

7 4 4 16 16 100 965 100 100

8 4 5 40 40 100 948 100 100

9 4 6 40 40 100 9496 100 100
10 4 7 28 28 100 982 100 100
11 4 9 48 48 100 100 100 100
12 5 4 48 60 100 9@3 9756 9756
13 5 5 50 50 9%0 9310 9687 9687
14 5 6 30 30 980 9523 9853 9853
15 5 7 70 70 100 968 9947 9947
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our computation showed thaj«q is 60. Therefore, it is very safe to conclude that
optimal and efficient crossover designs which are constructed in this article remain
optimal or highly efficient under lower case models which are discussed here. Our
research effort in this area is continuing.

APPENDIX

PROPOSITIONA.1. Foranyd € A;y14,p, We have
. n(p—1)
< — 7
rdo = 5

PROOFE Since the control treatment appears equally often in periods, we have
Fa0 = (p — Dlgo1. Also l;01 < n/2 since no treatment (either test treatment or
control) is followed by itself. Thus we obtain the conclusiofl

PROPOSITIONA.2. Foranyd € Ai11.4,p, Where p <t + 1, we have

n
Z NaouNdou < tln(p — 1) —raol.
u=1

PROOF.  For givenrgo, since) ), iigou = 40 and 0< 7igo, < % we have

n PTao
- , whenp > 4,
(A.1) Y it <1 2 p=
u=1 740, whenp = 3.

On the other hand, we have],_; ngouridon < Y ,,_1Mdou(lqon + 1). Notice that
3<p<t+ 1, then by applying (A.1) and Proposition A.1, we obtain the
conclusion. O

In the next three proposition$y, &, &3, A1, Az, ©1 and ®, have the same
definitions as those in the proof of Lemma 5. Notice that for&myA; 1, , and
givenrgo, we have

n
; 2
£1> rryn( > nd0u> > rqo,

u=1

n
nt(p—1) —trago> 62> nzlin( > ndouﬁdou) > 740,
u=1

n
. ~2 ~
£3> rryn< > nd0u> > F40.

u=1
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PROPOSITIONA.3. Foranyd € Aiy11,,p, Where3 < p <t + 1, wehave
(A.2) A1> (1 — DA,

PROOF Sincent(p — 1) — tigo > &2 > Fgo andé&sz > 740, SO we have
(nt(p = 1) — t7go — £2)°
n(p—L(pt —t =1 —(pt —t+p—2ig+&3
- (nt(p — 1) — (¢ + Diao)”
“n(p—-D(pt—t—-1) —(pt —t+ p—3rao

and
n(p-D-DE?  _ np—D—Diaw
np(p — Diqo— 5y —n(p — Dz~ n(p—1% 70

2
We also notice thatp(rgo — %51) < t(prao — r;fl—o). By direct calculation it is
sufficient to show
2

((prao—"22) —1(p = Dinp — rae) - L= =20

n(p — 12— o
(nt(p — 1) — (¢ + DFao)? -
n(p—D(pt—t—=1) —(pt —t+p—3)fao =~
The left-hand side of the preceding expression can be written as
rdo rdo (p— D —D(rao/n)
(=) (- 20 4 ~
< (p n )(” n )" (p— D2 Gao/n)
B (t(p = 1) = (t + D(Fao/n)* )
(p—=D(pt —1t—=1) — (pt —t+ p—3)(Fao/n) )
From the proof of Proposition A.1, we know tha¢ < r;’l—o + 1/2. Definex = Fao .

n

then™® < x +1/2. Simple algebra can show that (A.3) is equivalenfte) > 0
when 0< x < (p — 1)/2, where

(A.3)

4t — Dx
p—1
4t(p—1) — (t + Dx)?
(p—D(pt—t—1) —(pt—t+p—3)x

It can be shown thatp — )(pt —t —1) — (pt —t+ p —3)x >0when 0< x <
(p —1)/2, so itis equivalent to showing(x) > 0 when O< x < (p — 1)/2. Here

4t — Dx
p—1 ]
x[(p—D(pt —t—1) — (pt —t+ p—3x] — 4(t(p — 1) — (¢ + Dx)°.

