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ON MULTIPLE PEAKS AND MODERATE DEVIATIONS
FOR THE SUPREMUM OF A GAUSSIAN FIELD

BY JIAN DING1, RONEN ELDAN AND ALEX ZHAI

University of Chicago, Microsoft Research and Stanford University

We prove two theorems concerning extreme values of general Gaussian
fields. Our first theorem concerns the phenomenon of multiple peaks. Con-
sider a centered Gaussian field whose sites have variance at most 1, and let
ρ be the standard deviation of its supremum. A theorem of Chatterjee states
that when such a Gaussian field is superconcentrated (i.e., ρ � 1), it typ-
ically attains values near its maximum on multiple almost-orthogonal sites
and is said to exhibit multiple peaks. We improve his theorem in two respects:
(i) the number of peaks attained by our bound is of the order exp(c/ρ2) (as
opposed to Chatterjee’s polynomial bound in 1/ρ) and (ii) our bound does
not assume that the correlations are nonnegative. We also prove a similar re-
sult based on superconcentration of the free energy. As primary applications,
we infer that for the S–K spin glass model on the n-hypercube and directed
polymers on Z2

n, there are polynomially (in n) many almost-orthogonal sites
that achieve values near their respective maxima.

Our second theorem gives an upper bound on moderate deviation for the
supremum of a general Gaussian field. While the Gaussian isoperimetric in-
equality implies a sub-Gaussian concentration bound for the supremum, we
show that the exponent in that bound can be improved under the assump-
tion that the expectation of the supremum is of the same order as that of the
independent case.

1. Introduction. A Gaussian field (or Gaussian process) is a collection X =
{Xα,α ∈ I } of random variables such that every finite subset of this collection is
distributed according to a multivariate normal law. The topic of this paper revolves
around the behavior of extremal and near-extremal values of Gaussian fields.

Extremal values of Gaussian fields have been intensively studied by a variety
of communities spanning probability, statistical physics and computer science.
A cornerstone of the theory is the Gaussian concentration inequality of Sudakov–
Cirel’son [18] and Borell [1], stating that for a (not necessarily centered) Gaussian
field {Xi : 1 ≤ i ≤ N} with σ 2 = sup1≤i≤N VarXi , we have

P
(∣∣∣ sup

1≤i≤N

Xi −E
(

sup
1≤i≤N

Xi

)∣∣∣ ≥ z
)

(1)
≤ 2√

2πσ

∫ ∞
z

e−y2/(2σ 2) dy for all z ≥ 0
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(see, e.g., [11], Theorem 7.1, equation (7.4)). An immediate consequence of (1) is
that Var(sup1≤i≤N Xi) ≤ σ 2. Despite being an extremely general and powerful in-
equality, it was observed by probabilists and statistical physicists that the bound (1)
is far from sharp in most canonical examples of Gaussian fields, such as the KPZ
universality class [10] and the class of log-correlated Gaussian fields (see, e.g.,
[12] and references therein). By being far from sharp, we mean, for example, that
Var(sup1≤i≤N Xi) � σ 2 or that equation (1) holds with a constant smaller than

1
2σ 2 in the exponent. The former property is sometimes referred to as supercon-
centration and the latter fits under the umbrella of large deviation estimates. In
this paper, we study the structure of Gaussian fields concerning the following two
questions related to (1):

(a) When (1) is not sharp, what extra information can be deduced about the Gaus-
sian field?

(b) Are there some simple and explicit conditions that guarantee an improvement
upon (1)?

The rigorous study of question (a) in its full generality was pioneered in [3],
where a connection between the so-called superconcentration, chaos and multi-
ple peaks (or multiple valleys) phenomena for centered Gaussian fields was es-
tablished. Multiple peaks is the following phenomenon observed by physicists in
many natural settings of Gaussian fields (motivated by the study of energy land-
scapes of spin glasses): typically there exist many almost-orthogonal sites whose
values are very close to the global maximum. This phenomenon was first rigor-
ously established in [3] under the assumption of the aforementioned supercon-
centration property and the assumption that the correlations of the field are non-
negative. The phenomenon of chaos refers to an instability of the location of the
maximizer with respect to small perturbations of the Gaussian field and was shown
to be equivalent to superconcentration in some sense.

Our first goal in this paper is to further explore the connection between super-
concentration and multiple peaks. We obtain a quantitative improvement of the
number of such peaks (thus attaining an optimal bound in a certain sense) and we
also remove the assumption that the correlations are nonnegative.

In order to state our result properly, we need a rigorous definition of the
multiple peaks property. We shall use the same definition as introduced in [3]:
consider a sequence of centered Gaussian fields XN = {XN,i : 1 ≤ i ≤ N}. De-
note by σ 2

N = sup1≤i≤N VarXN,i and write [N ] = {1, . . . ,N}. Write RN(i, j) =
Cov(XN,i,XN,j ) for all i, j ∈ [N ]. In addition, define M(XN) = sup1≤i≤N XN,i ,
m(XN) = EM(XN) and ρ2

N = Var(M(XN)).1

DEFINITION 1.1. A sequence of Gaussian fields XN exhibits multiple peaks
if there exist �N → ∞, εN = o(σ 2

N), δN = o(m(XN)) and γN → 0 such that with

1For convenience, we have introduced the variable ρ, which corresponds to
√

v in [3].
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probability at least 1 − γN , there is a set AN ⊆ [N ] of cardinality at least �N

satisfying

(M.1) |RN(i, j)| ≤ εN for all i 
= j ∈ AN .
(M.2) XN,i ≥ m(XN) − δN for all i ∈ AN .

Although the preceding definition applies to any sequence of Gaussian fields,
we usually consider those where min1≤i≤N VarXN,i is within a constant factor
of σ 2

N . We have the following theorem.

THEOREM 1.2. Fix any positive sequences δN ≤ m(XN), εN ≤ σ 2
N and

ζN ≤ 1. Then for all N ∈ N, with probability at least 1 − C1ρ
2
N

δ2
N

− ζN there ex-

ists AN ⊆ [N ] of cardinality at least exp(
C2ε

2
NδNζN

m(XN)σ 2
Nρ2

N

) such that (M.1) and (M.2)

hold. Here, C1,C2 are positive universal constants.

Quantitatively, [3], Theorem 3.7, guarantees existence of such a set AN with
cardinality at least ( δNεN

m(XN)ρ2
N

)1/3 as opposed to the exponential bound in Theo-

rem 1.2. In addition, our result does not require the nonnegative correlation as-
sumption, thereby solving Open Problem 5 in [3].

Another quantity that has received a significant amount of attention in the sta-
tistical physics community is the free energy of the field at an inverse-temperature
β > 0, defined as

FN,β = 1

β
log

(
N∑

i=1

eβXN,i

)
.(2)

Evidently, as β → ∞, this quantity approaches M(XN). In view of this, it may be
natural to look into the property that the quantity FN,β is concentrated around its
mean for finite values of β . This phenomenon is referred to as the superconcen-
tration of free energy of the process at inverse temperature β . In some cases, the
free-energy for certain values of β seems to be a more tractable quantity than
the supremum, and it may be easier to establish concentration bounds for the
free energy than for the supremum of the field, as witnessed in [4] regarding the
Sherrington–Kirkpatrick (or S–K) model for spin glasses (see definition below).
The result [4] in which Chatterjee deduced multiple-peaks from superconcentra-
tion of the free energy, can be seen as an adaptation of the result in [3]. In this
paper, we also give an adaptation of Theorem 1.2 to the free energy. We use the
notation ρ2

N(β) = Var(FN,β).

