
The Annals of Probability
2015, Vol. 43, No. 2, 435–467
DOI: 10.1214/13-AOP857
© Institute of Mathematical Statistics, 2015

THE SEGREGATED �-COALESCENT

BY NIC FREEMAN1

Oxford University

We construct an extension of the �-coalescent to a spatial continuum and
analyse its behaviour. Like the �-coalescent, the individuals in our model can
be separated into (i) a dust component and (ii) large blocks of coalesced in-
dividuals. We identify a five phase system, where our phases are defined ac-
cording to changes in the qualitative behaviour of the dust and large blocks.
We completely classify the phase behaviour, including necessary and suffi-
cient conditions for the model to come down from infinity.

We believe that two of our phases are new to �-coalescent theory and di-
rectly reflect the incorporation of space into our model. Firstly, our semicriti-
cal phase sees a null but nonempty set of dust. In this phase the dust becomes
a random fractal, of a type which is closely related to iterated function sys-
tems. Secondly, our model has a critical phase in which the coalescent comes
down from infinity gradually during a bounded, deterministic time interval.

1. Introduction. Coalescent processes are stochastic models in which a col-
lection of particles start out separated and come together over time. Modern coales-
cent theory began with the coalescent of Kingman (1982), which was introduced
to describe the family trees of individuals sampled from large haploid populations.
Kingman’s coalescent was generalized, independently but in the same spirit, by
Donnelly and Kurtz (1999), Pitman (1999) and Sagitov (1999). The resulting pro-
cess became known as the �-coalescent.

We begin with a heuristic description of the �-coalescent. At time 0 the �-
coalescent starts with a countable infinity of particles, with each particle repre-
senting an individual from the population. It is usual to label these initial particles
with elements of N. Then, at a countable set of random times during (0,∞), a sub-
set of the currently present particles are selected, and these particles come together
to form a coalesced block of particles. This coalesced block is thought of as a
single new particle and may subsequently be coalesced into even larger blocks of
particles.

The �-coalescent has been studied intensively over the past decade, and its
behaviour is now well understood. See Berestycki (2009) for an introduction to
the �-coalescent and its connections to other parts of probability.

At any time t > 0, we can divide the particles within the �-coalescent into two
types, firstly, particles that have not been affected by a coalescence event during
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[0, t]. These particles are singletons at time t and, collectively, make up the dust
component of the coalescent. Secondly, we have large blocks of particles that were
coalesced together during [0, t]. Each such block contains a nontrivial proportion
of the countable infinity of initial particles (and is therefore infinite itself).

It is possible for the particles within the �-coalescent to come together so fast
that the dust vanishes instantaneously after time 0, leaving only finitely many non-
singleton blocks. In this case the �-coalescent is said to come down from infinity.

The �-coalescent is exchangeable, which means that its distribution does not
change when the labels of the initial particles are permuted. This implies that the
�-coalescent is a nonspatial model, since it means that the random forces which
cause groups of particles to coalesce do not depend on the labels of the particles
involved.

In reality, children begin life close to their parent and only travel so far in a
single lifetime. Therefore, it is natural to ask if the geographical space in which
the population lives has a noticeable effect on the genealogy of the population.
This is believed to be the case; see, for example, Etheridge (2008).

In this article we construct a spatial extension of the �-coalescent in which the
ancestral lines of individuals are more likely to coalesce if those individuals lived
nearby. Our model behaves similarly to the �-coalescent but sees additional be-
haviour, notably an extra phase transition that is directly related to the introduction
of space. The corresponding extra phase (known as the critical phase) contains
behaviour that we believe is new to �-coalescent theory: in this phase our model
comes down from infinity gradually over a deterministic, bounded interval of time.

We define our model in Sections 1.1 and 1.2 before stating our main results in
Section 1.3. We compare our model and its behaviour to other �-coalescent type
models in Sections 1.4–1.6. Our results are proved in Sections 2–5 and a brief
outline of the proofs can be found in Section 1.7.

NOTATION. All the spaces we consider will be metric spaces, and we equip
them with the corresponding topology and Borel σ -field. For sets A and B , we
write A � B for the disjoint union of A and B (i.e., A � B = A ∪ B with the
implication that A and B are disjoint). We write

⋃
A = {a; ∃b ∈ A,a ∈ b}. If A is

a finite set, then we write |A| for the cardinality of A, with |A| = ∞ if A is infinite.
We write 1{P} for the function which is 1 if the property P holds and 0 if it does
not. We set N0 = N∪ {0}.

1.1. Segregated spaces. The geographical space of our model, which we call
a segregated space, is equipped with a tree structure, as follows. This structure will
play a central role in the definition of the Segregated �-coalescent.

Let S ∈ {2,3,4, . . .}, and set S = {1,2, . . . ,S}. Let Wn be the set of words w =
w1w2 · · ·wn of length n with letters wi ∈ S. Set W∗ = ⋃∞

n=0 Wn be the regular S-
ary tree, where W0 = {∅} and ∅ is the empty word.2 For each w = w1w2 · · ·wn ∈

2We also use the symbol ∅ for the empty set.
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Wn we write |w| = n, with |∅| = 0. If n = 0, then we define w1 · · ·wn = ∅. If
w = w1 · · ·wn and i ∈ S, then we set wi = w1 · · ·wni ∈ Wn+1.

DEFINITION 1.1. Let (K,DK) be a complete metric space, equipped with a
family of nonempty measurable subsets (Kw)w∈W∗ and a probability measure λ.
We say K is a segregated space if it satisfies:

(K 1) K = K∅ and for all w ∈ W∗, Kw = ⊎
i∈S Kwi .

(K 2) There exists a sequence (Ln)
∞
n=0 ⊆ (0,∞) such that Ln → 0 and for all

w ∈ W∗, max{DK(x, y);x, y ∈ Kw} ≤ L|w|.
(K 3) For all w ∈ W∗, λ(Kw) = S−|w|.
(K 4) For all w ∈ W∗ there exists i ∈ S such that Kwi ⊆ Kw .

We say Kw is a complex of K with level |w|. If Kv ⊆ Kw , then we say Kv is a
subcomplex of Kw .

EXAMPLE 1.2. The prototype example of a segregated space is the middle
third Cantor set. This is the unique nonempty compact subset K of [0,1] which
satisfies F1(K)�F2(K) = K , where F1(x) = x/3 and F2(x) = 2/3 + x/3. We set
K∅ = K and define Kw iteratively by the relation Kwi = Fi(Kw). The measure λ

is the uniform Bernoulli measure on K , with S = 2 and λ(Kw) = 2−|w|.

In Example 1.2, K is a totally disconnected set of Lebesgue measure zero. This
is unnatural from the point of view of population modelling, where it is usual to
use Rd as a model for spatial continua.

EXAMPLE 1.3. Let S = 2, and set K = K∅ = [0,1]. Note that

[0,1] = [0,1/2] � (1/2,1] = [0,1/4] � (1/4,1/2] � (1/2,3/4] � (3/4,1] = · · · .
Set K1 = [0,1/2], K2 = (1/2,1], K11 = [0,1/4], K12 = (1/4,1/2], K21 =
(1/2,3/4] and so on. Take λ as Lebesgue measure on [0,1]. Note that this ex-
ample is easily adapted to higher dimensions and S ≥ 2.

We will use (K 1) so frequently that it would be impractical to reference it on
every application. However, we will not use the other conditions without explicitly
saying so. The purpose of (K 2) is as follows: suppose (wn) is a sequence in W∗
such that |wn| → ∞ and Kwn+1 ⊆ Kwn . Then (K 2) implies that

⋂
n Kwn is either

empty or equal to a single point. Condition (K 4) is designed to prevent patholog-
ical examples of the sample space and will be discussed further in Section 4.

Initially, each point of K will be the location of precisely one individual. In view
of (K 3), we think of λ as a uniform measure on K . The measure λ is important
to us because it tells us whether a nonempty set of individuals (i.e., a subset of K)
comprises a null or positive proportion of the total population.
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LEMMA 1.4. For all w ∈ W∗, λ(Kw) > 0. For all x ∈ K , λ({x}) = 0.

PROOF. The first statement follows trivially from (K 3). If x ∈ K , then by
(K 1) for all n ∈ N we have x ∈ Kw for some w ∈ Wn. Since �w∈WnKw = K , we
have 1 = λ(K) = Snλ(Kw) ≥ Snλ({x}). Since n ∈ N was arbitrary, we must have
λ({x}) = 0. �

1.2. The Segregated �-coalescent. For the remainder of this article, let K be a
segregated space. Let λw be the restriction of λ to Kw , defined by λw(·) = λ(Kw∩·)

λ(Kw)
.

In this section we define our model, which we formulate as a stochastic flow
on K . The rate of coalescence in our model is controlled by a sequence (rn)n∈N0

(recall N0 = N ∪ {0}) such that rn ≥ 0 for all n. To avoid degeneracy, we assume
that rn > 0 for some n ∈ N0.

Heuristic definition: For each w ∈ W∗ the complex Kw is equipped with an
exponential clock that rings repeatedly and at rate rn, where n = |w|. Informally,
if the clock for Kw rings at time t ∈ R, then all the particles which are in Kw at
time t—are coalesced together and jump at time t into a location p that is sampled
according to λw . When this occurs, we say that a coalescence event (t,w,p) has
occurred in Kw at time t with parent point p. We say the points x ∈ Kw are affected
by the coalescence event.

We write the resulting flow of particles as Xs,t :K → K , where Xs,t (x) is the
location at time t of that the particle which was at x at time s < t . A graphical
representation of the above paragraph can be seen in Figure 1.

FIG. 1. The complexes of the geographical space with S = 2 are shown down to level 3, with
dotted lines. Coalescence events are shown as thick vertical lines, with parents as circular dots. In
this realization there are no coalescence events occurring in complexes of level 4 and above. The
movement of some sample particles over [0, t] is shown using arrows. The division of K into dust Dt

and nontrivial blocks At = {At (1),At (2),At (3)} (see Section 1.3) over time [0, t] is also shown. The
sequences (ux

m) and (px
m) corresponding to the point x ∈ K are shown to illustrate Definition 2.1 (in

this example, Nx
1 = 1, Nx

2 = 2 and Nx
3 = ∞).
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It is possible to sample the parent points p according to some measure other
than λw , but in this article (for brevity) we restrict ourselves to that special case.
See Freeman (2012) for a more general mechanism.

Of course, our heuristic definition only makes mathematical sense if the total
number of coalescence events during [s, t] is a.s. finite for all s < t (equivalently,
if the total rate

∑Snrn of all the exponential clocks is finite). However, it does
provide accurate intuition for the behaviour of our model in the general case. For
arbitrary (rn), a mathematical definition which formalizes this intuition can be
found in Section 2. We state our existence theorem below, with the understanding
that it applies to the definition in Section 2. The proof appears in Section 2.1.

Let M be the space of functions mapping K to itself, equipped with the metric
‖f,g‖∞ = sup{DK(f (x), g(x));x ∈ K}.

THEOREM 1. For each s ≤ t , Xs,t is an M-valued random variable. The fol-
lowing properties hold:

• For all s ≤ t ≤ u, Xs,u = Xt,u ◦ Xs,t surely.
• For all s ≤ t < u ≤ v, Xu,v and Xs,t are independent.
• If t1 − s1 = t2 − s2, then Xs1,t1 and Xs2,t2 are identically distributed.
• For all t ∈ R and x ∈ K , Xt,t (x) = x surely.