f)=t2p—-1-2x)2p-3—-2x) +

g(x) = [z<2p —1-20)(2p-3-20)+



938 A. S. HEDAYAT AND M. YANG

It can be checked that(0) > 0 andg(”T_l) > 0. If we can show thag(x) is
a monotone function when & x < (p — 1)/2, then we have reached the
conclusion. By direct calculation, we have

gx)y=—-12t(pt —t+p— 3)x?
16(r — 1
+ [t2(24p2 —48p +8) +1(16p® — 72p + 40) + (71)]x
p—
2 3 2 3 2
—1°(12p° —36p°+23p+1) —t(4p° — 28p°+39p — 9) + 4.
Notice thatg’(x) is an increasing function whene (—oo, M), where
Y 1?(24p% — 48p + 8) + 1 (16p% — 72p +40) + 16(t — 1) /(p — 1)
o 24t (pt —t+p—23) '

It can be verified thal > (p — 1)/2. Sog’(x) is an increasing function when
x €[0, (p —1)/2]. Also we can verify that

-1
g’(pT) =r2(=3p3+ 92 —4p -2 +1(p°— p?—4p+6)—4.
Notice that—3p3 4+ 9p2 — 4p — 2 < 0 whenp > 3; thus
~1
¢(P5) =232+ 92— ap -2 1(p°— pP~4p+6)— 4

=1(-5p>+17p°—12p+2) — 4
<0.

So we have’(x) < 0 whenx € [0, (p — 1)/2]; thusg(x) is a monotone function
whenx € [0, (p —1)/2]. O

PROPOSITIONA.4. Foranyd € As+1,,p, With p <7+1,and 0 ¢ [0, ey,
we have

[N

A1 - t(p—1

(A.4) — > :
t—-DAx " t(p—1 -1

PrROOF Sincenr(p —1) —tFg0 > &, A1 will be minimized wherkq, & andés
are minimized, that is,

A1>t(p—D(np —ra0) — (p — Drao
B [nt(p — 1) = (t + DFaol?
n(p—LY(pt —t—1) —(pt —t+ p —3iqo0

Also we can see thah, will be maximized wherg;, & and & are minimized,
that is,

(A.5)

n(p — Drao

(A.6) A2 < (p—Drago— m
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It suffices to show that

1 ~ ~
(=D =DAr—1( = D(p~DA2] =0
Applying (A.5) and (A.6), and noticing thago = ﬁf 40, We can show that
1 ~ ~
e =D =DA1—1( = D(p ~ DA

sz—n—uPMp—n—pa+n%9

(A.7)
- (p—1)? ]
(p—D(pt =1t = 1) — (pt —t + p — 3)(Fao/n)

—wa—nw—n%ﬂ

Since 0< ”;;—0 < ;+—11 and the right-hand side of (A.7) is a decreasing function
of 740, we further have

1
LU0 1) —1)A1—1(t — D(p — 1Az
>[t(p—1—1]

(A.8) X [pt(p -D—-p(p-D

. *(p — 1)? }
(p—D(pt—t-D—(pt—t+p-3)(p—-1/t+1

—tpt—1 1
p( )(p — )t—l—l
When p > 4, by applying the condition thagt <t + 1, we can show thatpr —

=1 = 23 S 1D (1) — 1> D andp(p — 1 — 1) - 3 >

w, so by (A.8) we have

1 ~ ~
~[(t(p =D =DA1—1( = D(p — DA]

>[t(p—1 = 1lptt—D(p -1 —3t]—1p@t - 1

1 1
> ip(p n<w-(——;3)

> 0.
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Whenp = 3 and: > 3, notice that 1 -2 < 7. By (A.8) we have

t+1
1 - 9
;[(t(p -1 —1)A1—t(t —D(p—DA3]

212 1t —1)
>6(2t—1)(t—1)—(21—1)2t_t— i1

>2t—1D(4t—-6) -3t —1)
> 0.

When p = 3 ands = 2, due to (A.5) and (A.6), we havA; > 121 — 6rgo —

(4n_3'7d0)2 A _ _2nigo
g andAp < 2ry0 — 7% Thus we have

1 - -
;[(t(p -1 —1)A1—t(t —D(p—DAy]

36— 26rd_0 _ (4 — 3fj,o/n)2 87d~0/n
6 —4r40/n 4—rao/n
rdo (4 — 3740/n)?

> 36— 37——3 =
6 — 4r40/n

> 0.