THEOREM 1.3. For each N ∈ N and β ≥ 0, suppose that ρ̃N (β) is an upper
bound on ρN(β). For any positive sequences δN ≤ m(XN), εN ≤ ρ2

N , ζN ≤ 1 and

βN ≥ C1 max
(

logN

δN

,
1

ρ̃N (βN)
,

δNε2
N

m(XN)(ρ̃N(βN))3σ 2
N

)
,(3)
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with probability at least 1 − C2σ
2
N

δ2
N

− ζN there exists AN ⊂ [N ] with cardinality at

least

exp
(

C3ε
2
NδNζN

m(XN)(ρ̃N(βN))2σ 2
N

)

such that (M.1) and (M.2) holds. Here, C1,C2,C3 are positive universal constants.

REMARK 1. We have stated the preceding theorem in terms of the upper
bound ρ̃N (β) rather than ρN(β) so that in order to verify the assumption (3) one
does not need an a priori lower bound on ρN(βN).

Let us now briefly discuss some applications of Theorems 1.2 and 1.3. Our
first application is for directed polymers. Let Z2

n denote the graph whose vertices
are {0,1, . . . , n}2 and where two vertices are connected by an edge if they dif-
fer by 1 in exactly one coordinate. Let Pn be the collection of all the N = (2n

n

)
monotone paths on Z2

n joining the left bottom corner (0,0) and the right top con-
ner (n,n). Associate i.i.d. standard Gaussian variables Ze to each edge e ∈ Z2

n.
The directed polymer is defined to be a Gaussian field {XN,P :P ∈ Pn} where
XN,P = ∑

e∈P Ze. For this model, [3], Theorem 8.1, provided an upper bound of
O(n/ logn) on ρ2

N . Combined with Theorem 1.2, it gives the following corollary.

COROLLARY 1.4. There exist absolute constants C1,C2 > 0 such that the
following statement holds for directed polymers [recall that N = (2n

n

)
]. For any 0 <

δN ≤ n, 0 < εN ≤ n, 0 < ζN < 1, with probability at least 1 − C1n

δ2
N logn

− ζN there

exists AN ⊆ [N ] of cardinality at least nC2ε
2
NδNζN/n3

satisfying (M.1) and (M.2).

We next discuss an application for the S–K model. For a hypercube Hn =
{−1,1}n (write N = |Hn| = 2n), the S–K model introduced in [17] can be
viewed for our purposes as a Gaussian field {XN,s : s ∈ Hn} with XN,s =

1√
2n

∑
i,j∈[n] sisjZi,j where Zi,j ’s are i.i.d. standard Gaussian variables. It is easy

to see that the variance for each individual XN,s is precisely n/2 and the expected
supremum is of order n. The asymptotics of the supremum as well as the free en-
ergy, however, had been a major challenge until it was established in a celebrated
paper of Talagrand [20] which verifies the well-known prediction of the Parisi
formula [16]. As for concentration, [4], Theorem 1.5, established an upper bound
of O(βn/ logn) on ρ2

N(β). Combining the variance bound and Theorem 1.3, we
obtain the following [where we set βN to be of order n/δN and (ρ̃(βN))2 to be of
order nβN/ logn].

COROLLARY 1.5. There exist absolute constants C1,C2 > 0 such that the
following statement holds for the S–K model (recall N = 2n). For any positive 0 <
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δN ≤ n, 0 < εN ≤ n, 0 < ζN < 1, with probability at least 1 − C1n

δ2
N logn

− ζN there

exists AN ⊆ [N ] of cardinality at least nC2ε
2
Nδ2

NζN/n4
satisfying (M.1) and (M.2).

In particular, for both models we obtain that for fixed δ, ε, ζ > 0 with probability
at least 1−ζ there exist ncδ,ε,ζ (for a constant cδ,ε,ζ > 0 depending only on δ, ε and
ζ ) sites such that the Gaussian values on these sites are within additive δn of the
expected supremum and the pairwise covariances are at most εn. This improves
the corresponding polynomial in logn sites obtained in [3, 4]. While polynomially
many large and almost-orthogonal sites may still be far from satisfactory from
the point of view of statistical physics, we remark that a stretched exponentially
many large and almost-orthogonal sites can be deduced from our results provided
a verification of the prediction that the variances for the supremums (or the free
energy at low temperatures) in both directed polymers and the S–K model are
polynomial in n with powers strictly less than 1 [2, 10, 15].

We conclude the discussion on multiple peaks by remarking that our results are
optimal in the sense that one can construct Gaussian fields consisting of N centered
variables of variance 1 whose supremum has variance of order σ 2

N , such that the
typical number almost-orthogonal sites whose value is close to the supremum is
of the same order as the bound in Theorem 1.2 up to the constant appearing in the
exponent. Indeed, for a fixed value of N and of ρ > 0, define

K = ⌊
e1/ρ2⌋

.

Now, let XN be a the Gaussian process constructed by taking K independent stan-
dard Gaussian variables, and duplicating N/K identical copies of each of them
to obtain N variables. It is easy to check that this construction satisfies ρN ∼ ρ.
Moreover, it is easily verified that for any εN ≤ 1/2, and δN ≤ m(XN), the set of
almost-orthogonal peaks [i.e., the cardinality of AN satisfying (M.1) and (M.2)]
will be of order at most e(cδN )/(m(XN)ρ2) with probability at least 1/2 (for some
absolute constant c > 0), which shows that the dependence on ρN and δN is tight
in the sense described above. We remark, however, that there exist Gaussian fields
which have significantly more almost extremal and almost-orthogonal sites than
what is proved in Theorem 1.2. For instance, it was shown in [5] that any sequence
of extremal Gaussian fields exhibit multiple peaks with exponentially many peaks
(see [5], Theorem 1.6, for details).

Next, we turn to discuss question (b). There are a number of directions for possi-
ble improvement upon (1). For instance, it was recently proved in [6, 8, 13, 14] that
the unique minimizer that achieves equality in the isoperimetric inequality [from
which (1) is deduced] is the half space and any set that genuinely differs from a
half space (in some geometric sense) has a strictly larger Gaussian surface area,
and consequently will satisfy a stronger version of (1). In this paper, we approach
question (b) from a related but slightly different perspective, elaborated below.
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One important direction of research concerned with Gaussian processes is find-
ing sharp estimates for the expectation of the supremum. Using the generic chain-
ing technique and building upon the entropy bound in [7], a celebrated result
(known as the majorizing measure theorem) was developed by Fernique and Ta-
lagrand in [9, 19], which provides an estimate of the expected supremum up to
a universal multiplicative constant factor. One of the two major ingredients em-
ployed in the proof of the majorizing measure theorem is (1). In view of this, it
seems plausible that improving (1) based on information on the expected supre-
mum may shed light toward sharpening the lost constant factor in the majorizing
measure theorem, and in particular could hopefully help in determining whether a
sequence of Gaussian fields is extremal in the sense that its expected supremum is
nearly as large as possible with respect to N .

In this paper, we prove that the exponent in the moderate deviation bound in (1)
can be improved under the assumption that the expected supremum is of the same
order as that of the independent case, namely of order

√
logN . While this may

seem like a rather strong assumption, we would like to draw the reader’s attention
to the fact that it is actually satisfied by many important examples of Gaussian
processes (including the directed polymer and the S–K model discussed above).
The theorem reads the following.

THEOREM 1.6. Let {Xi}Ni=1 be a centered Gaussian process with Var[Xi] ≤ 1
for all 1 ≤ i ≤ N and suppose that E sup1≤i≤N Xi ≥ α

√
logN for a fixed α > 0.