The formula Xs,u = Xt,u ◦ Xs,t is known as the flow property and shows that
the population which our model describes has a consistent genealogical structure.

The flow X is time homogeneous, and for most of this article we will be inter-
ested only in (X0,t )t≥0. We think of each point x ∈ K being home at time 0 to a
single particle. The function X0,t specifies which particles are coalesced together
during [0, t] and where in space the resulting blocks of coalesced particles end up.

DEFINITION 1.5. If X0,t (K) is a finite set, then we say the Segregated �-
coalescent has come down from infinity at time t > 0. If X0,t (K) is finite for all
t > 0, then we say the Segregated �-coalescent comes down from infinity.

Loosely speaking, if our model is to come down from infinity, then a large
number of coalescence events must occur (i.e., the rates rn must be large). On a
coalescence event, the coalesced particles jump through space to that events parent
location. Thus if coalescence events occur fast, then our particles will also jump
fast. The tree structure (Kw)w∈W∗ on the segregated space K provides a method
of controlling how far particles move when they jump and, as we see in Section 2,
is the crucial ingredient that allows us to make sense of our model for any (rn) ⊆
[0,∞).



440 N. FREEMAN

1.3. Phases transitions of the Segregated �-coalescent. For each t ≥ 0, we
say (the individuals which began at) x and y are in the same block at time t if
X0,t (x) = X0,t (y), and in this case we write x ∼t y. It is easily seen that ∼t is an
equivalence relation on K , and we write the equivalence class of x ∈ K under ∼t

as [x]t . We define

Dt = {
x ∈ K; [x]t is a singleton

}
,

At = {[x]t ;x ∈ K \Dt

}
.

Thus, Dt is the union of all the singleton blocks and is the dust component of our
model at time t . The set At is the set of nonsingleton blocks at time t . It is easily
seen that, for all t ≥ 0,

K = Dt �
(⋃

At

)
.(1.1)

From the flow property (see Theorem 1) and the definition of Dt , we have that

s < t ⇒ Dt ⊆Ds .(1.2)

As we vary the parameters (rn) and S , we say that a phase transition occurs
within our model if we see a qualitative change in the behaviour of Dt and At . In
particular, we are interested in whether At is finite or infinite, and whether Dt is
empty or nonempty. When Dt is nonempty we are also interested in whether Dt is
λ-null or has positive measure. Note that A0 =∅ and D0 = K almost surely.

Let

τ = inf{t ≥ 0;Dt = ∅}(1.3)

be the time at which the dust component has been entirely absorbed into the nons-
ingleton blocks. Since rN �= 0 for some N ∈ N, at some time κ < ∞, the exponen-
tial clocks associated to all Kw with |w| = N have rung, meaning that Dκ = ∅;
thus τ < ∞ almost surely.

THEOREM 2. Almost surely, if t > τ , then Dt = ∅ and At is finite. Further, if
τ is not almost surely zero, then P[τ > 0] = 1.

Therefore, we should classify our phases according to the behaviour seen during
time (0, τ ). It turns out that our model has five phases, which we now define. Our
model is said to be:

• lower subcritical if:
– for all t ∈ (0,∞), P[τ > t] > 0;
– P[∀t ∈ (0, τ ), λ(Dt ) > 0 and |At | < ∞] = 1.

• upper subcritical if:
– for all t ∈ (0,∞), P[τ > t] > 0;
– P[∀t ∈ (0, τ ), λ(Dt ) > 0 and |At | = ∞] = 1.
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• semicritical if:
– for all t ∈ (0,∞), P[τ > t] > 0;
– P[∀t ∈ (0, τ ), λ(Dt ) = 0 and |At | = ∞] = 1.

• critical if there is some (deterministic) t0 ∈ (0,∞) such that:
– P[τ < t0] = 1 and for all t ∈ (0, t0), P[t < τ ] ∈ (0,1);
– P[∀t ∈ (0, τ ), λ(Dt ) = 0 and |At | = ∞] = 1.

• supercritical if P[τ = 0] = 1.

The quantity t0 is known as the critical time. We are able to completely classify
the phases of our model, as follows.

THEOREM 3. Dependent only upon S and (rn), our model is in precisely one
of the five phases. In fact, the Segregated �-coalescent X is:

• lower subcritical if and only if
∑

n Snrn < ∞;
• upper subcritical if and only if

∑
n Snrn = ∞ and

∑
rn < ∞;

• semicritical if and only if
∑

rn = ∞ and lim supn
1
n

∑n
1 rj = 0;

• critical if and only if lim supn
1
n

∑n
1 rj ∈ (0,∞);

• supercritical if and only if lim supn
1
n

∑n
1 rj = ∞.

Further, in the critical phase

t0 = lim supn(
∑n

0 rj )/n

logS .(1.4)

It follows immediately from Theorem 3 that the Segregated �-coalescent comes
down from infinity at t > 0 if and only if (1) X is supercritical or (2) X is critical
and t ≥ t0.

As we commented above, the quantity
∑Snrn is the total rate of all the ex-

ponential clocks involved in the definition of our model. Since each x ∈ K has
x ∈ Kw for precisely one w ∈ Wn, the quantity

∑
rn is the rate at which coa-

lescence events affect a single point of K . It is natural that these two quantities
characterise phase transitions. The other quantity which appears in Theorem 3,
lim supn

1
n

∑n
1 rj , relates to coming down from infinity and will be discussed when

we outline our proofs in Section 1.7.
As the phase of our model changes, the behaviour of the dust is as expected,

in that increasing the intensity of reproduction events reduces the fraction of dust.
The lack of monotonicity in the behaviour of the nonsingleton blocks is explained
as follows. In the lower subcritical phase there are simply not enough events to
make anything more than finitely many nonsingleton blocks. Then, as the rate
increases, there is an intermediate period where we see a countable infinity of
nontrivial blocks. Eventually there are so many reproduction events that they fre-
quently overlap, and we need (a.s.) only finitely many of them to cover K .

In the supercritical phase τ = 0 almost surely and the question of the behaviour
of our model at time τ is trivial. In the other phases we have the following result.
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COROLLARY 4. In all but the supercritical phase, almost surely, Dτ = ∅ and
Aτ is finite.

Theorems 2, 3 and Corollary 4 describe qualitative properties of our model.
In particular, they are concerned with behaviour taking place on the tree struc-
ture (Kw)w∈W∗ and are essentially independent of the metric DK . However, if we
examine more detailed properties of our model, then DK does play a role. In Sec-
tion 5 we describe the behaviour of the Hausdorff dimension of Dt . Under some
quite strong regularity conditions, with K ⊆ Rd and DK equal to the Euclidean
metric, we obtain the following result. Let χ(t) be the Hausdorff dimension of Dt ,
conditional on Dt �= ∅, whenever this is defined.

• In the lower/upper subcritical and semicritical phases, χ(t) = dimH(K) for all
t ≥ 0.

• In the critical phase, χ decreases linearly over [0, t0] with χ(0) = dimH(K) and
χ(t0) = 0.

Proof of the results stated in Sections 1.2 and 1.3 can be found in Sections 2–5.
An outline of the proofs can be found in Section 1.7, but first we will compare our
model’s behaviour to some well-known coalescent and population models.

1.4. Comparison to the �-coalescent. Let � be a finite measure on [0,1], and
consider the corresponding �-coalescent; see, for example, Berestycki (2009). Our
model does not feature a spatial analogue of Kingmans coalescent, so we remove
the Kingman component of the �-coalescent by specifying that �({0}) = 0.

If �({1}) > 0, then the effect on the �-coalescent of the atom at 1 is as follows;
independently of all other mergers, and at rate �({1}), the �-coalescent sees a
merger which coagulates the whole population into a single block. Thus, the atom
at 1 serves only to obfuscate the behaviour of the �-coalescent, and is typically
removed.

In view of the above paragraph, suppose from now on that �({1}) = 0. Consider
the equivalent of this for the Segregated �-coalescent: we could set r0 = 0, but if
each of the 1-complexes sees a coalescence event, then we face essentially the
same issue in that a finite number of coalescence events has covered the whole
population. Of course, this could happen with n-complexes for any n ∈ N0, so in
our spatial setting there is no simple way to remove the chance that a finite number
of coalescence events may cover the whole population.

The �-coalescent is said to come down from infinity at time t > 0 if �t is a
finite set. It is shown in Pitman (1999) that if the �-coalescent comes down from
infinity at some t > 0, then it does so for all t > 0; hence the �-coalescent has no
equivalent of our critical phase. Pitman’s proof of this fact uses a zero-one law and
relies on the �-coalescent containing only countably many individuals; for this
reason the same argument cannot be applied to the Segregated �-coalescent.
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Let μn = ∫ 1
0 xn�(dx) and consider the case μ−1 = ∞. If the �-coalescent

does not come down from infinity [e.g., the coalescent of Bolthausen and Sznit-
man (1998)], then the �-coalescent has empty dust and a countable infinity of
nontrivial blocks. This behaviour does not occur in our model. Alternatively, if the
�-coalescent does come down from infinity, then it has empty dust and finitely
many atoms, corresponding to our supercritical phase.

Now consider the case μ−1 < ∞. It is shown in Freeman (2012) that if
μ−2 = ∞, then the �-coalescent has a countably infinity of nontrivial blocks,
and a positive fraction of the population contained within the dust. Similarly, if
μ−2 < ∞, then it is well known [e.g., Example 19 in Pitman (1999)] that the �-
coalescent has only finitely many nontrivial blocks, and has a nonnull proportion
of the population contained in the dust. Thus the �-coalescent has equivalents of
both our upper and lower subcritical phases.

To summarise the previous few paragraphs, the behaviour seen by our model is
that of the �-coalescent, with following modifications:

1. Playing the role of the cases where �({1}) > 0, we have the (always positive)
probability of having only finitely many nontrivial blocks and no dust.

2. There is no possibility in our model of having a countable infinity of nontriv-
ial blocks and empty dust. This behaviour is replaced by our semicritical phase, in
which we see a countably infinity of nontrivial blocks and nonempty null dust.

3. The critical phase appears in between the semi- and supercritical phases.

1.5. Connections to spatial �-coalescents. Our model is a spatial extension of
the �-coalescent. A mean-field version of the �-coalescent has already appeared
in Limic and Sturm (2006), building on the mean-field version of Kingman’s coa-
lescent from Greven, Limic and Winter (2005). The model from Limic and Sturm
(2006) is referred to in the literature as “the spatial �-coalescent”.

We refer the reader to Limic and Sturm (2006) for a proper description of their
model and restrict ourselves here to outlining some important aspects in which
it differs from our own. The model of Limic and Sturm uses a finite graph G

as its geographical space, whereas we use a spatial continuum. The points of its
geographical space may be inhabited by more than one block at any time, whereas
we permit at most one block of individuals to inhabit a single point of K . Further,
the blocks of individuals in the model of Limic and Sturm wander freely around G

and may only be coagulated with other blocks that happen to be at the same vertex
at the same time. By contrast, blocks in our own model do not move in between
mergers, but a single merger involves a nonnull proportion of our geographical
space.

