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We prove duality relations for two interacting particle systems: the
q-deformed totally asymmetric simple exclusion process (q-TASEP) and
the asymmetric simple exclusion process (ASEP). Expectations of the du-
ality functionals correspond to certain joint moments of particle locations
or integrated currents, respectively. Duality implies that they solve systems
of ODEs. These systems are integrable and for particular step and half-
stationary initial data we use a nested contour integral ansatz to provide ex-
plicit formulas for the systems’ solutions, and hence also the moments.

We form Laplace transform-like generating functions of these moments
and via residue calculus we compute two different types of Fredholm deter-
minant formulas for such generating functions. For ASEP, the first type of
formula is new and readily lends itself to asymptotic analysis (as necessary
to reprove GUE Tracy–Widom distribution fluctuations for ASEP), while
the second type of formula is recognizable as closely related to Tracy and
Widom’s ASEP formula [Comm. Math. Phys. 279 (2008) 815–844, J. Stat.
Phys. 132 (2008) 291–300, Comm. Math. Phys. 290 (2009) 129–154, J. Stat.
Phys. 140 (2010) 619–634]. For q-TASEP, both formulas coincide with those
computed via Borodin and Corwin’s Macdonald processes [Probab. Theory
Related Fields (2014) 158 225–400].

Both q-TASEP and ASEP have limit transitions to the free energy of the
continuum directed polymer, the logarithm of the solution of the stochastic
heat equation or the Hopf–Cole solution to the Kardar–Parisi–Zhang equa-
tion. Thus, q-TASEP and ASEP are integrable discretizations of these contin-
uum objects; the systems of ODEs associated to their dualities are deformed
discrete quantum delta Bose gases; and the procedure through which we pass
from expectations of their duality functionals to characterizing generating
functions is a rigorous version of the replica trick in physics.
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1. Introduction. One-dimensional driven diffusive systems play an important
role in both physics and mathematics (see, e.g., [14, 24, 36]). As physical models
they are used to study mass transport, traffic flow, queueing behavior, driven lat-
tice gases, and turbulence. Their integrated current defines height functions which
model one-dimensional interface growth. In certain cases, they can be mapped into
models for directed polymers in random media and propagation of mass in a dis-
ordered environment. The particle systems provide efficient means to implement
simulations of these various types of systems and, in some rare cases, yield them-
selves to exact and rigorous mathematical analysis.

This article is concerned with two interacting particle systems—q-TASEP with
general particle jump rate parameters, and ASEP with general bond jump rate
parameters—which contain rich mathematical structure. Presently, we seek to shed
light on structure which exists in parallel for both of these systems. We demon-
strate duality relations (see Definition 2.1) for both of these systems directly from
their Markovian dynamics: q-TASEP is dual to a totally asymmetric zero range
process TAZRP (Theorem 2.2) whereas ASEP is self-dual (Theorems 4.1 and 4.2).
A consequence of duality is that expectations of a large class of natural observables
of these systems evolve according to systems of ODEs.

For q-TASEP, the duality result is, to our knowledge, new. When all particle
jump rate parameters are equal, dynamics of q-TASEP can be encoded via a quan-
tum integrable system in terms of q-Bosons [6, 33]. For ASEP with all bond jump
rate parameters equal, the ASEP self-duality was observed by Schütz [34] (see
Remark 4.4) via a spin chain representation of ASEP (which is related to the
XXZ model—a well-studied quantum integrable system). Our results apply for
general rates and proceed directly via the Markov dynamics.

The most surprising observation of this article is that, for certain initial data
called step and half stationary, we are able to explicitly solve the systems of ODEs
for q-TASEP and ASEP in terms of simple nested-contour integrals. For q-TASEP,
this works for the full generality of particle jump rate parameters, whereas for
ASEP we must assume all bond jump rate parameters to be equal at this stage and
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henceforth. For q-TASEP, the integral representations of the solution can also be
obtained via the formalism of Macdonald processes [9, 11], while for ASEP we
were guided by analogy and results of [19].

Let us state the simplest versions of these formulas, focusing just on step initial
data in which initially half of the lattice is entirely empty and the other half entirely
full (see Definitions 2.9 and 4.12). We also informally introduce the dynamics
of q-TASEP and ASEP.

The q-TASEP is a continuous time Markov process �x(t). Particles occupy sites
of Z and the location of particle i at time t is written as xi(t) and particles are
ordered so that xi(t) > xj (t) for i < j . The rate at which the value of xi(t) increase
by one (i.e., the particle jumps right by one) is ai(1 − qxi−1(t)−xi(t)−1); all jumps
occur independently of each other according to exponential clocks. Here, q ∈ [0,1)

represents the strength of the repulsion particle xi feels from particle xi−1. For the
purpose of this introduction, we restrict to ai ≡ 1 and consider only step initial
data where particles start at every negative integer location and nowhere else [i.e.,
for i ≥ 1, xi(0) = −i]. The following result appears as Corollary 2.12.