Then there exists an absolute constant C > 0 and a constant c(α) > 0 depending
only on α such that for all 0 < β ≤ α/100 and all N ∈N one has

P
(∣∣∣ sup

1≤i≤N

Xi −E sup
1≤i≤N

Xi

∣∣∣ ≥ β
√

logN
)

≤ CN−β2/(2−c(α)).

We remark that our current method does not provide a sharp c(α), and thus we
did not attempt to optimize its value. The main point of Theorem 1.6 is to suggest
a new direction of research by demonstrating the possibility to improve (1) under
the assumption of large expected supremum. We believe that it is of significant
interest to obtain a sharp estimate on c(α), thus we suggest the following question.

QUESTION 1.7. Under the assumptions of Theorem 1.6, is it true that for all
β with E sup1≤i≤N Xi + β

√
logN ≤ √

2 logN , we have

P
(

sup
1≤i≤N

Xi ≥ E sup
1≤i≤N

Xi + β
√

logN
)

≤ N−(β2+oN(1))/(2−α2)?

Note that the exponent in Question 1.7 is achieved by the Gaussian field Xi =
Z + Zi where Z and Zi’s are independent Gaussian variables such that VarZ =
1 −α2/2 and VarZi = α2/2 for all 1 ≤ i ≤ N . In spirit, Theorem 1.6 suggests that
large expected supremum implies a good concentration property for the supremum.
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It turns out that the converse also holds in some sense. That is, a good concentration
for the supremum implies that the expected supremum has to be large.

THEOREM 1.8. There exists an absolute constant c > 0 such that for any cen-
tered Gaussian field {Xi : 1 ≤ i ≤ N} with VarXi = 1 for all 1 ≤ i ≤ N , we have(

Var
[

sup
1≤i≤N

Xi

])1/2(
1 +E

[
sup

1≤i≤N

Xi

])
≥ c.

In general, the expected supremum can be bounded from above by (c.f., [3],
Lemma 2.1)

E sup
1≤i≤N

Xi ≤
√

2 logN · sup
1≤i≤N

√
VarXi.(4)

Combined with Theorem 1.8, it yields the following corollary.

COROLLARY 1.9. Under the assumption of Theorem 1.8, we have that for an
absolute c > 0

Var
[

sup
1≤i≤N

Xi

]
≥ c

logN
.

The structure of the rest of this paper is as follows: in Section 2, we establish
some preliminary lemmas and prove Theorem 1.8. In Section 3, we prove Theo-
rem 1.2 and Theorem 1.3. Finally, in Section 4, we prove Theorem 1.6.

2. Level sets of Gaussian fields. In this section, we prove several lemmas
related to level sets of Gaussian fields, which we will use in later sections. We also
derive Theorem 1.8 along the way.

Let us now establish some notation that will be used throughout this section and
the next. Consider a Gaussian field X = {Xi : i ∈ S}. By rescaling, we can assume
without loss of generality that VarXi ≤ 1 for all i ∈ S. To lighten notation, this
normalization will be assumed in the rest of the paper.

Recall that we defined M(X) = supi∈S Xi , m(X) = EM(X), and ρ(X) =√
VarM(X). For any real number t , we also define the (random) superlevel set

Ut(X) = {
i ∈ S :Xi ≥ tm(X)

}
.

Since the Gaussian field under consideration is often denoted by X, for brevity
we will simply write m, ρ, and Ut . We extend this shorthand also to Gaussian
fields like X′ = {X′

i : i ∈ S}, so that U ′
t = Ut(X′), U ′′

t = Ut(X′′), etc.
For a set V ⊂ S, define XV = {Xi : i ∈ V }, so that XV is the process X re-

stricted to V . Extending our notation for the supremum of X, we write M(XV ) =
supi∈V Xi , with M(XV ) = 0 if V = ∅. The results of this section are inspired by
the following theorem of Chatterjee, Dembo and Ding [5].
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THEOREM 2.1 ([5], Theorem 1.1). For any α ∈ (0,1), let X be a centered
Gaussian process, and let X′ be an independent copy of X. Then

E(M(X′
Uα

))

m
→

√
1 − α2

in probability as m → ∞.

Theorem 2.1 is not directly applicable for our purposes, because it lacks quan-
titative bounds. However, the results we now prove can be seen as quantitative
variants of Theorem 2.1 and use some of the same ideas.

LEMMA 2.2. Let X be a centered Gaussian process with VarXi ≤ 1. For any
real number t ∈ (0,1), define Ut = {i|Xi ≥ tm}. Then for any λ > 0,

P
(
M

(
X′

Ut

) ≥
√

1 − t2 · m + λ√
1 − t2

)
≤ ρ2

λ2 ,

where M(X′
Ut

) = supi∈Ut
X′

i and X′ is an independent copy of X.

PROOF. Let X′′ = tX + √
1 − t2X′, so that X′′ is equal in distribution to X.

Then

M
(
X′′) ≥ sup

i∈Ut

X′′
i ≥ t2m +

√
1 − t2M

(
X′

Ut

)
,

M
(
X′

Ut

) ≤ M(X′′) − t2m√
1 − t2

.

By Chebyshev’s inequality,

P
(
M

(
X′′) ≥ m + λ

) ≤ ρ2

λ2 ,

which gives the desired inequality. �

We can now give a proof of Theorem 1.8 using Lemma 2.2.

PROOF OF THEOREM 1.8. In the present notation, our goal is to prove that if
X = {Xi, i ∈ S} is any centered Gaussian process with VarXi = 1, then we have
ρ · (1 + m) ≥ c for some universal constant c > 0.

Let us first consider the relatively uninteresting case when m ≤ 1
2 . We have

P
(
M(X) ≥ 1

) ≥ P(X1 ≥ 1) ≥ 1
9 ,

and so

ρ2 ≥ P
(
M(X) ≥ 1

) · (1 − m)2 ≥ 1
36 ,

which yields the desired bound with c = 1
6 .
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We now assume that m > 1
2 . Let t =

√
1 − 1

4m2 . Note that

√
1 − t2 · m + (2m)−1

√
1 − t2

= 1,

so by Lemma 2.2,

P
(
M

(
X′

Ut

) ≥ 1
) ≤ 4m2ρ2,(5)

where X′ is an independent copy of X.
On the other hand, note that t ≤ 1 − 1

8m2 . Thus,

P(Ut 
=∅) = P
(
M(X) ≥ tm

) ≥ P
(
M(X) ≥ m − 1

8m

)
≥ 1 − 64m2ρ2,

where the last step uses Chebyshev’s inequality. Note that when Ut is nonempty,
M(X′

Ut
) stochastically dominates a standard Gaussian. Consequently,

P
(
M

(
X′

Ut

) ≥ 1|Ut 
= ∅
) ≥ 1

8 ,

and so

P
(
M

(
X′

Ut

) ≥ 1
) = P

(
M

(
X′

Ut

) ≥ 1|Ut 
= ∅
) · P(Ut 
= ∅) ≥ 1

8

(
1 − 64m2ρ2)

.(6)

Combining equations (5) and (6), we obtain

4m2ρ2 ≥ 1
8

(
1 − 64m2ρ2)

,

from which it follows that mρ ≥ 1√
96

, as desired. �

The next two lemmas will be used to prove the existence of multiple peaks.

LEMMA 2.3. Let X be a centered Gaussian process with VarXi ≤ 1. Consider
any t ∈ (1/2,1). We may write

X = tX′ +
√

1 − t2X′′,

where X′ and X′′ are independent copies of X. Then, there exist universal constants
c,C > 0 such that for any λ ∈ (1 − t, t),

P
(
U1−cλ �U ′

t−λ

) ≤ Cρ2

m2λ2 .