Thus, the two models are very different and it is natural to expect different be-
haviour. In fact, such differences are readily seen. For example, Angel, Berestycki
and Limic (2010) show that model of Limic and Sturm, modified slightly so as G

is countably infinite and of bounded degree, does not come down from infinity.
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1.6. Connections to the Spatial �-Fleming–Viot process. We now introduce
a family of population models that are closely related to the �-coalescent. The
dual of the �-coalescent is the �-Fleming–Viot process, constructed in Le Gall
and Bertoin (2003) [and also implicitly in Donnelly and Kurtz (1999)]. The �-
Fleming–Viot process is a natural generalisation of the classical Fleming–Viot
process, which is itself dual to Kingman’s coalescent; see, for example, Etheridge
(2011). The Spatial �-Fleming–Viot process (S�FV) was introduced in Etheridge
(2008) as a spatial extension of the �-Fleming–Viot process.

The S�FV process is an infinite system of interacting �-Fleming–Viot pro-
cesses, with one such process at each site of Rd . See Barton, Etheridge and Véber
(2010) for a precise description of the S�FV process, and see Barton, Etheridge
and Véber (2013) for a survey of recent results concerning (variants of) the S�FV
process.

Since the dual of the �-Fleming–Viot process is the �-coalescent, and the
S�FV is a spatial version of the �-Fleming–Viot process, the dual to the S�FV
process behaves like a spatial version of the �-coalescent. However, as we see be-
low the dual of the S�FV process does not display the full range of �-coalescent
like behaviour. Our own model, by contrast, shows that coalescent behaviour can
be greatly enriched by the introduction of space.

The ancestral lineages of (individuals sampled from a population whose geneal-
ogy is described by) the S�FV process are compound Poisson processes. Like our
own model, these ancestral lineages are only coalesced together when they move
through space. However, each such lineage is a compound Poisson process that
jumps at finite rate.

Now, fix t > 0. Since the geographical space used by Barton, Etheridge and
Véber is a spatial continuum, we can pick one individual at each point of space and
integrate across space (using Fubini’s theorem) to see that with positive probability
there is a nonnull subset of the geographical space, containing an infinite subset
of our chosen individuals, all of whom have not been affected by a reproduction
event during [0, t]. In the language of coalescents, at all times there is positive
probability of the dust being nonempty. Therefore, the model of Barton, Etheridge
and Véber (2010) does not come down from infinity.

In light of the above paragraph, the reader might wonder why Barton, Etheridge
and Véber force their ancestral lineages to be compound Poisson processes rather
than using more general Lévy processes. The difficulty stems from an apparent
incompatibility between the compensation mechanism (in Rd ) of “true” Lévy pro-
cesses and the mathematical machinery used to construct the S�FV process; we
refer the reader to Barton, Etheridge and Véber (2010) for a proper discussion.
It would not be fair to claim that we have overcome this difficulty in our model.
Rather, we choose our state space and reproduction mechanism in such a way as
our ancestral lineages can jump at infinite rate, but without the need for Lévy pro-
cess style compensation.
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Another stochastic model with similar features, a system of interacting Can-
nings processes on the hierachical group, is investigated by Greven et al. (2012).
They carry out a renormalization procedure corresponding to the hierachical mean
field limit, obtaining a detailed description of the limiting object and its behaviour
in terms of clustering and coexistance.

1.7. Outline of the proofs. Our proof of Theorem 3 comes via several lines
of enquiry. Firstly Fubini’s theorem produces some useful information and, sec-
ondly, the spatial structure of K provides some basic connections between Dt

and At . However, the most important contribution comes via a connection between
our model and Galton–Watson processes in Varying Environments (GWVEs).
A GWVE is a classical Galton–Watson process, with the modification that the
offspring distribution of an individual may depend on its generation number. An
introduction to GWVEs can be found in Fearn (1972).

Note that branching structures also play a pivotal role in the study of the �-
coalescent, as can be seen in, for example, Bertoin and Le Gall (2000), Birkner
et al. (2005) and Berestycki, Berestycki and Limic (2014).

For each w ∈ W∗, let Ew be the first time t > 0 at which a coalescence event
occurs in the complex Kw (to be clear, the event must occur in precisely Kw and
not just inside one of its subcomplexes). We refer to Ew as the exponential clock
for Kw . The connection to our model is as follows. For each t > 0 and n ∈ N0 we
define

Bt
n = {Kw; |w| = n and for all u ∈ W∗, if Kw ⊆ Ku then Eu > t}

and write Bt
n = |Bt

n| for the number of elements of Bt
n. Set Bt = ⋃

n∈N0
Bt

n.
It can be seen (in Lemma 3.4) that (Bt

n) is a GWVE with an nth stage offspring
distribution that is Binomial(S, e−trn+1). Note that the case rn = c ∈ (0,∞), where
the GWVEs are classical Galton–Watson processes, is part of the critical phase.

It turns out that the behaviour of Bt
n = |Bt

n| as n → ∞ is closely connected to
the behaviour of Dt . In fact, Lemma 3.5 (which appears in Section 3.3) says that

Dt = ⋂
n∈N

⋃
w∈Bt

n

Kw.(1.5)

A GWVE (Bn) is said to be degenerate if P[∃n ∈ N,Bn = 0] = 1. In view of
(1.5), it is important for us to understand when (Bt

n) is degenerate, since in this
case Dt = ∅. Conditions equivalent to degeneracy of GWVEs are in general not
known, but conditions covering cases including (Bt

n) have been known for some
time, in fact since Agresti (1975) and Jiřina (1976). Further conditions were given
by Lyons (1992). The conditions of Jiřina (1976) are best suited to our setting, and
we state them in Lemma 3.6.

The quantity lim supn
1
n

∑n
1 rj (which appeared in Theorem 3) plays a central

role in characterizing degeneracy of (Bt
n). It is precise role is subtle but a partial
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explanation of the formula is the following. When reproduction events are occur-
ring at a high rate, it becomes common for a larger reproduction event to overwrite
the effect of some of the preceding smaller ones. This is borne out by the appear-
ance of the lim sup; from Theorem 3 we see that, when

∑
rn = ∞, only the n-level

reproduction events for which rn is large enough to contribute to lim supn
1
n

∑n
1 rj

actually take part in determining the phase.
Formulas similar to (1.5) can be found in the random fractals literature at least

as far back as Falconer (1986), Mauldin and Williams (1986) and Graf (1987)
(although these authors did not use branching processes explicitly). Such formulas
provide what is now a well-known connection between various classes of random
fractals and branching processes. In fact, in Section 5 we use a result of Durand
(2009) to calculate the Hausdorff dimension of Dt , conditional on Dt �= ∅.

In addition to using GWVEs, in order to understand the behaviour of τ we
will use some techniques from the percolation literature. Many types of branching
process, including GWVEs, can be reformulated as an inhomogeneous percolation
process on some suitable tree. The relationship is displayed in great generality by,
for example, Lyons (1992). In the case of our GWVEs we have the following.

Consider W∗ as the nodes of a regular S-ary tree, rooted at ∅ with edge set
E = {(w,wi);w ∈ W∗, i ∈ S}. Fix t > 0. We say that the node w ∈ W∗ is open if
Ew > t (and closed otherwise) and note that Bt is the set of points in W∗ which are
connected to the root node ∅ via edges with only open nodes at their endpoints. In
the language of percolation, Bt is the open cluster connected to ∅. Note that each
node w ∈ W∗ chooses independently whether it is open or closed. The distribution
of Ew varies with |w|, so in fact Bt is an inhomogeneous percolation on the S-ary
tree W∗.

2. Existence of the model. In this section we prove the existence of the Seg-
regated �-coalescent. We begin with the definition of our model, formalizing the
heuristic description given in Section 1.2.

Let P be the measure on W	 × K defined by P({w} × A) = r|w| × λw(A)

for each w ∈ W∗ and measurable A ⊆ K . Let (
,F,P) be a probability space
equipped with a Poisson point process M in R × W∗ × K , of intensity dt ⊗
P(dw,dy), where dt denotes Lebesgue measure. For (measurable) I ⊆ R, V ⊆
W∗ and A ⊆ K define

MI = {
(t,w, y) ∈ M; t ∈ I

}
, MI×V = {

(t,w, y) ∈ M; t ∈ I,w ∈ V
}
.

Note that, in terms of M , Ew = inf{s > 0;M(0,s]×{w} �= 0}.
It will be to our advantage to have some almost sure properties of M as “sure”

properties of M . In particular, by standard properties of Poisson point processes
[see, e.g., Kingman (1993)], with probability one:

(a) For all k ∈ N and n ∈ N∪ {0}, M[−k,k]×Wn is finite.
(b) For all u ∈ R, M{u} is finite.
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With slight abuse of notation, we simply redefine M so as (a) and (b) hold for all
ω ∈ 
.

Let us examine Figure 1 and determine which coalescence events, according
to our heuristic, actually influence the final position of the lineages. Consider an
event (s,w,y) in a complex Kw of level |w| = n at time s ∈ (0, t). The event had
no effect on the position at time t of any of the lineages if:

• There was an event (s ′,w′, y′) such that s < s′ < t and Kw ⊆ Kw′ .
• Or, the final event (s ′,w′, y′) such that 0 < s ′ < s and Kw ⊂ Kw′ had y′ /∈ Kw .

Hence, to work out where x ∈ K should be mapped to over time [s, t] we need
only consider the following sequence of events.

First, look for the final level 0 event during (s, t] which affected the point x. If
we find one, say (u1,w1,p1), we then look for the final level 1 event which was
after time u1 and affected p1, and so on. If at any point we do not find a level n

event, we simply move up to level n + 1 and look there. In symbols:

DEFINITION 2.1. Fix (x, s, t) with x ∈ K and s ≤ t . Let (u0,w0,p0) =
(s,∅, x) and set N0 = −1. For as long as Nm+1 < ∞ define inductively a pair
of (possibly finite) sequences by

Nm+1 = min
{
n > Nm; ∃(u,w,p) ∈ M(um,t]×Wn such that pm ∈ Kw

}
,

Em+1 = (um+1,wm+1,pm+1),

where

um+1 = max
{
u ∈ (um, t]; (u,w,p) ∈ M(um,t]×WNm+1

and pm ∈ Kw

}
.

Define (Em) = {(ui,wi,pi); i = 1,2, . . .}, (Nm) = {Ni; i = 1,2, . . .} and note
that we do not include the term i = 0. Define (um), (wm), (pm) similarly. A graph-
ical demonstration of Definition 2.1 can be seen in Figure 1.

Since (a) and (b) hold for all ω ∈ 
, (Em) and (Nm) are well defined for all
ω ∈ 
. The (finite or infinite) sequence of coalescence events (Em) contains the
only events which affected the final position of the lineage that started from x and
moved during time (s, t].

NOTATION 2.2 (Continuation of Definition 2.1). The sequence (Em) depends
on x, s and t . When we need this distinction (which will be most of the time), we
write

Ex,s,t
m = (

ux,s,t
m ,wx,s,t

m ,px,s,t
m

)
.

We write Kw
x,s,t
m

= Kx,s,t
wm

. Occasionally, if s and t are both clear from the context
then we may omit them as superscripts and write Ex

m = (ux
m,wx

m,px
m), Kx

wm
=

Kwx
m

.
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We will shortly define Xs,t using the language above, but first we need to note
a technical point that concerns the following lemma.