THEOREM 1.1. Consider q-TASEP with step initial data and particle jump
rate parameters ai ≡ 1. Then for any k ≥ 1 and n1 ≥ n2 ≥ · · · ≥ nk > 0,

E

[
k∏

j=1

q
xnj

(t)+nj

]

= (−1)kqk(k−1)/2

(2πι)k

∫
· · ·

∫ ∏
1≤A<B≤k

zA − zB

zA − qzB

k∏
j=1

(1 − zj )
−nj e(q−1)tzj

dzj

zj

,

where the integration contour for zA contains {qzB}B>A and 1 but not 0.

The ASEP (occupation process) is a continuous time Markov process η(t) =
{ηx(t)}x∈Z. The ηx(t) are called occupation variables and are 1 or 0 based on
whether there is a particle or hole at x at time t . The dynamics of this process
is specified by nonnegative real numbers p ≤ q (normalized by p + q = 1) and
uniformly bounded (from infinity and zero) rate parameters {ax}x∈Z. For each pair
of neighboring sites (y, y + 1), the following exchanges happen in continuous
time:

η �→ ηy,y+1 at rate ayp if (ηy, ηy+1) = (1,0),

η �→ ηy,y+1 at rate ayq if (ηy, ηy+1) = (0,1),

where ηy,y+1 denotes the state in which the value of the occupation variables at
site y and y + 1 are switched, and all other variables remain unchanged. All ex-
changes occur independently of each other according to exponential clocks. For
the purpose of this introduction, we restrict to ax ≡ 1 and consider only step initial
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data4 where ηx(0) = 1x≥1. Assume 0 < p < q and let τ = p/q < 1. Finally, let
Nx(t) = ∑

y≤x ηy(t) record the number of particles to the left of position x + 1 at
time t .

The following result on ASEP appears as Theorem 4.20.

THEOREM 1.2. Consider ASEP with step initial data and all bond rate pa-
rameters ax ≡ 1. Then for all n ≥ 1 and x ∈ Z,

E
[
τnNx(t)] = τn(n−1)/2 1

(2πι)n

×
∫

· · ·
∫ ∏

1≤A<B≤n

zA − zB

zA − τzB

×
n∏

i=1

exp
[
− zi(p − q)2

(zi + 1)(p + qzi)
t

](
1 + zi

1 + zi/τ

)x dzi

zi

,

where the integration contour for zA includes 0,−τ but does not include −1, or
{τzB}B>A (see Figure 5 for an illustration of such contours).

These expectations contain sufficient information to uniquely characterize the
distribution of the location of a given collection of particles (after the system has
evolved for some time) in each of these systems. Focusing on a single xn(t) or
Nx(t) distribution, we can concisely characterize this via generating functions of
suitable expectations. There are two types of generating functions we consider—
both related to q-deformed (or for ASEP τ -deformed) Laplace transform intro-
duced by Hahn [17] in 1949.

These generating functions are naturally suggested from the nested structure of
the contour integral formulas for these expectations. There are two ways to deform
the nested contour integrals so all contours coincide. Accounting for the residues
encountered during these deformations, we are led to two types of formulas for
expectations: those involving partition-indexed sums of contour integrals and those
involving sums of contour integrals indexed by natural numbers.

Using the partition-indexed formulas, we prove that the first generating func-
tion is equal to a Fredholm determinant which we call Mellin–Barnes type. The
following result is contained in Theorem 5.3.

THEOREM 1.3. Consider ASEP with step initial data and all bond rate pa-
rameters ax ≡ 1. Then for all x ∈ Z and ζ ∈ C \R+,

E

[
1

(ζ τNx(t); τ)∞

]
= det

(
I + KASEP

ζ

)
,

4Observe that the step initial data for q-TASEP involves particles to the left of the origin, whereas
for ASEP it involves particles to the right of the origin. We decided to keep these conventions to be
consistent with previous works on the subject.
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where (a; τ)∞ = (1 − a)(1 − τa) · · · , and where the L2 space on which KASEP
ζ

acts can be found in the statement of Theorem 5.3. The operator Kζ is defined in
terms of its integral kernel

KASEP
ζ

(
w,w′) = 1

2πι

∫
DR,d

�(−s)�(1 + s)(−ζ )s
fw(x, t)

fτsw(x, t)

1

w′ − τ sw
ds.

(The contour DR,d is specified in the statement of Theorem 5.3.) The function
fz(x, t) is given by

fz(x, t) = exp
[
(q − p)t

τ

z + τ

](
τ

z + τ

)x

.

This type of formula lends itself to rigorous asymptotic analysis. For ASEP, this
formula is new and in Appendix D we sketch how it can be used to recover Tracy
and Widom’s celebrated fluctuation result [40] which states that

lim
t→∞P

(
N0(t/γ ) − (t/4)

t1/3 ≥ −r

)
= FGUE

(
24/3r

)
.(1)

Here, γ = q − p is assumed to be strictly positive and FGUE is the GUE Tracy–
Widom distribution. The case when γ = 1 (q = 1 and p = 0) was proved earlier
by Johansson [21]. Theorem 1.3 also allows to access (under a certain weakly
asymmetric scaling) the narrow wedge KPZ equation one point formula [1, 32].