PROOF. Define X′′′ = −√
1 − t2X′ + tX′′, so that X′′′ and X are independent,

and X′′′ has the same law as X. Then, by a simple algebraic manipulation, we may
write

X′ = tX + (
1 − t2)

X′ − t

√
1 − t2X′′ = tX −

√
1 − t2X′′′.(7)



MULTIPLE PEAKS AND MODERATE DEVIATIONS FOR GAUSSIAN FIELDS 3477

For convenience, define s = 1−λ/18 and note that the condition λ ≥ 1− t implies√
1 − t2 ≤ √

2(1 − t) ≤ √
2λ ≤ 6

√
1 − s2.

Define the event

E =
{
M

(
X′′′

Us

)
<

√
1 − s2 · m + λm

24
√

1 − s2

}
,

which by Lemma 2.2 satisfies P(EC) ≤ 576ρ2

λ2m2 . If E holds, then (7) implies

inf
i∈Us

X′
i ≥ t inf

i∈Us

Xi −
√

1 − t2 · M(
X′′′

Us

)

≥ tsm −
√

1 − t2 ·
(√

1 − s2 + λ

24
√

1 − s2

)
m

≥ tm − 1

18
λm − 6

(
1 − s2)

m − 1

4
λm ≥ tm −

(
1

18
+ 2

3
+ 1

4

)
λm

≥ (t − λ)m.

Thus,

P
(
U1−λ/18 ⊆ U ′

t−λ

) = P
(

inf
i∈U1−λ/18

X′
i ≥ (t − λ)m

)
≥ P(E) ≥ 1 − 576ρ2

m2λ2 ,

which proves the lemma upon taking complements. �

COROLLARY 2.4. Let X be a centered Gaussian process with VarXi ≤ 1. For
a given δ > 0, let α = 1 − δ

4 . Write

X = αX′ +
√

1 − α2X′′,
where X′ and X′′ have the same distribution as X and are independent of each
other. Then

P
(
X′

i(X) ≥ (1 − δ)m
) ≥ 1 − Cρ2

m2δ2

for a universal constant C > 0, where ρ2 = Var[M(X)].
PROOF. We use the notation of Lemma 2.3, with t = α and λ = 3

4δ. Then

P
(
X′

i(X) < (1 − δ)m
)

= P
(
i(X) /∈ U ′

1−δ

)
≤ P

(
M(X) ≤

(
1 − 3

4
cδ

)
m

)
+ P

(
sup

i∈S,i /∈U ′
1−δ

Xi ≥
(

1 − 3

4
cδ

)
m

)

≤ 16ρ2

9c2m2δ2 + 16Cρ2

9m2δ2 ,

by Chebyshev’s inequality and Lemma 2.3. �
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3. Superconcentration implies multiple peaks. This section is devoted to
the proofs of Theorems 1.2 and 1.3. We use the notation introduced in Sec-
tion 2 and additionally define for a Gaussian field X = {Xi : i ∈ S} the quantities
R(i, j) = Cov(Xi,Xj ) for i, j ∈ S.

3.1. Proof of Theorem 1.2. Theorem 1.2 can be directly deduced by applying
the following result to each Gaussian field XN in the sequence.

THEOREM 3.1. There exist absolute positive constants C1,C2 such that the

following holds. For any 0 < ε, δ, ζ ≤ 1 with probability at least 1− C1ρ
2

m2δ2 −ζ there

exists A ⊂ S with cardinality at least exp(
C2ε

2δζ

ρ2 ) such that Xi ≥ (1 − δ)m(X) for
each i ∈ A, and |R(i, j)| < ε for each distinct i, j ∈ A.

Proving Theorem 3.1 amounts to showing that U1−δ has a large almost-
orthogonal subset (i.e., a subset where the pairwise correlations are at most ε).
A preliminary and seemingly innocent question is whether we are able to find a
large subset of S of almost-orthogonal variables. It turns out that the concentration
property for the supremum of the Gaussian field on S guarantees the existence of
a large almost-orthogonal subset of S, as shown in Lemma 3.2 below.

We can actually leverage this deterministic result by fixing the random set U1−δ

and considering an independent copy X′ of X. If the supremum of X′ over U1−δ

exhibits a good concentration property, then U1−δ has a large almost-orthogonal
subset. Of course, some work is required to show that M(X′

U1−δ
) has the required

concentration property with high probability. A key ingredient is Corollary 2.4.
We begin with the deterministic claim that any Gaussian process which exhibits

superconcentration has a large subset of almost-orthogonal variables.

LEMMA 3.2. Let X = {Xi : i ∈ S} be a (not necessarily centered) Gaussian
process such that Var(Xi) ≤ 1 for all i ∈ S. For a given ε > 0, if [r, s] is an interval
of length at most ε

8 such that

P
(
M(X) /∈ [r, s]) < 1

4 ,(8)

then there exists A ⊂ S such that

|A| ≥ eε2/(32(r−s)2),(9)

and for every distinct i, j ∈ A, |R(i, j)| ≤ ε.

PROOF. It is sufficient, and for technical reasons convenient, to consider the
case where, ranging over all distinct i, j ∈ S, the values |R(i, j)| are all distinct
[except R(i, j) = R(j, i)]. Indeed, correlations satisfying this property are dense
among all possible correlations, and the claim of the lemma is a closed property.
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Let A ⊂ S be a maximal set (with respect to inclusion) satisfying |R(i, j)| ≤ ε

for all i, j ∈ A. We will show that such a set must satisfy (9). For each i ∈ S,
let b(i) denote the element of A which maximizes |R(i, b(i))|. Note that by the
maximality of A, we necessarily have |R(i, b(i))| ≥ ε for all i ∈ S.

Letting N = |S|, we now consider the probability space underlying X as a stan-
dard N -dimensional Gaussian 
 with density γ . Let {vi}i∈S be vectors with norm
at most 1 such that Xi = 〈
,vi〉 + μi , so that μi = E(Xi) and 〈vi, vj 〉 = R(i, j).
Define for x ∈ RN ,

m(x) = sup
i∈S

〈x, vi〉 + μi

so that m(
) ∼ M(X). In addition, we define

i(x) = arg max
i∈S

(〈x, vi〉 + μi

)
.

For a positive constant c > 0 to be specified later, define a piecewise linear
mapping fc :RN → RN as follows: for a point x ∈ RN , let (a, η) be the element
of A × {−1,1} which maximizes m(x + cηva), and define fc(x) = x + cηva .

Our next goal is to show that the function fc is injective. To do this, we fix
x ∈ RN , and let (a, η) be as above. For notational convenience, write y = fc(x).
Then, by the definition of fc,

〈x+cηva, vi(y)〉+μi(y) = 〈y, vi(y)〉+μi(y) = m(y) ≥ 〈x±cvb(i(y)), vi(y)〉+μi(y),

where the plus or minus indicates that the inequality holds for either choice of sign.
It follows that ∣∣〈va, vi(y)〉

∣∣ ≥ ∣∣〈vb(i(y)), vi(y)〉
∣∣.

On the other hand, by the definition of b(i(y)) we have∣∣〈vb(i(y)), vi(y)〉
∣∣ ≥ ∣∣〈va, vi(y)〉

∣∣,
so in fact |〈vb(i(y)), vi(y)〉| = |〈va, vi(y)〉|.