LEMMA 2.3. If the sequence (Ex,s,t
m ) is infinite, then the sequence (px,s,t

m ) is
convergent.

PROOF. Suppose (Ex,s,t
m ) is infinite. By Definition 2.1, |wx,s,t

m | is N valued
and strictly increasing, so |wx,s,t

m | → ∞ as m → ∞. Thus Kx,s,t
wm

is a decreasing
sequence of sets. Note that px,s,t

m ∈ Kwm . By (K 2), (px,s,t
m ) is a Cauchy sequence

so, by completeness of K , (px,s,t
m ) is convergent. �

Suppose for a moment that all complexes Kw of K are closed, and recall our
heuristic definition from Section 1.2. Then it makes intuitive sense that reproduc-
tion events occurring in complexes Kw′ ⊆ Kw cannot move particles in the flow
from within Kw into K \ Kw . However, if some Kw is not closed, then it might be
the case that an infinite sequence (u′

m,w′
m,p′

m) of events, with Kw′
m

⊆ Kw , could
have limp′

m /∈ Kw , because it could be that limp′
m ∈ Kw \Kw . In this case our con-

struction would run into a serious problem; the flow property Xs,v = Xt,v ◦ Xs,t

would fail.
To address this issue, we introduce the set

O = ⋃
n∈N

⋃
w,w′∈Wn

w �=w′

Kw ∩ Kw′ .

If O = ∅, then we say K is completely segregated. Recall Examples 1.2 and 1.3,
and note that Example 1.2 is completely segregated, but Example 1.3 is not.

Until further notice, which means until Section 4, we will assume that K is
completely segregated, that is, O = ∅. Then, in Section 4 we will discuss the
modifications which are necessary to make our arguments work in the case O �= ∅.

The Segregated �-coalescent is the process (Xs,t )s≤t defined as follows:

Xs,t (x) =

⎧⎪⎪⎨⎪⎪⎩
x, if

(
Ex,s,t

m

)
is empty,

p
x,s,t
M , if

(
Ex,s,t

m

) = (
Ex,s,t

m

)M
m=1 for M ∈ N,

lim
m→∞px,s,t

m , if
(
Ex,s,t

m

)
is infinite.

(2.1)

In fact, in Section 4 we will see that when O �= ∅, there is a P-null set on which it
makes sense to define X differently to (2.1). Until then we use (2.1) for all ω ∈ 
.
We now record some results which use the fact that O = ∅.

LEMMA 2.4. Every subcomplex Kw is a closed subset of K .

PROOF. Let n ∈ N0 and w ∈ Wn. Note that by (K 1) we have K =⊎
w∈Wn

Kw . Hence, if x ∈ Kw , then we must have x ∈ Kw′ for some w′ ∈ Wn.
If x /∈ Kw , then we would have x ∈ Kw ∩ Kuw

′, which contradicts O = ∅. �
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REMARK 2.5. By Lemma 2.4, if O = ∅, then (K 4) holds automatically.

LEMMA 2.6. For all s < t , all x ∈ K and all n ∈N, if (Ex,s,t
m ) is infinite, then

limm→∞ px,s,t
m ∈ Kx,s,t

wn
.

PROOF. We noted in the proof of Lemma 2.3 that Kx,s,t
wm

is a decreasing se-
quence of sets. Hence px,s,t

m ∈ Kx,s,t
wm

⊆ Kx,s,t
wn

for all m ≥ n. By Lemma 2.4, Kx,s,t
wl

is closed for all l ∈ N and hence limm→∞ px,s,t
m ∈ Kx,s,t

wn
. �

LEMMA 2.7. For all x ∈ K \Dt and t > 0, [x]t = Kx,0,t
w1

.

PROOF. If x /∈Dt , then for some y ∈ K we have y �= x and X0,t (x) = X0,t (y).
It follows from Definition 2.1, that Ex,s,t �= ∅ in this case. Note that if y ∈ Kx,0,t

w1
,

then X0,t (y) = X0,t (x), so Kx,0,t ⊆ [x]t . Now, suppose z ∈ K \ Kx,0,t
w1

. If (K \
Kx,0,t

w1
) ∩ (K \ Kz,0,t

w1
) �= ∅, then by (K 1) either (1) (K \ Kx,0,t

w1
) ⊆ (K \ Kz,0,t

w1
)

or (2) (K \ Kz,0,t
w1

) ∩ (K \ Kx,0,t
w1

).

If (1) holds, then x ∈ Kz,0,t
w1

, so by Definition 2.1 we must have N
x,0,t
1 ≥ N

z,0,t
1 ,

which means |wx,0,t
1 | ≥ |wz,0,t

1 |. But combined with (1) and (K 1) this implies that
K \ Kx,0,t

w1
= K \ Kz,0,t

w1
, which contradicts the definition of z.

Similarly, if (2) holds, then z ∈ Kx,0,t
w1

, so by Definition 2.1 we must have

Nz,0,t
w1

≥ Nx,0,t
w1

, which means |wz,0,t
1 | ≥ |wx,0,t

1 |. Combined with (2) and (K 1)
this implies that K \ Kx,0,t

w1
= K \ Kz,0,t

w1
, which again contradicts the definition

of z.
Thus, we must have (K \ Kx,0,t

w1
) ∩ (K \ Kz,0,t

w1
) = ∅. From this, Lemma 2.6

implies that X0,t (x) �= X0,t (z) so as z /∈ [x]t . Since z was arbitrary, [x]t = Kx,0,t
w1

.
�

The remainder of Section 2 is concerned with proving Theorem 1 and estab-
lishing some regularity results that we require in Section 3. Readers who are more
interested in proving Theorems 2, 3 and Corollary 4 may wish to omit Sections 2.1
and 2.2 and move straight on to Section 3.

2.1. Proof of Theorem 1. The proof comes in three parts, which correspond to
the bullet points in the statement of Theorem 1. The first part is a careful check of
the flow property.

PART 1: Let s ≤ t ≤ v, and fix x ∈ K . Write y = Xs,t (x). When necessary we
will emphasise the dependence with y = yx,s,t . We divide into three cases.

If N
x,s,t
1 = N

y,t,v
1 = ∞: then for all x ∈ K , Xs,t (x) = x = y and Xt,v(y) = y.

Since x = y, N
x,s,v
1 = ∞ and Xs,t (x) = Xt,v(x) = Xs,v(x), so Xt,v(Xs,t (x)) =

Xs,v(x).
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If N
x,s,t
1 = ∞ and N

x,t,v
1 < ∞, then Xs,t (x) = x = y, and hence we must have

u
x,s,t
1 ≥ v. Hence (Ex,t,v

m ) = (Ex,s,v
m ) and thus Xt,v(Xs,t (x)) = Xt,v(x) = Xs,t (x).

If N
x,s,t
1 < ∞, then we have N

x,s,v
1 < ∞. Let

Cs,t,v = {
x ∈ K; ∃m,ux,s,v

m ≥ t
}
.

If x /∈ Cs,t,v , then ux,s,v
m < t for all m, so from the definitions we have

(Ex,s,t
m ) = (Ex,s,v

m ). Hence Xt,v(x) = Xs,t (x) = y. Suppose it was the case that
(u

y,t,v
1 ,w

y,t,v
1 ,p

y,t,v
1 ) ∈ (Ey,t,v). Note y ∈ Kx,s,v

w1
so we must have (u

y,t,v
1 ,w

y,t,v
1 ,

p
y,t,v
1 ) ∈ (Ex,s,v

m ), which is a contradiction since u
y,t,v
1 ≥ t . Hence (E

y,t,v
m ) is

empty, and Xt,v = ι. Thus, Xt,v(Xs,t (x)) = Xs,v(x).
If x ∈ Cs,t,v , let

M = max
{
m;ux,s,v

m < t
}

[which is well defined since (ux,s,t
m ) is strictly increasing], and from the definitions

note that (Ex,s,t
m )M1 = (Ex,s,v

m )M1 .
By definition of M we have u

x,s,v
M+1 ≥ t , and since p

x,s,v
M = p

x,s,t
M , it holds

that N
x,s,v
M+1 ≤ N

x,s,t
M+1. Hence Kx,s,t

wM+1
⊆ Kx,s,v

wM+1
. By definition, p

x,s,t
M ∈ Kx,s,t

wM+1

and, we have also that (Kx,s,t
wm

) is decreasing. We have already commented that
Kx,s,t

wM+1
⊆ Kx,s,v

wM+1
, so it follows from Lemma 2.6 that yx,s,t ∈ Kx,s,v

wM+1
.

Since both y and p
x,s,v
M are elements of Kx,s,v

wM+1
, there is no (u,w,p) ∈ (E

y,t,v
m )

such that |w| < N
x,s,v
M+1—such a (u,w,p) would also have featured in (Ex,s,v

m ),

which contradicts the definition of M. Also, there are no (u,w,p) ∈ (E
y,t,v
m ) such

that u > u
x,s,v
M+1 and y ∈ Kw—such a (u,w,p) would feature in (Ex,s,v

m ), which
contradicts the definition of u

x,s,v
M+1.

Combining the results of the previous two sentences, (u
x,s,v
M+1,w

x,s,v
M+1,p

x,s,v
M+1) =

(u
y,t,v
1 ,w

y,t,v
1 ,p

y,t,v
1 ). Hence (Ex,s,v

m )m≥M+1 = (E
x,s,v
k )k≥1, which implies that

Xt,v(y) = Xs,v(x). This completes the third case.
Since x and ω were arbitrary, in all cases we have that for all ω ∈ 
, Xs,v =

Xt,v ◦ Xs,t .

PART 2: Let s1 < t1 ≤ s2 < ts . Since M(s1,t1] and M(s2,t2] are independent, and
the construction of Xs,t depended only on Ms,t , it follows immediately that Xs1,t1

and Xs2,t2 are independent.

PART 3: Let s1 < t1 and s2 < t2 with t1 − s1 = t2 − s2. Then M(s1,t1] and {(u −
(t2 − t1),w,p); (u,w,p) ∈ M(s2,t2]} are identical in distribution, from which it
follows that Xs1,t1 and Xs2,t2 are also identical in distribution.

PART 4: Let t ∈ R. Note that (t, t] is empty, so as by Definition 2.1 we have that
(Ex,t,t ) is empty for all x ∈ K . Thus Xt,t is the identity function.
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2.2. Regularity. Recall that our underlying Poisson point process � is defined
on the probability space (
,F,P). Throughout this section we denote the depen-
dence on ω ∈ 
 of X by writing X0,t (·)(ω). Let B(K) denote the Borel σ -algebra
on K , and recall that DK denotes the metric on K .

LEMMA 2.8. K is separable.

PROOF. By Lemma 1.4, each Kw is nonempty. For each Kw pick some point
x(w) ∈ Kw and define D= {x(w);w ∈ W ∗}. Note that D is countable.

Let O be an open set of K . Since K is a metric space, for some r > 0 and
y ∈ K , Br(y) ⊆ O . For y ∈ K and n ∈ N let K(y,n) be the unique complex Kw of
K such that |w| = n and y ∈ Kw . By (K 2), for some n ∈ N we have rn < r/2, so
as K(y,n) ⊆ Br(y) ⊆ O . By definition of x(w) there is w ∈ W∗ such that x(w) ∈
K(y,n) ⊆ O. Hence D is a countable dense subset of K . �

LEMMA 2.9. The Borel σ -algebra on K is generated by (Kw)w∈W∗ .