For q-TASEP, such a Mellin–Barnes type formula was obtained from the the-
ory of Macdonald processes [9], Theorem 4.1.40. It should be possible to use this
Fredholm determinant to prove cube-root GUE Tracy–Widom fluctuations for the
current past the origin in q-TASEP. This has not yet been done, though in an sta-
tionary version of the TAZRP associated to q-TASEP gaps, the cube-root fluc-
tuation scale is shown in [3] (via a different approach). In [9, 10], the q-TASEP
Mellin–Barnes-type Fredholm determinant formula is used (via a limit transition)
to write the Laplace transform of the O’Connell–Yor semidiscrete polymer par-
tition function [29]. Then [9, 10] perform rigorous asymptotic analysis to show
cube-root GUE Tracy–Widom free energy fluctuations as well as to provide a sec-
ond rigorous derivation of the narrow wedge KPZ equation formula (first rigor-
ously derived in [1]). From the perspective of asymptotics, this second approach is
a little less involved than that of [1].

On the other hand, using the formulas of the second type (i.e., deforming con-
tours in Theorems 1.1 and 1.2 differently), we prove that the second generating
function is equal to a Fredholm determinant which we call Cauchy type. The ASEP
Fredholm determinant Tracy and Widom derived in [38, 39] is also of this type
(and in fact, after inverting the eτ -Laplace transform we recover the same formula
as in [38, 39]). Asymptotic analysis of this type of determinant is not as straight-
forward as the Mellin–Barnes type. In [40], Tracy and Widom employ a signif-
icant amount of post-processing to turn this type of formula into one for which
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they could perform asymptotic analysis. The final formula still involves a compli-
cated term related to the Ramanujan summation formula (as observed in [32]). One
should note that while we do recover (among other formulas) the Tracy–Widom
ASEP Fredholm determinant formula, our approach via duality is entirely differ-
ent, our contour integral ansatz is not a version of the coordinate Bethe ansatz and,
along the way, we gain access to other information about ASEP, like joint moment
formulas. The Cauchy-type Fredholm determinant formula for q-TASEP was also
first derived in [9] via Macdonald processes.

In short, by utilizing duality for q-TASEP and ASEP, we are able to provide a
short and direct route from Markov dynamics to Fredholm determinant formulas
characterizing single particle location or single integrated current distributions.

Both q-TASEP and ASEP are integrable discretizations of the KPZ equation. As
stochastic processes, they converge to the Hopf–Cole solution to the KPZ equation
[1, 5, 27]. The systems of ODEs associated with their duality appear (though no
exact results to this effect have yet been proved) to have limit transitions to the
attractive quantum delta Bose gas which describes the evolution of joint moments
of the stochastic heat equation (whose logarithm is the KPZ equation and which
describes the partition function for the continuum random polymer).

An advanced version of the popular physics polymer replica trick attempts to
recover the Laplace transform of the one point distribution of the solution to the
stochastic heat equation in terms of its moments (see Section A.4). However, the
moments grow far too quickly to characterize this distribution, and hence draw-
ing conclusions from them is mathematically unjustifiable and in any case, risky.
Nevertheless, Dotsenko [15] and Calabrese, Le Doussal and Rosso [12] were even-
tually able to use this trick to recover the exact formulas of [1, 32].

It was then natural to consider a discrete analog of this replica approach. The
fact that duality gives a useful tool for computing the moments for ASEP was
first noted in [19]. By combining this observation with some of the calculational
techniques developed in [9], in the present paper we provide a unified and com-
plete scheme to study both q-TASEP and ASEP. Given the results of our work,
the nonrigorous replica trick manipulations can be seen as shadows of the rigorous
duality to determinant approach developed presently. That is to say that by going
to a suitable discrete approximation we are able to rigorously recover analogs of
Laplace transforms from moments and then in the limit transition these converge
to formulas for the stochastic heat equation’s Laplace transform. The replica trick
has proved computationally useful (see, e.g., [20]), thus providing additional mo-
tivation for the present work.