Recalling the assumption that the |R(i, j)| = |〈vi, vj 〉| are distinct, this implies
that b(i(y)) = a. Therefore,

x = y − cvb(i(y)) sign
(〈vb(i(y)), y〉),

where sgn(x) = x/|x| if x 
= 0 and sgn(0) = 0. This recovers x from y = fc(x),
showing that fc is injective.

Next, we fix c = s−r
ε

and consider the region

R =
{
x ∈ RN :m(x) ≥ r, sup

a∈A

〈x, va〉 ≤
√

2 log |A| + 3
}
.

We claim that

x ∈ R �⇒ m
(
fc(x)

) ≥ s.(10)
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Indeed, we have for all x ∈RN ,

m
(
fc(x)

) ≥ m(x ± cvb(i(x))) ≥ 〈x ± cvb(i(x)), vi(x)〉 + μi(x)

≥ 〈x, vi(x)〉 + cε + μi(x) = m(x) + cε.

In addition, under the assumption x ∈ R, we have

m
(
fc(x)

) ≥ m(x) + cε ≥ r + cε = s,

thereby proving (10). Now, equation (10) implies that

P
(
M(X) ≥ s

) ≥ γ
(
fc(R)

)
.

Therefore, we conclude from the assumption (8) that necessarily

γ
(
fc(R)

) ≤ 1
4 .(11)

In the following, we will suppose for the sake of contradiction that equation (9)
is not satisfied and conclude that γ (fc(R)) > 1

4 , thus concluding the lemma.
By (4), we have E(supi∈A〈
,vi〉) ≤ √

2 log |A|. Furthermore, a simple appli-
cation of (1) show that the above maximum is relatively concentrated around its
expectation in the sense that

P
(
sup
i∈A

〈
,vi〉 ≥
√

2 log |A| + 3
)

≤ 1
8 .

We also have by hypothesis

P
(
M(X) ≤ r

) ≤ 1
4 .

Thus, γ (R) ≥ 5
8 . Note that for any x, v ∈RN with |v| ≤ 1 and 〈x, v〉 ≤ R, we have

e−‖x+cv‖2/2 ≥ e−cR−c2/2e−‖x‖2/2.

Thus,

γ
(
fc(R)

) ≥ e−c(
√

2 log |A|+3)−c2/2γ (R).

Recall the hypothesis that s − r ≤ ε
8 , so c ≤ 1

8 . Also, note that c
√

2 log |A| ≤ 1
4 .

Hence,

γ
(
fc(R)

) ≥ e−c
√

2 log |A|−1/2γ (R) ≥ e−3/4 · 5
8 > 1

4

which contradicts (11), and the lemma is proven. �

We are now ready to prove the connection between superconcentration and mul-
tiple peaks.

PROOF OF THEOREM 3.1. We begin by fixing some ζ > 0, writing α = 1− δ
4 ,

and considering the decomposition X = αX′ + √
1 − α2X′′, where X′ and X′′ are

independent copies of X. Recall the definition

U ′
1−δ = {

i ∈ S :X′
i ≥ (1 − δ)E

(
M

(
X′))}.
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To lighten notation, we will write U ′ for U ′
1−δ in the rest of the proof.

Since X′ has the same distribution as X, it is enough to show that with proba-
bility at least 1 − 4Cρ2/(m2δ2) − ζ there exists a subset A ⊂ U ′ such that

|A| ≥ e(ζ ε2(1−α2))/(32ρ2) ≥ e(ζ ε2δ)/(128ρ2)(12)

and

i, j ∈ A, i 
= j �⇒ ∣∣R(i, j)
∣∣ ≤ ε,(13)

where C > 0 is a universal constant. To this end, we consider

Y
(
X′) = αX′

U ′√
1 − α2

+ X′′
U ′ .

It is convenient to separate the two sources of randomness in Y(X′). In what fol-
lows, we will condition on the realization of X′ (therefore also U ′), and consider
Y(X′) as a noncentered Gaussian process indexed over set U ′, where the random-

ness comes from the process X′′ and the mean vector is given by
αX′

U ′√
1−α2

. Define

g
(
X′) = P

(
M

(
Y

(
X′)) ∈

[
m − ρζ−1/2
√

1 − α2
,
m + ρζ−1/2
√

1 − α2

]∣∣∣X′
)

and let E be the event that {g(X′) ≥ 3/4}. Note that E is measurable in the ρ-
field generated by X′. Clearly, whenever the event E holds, the Gaussian process
(Y(X′)) (conditioned on X′ in the aforementioned manner) satisfies the assump-
tion (8) with

s − r = 2ρ√
ζ
√

1 − α2
.

Therefore, by applying Lemma 3.2 we learn that whenever E holds, there exists a
subset A ⊂ U ′ satisfying (12) and (13). It thus remains to show that

P(E) > 1 − 4Cρ2/
(
m2δ2) − ζ.(14)

To this end, we define another event

F = {
X′

i(X) ≥ (1 − δ)m
}
.

By Corollary 2.4, we have

P(F ) > 1 − Cρ2

m2δ2 ,(15)

where C > 0 is a universal constant. Now, observe that whenever the event F

holds, one has √
1 − α2M

(
Y

(
X′)) = M(X).
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It follows from the definition of g(·) that

Eg
(
X′) ≥ P

(
M(X) ∈

[
m − ρ√

ζ
,m + ρ√

ζ

])
− P

(
FC) ≥ 1 − Cρ2/

(
m2δ2) − ζ,

where in the second passage, we used (15) and Chebyshev’s inequality. An appli-
cation of Markov’s inequality with the last equation establishes (14), and the proof
is complete. �

3.2. Proof of Theorem 1.3. For β > 0, define Fβ = ( 1
β

log
∑

i∈S eβXi ), and

write ρ2
β = VarFβ . Theorem 1.3 can be deduced by applying the following result

to each Gaussian field in the sequence.

THEOREM 3.3. There exist constants C1,C2,C3 > 0 such that the following
holds. Suppose that ρβ ≤ ρ̃β for all β ≥ 0. For any 0 < δ, ε, ζ < 1 and all β ≥
C1 max(

logN
δm

, 1
ρ̃β

, δε2

ρ̃3
β

), with probability at least 1 − C2
m2δ2 − ζ there exists A ⊂ S

with cardinality at least exp(
C3ε

2δζ

ρ̃2
β

) such that Xi ≥ (1 − δ)m(X) for each i ∈ A,

and |R(i, j)| < ε for each distinct i, j ∈ A.

The proof is similar to that of Theorem 1.2, but a few changes are needed. In
what follows, we will omit details which are repeated from the proof of Theo-
rem 1.2 and highlight the differences. The reader is advised to become familiar
with the previous subsection before reading this one.

First, we need an analogous version of Lemma 3.2 in which the assumption of
a concentrated supremum is replaced by concentration of the free energy.

LEMMA 3.4. Let X = {Xi : i ∈ S} be a (not necessarily centered) Gaussian
process such that Var(Xi) ≤ 1 for all i ∈ S. For a given ε > 0, suppose that [r, s]
is an interval of length at most ε

8 such that

P
(
Fβ(X) /∈ [r, s]) < 1

4 .(16)

Furthermore, suppose that

β ≥ ε2

128(s − r)3 .(17)

Then there exists A ⊂ S such that

|A| ≥ eε2/(128(r−s)2),(18)

and for every distinct i, j ∈ A, |R(i, j)| ≤ ε.
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PROOF. As in the proof of Lemma 3.2, it suffices to handle the case where the
|R(i, j)| are all distinct.

Define A ⊂ S and b :S → A as in the proof of Lemma 3.2. Our goal is to show
that A satisfies (18). Suppose for the sake of contradiction that it does not.