The last inequality can be easily verified whegr Gd— < % O

PROPOSITIONA.5. Foranyd € Ai11.4,p, With p <t + 1, we have

pt—t—1~ ~
(A.9) 0<——F01<0,.
t(p—1)
Furthermore, when 70 > fT_l we have
(A.10) O > O1.

PROOF. It is easy to verify thai®; > 0. We only focus on the remaining
inequalities. By an argument similar to that in Proposition A.3, we have
nt(p—1) —trgo— &
n(p—D(pt —t—1) —(pt —t+p—2rao+ &3
- ni(p —1) — (1 + DFao
“n(p—=D(pt —t =1 —(pt —t+ p —rqo

and
"~ ez _ -1
np(p — Digo — 73y —n(p — DEg — n(p— D2 —7a0
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As for (A.9), it is sufficient to show that
p—1 (p—D(pt —t—1) —(pt —t+ p—3rao/n
(p — D2 —Fao/n t(p—1) — (t+ Drao/n
_tp=1-1
t(p—1
Direct calculations show that (A.11) is equivalent to

(A.11)

~ 2 ~
¢+ D0 =D - 1(" ) (- D241 =D —1(p - 1) <0

i 7 (P=DI(p=D (> +t-D)—1] : 2
which holds when G = < N T s Notice that(p — 1)(#“ + ¢ —

2 ..
1) —t>t3(p—1)—t, S0 (p_%gﬁff)ftl()lf’_gt__ﬁ)_’] > (I;jj)’. From Proposition A.1,
we know that'®® < 221 thus (A.9) holds.
For (A.10) it suffices to show that

p=1 t(p =1 — (t + Diao/n
(p—D2—Fao/n ~ (p—D(pt —1t =1) = (pt —t + p — )Fao/n’
Direct calculations show that (A.12) is equivalent to

(A.12)

~ 2 ~
(i + 1)(”’0) ~ (2 -+ (p-12 <0,

n
which holds Whenflj—0 € [‘z’T_ll,p — 1]. From Proposition A.1 we know that
fo < P-1 Thus (A.10) holds wheA® > lz%ll O

PROPOSITIONA.6. For anydesignd € As41,,,, and given rgo,

n 2
(A.13) mdin(uglngw) =rdo+(2rdo—n)[}fl—o} —n[”—o] ,

n

n
rr;jin( Z ndOufld0u>

u=1

~ - 5 22
- - T I T
I’do+(2rdo—n+ 2 )[io}—n[io] ;
(A.14) p-t/lml Ln .
. Whenrd—o<n—fdo+n[@],
~ ~ ~ s o2
27g0+ — L —n+<27d0—2n+ 0 )[rd_o}_n[rd_o] ;
p—1 p—1/Ln n
otherwise,
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and

n ~ ~ 2
. - - - rdo 7do
A.15 min 2 =rgo+ (2Fgo—n |:—] —n|:—i| .
( ) d (142::1 dOu) 40+ (2rao ) n n

" 1n30, ' _inaouiiaon and Y '_; 7%, can achieve their minimum values
when d is atotally balanced test-control incompl ete crossover design.

PROOF It is straightforward to show (A.13) and (A.15). Here we will
prove (A.14) only. First we notice that

n n
Z NdouNdou = Z ’71521014 + Z NdOu-
u=1 u=1 uel’
HereT is the set of units which receives the control treatment in the last period.
So there are g — i'y0 = % unitsinT.
Foranyngo,, u=1,...,n, > _1naouniqo, Will be minimized when we put the
% smallest values among allg, into I'. Next, we will show that for a givefyo,
Y n_1ndouiiaon Will be minimized whend is a balanced test-control incomplete
block design for the direct effects and carryover effects.
Suppose that there are somgy,’s, say ngo1 and ngo2, such thatngor —
igo2 = 2. Then we can replacg;o1 by 7);q; = figor — 1 andiigo2 by ii)p, =
ngo2 + 1 and keep the others unchanged. Direct calculations show that the value
of Zﬁzlﬁfmu is decreased by at least 2. Meanwh}e, .- 7140, IS increased by at
most 1. SO _4 naoufiqo. is decreased by at least 1. ThuS_; ngouriqao. Will be
minimized when is a balanced test-control incomplete block design for carryover
effects andr" is the set of units which has th&% smallest values among;o,.
Whend is a balanced test-control incomplete block design for the direct effects
and carryover effects, it satisfies this condition. By direct calculations, we obtain
the conclusion. O
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