The limit transition of q-TASEP to the O’Connell–Yor semidiscrete directed
polymer [29] (and associated semidiscrete stochastic heat equation) is explored in
Appendix A. Under that limit transition, duality becomes the replica approach and
the duality system of ODEs become a semidiscrete version of the delta Bose gas.
The nested contour integral ansatz provides means to succinctly compute the solu-
tion to the Bose gas. The Fredholm determinants for q-TASEP limit to Fredholm
determinants for the Laplace transform of the polymer partition function.
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While a variety of probabilistic systems arise as degenerations of Macdonald
processes, ASEP is not known to be one of them. For ASEP, it is not known what,
if anything, replaces this additional integrable structure endowed to q-TASEP
from its connection to symmetric functions. However, it is compelling that both
q-TASEP and ASEP have duality relations and that the associated systems of
ODEs can both be solved via a nested contour integral ansatz. This leads one to ask
whether q-TASEP and ASEP can be unified via a theory even higher than Macdon-
ald processes. Spohn [37] has coined the term stochastic integrability to describe
stochastic processes which display a great deal of integrable structure. Perhaps,
so as to avoid confusion with stochastic integrals, a more appropriate name for
the present area of study is integrable sotchastich particle systems. Both q-TASEP
and ASEP are clear examples of such systems and the contributions of this work
provide an additional layer to that integrability. An upcoming work [8] introduces
two discrete time variants of q-TASEP and shows how the methods and ideas of
the present paper extend to the study of these systems as well.

1.1. Outline. The paper is organized as follows. In Section 2, we prove dual-
ity for q-TASEP and explicitly solve the associated systems of ODEs via a nested
contour integral ansatz. In Section 3, we provide a general scheme to go from such
nested contour integral formulas to two types of Fredholm determinants and in
Section 3.3 we apply this to q-TASEP in order to prove Theorem 1.1. In Section 4,
we prove duality and nested contour integral formulas for ASEP. In Section 5, we
explain the passage from Theorems 1.2–1.3. Appendix A deals with a degenera-
tion of q-TASEP to a semidiscrete directed polymer. Appendix B collects neces-
sary combinatorial facts. Appendix C proves a uniqueness result for the system of
ODEs associated with ASEP duality. Appendix D provides critical point analysis
of the Fredholm determinant in Theorem 1.3, as necessary to obtain (1).

1.2. Notations. We fix a few notations used throughout this paper. The imag-
inary unit ι = √−1. The indicator function of an event E is denoted by either δE

or 1E . We write ax ≡ 1 if ax = 1 for all x. All contours we consider are simple,
smooth, closed and counterclockwise oriented (unless otherwise specified). For a
contour C, we write αC as the dilation of C by a factor of α > 0. When we write
that the integration contour for zA contains {qzB}B>A, we mean that the contour
contains the image of the zB contour dilated by q . Containment is strict so that if
C contains a point α, then C separates α from infinity and the distance from C

to α is strictly positive.

2. Duality and the nested contour integral ansatz for q-TASEP. The
q-deformed totally asymmetric simple exclusion process (q-TASEP) is a continu-
ous time, discrete space interacting particle system �x(t). Particles occupy sites of
Z and the location of particle i at time t is written as xi(t) and particles are ordered
so that xi(t) > xj (t) for i < j . The rate at which the value of xi(t) increase by one
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FIG. 1. Left: q-TASEP with six particles. The indicated jump of x4 occurs at rate a4(1 − q2) since
the gap x3 − x4 − 1 = 2. Right: The dual TAZRP with sites {0,1, . . . ,6}. The indicated jump occurs
at rate a2(1 − q2) since y2 = 2.

(i.e., the particle jumps right by one) is ai(1 − qxi−1(t)−xi(t)−1); all jumps occur in-
dependently of each other according to exponential clocks. Here, q ∈ [0,1), ai > 0
is particle i’s jump rate parameter, xi−1(t)−xi(t)−1 is the number of empty sites
to its right (before particle xi−1) and all jumps occur independently of each other
(see left-hand side of Figure 1). We will use E

x and P
x to denote expectation and

probability (resp.) of the Markov dynamics with initial data x. When the initial data
is itself random, we write E and P to denote expectation and probability (resp.) of
the Markov dynamics as well as the initial data. We also use E and P when the
initial data is otherwise specified.

We presently focus on q-TASEP with N particles x1 > x2 > · · · > xN . However,
to ease the statement of results we include a virtual particle x0(t) ≡ ∞ and define
our state space as

XN = {�x = (x0, x1, . . . , xN) ∈ {∞} ×Z
N :∞ = x0 > x1 > · · · > xN

}
.

In this case, the dynamics are easily seen to be well defined. Observe that the
evolution of the right-most M ≤ N particles performs q-TASEP with M particles
(i.e., particles are unaffected by those to their left). On account of this, it is easy to
extend the dynamics to an infinite number of particles labeled x1 > x2 > · · · (i.e.,
there is a right-most particle). When studying these infinite systems, it is generally
enough to study related finite systems.

For q-TASEP with N particles, the generator of �x(t) acts on functions
f :XN →R and is given by

(
Lq-TASEPf

)
(�x) =

N∑
i=1

ai

(
1 − qxi−1−xi−1)(

f
(�x+

i

) − f (�x)
)
,(2)

where �x+
i indicates to increase the value of xi by one. Note that one may also write

down a generator in terms of occupation variables and (as in [9]) show that for any
initial data q-TASEP is, in fact, well defined.