As before, letting N = |S|, consider the probability space underlying X as a
standard N -dimensional Gaussian 
 with density γ . Let {vi}i∈S be vectors with
norm at most 1 such that Xi = 〈
,vi〉 + μi , so that μi = E(Xi) and 〈vi, vj 〉 =
R(i, j). Define for x ∈ RN ,

mβ(x) = 1

β
log

∑
i∈S

eβ(〈x,vi〉+μi)

so that mβ(
) ∼ Fβ(X). Let us also define for a ∈ A and χ ∈ {−1,1} the quantities

g
χ
β (x, a) = ∑

j∈S,b(j)=a

sgn(va,vj )=χ

eβ(〈x,vj 〉+μj ),

m̂β(x) = 1

β
sup

a∈A,χ∈{−1,1}
g

χ
β (x, a).

Evidently, we have

mβ(x) ≥ m̂β(x) ≥ mβ(x) − β−1 log(2|A|).
For a positive constant c > 0 to be specified later, define a piecewise linear

mapping fc :RN → RN as follows: for a point x ∈ RN , let (a, η) be the element
of A×{−1,1} which maximizes m̂β(x + cηva), and define fc(x) = x + cηva . We
next verify that fc is injective outside of a set of probability zero.

Write y = fc(x), and let(
î(y),χ(y)

) = arg max
a∈A,χ∈{−1,1}

g
χ
β (y, a).

By definition of (a, η), we get that

g
χ(y)
β

(
x + cηva, î(y)

) = g
χ(y)
β

(
y, î(y)

) ≥ g
χ(y)
β

(
x ± cv

î(y)
, î(y)

)
.

On the other hand, by definition of b(i(y)), we see that

max
(
g

χ(y)
β

(
x + cv

î(y)
, î(y)

)
, g

χ(y)
β

(
x − cv

î(y)
, î(y)

)) ≥ g
χ(y)
β

(
x + cηva, î(y)

)
.

Altogether, we deduce that

max
(
g

χ(y)
β

(
x + cv

î(y)
, î(y)

)
, g

χ(y)
β

(
x − cv

î(y)
, î(y)

))
(19)

= g
χ(y)
β

(
x + cηva, î(y)

)
.

Using the assumption that the |R(i, j)| = |〈vi, vj 〉| are distinct, we see that al-
most surely with respect to x ∼ γ we have that the values {g±1

β (x + χcvi, î(x +
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χcvi)) :χ ∈ {−1,1}, i ∈ A} are all distinct. Combined with (19) [note that the left-
hand side of (19) is a function of y], it follows that for almost surely every given
y we could reconstruct (a, η) (and thus x), thereby completing the verification of
the injectivity of fc.

We now take c = β−1 log(2|A|)+s−r
ε

and consider the region

R =
{
x ∈ RN :mβ(x) ≥ r, sup

a∈A

〈x, va〉 ≤
√

2 log |A| + 3
}
.

We have for all x ∈ RN ,

mβ

(
fc(x)

) ≥ m̂β

(
fc(x)

) ≥ m̂β(x) + cε

= m̂β(x) + β−1 log
(
2|A|) + (s − r) ≥ mβ(x) + (s − r).

Thus, we have

x ∈R �⇒ m
(
fc(x)

) ≥ s.

The rest of the proof proceeds in exactly the same manner as the proof of
Lemma 3.2. The only difference is that we have chosen a different value of c.
However, by the hypothesis that (18) is not satisfied, we have

log |A| < ε2

128(s − r)2 .

The lower bound condition on β then implies

c = β−1 log |A| + s − r

ε
≤ 2(s − r)

ε
.(20)

We thus have

c
√

2 log |A| ≤ 1
4 .

Also, combining (20) with the condition that s − r ≤ ε
16 , we obtain

c ≤ 1
8 .

These are the only properties of c needed in the proof of Lemma 3.2, so the same
argument works. �

To prove Theorem 3.3, we use the same setup as the proof of Theorem 3.1. Let
α = 1− δ

4 , and make the decomposition X = αX′ +√
1 − α2X′′. Let U ′ = U ′

1−δ =
{i ∈ S : X′

i ≥ (1− δ)m}. We are not assuming any superconcentration of M(X), but
we will implicitly use the bound ρ2(M(X)) ≤ 1.

Recall that in the proof of Theorem 3.1, we used Corollary 2.4 to show that the
maximum comes from the indices in U ′ with high probability. The next lemma
establishes a similar statement for the free energy; although all indices contribute
to the free energy, we show that with high probability, most of the contribution
comes from indices in U ′.
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LEMMA 3.5. There exists a universal constant C such that whenever β >
C logN

δm
, we have

Fβ(X) ≥ Fβ(XU ′) ≥ Fβ(X) − 1

β
,

with probability at least 1 − C
δ2m2 .

PROOF. Clearly, Fβ(X) ≥ Fβ(XU ′) holds deterministically. Thus, we fo-
cus our attention on the second inequality. According to Lemma 2.3, we have
M(XS\U ′) ≤ (1 − c′δ)m with probability at least 1 − C′

δ2m2 for universal constants
c′,C′ > 0. Furthermore, Chebyshev’s inequality tells us that M(X) ≥ (1−c′δ/2)m

with probability at least 1 − 1
c′2δ2m2 .

Let δ′ = c′δ/2. Then, excluding events of probability at most C
δ2m2 , where C

is a universal constant, we may assume that M(X) ≥ (1 − δ′)m and M(XS\U ′) ≤
(1 − 2δ′)m. In that case,

Fβ(X) = 1

β
log

∑
i∈S

eβXi = 1

β
log

( ∑
i∈U ′

eβXi + ∑
i∈S\U ′

eβXi

)

≤ 1

β
log

( ∑
i∈U ′

eβXi + Neβ(1−2δ′)m
)

≤ 1

β
log

( ∑
i∈U ′

eβXi + Ne−βδ′meβ(1−δ′)m
)

≤ 1

β
log

( ∑
i∈U ′

eβXi + Ne−βδ′m · eβM(X)

)

≤ 1

β
log

( ∑
i∈U ′

eβXi + Ne−βδ′m ∑
i∈U ′

eβXi

)

= Fβ(XU ′) + 1

β
log

(
1 + Ne−βδ′m)

.

If C is taken to be sufficiently large, the assumption β >
C logN

δm
implies the second

term in the last expression is bounded by 1
β

. This proves the lemma. �

PROOF OF THEOREM 3.3. Recall the strategy of proving Theorem 3.1: we
first show that concentration of Fβ(X) implies with high probability a concen-
tration of Fβ(X′′

U ′ + μ) for some μ, and then we apply Lemma 3.4 to show the
existence of many almost-orthogonal indices in U ′, which proves the theorem.