PROOF. By Definition 1.1, each Kw is measurable, so it is clear that
σ(Kw;w ∈ W∗) ⊆ B(K). We will now prove the reverse inclusion.

By Lemma 2.8, K is separable, hence any open subset of K can be written as
a union of only countably many open balls of K . Hence B(K) is generated by the
open balls of K . So the proof is complete if we can show that any open ball of K

is contained in σ(Kw;w ∈ W∗).
To this end, let Br(x) = {y ∈ K; |y − x| < r} be a fixed but arbitrary open ball

in K . By (K 1), for each y ∈ K and n ∈ N, let K(y,n) be the unique complex Kw

of K such that |w| = n and y ∈ Kw . Note that

Br(x) ⊇ ⋃{
Kw;w ∈ W∗,Kw ⊆ Br(x)

}
(2.2)

is tautologically true, and, since W∗ is countable, the union on the right is count-
able. Now, suppose that y ∈ Br(x). Since Br(x) is open, for some ε > 0 we have
By(ε) ⊆ Br(x). By (K 2), for some sufficiently large n ∈ N we have Kw(y,n) ⊆
Bε(y) ⊆ Br(x). However, this implies that Kw(y,n) ∈ {Kw;w ∈ W∗,Kw ⊆ Br(x)},
so as y ∈ ⋃{Kw;w ∈ W∗,Kw ⊆ Br(x)}. Hence, in fact (2.2) is an equality, and
thus Br(x) ∈ σ(Kw;w ∈ W∗). �

LEMMA 2.10. For each s < t , (x,ω) �→ Xs,t (x)(ω) is a measurable function
from K × 
 → K .

PROOF. The definition of our model is translation invariant across time, so it
suffices to consider the case s = 0. For v ∈ W∗ let W(v) = {w′ ∈ W∗;Kv ⊆ Kw′ }.



452 N. FREEMAN

Fix w ∈ W∗. We note{
(x,ω) ∈ K × 
;X0,t (x)(ω) ∈ Kw

}
= ⋃

v∈W∗
Kv × {

ω ∈ 
;X0,t (Kv) ⊆ Kw

}
= ⋃

v∈W∗
Kv × [{ω ∈ 
 \A;Ku ⊆ Kv}

� (
A∩ {

ω ∈ 
;�(u′,w′,p′) ∈ �(0,t],
Kv ⊆ Kw′,p′ /∈ Kw,�[u′,t]×W(v) = ∅

})]
.

Note that {ω ∈ 
 \ A;Ku ⊆ Kv} is either empty or equal to the measur-
able set 
 \A. From the representation above, it follows that {(x,ω) ∈ K ×

;X0,t (x)(ω) ∈ Kw} is an element of the product σ -algebra on K ×
. Lemma 2.9
completes the proof. �

REMARK 2.11 (On particle paths). For each x ∈ K , t �→ X0,t (x) is a càdlàg
function, and ω �→ X0,·(x) is a random variable in the space of càdlàg K-valued
paths (with the usual weak topology). Proof of this result is no more than a long
exercise in manipulating the definitions and is not included in this article; see
Freeman (2012).

3. Proof of the phase transitions. In this section we prove the results that
were stated in Section 1.3, namely Theorems 2, 3 and Corollary 4. We begin with
some results based on Fubini’s theorem and the spatial structure of K .

LEMMA 3.1. If
∑

rn = ∞, then P[λt (Dt ) = 0] = 1.

PROOF. Fix t > 0. By Fubini’s theorem, which applies by Lemma 2.10,

E
[
λ(Dt )

] = E
[∫

K
1{x ∈Dt }λ(dx)

]
=

∫
K
P[x ∈ Dt ]λ(dx).(3.1)

The rate at which each point x ∈ K is affected by reproduction events is
∑

n∈N0
rn.

Hence, if
∑

rn = ∞, then each x ∈ K has almost surely been involved in some re-
production event during [0, t] and thus P[x ∈ Dt ] = 0. By (3.1), P[λ(Dt ) = 0] = 1.

�

LEMMA 3.2. Suppose At is finite. Then either Dt = ∅ or, for some w ∈ W∗,
Kw ⊆ Dt . In the latter case, λt (Dt ) > 0.

PROOF. Suppose that At is finite and Dt is nonempty. Enumerate At as
{[xi]t ; i = 1, . . . ,N} where xi ∈ K are such that [xi]t �= [xj ]t for i �= j . By def-
inition of [x]t we have [xi]t ∩ [xj ]t = ∅ for i �= j and by Lemma 2.7 we have
[xi]t = Kxi,0,t

w1
for all i.
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Let N = max{|wxi,0,t
1 |; i = 1, . . . ,N}, and note that by (K 1) we have

K = �w∈WN Kw . Since Dt �= ∅, by (1.1) there is some x ∈ K \ (∪At) = K \
(
⋃

i K
xi,0,t
w1

). Combined with K = �w∈WN Kw·, this means that for some w′ ∈ WN
we must have Kw′ ⊆ K \ (

⋃
i K

xi,0,t
w1

), and by (1.1) we must have Kw′ ⊆ Dt . It
follows immediately from Lemma 1.4 that λ(Dt ) > 0. �

LEMMA 3.3. If
∑Snrn = ∞, then P[∃t > 0,∃w ∈ W∗,Kw ⊆ Dt ] = 0.

PROOF. Since W∗ is countable, the lemma follows if we can show that P[∃t >

0, Kw ⊆ Dt ] = 0 for an arbitrary w ∈ W∗. So fix w ∈ W∗, and set n = |w|. The
rate at which Kw is affected by reproduction events is∫

W ∗×K
1{Kw ∩ Kw′ �= ∅}P(

dw′, dp
) = ∑

w′∈W∗
r|w|1{Kw ∩ Kw′ �= ∅}

≥ ∑
w′∈W∗

r|w|1{Kw′ ⊆ Kw}.

Now, by (K 1), Kw′ ⊆ Kw if and only if w′ = wv for some v ∈ W∗. Hence,

∑
w′∈W∗

r|w|1{Kw′ ⊆ Kw} = ∑
v∈W∗

r|wv| = 1

Sn

∞∑
m=n

Smrm = ∞.

It follows immediately that (with probability one) Kw is affected by a reproduction
event during (0, t] for any t > 0. Hence P[∃t,Kw ⊆ Dt ] = 0. �

The following pair of lemmas, which play a crucial part in our arguments, begin
the connection between Dt , At and Bt .

LEMMA 3.4. For each fixed t > 0, (Bt
n)n≥0 is a GWVE. The initial state is

Bt
0 = 1{E∅ > t}, and the nth stage offspring distribution is Binomial with S trials

and success probability e−trn+1 .

PROOF. Note first that e−rnt is the probability that Kw , where |w| = n, does
not see its clock ring during (0, t]. If w ∈ Bt

n and |w| = n, then the (conditional)
probability that wi ∈ Bt

n+1 is just e−rn+1t . The clocks corresponding to Kwi and
Kwj are independent if i �= j . Thus the offspring distribution of w ∈ Bt

n is Bino-
mial with S trials and success probability e−rn+1t . �

LEMMA 3.5. For each t > 0, Dt = ⋂
n∈N0

⋃
w∈Bt

n
Kw .

PROOF. Suppose first that x ∈ Dt , so as [x]t is a singleton. If Ew ≤ t for some
Kw � x, then by definition of X the set X0,t (Kw) would be a single point. By
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Lemma 1.4 the set Kw is infinite, and by Lemma 2.7 Kw � x implies Kw ⊆ [x]t ,
so in fact we must have Ew > for all Kw � x. Thus x ∈ ⋂

n

⋂
w∈Bt

n
Kw .

Similarly, if x ∈ ⋂
n

⋂
w∈Bt

n
Kw , then Ew > t for all Kw � x. If x /∈ Dt , then

by Lemma 2.7 we would have X−1
0,t (x) = Kx,0,t

w1
, which implies that Ew1 ≤ t , in

contradiction to the above. Hence we must have x ∈ Dt . �

3.1. Degeneracy of GWVEs. We make use of Lemma 3.5 through a result of
Jiřina (1976) which characterises the extinction criteria of particular GWVEs. De-
fine

mt
n = E

[
Bt

n

] = Sne−t
∑n

0 rj ,(3.2)

gt =
∞∑

n=1

(1 − e−rn+1t )S + Se−rn+1t − 1

Se−rn+1tmt
n

.(3.3)

Note that mt
n ∈ (0,∞). For all x > 0 and n ∈ N, n ≥ 2, it holds that (1 − x)n +

nx − 1 > 0, and hence gt ∈ (0,∞].

LEMMA 3.6 [Jiřina (1976)]. P[∃n ∈ N,Bt
n = 0] < 1 if and only if both

infmt
n > 0 and gt < ∞.

PROOF. Lemma 1.1 of Jiřina (1976) tells us that if infn mt
n = 0, then P[∃n ∈

N,Bt
n = 0] = 1. Our offspring distributions are binomial with S trials, which is

sufficient for Theorem 2.3 of Jiřina (1976) to apply. From this we obtain that if
infn mt

n > 0, then P[∃n ∈ N,Bt
n = 0] = 1 if and only if gt = ∞. �

LEMMA 3.7. Suppose that v ∈ (0,∞) is such that infn mv
n > 0. Then for all

u ∈ (0, v), infn mu
n > 0 and gu < ∞.

PROOF. Let infn mv
n > 0. Suppose that ε > 0 and that for infinitely many n we

have 1
n

∑n
0 rj >

ε+logS
v

. For such n,

mv
n =

(
exp

(
logS − v

1

n

n∑
0

rj

))n

≤
(

exp
(

logS − v
ε + logS

v

))n

= e−εn.

This may not occur for infinitely many n since infmv
n > 0. So, we may assume that

both infn mv
n > 0, and

lim sup
n

1

n

n∑
0

rj ≤ logS
v

.(3.4)

Let u ∈ (0, v). By the above, for some ε > 0 we have 0 < u lim supn
1
n

∑n
0 rj <

logS − ε. Hence, there exists N ∈ N (dependent on ε) such that for all n > N ,
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0 < u 1
n

∑n
0 rj < logS − ε. Thus

mu
n =

(
exp

(
logS − u

1

n

n∑
0

rj

))n

≥ (
exp(ε)

)n
,

so clearly infmu
n > 0. Also,

gu ≤
∞∑
1

S
Se−rn+1umu

n

= S
∞∑
1

1

mu
n+1

≤ S
∞∑
1

1

(eε)n+1 < ∞

as required. �

LEMMA 3.8. There exist C1,C2 ∈ (0,∞) (dependent only upon S) such that
for all t > 0,

C1
∑
n

e−rn+1t

mt
n

≤ gt ≤ C2
∑
n

e−rn+1t

mt
n

.