The totally asymmetric zero range process (TAZRP) on an interval {0,1, . . . ,N}
with site-dependent rate functions gi :Z≥0 → [0,∞) [with gi(0) ≡ 0 fixed] is a
Markov process �y(t) with state space

YN = (Z≥0)
{0,1,...,N}.

The dynamics of TAZRP are given as follows: for each i ∈ {1, . . . ,N}, yi(t) de-
creases by one and yi−1(t) increase by one (simultaneously) in continuous time
at rate given by gi(yi(t)); for different i’s these changes occur independently (see
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right-hand side of Figure 1). Note that no particles leave site 0. The rate functions
we consider are given by gi(k) = ai(1 − qk). When all ai ≡ 1, this model was first
introduced in [33] and further studied in [30].

The generator of �y(t) acts on functions h :YN →R and is given by

(
Lq-TAZRPh

)
(�y) =

N∑
i=1

ai

(
1 − qyi

)(
h
(�yi,i−1) − h(�y)

)
,(3)

where �yi,i−1 indicates to decrease yi by one and increase yi−1 by one.
Observe that the gaps ỹi (t) = xi(t)− xi+1(t)− 1 of q-TASEP evolve according

to a TAZRP, but with boundary conditions that ỹ0(t) ≡ ỹN (t) ≡ ∞ for all t ∈ R+.
Our work will not draw on this obvious coupling. Rather, our statement of duality
will provide a different relationship between �x(t) and an independent �y(t).

2.1. Duality. Recall the general definition of duality given in Definition 3.1
of [24].

DEFINITION 2.1. Suppose x(t) and y(t) are independent Markov processes
with state spaces X and Y , respectively, and let H(x,y) be a bounded measurable
function on X × Y . The processes x(t) and y(t) are said to be dual to one another
with respect to H if

E
x[

H
(
x(t), y

)] = E
y[

H
(
x, y(t)

)]
(4)

for all x ∈ X and y ∈ Y . Here E
x refers to the process x(t) started with x(0) = x

(likewise for y).

THEOREM 2.2. The q-TASEP �x(t) with state space XN and particle jump
rate parameters ai > 0, and the TAZRP �y(t) with state space YN and rate func-
tions gi(k) = ai(1 − qk) are dual with respect to

H(�x, �y) =
N∏

i=0

q(xi+i)yi .

REMARK 2.3. The definition of H(�x, �y) means that H = 0 if y0 > 0 and
H(�x, �y) = ∏N

i=1 q(xi+i)yi if y0 = 0.

Before proving Theorem 2.2, we define the following system of ODEs.

DEFINITION 2.4. We say that h(t; �y) :R+ × YN → R solves the true evolu-
tion equation with initial data h0(�y) if:

(1) For all �y ∈ YN and t ∈ R+,

d

dt
h(t; �y) = Lq-TAZRPh(t; �y);
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(2) For all �y ∈ YN such that y0 > 0, h(t; �y) ≡ 0 for all t ∈ R+;
(3) For all �y ∈ YN , h(0; �y) = h0(�y).

REMARK 2.5. The existence and uniqueness of global solutions to the true
evolution equation in Definition 2.4 is assured since it reduces to a finite system of
linear ODEs, from which the result follows from standard methods [13].

PROOF OF THEOREM 2.2. We claim first that for �x and �y fixed,

Lq-TASEPH(�x, �y) = Lq-TAZRPH(�x, �y),(5)

where in the above expression, the generator on the left acts in the x variables and
the generator on the right in the y variables.

To prove the claim is easy. Observe that

Lq-TASEPH(�x, �y) =
N∑

i=1

ai

(
1 − qxi−1−xi−1)((

qyi − 1
) N∏
j=0

q(xj+j)yj

)

=
N∑

i=1

ai

(
1 − qyi

)(
H

(�x, �yi,i−1) − H(�x, �y)
)

= Lq-TAZRPH(�x, �y).

Given the claim we may now check that E�x[H(�x(t), �y)] and E
�y[H(�x, �y(t))]

both satisfy the true evolution equation given in Definition 2.4. By the unique-
ness of Remark 2.5, this implies the desired equality to complete our proof. That
E

�y[H(�x, �y(t))] satisfies this evolution equation follows from the definition of the
generator of �y(t).

On the other hand,

d

dt
E

�x[
H

(�x(t), �y)] = Lq-TASEP
E

�x[
H

(�x(t), �y)]
= E

�x[
Lq-TASEPH

(�x(t), �y)]
= E

�x[
Lq-TAZRPH

(�x(t), �y)]
= Lq-TAZRP

E
�x[

H
(�x(t), �y)]

.