Let fβ = E(Fβ(X)). By Chebyshev’s inequality,

P
(
Fβ(X) ∈ [

fβ − ρ̃βζ−1/2, fβ − ρ̃βζ−1/2]) ≥ 1 − ρ2
βζ

ρ̃2
β

≥ 1 − ζ.(21)
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Define the process

Y
(
X′) = 1√

1 − α2
· XU ′ = αX′

U ′√
1 − α2

+ X′′
U ′,

(where, as above, α = 1 − δ/4) and let β ′ = √
1 − α2β . Recall the hypotheses that

β ≥ C1 logN
δm

and β ≥ C1
ρ̃β

, and take C1 ≥ max(1,C), where C is the constant of
Lemma 3.5. Then Lemma 3.5 tells us that

∣∣√1 − α2 · Fβ ′(Y) − Fβ(X)
∣∣ = ∣∣Fβ(XU ′) − Fβ(X)

∣∣ ≤ 1

β
≤ ρ̃βζ−1/2

with probability at least 1 − C
δ2m2 . Thus, combining with (21), Fβ ′(Y) lies in an

interval [r, s] of size

4ρ̃β√
ζ
√

1 − α2

with probability at least 1 − ζ − C
δ2m2 . As in the proof of Theorem 3.1, define

g
(
X′) = P

(
Fβ ′

(
Y

(
X′)) ∈ [r, s]|X′),

so according to the above we have

E
[
g
(
X′)] ≥ 1 − ζ − C

δ2m2 .(22)

Recall that β ′ = √
1 − α2β . By our assumption on β , we get that

β ′ ≥ C1
√

1 − α2 · δε2

ρ̃3
β

≥ 2C1(
√

1 − α2)3ε2

ρ̃3
β

≥ 128C1(
√

1 − α2)3ζ 3/2ε2

64ρ̃3
β

= 128C1ε
2

(s − r)3 .

Thus, on the event g(X′) > 3
4 and taking C1 sufficiently large, the hypotheses of

Lemma 3.4 are fulfilled with s − r = 4ρ̃β√
ζ
√

1−α2
and inverse temperature β ′. It

follows that U ′ contains at least

exp
(

ε2

128(s − r)2

)
= exp

(
ε2ζ(1 − α2)

2048ρ̃2
β

)
≥ exp

(
C3ε

2ζ δ

ρ̃2
β

)

indices whose pairwise covariances do not exceed ε in magnitude, as required.
Finally equation (22), combined with Markov’s inequality, teaches us that g(X′) >
3
4 occurs with probability at least 1 − 4ζ − 4C

δ2m2 , which completes the proof after
a renormalization of constants. �
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4. A moderate deviation bound based on expectation. This section is de-
voted to the proof of Theorem 1.6. The proof is based on stochastic calculus, and
we need some preliminary notation. For a continuous martingale Mt adapted to
a filtration Ft , we denote by [M]t the quadratic variation of Mt between time 0
and t . By dMt we denote the Itô differential of Mt , which we understand as a
predictable process ρt such that Mt satisfies the stochastic differential equation
dMt = ρtdWt where Wt is a standard Wiener process.

Fix a Gaussian field X = {Xi,1 ≤ i ≤ N} such that Var[Xi] ≤ 1 for all 1 ≤
i ≤ N . Now, take (Bt )t≥0 to be a be a standard Brownian motion in RN with a cor-
responding filtration Ft . Clearly, there exist vectors {vi : 1 ≤ i ≤ N} of Euclidean
norms at most 1 such that we can represent the Gaussian field X by

Xi = 〈vi,B1〉 for every 1 ≤ i ≤ N.

Define f :RN �→R by f (x) = sup1≤i≤N 〈vi, x〉 so that

f (B1) ∼ sup
1≤i≤N

Xi.

Our goal is to derive a moderate deviation bound for f (B1). A central component
of the proof will be the Doob martingale

St = E
[
f (B1)|Ft

]
,

generated by the random variable f (B1) and filtration Ft . Thanks to the Dambis/
Dubins–Schwartz theorem, we can then view (St )0≤t≤1 as a time change of (one-
dimensional) Brownian motion stopped at some random time τ = [S]1 (which
corresponds to t = 1). The main idea is that, due to the Gaussian concentration
of the maximum for a Brownian motion stopped before time T , it will suffice to
prove that with overwhelming probability τ is strictly less than 1. To this end, we
will try to calculate d[S]t by means of Itô calculus, in what follows.

For v ∈ RN and σ > 0, define

γv,σ (x) = 1

σN(2π)N/2 exp
(
− 1

2σ 2 |x − v|2
)

for x ∈ RN.

An elementary property of the Brownian motion is that the distribution of B1 con-
ditioned on Ft has density γBt ,

√
1−t (x). Therefore, we have that

St =
∫
RN

f (x)γBt ,
√

1−t (x) dx.

For convenience of notation, we write

Ft(x) = γBt ,
√

1−t (x).

A direct calculation carried out in [8], Lemma 7, gives that

dFt(x) = (1 − t)−1Ft(x)〈x − Bt, dBt 〉.
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As a result of the above equation, we can calculate

dSt = d

∫
RN

f (x)Ft (x) dx = (1 − t)−1
〈∫

RN
f (x)(x − Bt)Ft (x), dBt

〉
,

and, therefore, we obtain

d[S]t = (1 − t)−2
∣∣∣∣
∫
RN

(x − Bt)f (x)Ft (x) dx

∣∣∣∣
2

dt,

where we recall that [S]t denotes the quadratic variation for process (St ). Substi-
tuting y = x−Bt√

1−t
in the last equation, we get that

d[S]t = (1 − t)−1
∣∣∣∣
∫
RN

yf (
√

1 − ty + Bt) dγ (y)

∣∣∣∣
2

dt.(23)

For convenience, we denote

gt (x) = f (
√

1 − tx + Bt) − f (Bt)√
1 − t

.

Plugging this definition into (23), and using the fact that
∫
RN x dγ (x) = 0 gives

d[S]t = Vt dt,

where Vt is defined as

Vt =
∣∣∣∣
∫
RN

xgt (x) dγ (x)

∣∣∣∣
2

.(24)

We wish to show that Vt is strictly less than 1 for a strictly positive time interval.
To this end, let ε, δ > 0 be two small numbers to be fixed, and define two events

E1 = {Vt ≤ 1 − ε,∀0 ≤ t ≤ δ} and
(25)

E2 =
{
f (Bt) ≤ α

2

√
logN,∀0 ≤ t ≤ δ

}

(recall that by our assumption we have Ef (B1) ≥ α
√

logN ). In order to bound
P(E1), we will need the next lemma whose point is that if |Vt | is at some point
close to 1, then E[f (B1) − f (Bt)|Ft ] cannot be too large.

LEMMA 4.1. Let {μi}Ni=1 be such that μi ≤ 0 for all 1 ≤ i ≤ N . Define
f̃ :RN �→R by (recall that |vi | ≤ 1)

f̃ (x) = sup
1≤i≤N

(x · vi + μi) for all x ∈RN.(26)

Also define ε = 1 − supθ∈SN−1
∫
RN 〈x, θ〉f̃ (x) dγ (x). Then we have∫

RN
f̃ (x) dγ (x) ≤ 10(1 +

√
ε logN) for all N ∈ N

in particular, one has

ε ≥ 0.(27)
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PROOF. Pick θ ∈ SN−1 such that

1 −
∫
RN

〈x, θ〉f̃ (x) dγ (x) = ε.(28)

For each x ∈ RN , consider the unique representation x = y + zθ where z = 〈x, θ〉
and y ∈ θ⊥ (i.e., 〈y, θ〉 = 0). Denote by γ 1 and γ N−1 standard Gaussian measures
in dimension 1 and N − 1, respectively, we can view γ 1 as a measure on span{θ}
and γ N−1 a measure on θ⊥. It is clear that if x ∼ γ , we have (z, y) ∼ γ 1 ⊗ γ N−1.
Therefore, we get that∫

RN
〈x, θ〉f̃ (x) dγ (x) =

∫
θ⊥

∫
R

zf̃ (y + zθ) dγ 1(z) dγ N−1(y).

Applying integration by parts to
∫
R zf̃ (y + zθ) dγ 1(z), we obtain that∫

RN
〈x, θ〉f̃ (x) dγ (x) =

∫
θ⊥

∫
R

(
∂

∂z
f (y + zθ)

)
dγ 1(z) dγ n−1(y)

(29)
=

∫
RN

〈∇f̃ (x), θ
〉
dγ (x).