PROOF. Let fn : (0,∞) → (0,∞) be the function fn(x) = (1−x)n +nx − 1.
It is elementary to show that there exists C1,C2 ∈ (0,∞) (dependent only upon S)

such that for all x ∈ (0,1], C1x
2 ≤ fS(x) ≤ C2x

2. Since gt = ∑
n

fS (e−rn+1t )

Se−rn+1tmt
n

, the

stated result follows. �

LEMMA 3.9. For each (rn), precisely one of the following three cases occurs:

1. lim supn→∞ 1
n

∑n
0 rj = ∞ if and only if infmt

n = 0 for all t > 0.

2. lim supn→∞ 1
n

∑n
0 rj = 0 if and only if infmt

n > 0 for all t > 0.

3. lim supn→∞ 1
n

∑n
0 rj ∈ (0,∞) if and only if both (1) if t < t0, then infn mt

n >

0 and (2) if t ≥ t0 and infmt0 > 0 then gt0 = ∞.

PROOF. Since L = lim supn
1
n

∑n
0 rj exists in [0,∞] precisely one of L = 0,

L = ∞ and L ∈ (0,∞) occurs. We give each case in turn.
CASE 1: Suppose that lim supn

1
n

∑n
0 rj = ∞. For any t > 0, we can pick a

subsequence (rin) of (rn) such that for all n, 1
in

∑in
0 rj >

logS+1
t

. Hence mt
in

≤
(exp(−1))in for all n, and since in → ∞ it follows that infn mt

n = 0.
Conversely, if lim supn

1
n

∑n
0 rj = C < ∞, then for t = logS

2C
> 0 we note that

mt
n =

(
exp

(
logS − logS

2

1

C

1

n

n∑
0

rj

))n

.

For sufficiently large n, 1
n

∑n
0 rj ≤ 3

2C, and hence for sufficiently large n, mt
n ≥

(exp(1
3 logS))n. Hence infn mt

n > 0.
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CASE 2: Suppose that lim supn
1
n

∑n
0 rj = 0, and let t > 0. Then, for all suf-

ficiently large n we have 1
n

∑n
0 rj ≤ 1

2t
. Hence, for all sufficiently large n, mt

n ≥
(exp(1

2 logS))n. Thus infm mt
n > 0.

Conversely, suppose that infn mt
n > 0 for all t . Fixing t , and using the first step

of the proof of Lemma 3.7, we obtain from (3.4) that lim supn
1
n

∑n
0 rj ≤ logS

t
.

However, we have infn mt
n > 0 for all t > 0, so lim supn

1
n

∑n
0 rj = 0.

CASE 3: Suppose that lim supn
1
n

∑n
0 rj ∈ (0,∞). Recall from (1.4) that t0 =

logS
L where L = lim supn

1
n

∑n
0 rj . Consider first when s < t0. Then there exists

ε ∈ (0, log |S|) such that s ≤ log |S|−ε
L . Hence,

ms
n ≥

(
exp

(
log |S| − log |S| − ε

L

1

n

n∑
1

rj

))n

.

There exists N ∈ N such that for all n > N , 1
n

∑n
1 rj ≤ log |S|−ε/2

log |S|−ε
L . Hence, for all

n > N ,

ms
n ≥

(
exp

(
log |S| − (

log |S| − ε
) log |S| − ε/2

(log |S| − ε)

))n

= (
exp(ε/2)

)n
.

Thus ms
n → ∞, and hence infms

n > 0.
Now consider t0 itself. Define an ∈ R by rn = L + an. In this notation m

t0
n =

exp(−t0
∑n

1 aj ). We now consider two cases.
Firstly, if lim supn

∑n
1 aj = ∞, then it is immediate that infn m

t0
n = 0. Since mt

n

is a decreasing function of t (for each fixed n ∈ N0), this implies that infn mt
n = 0

for all t ≥ t0.
It remains only to consider the case lim sup

∑n
1 aj < ∞, in which case

infmt0
n > 0. By Lemma 3.8 there exists C ∈ (0,∞) such that gt0 ≥ C(infn m

t0
n )−1 ×∑n

1 e−rn+1t0 . Since lim sup 1
n

∑n
1 rj ∈ (0,∞), (rn) has a subsequence (rin) such that

lim supn rin < ∞. Hence gt0 = ∞. By Lemma 3.7 this implies that infn mt
n = 0 for

all t > t0, which completes the proof. �

3.2. Continuity. In this section we establish that various aspects of our model
are, in some sense, continuous across time.

For s < t , define Fs,t = σ(M(s,t]). Recall that in Section 1.7 we showed that
the GWVE Bt is equivalent to an inhomogeneous percolation on the tree W∗. For
a possibly random F -measurable time t ∈ [0,∞), let E t = inf{s > t;M(t,s]×{w} �=
∅}. In words, this is the first time after t at which Kw sees a coalescence event.
For each w ∈ W∗, s ∈ (0,∞) and possibly random F -measurable time t , define

Qw,t = {∃ a sequence (in)n∈N ⊆ S such that ∀m ∈ N,Ewi1···im > t
}
,

Qt
w,s = {∃ a sequence (in)n∈N ⊆ S such that ∀m ∈ N,E t

wi1···im > s
}
,

Rt
w = 


∖ ⋃
s>0

(
Qt

w,s

)
.
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When we wish to use a random time t in the above definition we will say so explic-
itly. For the remainder of this section, the symbol t is used only for deterministic
times.

In the language of percolation, Qw,s is the event that w ∈ W∗ is connected to
infinity at time t . The set Qt

w,s is the event that a connection between w and infinity
that exists at time t will continue to exist until (at least) time t + s. The set Rt

w is
the event that any connection between w and infinity which might exist at time t

will be instantaneously disconnected immediately after time t .

LEMMA 3.10. Let t ∈ [0,∞) and w ∈ W∗. Then P[Rt
w] is either 0 or 1.

PROOF. If s1 ≤ s2, then Qt
w,s2

⊆ Qt
w,s1

. Thus, for all N ∈ N we have Rt
w =


 \ ⋃
n≥N Qt

w,1/n. Noting that Qt
w,s is F(s,t+s] measurable, we obtain that Rt

w

is Ft,t+1/N measurable for all N ∈ N. The stated result then follows from the
Kolmogorov zero-one law. �

LEMMA 3.11. The function t �→ φ(t) = P[∀n ∈ N0,B
t
n �= 0] is strictly mono-

tone decreasing over [0,∞). Further, φ is left continuous over t ∈ [0,∞). If
φ(s) > 0, then φ is right continuous on [0, s).

PROOF. Note that Bt
n ⊆ Bs

n for all s ≤ t ; it follows immediately that φ(t)

is decreasing. The time at which clock Ew ring has a continuous distribution on
[0,∞), so for all [a, b] ⊆ [0,∞) there is positive probability of having Ew ∈ [a, b].
It follows from this that φ(t) is strictly decreasing.

For continuity, note that φ(t) = limn P[Bt
n �= 0], which is a decreasing limit as

n → ∞. Each Ew has continuous distribution, so the definition of Bt implies that
the function t �→ P[Bt

n �= 0] is continuous in t . Thus φ(t) is upper semicontinuous.
Since φ(t) is also decreasing, φ(t) is left continuous on [0,∞).

Let 0 ≤ t < s and be such that φ(s) > 0. In order to show that φ is right contin-
uous at t , we must prove that the event{∀n ∈N0,B

t
n �= 0 and ∀u > t ∃n ∈ N0,B

u
n = 0

}
(3.5)

has probability zero. Note that

(3.5) = Q∅,t ∩
(⋂

u>t

(
 \ Q∅,u)

)
= Q∅,t ∩

(⋂
u>0

(
 \ Q∅,t+u)

)

= Q∅,t ∩
(



∖ ⋃
u>0

Q∅,t+u

)
⊆ Q∅,t ∩

(



∖ ⋃
u>0

Qt
∅,u

)
(3.6)

= Q∅,t ∩ Rt
∅.

Suppose (3.5) has positive probability. Then by (3.6) we have P[Rt
∅] > 0, which

by Lemma 3.10 implies that P[Rt
∅] = 1. By the time homogeneity of our model
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this means that also P[R0
∅] = 1. Hence P[Q0

∅,u] = P[Q∅,u] = 0 for all u > 0,
which means that Bu is almost surely degenerate for all u > 0, in contradiction to
our hypothesis that φ(s) > 0. So in fact P[A] = 0, which completes the proof. �

LEMMA 3.12. If lim supn
1
n

∑n
0 rj ∈ (0,∞), then P[π < t0] = 1.

PROOF. Suppose that lim supn
1
n

∑n
0 rj ∈ (0,∞). By combining Lemmas 3.7

and 3.8 we have that P[∀n ∈ N0,B
t0
n �= 0] = 0. Hence, by the left continuity proved

in Lemma 3.11, for all ε > 0 there is some δ > 0 such that P[∀n ∈ N0,B
t0−s
n �=

0] < ε for all s ∈ [0, δ). Hence π < t0 almost surely. �

Let (Gt ) denote the usual augmented filtration [see Section II.67 of Rogers and
Williams (2000)] of Ft = σ(M[0,s]; s ≤ t). Let π = inf{t > 0; ∃n ∈ N,Bt

n = 0},
and note that, since (Gt ) is right continuous, π is a (Gt ) stopping time.

LEMMA 3.13. If lim supn
1
n

∑n
0 rj < ∞, then P[∃n ∈ N0,B

π
n = 0] = 1.

PROOF. Let lim supn
1
n

∑n
0 rj < ∞, and suppose (for a contradiction) that

P[∀n ∈ N0,B
π
n �= 0] > 0. By definition of π , almost surely for all t > π there

is some n ∈N0 such that Bt
n = 0. Thus{∀n ∈ N0,B

π
n �= 0 and ∀u > π ∃n ∈ N0B

t
n = 0

}
(3.7)

has positive probability. The same rearrangement as was used in (3.6), with π in
place of t , shows that (3.7) ⊆ Q∅,π ∩ Rπ

∅. Hence P[Rπ
∅] > 0.

By the strong Markov property of the time-homogeneous process M at the (Gt )

stopping time π , we have that Rπ
∅ and R0

∅ have the same distribution, hence also
P[Rπ

∅] > 0. By Lemma 3.10 we thus have P[R0
∅] = 1. Thus P[Q0

∅,u] = P[Q∅,u] =
0 for all u > 0, which means that Bu is almost surely degenerate for all u > 0.

However, since lim supn
1
n

∑n
0 rj < ∞, by Lemmas 3.7 and 3.9 there is almost

surely some ε > 0 such that P[∀n ∈ N0,B
ε
n �= 0] > 0, so we reach a contradiction

and conclude that in fact, P[∀n ∈ N0,B
π
n �= 0] = 0. �

3.3. Dust and GWVEs. In this section we build on Lemma 3.5 and relate the
behaviour of Dt to the behaviour of Bt .

LEMMA 3.14. Let t > 0. Then Dt =∅ if and only if ∃n ∈ N,Bt
n = 0.