The equality of the first line is from the definition of the generator of �x(t); the
equality between the first and second lines is from the commutativity of the gener-
ator with the Markov semigroup; the equality between the second and third lines is
from applying equality (5) to the expression inside the expectation; the final equal-
ity is from the fact that the generator Lq-TAZRP now acts on the �y coordinate and
the expectation acts on the �x coordinate. This shows that E�x[H(�x(t), �y)] solves the
system of ODEs in the true evolution equation (checking the boundary condition
and initial data is easy). �
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2.2. Systems of ODEs. As a result of duality, we provide three different sys-
tems of ODEs to characterize E

�x[H(�x(t), �y)]. It is convenient to introduce an al-
ternative way to write a TAZRP state �y ∈ YN . For a state with k particles, we may
instead list the ordered particle locations �n as below.

DEFINITION 2.6. For k ≥ 1, define

Wk
>0 = {�n = (n1, n2, . . . , nk) ∈ (Z>0)

k :N ≥ n1 ≥ n2 ≥ · · · ≥ nk ≥ 0
}
.

For �y ∈ YN with
∑N

i=0 yi = k, we may associate a vector �n = �n(y) ∈ Wk
>0 which

records the ordered locations of particles in �y. That is to say, for i ∈ {0, . . . ,N},
the vector �n(y) is specified by |{nj :nj = i}| = yi . Likewise, to a vector �n ∈ Wk

>0
we may associate �y = �y(�n) ∈ YN by the same relationship yi = |{nj :nj = i}|.
For instance, if N = 3, y1 = 2, y2 = 0 and y3 = 1 then k = 3, n1 = 3 and n2 =
n3 = 1. A vector �n naturally splits into clusters, which are maximal groupings
of consecutive equal valued elements. For instance, if �n = (4,4,2,1), we would
say there are three clusters with the cluster of 4 containing two elements, and the
clusters of 2 and 1 containing only one elements each.

Also, define the difference operator ∇f (n) = f (n − 1) − f (n). For a function
f (�n), ∇i acts as ∇ on the ni variable. Finally, let �n−

i = (n1, . . . , ni − 1, . . . , nk).

PROPOSITION 2.7. Let �x ∈ XN and �x(t) be the q-TASEP started from
�x(0) = �x.

(A) True evolution equation: If h(t; �y) :R+ × YN → R solves the system of
ODEs given in Definition 2.4 with initial data h0(�y) = H(�x, �y), then for all
�y ∈ YN , E�x[H(�x(t), �y)] = h(t; �y).

(B) Free evolution equation with k − 1 boundary conditions: If u :R+ ×
(Z≥0)

k →R solves:

(1) For all �n ∈ (Z≥0)
k and t ∈ R+,

d

dt
u(t; �n) = (1 − q)

k∑
i=1

ani
∇iu(t; �n);

(2) For all �n ∈ (Z≥0)
k such that for some i ∈ {1, . . . , k − 1}, ni = ni+1,

∇iu(t; �n) = q∇i+1u(t; �n);
(3) For all �n ∈ (Z≥0)

k such that nk = 0, u(t; �n) ≡ 0 for all t ∈ R+;
(4) For all �n ∈ Wk

>0, u(0; �n) = H(�x, �y(�n)).

Then for all �y ∈ YN such that k = ∑N
i=1 yi , E�x[H(�x(t), �y)] = u(t; �n(�y)).

(C) Schrödinger equation with Bosonic Hamiltonian: If v :R+ × (Z≥0)
k → R

solves:
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(1) For all �n ∈ (Z≥0)
k and t ∈ R+,

d

dt
v(t; �n) = Hv(t; �n),

H = (1 − q)

[
k∑

i=1

ani
∇i + (

1 − q−1) k∑
i<j

δni=nj
qj−iani

∇i

]
;

(2) For all permutations of indices σ ∈ Sk , v(t;σ �n) = v(t; �n);
(3) For all �n ∈ (Z≥0)

k such that nk = 0, v(t; �n) ≡ 0 for all t ∈R+;
(4) For all �n ∈ Wk

>0, v(0; �n) = H(�x, �y(�n)).

Then for all �y ∈ YN such that k = ∑N
i=1 yi , E�x[H(�x(t), �y)] = v(t; �n(�y)).

REMARK 2.8. The existence and uniqueness of global solutions to (A) is ex-
plained in Remark 2.5. This then implies the existence of solutions in (C). It is
not clear, a priori, that there exist solutions to (B). As we see in the proof of (B),
the combination of the four conditions in (B) implies that restricted to �n ∈ Wk

>0,
u(t; �n) = h(t; �y(�n)) for all t ∈ R+. However, it is not clear that there exists a suit-
able extension of u outside the physical region Wk

>0 which satisfies the four condi-
tions. Note that (B) should be considered as an advanced version of the method of
images. Finally, though the above results are written for deterministic �x (i.e., de-
terministic initial data) by linearity one can average over random �x and achieve the
same stated results with E

�x[H(�x(t), �y)] replaced by its average over �x, written as
E[H(�x(t), �y)], and the initial data for the ODEs likewise replaced by E[H(�x, �y)].