For x ∈ RN , write

i∗(x) = arg sup
1≤i≤N

(x · vi + μi)

(note that the maximizer is unique with probability 1 when we sample x ∼ γ and
thus i∗(x) is well-defined almost surely. Here, we use the legitimate assumption
that the vectors {vi} are distinct). By definition of f̃ , we see that ∇f̃ (x) = vi∗(x).
Combined with (28) and (29), it follows that

E〈vi∗(
), θ〉 = 1 − ε,

where 
 is a standard Gaussian random vector in RN . Recall that |vi | ≤ 1 for all
1 ≤ i ≤ N . In view of the last equation, this fact gives ε ≥ 0. As a consequence of
Markov’s inequality, this fact also teaches us that

P
(〈vi∗(
), θ〉 ≥ 1 − 10ε

) ≥ 9/10.(30)

Let I ⊂ [N ] be the set of indices i such that 〈vi, θ〉 ≥ 1 − 10ε. For every i ∈ I ,
write vi = uiθ + ṽi where ui = 〈vi, θ〉 and ṽi ∈ θ⊥. By our assumption on I , we
have |ṽi | ≤

√
20ε for all i ∈ I . Therefore, we have

E sup
i∈I

〈
,vi〉 ≤ E
∣∣〈
, θ〉∣∣ +E sup

i∈I

〈ṽi , 
〉 ≤ 1 +
√

40ε log |I |,

where the last inequality follows from (4). Combined with (1), it then follows that
(note that |I | ≤ N )

P
(
sup
i∈I

〈
,vi〉 ≥
√

40ε logN + 10
)

≤ 1/5.
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Combined with (30), using a union bound we get that

P
(

sup
i∈[N]

〈
,vi〉 ≥
√

40ε logN + 10
)

≤ 1/2.

Together with another application of (1), it completes the proof of the lemma. �

The next lemma applies the above in order to show that with high probability,
either Vt remains bounded from 1 for a finite inteval of time, or f (Bt) becomes
rather large within a short time.

LEMMA 4.2. Let E1,E2 be defined as in (25). For ε ≤ α2 · 10−4 and an ab-
solute constant C > 0, we have

P(E2 \ E1) ≤ CN−α2/32.

PROOF. Suppose that E2 \ E1 holds, and denote by

T = min{t ≥ 0 :Vt ≥ 1 − ε}
to the first time in which Vt ≥ 1 − ε. By definition of EC

1 , we have T ≤ δ. Using
the decomposition that B1 = Bt + (B1 − Bt) where B1−Bt√

1−t
has density function γ

and is independent of Bt , we get that∫
RN

gt (x) dγ (x) = E[f (B1) − f (Bt)|Ft ]√
1 − t

.(31)

Consequently, we have

E
[
f (B1)|FT

] = f (BT ) +E
[
f (B1) − f (BT )|FT

]
= f (BT ) + √

1 − t

∫
RN

gT (x) dγ (x).

Recalling (24), we see that∣∣∣∣
∫
RN

xgT (x) dγ (x)

∣∣∣∣
2

≥ 1 − ε.

Therefore, there exists θ ∈ SN−1 such that∫
RN

gT (x)〈x, θ〉dγ (x) ≥ √
1 − ε ≥ 1 − ε.

We claim that Lemma 4.1 can be applied with the function gT (x) (conditioning on
the filtration FT ) used in place of the function f̃ . Indeed, since f (cx) = cf (x) for
all x ∈ RN and c > 0, we get that

gT (x) = f (x + BT /
√

1 − T ) − f (BT /
√

1 − T )

= sup
1≤i≤N

〈x + BT /
√

1 − T , vi〉 − sup
1≤i≤N

〈BT /
√

1 − T , vi〉

= sup
1≤i≤N

(
x · vi + BT√

1 − T
· vi − sup

1≤i≤N

BT√
1 − T

· vi

)
.
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This implies that it admits the form (26). Applying Lemma 4.1, and using the
assumption ε ≤ α2 · 10−4, we get∫

RN
gT (x) dγ (x) ≤ 10(

√
ε logN + 1) ≤ α

10

√
logN + 10.

This implies that on the event E = {T ≤ δ} ∩ {f (Bt) ≤ α
√

logN/2,∀0 ≤ t ≤ T }
(note that E ⊇ E2 \ E1), we have

E
[
f (B1)|FT

] ≤ 3α

4

√
logN + 10.

Applying (1) (the noncentered version) to

f (B1) = sup
1≤i≤N

{〈vi,B1 − BT 〉 + 〈vi,BT 〉},
(where we treat BT as deterministic numbers as we conditioned on FT ) we obtain
that

P
(
f (B1) ≤ 3α

4

√
logN + 20

∣∣∣E)
≥ 1/2.(32)

Recall the definition of α, according to which

E
[
f (B1)

] ≥ α
√

logN.

Another application of (1) gives that

P
(
f (B1) ≤ 3α

4

√
logN + 20

)
≤ CN−α2/32,

where C > 0 is an absolute constant. Combined with (32), we see that

P(E2 \ E1) ≤ P(E) ≤ 2CN−α2/32. �

PROOF OF THEOREM 1.6. We first bound P(E2) from below, and we will
employ the idea from reflection principle of Brownian motion. Defining

T ′ = min
{
t :f (Bt) ≥ α

√
logN/2

}
,

we see that E2 = {T ′ > δ}. Let us denote by i∗T ′ the maximizer of f (BT ′). That is,
f (BT ′) = 〈vi∗

T ′ ,BT ′ 〉. Then we have, on the event T ′ ≤ δ,

f (Bδ) ≥ f (BT ′) + 〈vi∗
T ′ ,Bδ − BT ′ 〉.

Observe that whenever the event T ′ ≤ δ holds, then (Bδ − BT ′) has a origin-
symmetric distribution conditioned on FT ′ . We infer that

P
(
f (Bδ) ≥ α

√
logN/2

) ≥ P
(
T ′ ≤ δ

)
/2.
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Combined with an application of (1), it follows that

P
(
Ec

2
) = P

(
T ′ ≤ δ

) ≤ 4N−α2
,

where we choose δ = 1/100. Choosing ε = 10−4α2, it follows from an application
of Lemma 4.2 that

P
(
Ec

1
) ≤ C′N−α2/32(33)

for an absolute constant C′ > 0.
In order to complete the proof, note that St − ES1 is a mean-zero continuous-

time martingale, so according to the Dambis/Dubins–Schwartz theorem, there ex-
ists standard a Brownian motion {Wt }t≥0 such that

W[S]t = St ∀0 ≤ t ≤ 1.

An elementary fact about the one-dimensional Brownian motion is that

P
(

sup
0≤t≤τ

|Wt | ≥ s
)

≤ 4e−s2/(2τ) ∀τ, S ≥ 0.(34)

As a consequence of equation (27) we know that Vt ≤ 1 for all 0 ≤ t ≤ 1. There-
fore, on E1 we have [S]1 ≤ 1 − εδ ≤ 1 − 10−6α2, and combined with the last
inequality,

P
({|S1 − ES1| ≥ β

√
logN

} ∩ E1
)

≤ P
(

sup
0≤t≤1−10−6α2

|Wt | ≥ β
√

logN
)

≤ 4N−β2/2(1−10−6α2).

Combining with (33) and using a union bound finally gives

P
(|S1 − ES1| ≥ β

√
logN

) ≤ 4N−β2/2(1−10−6α2) + 2CN−α2/32.

This completes the proof of Theorem 1.6. �
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