PROOF. Fix t > 0. Suppose first that for some (random) n ∈N, Bt
n = 0. Then,

by Lemma 3.5, Dt = 0. For the converse, If Bt
n �= 0 for all n, then it is easily

seen that there exists a sequence (w(n))n∈N such that w(n) ∈ Bt
n and Kw(n) ⊇

Kw(n+1). By Lemma 2.4, each subcomplex Kw is a closed subset of K . It follows
from this and completeness of K that

⋂
n∈N Kw(n) is nonempty. By Lemma 3.5,⋂

n∈N Kw(n) ⊆ Dt so the proof is complete. �
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REMARK 3.15. The argument above has appeared many times in various
guises in the random fractals literature; see, for example, Lemma 8 of Durand
(2009). However, if K is not completely segregated, then (Lemma 2.6 does not
apply so as) Kw might not be closed and

⋂
n∈N Kw(n) could be empty. We address

this issue in Section 4.
As a consequence of Lemma 3.14, τ = π . The reason for making the distinction

between τ and π will become clear in Section 4.1.

LEMMA 3.16. Let t > 0. If Dt = ∅, then At is finite.

PROOF. If Dt is empty, then by Lemma 3.14 there is some n ∈ N0 such that
Bt

n = 0. Let N = min{n ∈N;Bt
n = 0}. Since Dt =∅, by Lemma 2.7, for all x ∈ K

we have [x]t = Kx,s,t
w1

.
Suppose that |wx,s,t

1 | > N + 1. Then there is some w ∈ WN+1 such that Kw ⊇
Kx,s,t

w1
. Since |w| > N we have w /∈ Bt so there must be some w′ ∈ W∗ such that

|w′| ≤ |w| < |wx,s,t
1 | and Kw′ ⊇ Kw ⊇ Kx,s,t

w1
with Ew′ ≤ t . Since then x ∈ Kw′

and |w′| ≤ |wx,s,t
1 |, this contradicts the definition of w

x,s,t
1 . Hence in fact |wx,s,t

1 | ≤
N + 1.

Therefore, At is a subset of {Kw;w ∈ WN+1}, which implies that At is finite.
�

LEMMA 3.17. Let t > 0. Then P[limn Bt
n = ∞ or ∃n,Bt

n = 0] = 1. Further,
almost surely, Dt �= ∅ if and only if limn→∞ Bt

n = ∞.

PROOF. To prove the first statement, we use the result of Theorem 1 in Jagers
(1974), which is a restatement (with minor correction) of a result in Church (1967).

The probability of a individual at stage n in the process Bt having exactly one
offspring is given by pt

n1 = Se−rnt (1 − e−rnt )S−1. Note that for a ∈ [0,1] and
n ≥ 1, a(1 − a)n ≤ 1

n+1(1 − 1
n+1)n. Since S ≥ 2 we have pt

n1 ≤ (1 − 1/S)S−1 <

1. Hence
∑

n(1 − pt
n1) = ∞, and from Jagers (1974) we have P[limn Bt

n =
∞ or ∃n ≥ N ,Bt

n = 0] = 1. It follows immediately from this and Lemma 3.14
that limn Bt

n = ∞ is almost surely equivalent to Dt �= ∅. �

LEMMA 3.18. Let t > 0. If
∑

rn < ∞, then P[Dt = ∅ or λ(Dt ) > 0] = 1.

PROOF. The process n �→ Bt
n/E[Bt

n] is a discreet parameter, nonnegative mar-
tingale. By the martingale convergence theorem, there is some random variable Lt

such that Bt
n

E[Bt
n] → Lt almost surely.

Recall that in (3.2) we gave a formula for E[Bt
n]. Since

∑
rn < ∞,

E
[
Bt

n

] ≥ Sn

(
E
[
Bt

0
]
exp

(
−t

∞∑
0

rj

))
= CSn,(3.8)
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where C = C(t) > 0. In the language of D’Souza and Biggins (1992), (3.8) means
that Bt is uniformly supercritical. Since the offspring distribution of Bt is uni-
formly bounded (by S), Theorem 2 of D’Souza and Biggins (1992) applies. In our
notation this means that {

Bt
n → ∞} = {

Lt > 0
}
.(3.9)

Now, suppose ω ∈ A and that Dt �= ∅. By Lemma 3.5, for all n ∈ N we
have Bt

n = |Bt
n| ≥ 1. By the first part of Lemma 3.17 it follows that (almost

surely) Bt
n → ∞ as n → ∞. By (3.9), limn

Bt
n

E[Bt
n] > 0. From this and (3.8),

lim infn
Bt

n

CSn > 0, where lim infn
Bt

n

CSn could potentially be infinite. In fact, though,

Bt
n ≤ Bt

0Sn ≤ Sn so lim infn
Bt

n

CSn is finite. We write l = lim infn→∞ Bt
n

CSn where
l ∈ (0,∞) (note l is random). Then there exists N ∈ N such that for all n > N ,
Bt

n

CSn ≥ l/2. So for all n > N we have Bt
n ≥ Cl

2 Sn.
Note that the sets

⋃
w∈Bt

n
Kw are decreasing as n increases. By Lemma 3.5,

λ(Dt ) = limn λ(
⋃

w∈Bt
n
Kw). Recall that λ(Kw) > 0 and λ(Kw) depends only

on |w| [by Lemma 1.4 and (K 3), resp.]. Hence λ(Kw) = λ(K)
Sn . By (K 1),

λ(
⋃

w∈Bt
n
Kw) = |Bt

n|λ(Kw) = Bt
n

Sn λ(K). Thus, for n > N , λ(
⋃

w∈Bt
n
Kw) ≥

Clλ(K) > 0. The result follows by Lemma 3.5. �

LEMMA 3.19. If lim sup 1
n

∑n
0 rj = 0, then for all t ∈R, P[τ > t] > 0.

PROOF. If lim sup 1
n

∑n
0 rj = 0, then by Lemma 3.9 we have infn mt

n > 0 for
all t > 0. By Lemma 3.7 we thus have gt < ∞ for all t > 0, and by Lemma 3.7 we
thus have P[∀n ∈ N,Bt

n �= 0] > 0. By Lemma 3.14 we thus have P[Dt > 0] > 0
for all t ∈ R. Since P[Dt > 0] > 0 for all t ∈ R we also have P[τ > t] > 0 for all
t ∈R. �

3.4. Proofs of Theorems 2, 3 and Corollary 4. Let us begin by proving Theo-
rem 3. Note that the criteria given for our five phases in terms of S and (rn) assign
possible each choice of S and (rn) to precisely one phase. Therefore, it suffices to
show that the criteria for each phase are sufficient. Let us begin by covering the
supercritical phase.

PROOF OF THEOREM 3. Supercritical. Suppose that lim sup 1
n

∑n
0 rj = ∞.

We need to show that τ = 0 almost surely. By Lemma 3.9, infn ms
n = 0 for

all s > 0, and thus from Lemma 3.6 we have that P[∃n ∈ N,Bs
n = 0] = 1. By

Lemma 3.14 P[Ds = ∅] = 1 for all s > 0 and by (1.2) we have P[∀s > 0,Ds =
∅] = 1. Hence P[τ = 0] = 1.

We will now give the arguments for the four remaining phases. Note that, in the
lower/upper subcritical and semicritical phases, Lemma 3.19 tells us that P[τ >
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0] = 1 and P[τ > t] > 0 for all t ∈ R. The behaviour of τ in the critical phase is
discussed below.

Lower subcritical. Suppose that
∑Snrn < ∞, and consider t ∈ (0, τ ). Hence,

by definition of M , for each (deterministic) s < ∞ only finitely many coalescence
events occur during [0, s]. Since t < τ < ∞, almost surely only finitely many
coalescence events have occurred during [0, t]. By Lemma 2.7, At is a finite set,
which combined with Lemma 3.2 implies that λ(Dt ) > 0.

Upper subcritical. Suppose that
∑Snrn = ∞ and

∑
rn < ∞. Consider t ∈

(0, τ ). If At was finite, then since Dt �= ∅, by Lemma 3.2 the set Dt must con-
tain a subcomplex of K ; but Lemma 3.3 implies that this is not the case. Hence in
fact At must be infinite. By Lemma 3.18, λ(Dt ) > 0 almost surely.

Semicritical. Suppose that
∑

rn = ∞ and lim sup 1
n

∑n
0 rj = 0. Consider t ∈

(0, τ ). The same argument applies here as given above in the upper subcritical
case to show that At is infinite. However, in this case Lemma 3.1 tells us that
P[λ(Ds) = 0] = 1 for fixed s ∈ (0,∞). By (1.2), in fact P[∀s > 0, λ(Ds) = 0].

Critical. Suppose that lim sup
∑n

0 rj ∈ (0,∞) and write L = lim sup
∑n

0 rj .
Consider first if s < t0. Then by combining Lemmas 3.6 and 3.8 we have that
P[∃n ∈ NBs

n = 0] < 1, so as by Lemma 3.17, P[Ds �= ∅] > 0 for s < t0. Hence
P[τ > s] ∈ (0,1) for all s < t0.

Similarly, by Lemma 3.6, P[∃n ∈ N,B
t0
n = 0] = 1 and hence by Lemma 3.17,

P[Dt0 =∅] = 1. By (1.2) we then have P[Ds = ∅] = 1 for all s ≥ t0.
By Lemma 3.14 we have P[τ = π ] = 1, so by Lemma 3.12 we have

P[τ < t0] = 1. Now consider t ∈ (0, τ ). The same argument as in the semicriti-
cal case tells us that At must be infinite and that P[∀s > 0, λ(Ds) = 0] = 1. This
completes the proof of Theorem 3. �

We now prove Theorem 2.

PROOF OF THEOREM 2. The first part of the statement of Theorem 2 is a
trivial consequence of Lemma 3.16; if t > τ , then Dt = ∅ almost surely and, by
Lemma 3.16, At is almost surely finite.

For the second statement, by Theorem 3, we have that P[τ = 0] = 1 if and
only if our model is supercritical. So, assume our model is not supercritical. By
Theorem 3 there is some (deterministic) δ > 0 such that P[Dδ �= ∅] > 0, so as by
Lemmas 3.11 and 3.14 we have that t �→ P[Dt �= ∅] is continuous on [0, δ). Note
that for all ε > 0,

P[τ = 0] ≤ P[τ ≤ ε] = P[Dε = ∅] = 1 − P[Dε �= ∅],
which by continuity tends to 1 − P[D0 �= ∅] = 0 as ε ↓ 0. Hence τ > 0 almost
surely. �

We now prove Corollary 4.
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PROOF OF COROLLARY 4. By Lemma 3.14 we have τ = π almost surely,
and combining this with Lemma 3.13, we obtain that Dτ = 0 almost surely, pro-
vided lim supn

1
n

∑n
0 rj < ∞. By Theorem 3, if our model is not supercritical, then

lim supn
1
n

∑n
0 rj < ∞, which completes the proof. �

4. The case O �= ∅. We now describe the modifications required to prove our
results in the case where K is a segregated space but potentially not a completely
segregated space (i.e., we allow O �= ∅). Essentially, the difference in this case
is that Lemma 2.4 breaks down. We used Lemma 2.4 in precisely two places,
namely the proofs of Lemmas 2.6 and 3.14. It is these two lemmas which we will
“repair” to deal with the case O �= ∅. We will replace them, respectively, with the
following.

LEMMA A. Almost surely, for all 0 < s < t , all x ∈ K and all n ∈ N, if (Ex,s,t
m )

is infinite, then limm→∞ px,s,t
m ∈ Kx,s,t

wn
.

LEMMA B. Almost surely, for all t ∈ [0,∞), Dt = ∅ if and only if Bt
n = 0 for

some n ∈ N0.