PROOF OF PROPOSITION 2.7. Call the three conditions contained in Defini-
tion 2.4 (A.1), (A.2) and (A.3). Part (A) follows from Theorem 2.2 since it implies
that

d

dt
E

�x[
H

(�x(t), �y)] = Lq-TAZRP
E

�x[
H

(�x(t), �y)]
,

which matches (A.1). Along with this, the value of E
�x[H(�x(t), �y)] is uniquely

characterized by the initial data and the fact that (due to the definition of H )
E

�x[H(�x(t), �y)] = 0 for all �y ∈ YN with y0 > 0. Conditions (A.3) and (A.2), re-
spectively, match these properties, and hence (A) follows.

Part (B) follows by showing that if the four conditions for u given in (B) hold,
then it implies that u(t; �n(�y)) satisfies part (A), and hence that u(t; �n(�y)) = h(t; �y).
Thus, we must show that (B) implies (A). Going between �y and �n notation, the ini-
tial data (A.3) and (B.4) match, as do the conditions (A.2) and (B.3). To check the
system of ODEs (A.1), recall that the size of the cluster of elements of �n equal to i

equals yi . Consider the cluster of elements equal to N :n1 = n2 = · · · = nyN
(every

other cluster works similarly). In order to prove (A.1), it suffices to show that

(1 − q)

yN∑
i=1

aN∇iu(t; �n) = aN

(
1 − qyN

)∇yN
u(t; �n).(6)
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This is because ∇yN
u(t; �n) = u(t; �n(yN,N−1))−u(t; �n(y)). Summing these terms

over all clusters yields Lq-TAZRPu(t; �n(�y)), and hence (A.1) follows. But (B.2)
implies ∇iu(t; �n) = qyN−i∇yN

u(t; �n) for i = 1, . . . , yN , which implies (6).
Part (C) also follows by showing that the combination of the four conditions

for v imply that v(t; �n(�y)) satisfies (A), and hence v(t; �n(�y)) = h(t; �y). As in (B),
the initial data (A.3) and (C.4) match, as do the conditions (A.2) and (C.3). Also
as in (B), it suffices to consider the cluster of N . The portion of the Hamiltonian H

corresponding to this cluster is

(1 − q)

[ yN∑
i=1

aN∇i + (
1 − q−1) yN∑

i<j

qj−iaN∇i

]
= (1 − q)aN

yN∑
i=1

qyN−i∇i ,

where the equality follows from summing the factors involving each ∇i . Due to
the symmetry (C.2), ∇iv(t; �n) = ∇yN

v(t; �n) for all i ∈ {1, . . . , yN }. Hence, the
sum in i can be performed, yielding aN(1 − qyN )∇yN

. This is the same as in (6),
and hence (C) follows as well. �

2.3. Nested contour ansatz solution. It is not a priori clear how one might
explicitly solve the systems of ODEs in Proposition 2.7. Presently, we show how
this can be done for two distinguished types of initial data.

DEFINITION 2.9. For q-TASEP, step initial data corresponds with xi(0) = −i

for i ≥ 1.
For α ∈ [0,1), we say a random variable X is q-Geometric distributed with

parameter α [written X ∼ q Geo(α)] if

P(X = k) = (α;q)∞
αk

(q;q)k
,

where (a;q)n = (1 − a)(1 − aq)(1 − aq2) · · · (1 − aqn−1) and (a;q)∞ =
(1 − a)(1 − aq)(1 − aq2) · · · . Half stationary initial data for q-TASEP corre-
sponds with random initial locations for particles xi for i ≥ 1 given as follows:
let Xi ∼ q Geo(α/ai) for i ≥ 1 be independent; then set x1(0) = −1 − X1 and,
for i > 1, xi = xi−1 − 1 − Xi . The result is that the gaps between consecutive
particles i and i + 1 are distributed as q-Geometric with parameter α/ai and are
independent. When α = 0, the step initial data is recovered (regardless of the ai ).

REMARK 2.10. When ai ≡ 1, the translation invariant measure on parti-
cle configurations in Z with independent q Geo(α) distributed distances between
neighbors is an invariant or stationary measure5 for q-TASEP, cf. [9]. This explains
the usage of the term half stationary (and likewise for ASEP).

5Within the probability literature, the term equilibrium is sometimes also used to describe such a
measure, though to avoid confusion with the physical means of equilibrium statistical mechanics, we
avoid this term.
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THEOREM 2.11. Fix q ∈ (0,1), ai > 0 for i ≥ 1 and let �n = (n1, . . . , nk). The
system of ODEs given in Proposition 2.7(B) is solved by the following formulas:

(1) For step initial data,

u(t; �n) = (−1)kqk(k−1)/2

(2πι)k
(7)

×
∫

· · ·
∫ ∏

1≤A<B≤k

zA − zB

zA − qzB

k∏
j=1

( nj∏
m=1

am

am − zj

)
e(q−1)tzj

dzj

zj

,

where the integration contour for zA contains {qzB}B>A and all am’s but not 0.
(2) For half stationary initial data with parameter α > 0 [such that αq−k < am

for all 1 ≤ m ≤ maxi (ni)],

u(t; �n) = (−1)kqk(k−1)/2

(2πι)k

×
∫

· · ·
∫ ∏

1≤A<B≤k

zA − zB

zA − qzB

(8)

×
k∏

j=1

( nj∏
m=1

am

am − zj

)
e(q−1)tzj

dzj

zj − α/q
,

where the integration contour for zA contains {qzB}B>A and all am’s but not α/q .