Lemmas A and B are the same (resp.) as Lemmas 2.6 and 3.14, except for the
presence in both cases of the “almost surely”. Their proofs are given in Section 4.1.

Let N be the null set of 
 on which the “almost surely” in Lemma A does not
hold. This is the null set (that we mentioned in Section 2) on which we wish to
define X differently in the case O �= ∅. So, fix some point x∗ ∈ K and from now,
for all s < t define

Xs,t =
{

as in (2.1), if ω ∈ 
 \N ,
x∗, if ω ∈ N .

(4.1)

In words, when ω ∈ N the flow instantaneously (and at all times) moves all the
particles to the point x∗. Thus τ = 0 on N .

The arguments in the proof of Theorem 1, using Lemma A in place of
Lemma 2.6, work as before so long as ω ∈ 
 \ N . On the other hand, for ω ∈ N
it is readily seen that (4.1) trivally implies the conclusions of Theorem 1. Thus
Theorem 1 remains true.

Essentially the same principle applies to using Lemma B in place of Lem-
ma 3.14; the results in Section 3 that were stated for all ω ∈ 
 and rely upon
Lemmas 2.6 and/or 3.14 now hold only almost surely. It is a simple matter to
check that this is sufficient to make the proof of Theorems 2, 3 and Corollary 4 go
through as before.

4.1. Proofs of Lemmas A and B. Recall Remark 2.5, that (K 4) was imme-
diate if O = ∅. In the case O �= ∅ it is (K 4) that fills the gap, as the following
arguments show.
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We first prove Lemma A.

PROOF OF LEMMA A. Let E = {(x, s, t) ∈ K × (0,∞)2; |Ex,s,t | = ∞}
and define an equivalence relation on E by (x, s, t) ∼ (x′, s′, t ′) if and only
if Ex,s,t = Ex′,s′,t ′ . Let [x, s, t] denote the equivalence class of (x, s, t) in E
under ∼. In view of this definition, we write E[x, s, t] = Ex,s,t and similarly
for (ux,s,t

m ,wx,s,t
m ,px,s,t ). It follows from (K 1) and Definition 2.1 that E

x,s,t
1 =

E
x′,s′,t ′
1 if and only if (x, s, t) ∼ (x,′ s′, t ′).
Let (ŝk, t̂k)k∈N be a countable dense subset of {(s, t) ∈ R2; s ≤ t}, and let

(x̂j )j∈N be such that for all w ∈ W∗ there is some xj ∈ Kw . Note that since
E

x,s,t
1 < E

x,s,t
2 for all x, s, t , for each (x, s, t) ∈ E there is some k such that

Ex,s,t = Ex,ŝk,t̂k . For fixed k, from Definition 2.1 we have E
x,ŝk,t̂k
1 = E

x′,ŝk,t̂k
1 if

and only if w
x,ŝk,t̂k
1 ; hence for all x ∈ K and all k ∈ N there is some j ∈ N such

that Ex,s,t = Ex̂j ,ŝk,t̂k . Thus{
∃(x, s, t) ∈ E ,∃n ∈N, lim

m→∞px,s,t
m /∈ Kx,s,t

wn

}
(4.2)

= ⋃
j,k,n∈N

{
p

[x̂j ,ŝk,t̂k]
m /∈ K

[x̂j ,ŝk,t̂k]
wn

}
.(4.3)

For fixed j, k and n, each p
[x̂j ,ŝk,t̂k]
m is sampled (independently) from within

K
[x̂j ,ŝk,t̂k]
wm according to λ. So, by (K 4), with probability 1/S we have

p
[x̂j ,ŝk,t̂k]
m ∈ K

[x̂j ,ŝk,t̂k]
wm+1 ⊆ K

[x̂j ,ŝk,t̂k]
wm+1

⊆ K
[x̂j ,ŝk,t̂k]
wm .(4.4)

By the Borel–Cantelli lemma, (4.4) occurs for infinitely many m ∈ N, with prob-
ability one. So, for each n ∈ N almost surely we can find some m ≥ n for

which (4.4) holds, implying that limr→∞ p
[x̂j ,ŝk,t̂k]
r ∈ K

[x̂j ,ŝk,t̂k]
wm+1

⊆ K
[x̂j ,ŝk,t̂k]
wn . Thus

P[p[x̂j ,ŝk,t̂k]
m /∈ K

[x̂j ,ŝk,t̂k]
wn ] = 0. Combining this with (4.3) we have that (4.2) is a

P-null, which completes the proof. �

PROOF OF LEMMA B. We give the proof of Lemma B in two parts, the first
of which is the following lemma. Thanks to Lemma A, all the results stated in
Sections 3–3.2 are available to us, with the caveat that results which previously
held for all ω ∈ 
 now hold only almost surely.

LEMMA 4.1. P[∀t ∈ Q, if ∀n ∈ NBt
n �= 0 then Dt �= 0] = 1.

PROOF. Since Q is countable, it suffices to prove the result for a single fixed
t ∈ Q. In fact, we can prove for any fixed t ∈ R, as follows. Suppose that Q =
{∀n ∈ N,Bt

n �= 0} has positive probability (and note that if this has probability
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zero, then there is nothing to prove). Let PQ denote the conditional measure of P
on the event Q.

By Lemma 4.10 of Lyons (1992), the distribution of Bt under PQ is that of a
GWVE with nth stage offspring distribution given by

f ∗
n (s) = fn(qn + (1 − qn)s) − qn−1

1 − qn−1
,(4.5)

where qn = P[∃m ≥ nBt
m = 0|Bt

n = 1], and fn(s) is the generating function of the
offspring distribution in stage n of Bt . Since qn = limN→∞ fn ◦ · · · ◦ fn+N(0), we
have f ∗

n (0) = 0 which in turn means that, under PQ, each individual in Bt has at
least one child.

This tells us the behaviour of |Bt | under PQ, but we need a little extra work
to describe Bt itself. The clocks {Ew;w ∈ Wn} are all independent and identically
distributed (under P). Therefore, under PQ, the number k of elements of Wn which
are in Bt

n is given by (4.5), but precisely which such elements of Wn is given by
the uniform distribution on the set of subsets of Wn of size k.

In view of this description, define a sequence (wn)n∈N0 as follows. Set w0 = ∅
and note that w0 ∈ Bt

0 PQ-almost surely. Now, if wn is defined and wn ∈ Bt
n Pq -

almost surely, enumerate the set of children of wn in Bt
n+1 as Cn+1 ⊆ Wn+1.

Independently of all else, sample wn+1 uniformly from Cn+1.
By our description of Bt under PQ, using (K 4) we have that with probabil-

ity (at least) 1/S , Kwn+1 ⊆ Kwn . The offspring distributions of each individual in
Bt

n are independent, hence by the Borel–Cantelli lemma there is almost surely
an infinite subsequence (w̃n) of (wn) such that Kw̃n+1 ⊆ Kw̃n for all n. Thus,⋂

n Kw = ⋂
n Kw̃n is nonempty. It follows from this and the “almost sure” replace-

ment of Lemma 3.5 (see our comments before Lemma 4.1) that, almost surely,
Dt ⊇ ⋂

n Kw̃n �= ∅. �

Our task now is to upgrade Lemma 4.1 into Lemma B. By Lemma 4.1, almost
surely, for all q ∈ Q, τ < q if and only if π < q . Since Q is dense in R it follows
immediately that τ = Q almost surely. Recall that Bt

n ≤ Bt
s for s ≤ t . It follows

from this and Lemma 3.13 that, almost surely, for all t ∈ R, ∃n ∈ N0B
t
n = 0 if

and only if t ≥ π . Hence, by (the almost sure version of) Lemma 3.5 we have
Dπ = ∅. Since τ = π almost surely we have Dτ = Dπ almost surely and thus
P[Dτ = ∅] = 1. Therefore, using (1.2) we have that almost surely, Dt = 0 ⇔ t ≥
τ ⇔ t ≥ π ⇔ ∃n ∈ N0,B

t
n = 0. �

5. The Hausdorff dimension of the dust. It is natural to ask further questions
about the nonempty null dust in the semicritical and critical phases. According to
Lemma 3.5 and our comments following (1.5), Dt is a random fractal. In fact, Dt

belongs to the large class of random fractals which are, in some sense, stochastic
generalizations of iterated function systems (IFSs). See Falconer (2003) for an
introduction to fractal geometry and IFSs.
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IFSs have been generalised in many directions, both deterministically and
stochastically, and formulas for the Hausdorff dimension of the corresponding at-
tractors have been obtained in increasing generality; see Durand (2009), Mörters
(2010) and the references therein. Generality sufficient to cope with Dt , at least
in terms of Hausdorff dimension, seems to have been reached only recently and a
result corresponding to the Hausdorff measure of Dt does not seem to be known.

Let ‖ · ‖ denote the Euclidean norm on Rd , and let Ld denote d-dimensional
Lebesgue measure. Let A◦ denote the (topological) interior of the set A, and let
the diameter of A be given by diam(A) = sup{‖x − y‖;x, y ∈ E}. Recall that a
similarity f is a function between subsets of Rd such that for some η ∈ (0,∞)

and all x, y, ‖f (x) − f (y)‖ = η‖x − y‖. We write η = lip(f ). Recall also that
dimH(A) denotes the Hausdorff dimension of A (for A ⊆ Rd this is with respect
to the metric (x, y) �→ ‖x − y‖).

In order to link our results to those of Durand (2009), we must impose some
extra assumptions on K .

DEFINITION 5.1. We say K is D-compatible if K ⊆Rd , DK = ‖ · ‖, and:

1. For all w ∈ W∗, Kw is compact.
2. For all w ∈ W∗ and i ∈ S there exists a similarity f (w,i) :Kw → Kwi .
3. There exists ε, ε′ ∈ (0,1) and a sequence (ln) ⊆ [ε, ε′] such that for all

w ∈ W , lip(f (w,i)) = l|w|.
4. There exists κ > 0 such that for all w ∈ W∗, Ld(K◦

w) ≥ κ diam(Kw)d .

THEOREM 5. Suppose that K is D-compatible and that P[Dt �= ∅] > 0. Let
L = lim supn

1
n

∑n
1 rj and S = lim supn

1
n

∑n
1(− log ln). Conditionally on {Dt �=

∅},
dimH(Dt ) =

(
log |S| − tL

S

)
∨ 0.

By setting rn = 0, it follows that dimH(K) = log |S|
S .

PROOF. For each s > 0 and n ∈ N let αt
s,n = |S|(ln)se−rn+1t and ρt(s) =

lim infn 1
n

∑n
j=1 logαs,j . Using (K 1) and the D-compatibility conditions we ap-

ply Theorem 1 of Durand (2009), which yields that, if Dt �= ∅, then dimH(Dt ) =
sup{s ∈ [0,∞);ρt(s) > 0}.

By Theorem 3, if P[Dt �= ∅] > 0, then 0 ≤ lim supn
1
n

∑n
1 rj < ∞. Note also

that by 3 of the D-compatability conditions, 0 ≤ − log ε′ ≤ − log(ln) ≤ − log ε <

∞. A short calculation shows that

ρt (s) = log |S| − t lim sup
n→∞

(
1

n

n∑
1

rj

)
− s lim sup

n→∞

(
1

n

n∑
1

(− log ln)

)
.

The result follows. �
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