On account of Proposition 2.7 and the uniqueness of solutions restricted to
�n ∈ Wk

>0 (see Remark 2.8), the above formulas when restricted to �n ∈ Wk
>0 im-

mediately yield the following (we will only state it for step initial data, though a
similar statement holds for half stationary).

COROLLARY 2.12. For q-TASEP with step initial data and �n ∈ Wk
>0,

E

[
k∏

j=1

q
xnj

+nj

]

= (−1)kqk(k−1)/2

(2πι)k
(9)

×
∫

· · ·
∫ ∏

1≤A<B≤k

zA − zB

zA − qzB

k∏
j=1

( nj∏
m=1

am

am − zj

)
e(q−1)tzj

dzj

zj

,

where the integration contour for zA contains {qzB}B>A and all am’s but not 0.

PROOF OF THEOREM 2.11. We need to prove that u(t; �n) as defined in (7)
satisfies the four conditions of Proposition 2.7(B).
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Condition (B.1) is satisfied by linearity and the fact that[
d

dt
− (1 − q)ani

∇i

]((
ni∏

m=1

am

am − z

)
e(q−1)tz

)
= 0.

Condition (B.2) relies on the Vandermonde-like factors as well as the nested
choice of contours. Without loss of generality, assume that n1 = n2. We wish to
show that

[∇1 − q∇2]u(t; �n) = 0.(10)

Applying ∇1 −q∇2 to the integrand in (7) brings down a factor of −a−1
n1

(z1 −qz2).
We must show that the integral of this new integrand is zero. This new factor
cancels the denominator (z1 − qz2) in∏

1≤A<B≤k

zA − zB

zA − qzB

.(11)

On account of this, we may deform the contours for z1 and z2 to be the same
without encountering any poles. The term z1 −z2 in the numerator of (11) remains,
and hence we can write

u(t; �n) =
∫ ∫

(z1 − z2)G(z1)G(z2) dz1 dz2,

where G(z) involves the integrals in z3, . . . , zk . Since the two contours are identi-
cal, this integral is clearly zero, proving (B.2).

Condition (B.3) follows from simple residue calculus. When nk = 0, there are
no poles in the zk integral at {am}nk

m=1. Therefore, by Cauchy’s theorem the integral
is zero.

Condition (B.4) likewise follows from residue calculus. Let us first consider the
step initial data case of Theorem 2.11. This corresponds to initial data in (B.4)
given by

u(0; �n) = H
(
x; �y(�n)

) = 1

for all �n ∈ Wk
>0. Now consider (7) with t = 0. The z1 contour can be expanded to

infinity. The only pole encountered is at z1 = 0 [z1 = ∞ is not a pole because of
the decay coming from am/(am − zj )]. Because we pass it from the outside, the
contribution of the residue is −q−(k−1) times the same integral but with every term
involving z1 removed. Repeating this procedure for z2 leads to −q−(k−2) and so
on. Therefore, the integral can be evaluated and canceling terms we are left with it
equal to 1 exactly as desired.

Now consider the half stationary initial data case of Theorem 2.11. (B.1)–(B.3)
follow in the same way as for the step initial data. We claim that this corresponds
to initial data in (B.4) given by

u(0; �n) = E
[
H

(�x; �y(�n)
)] =

k∏
i=1

ni∏
m=ni+1+1

i∏
j=1

am

am − α/qj
.(12)

Showing this requires a calculation.
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LEMMA 2.13. Fix r ≥ 1. If X is a q-Geometric random variable with param-
eter α ∈ [0,1) then

E
[
q−rX] =

r∏
i=1

1

1 − α/qi
,

so long as αq−r < 1; and otherwise the expectation is infinite.

PROOF. Using the q-Binomial theorem (see Section B.1), we may calculate

E
[
q−rX] = (α;q)∞

∞∑
k=0

(α/qr)k

(q;q)k
= (α;q)∞

(α/qr;q)∞
,

which after canceling terms is exactly as desired. �

Recall that under half stationary initial data, the locations {xi(0)} are defined in
terms of q-Geometric random variables {Xj }. Using this, we have

k∏
i=1

qxni
(0)+ni =

k∏
i=1

q−∑ni
m=1 Xm =

k∏
i=1

ni∏
m=ni+1+1

q−iXm.

Since the X’s are independent, we can evaluate individually the expectation
of q−iXm using the above lemma, and we immediately find the right-hand side
of (12).

Now consider (8) with t = 0. As in the step initial data case, we successively
peel off the contours and evaluate the effect via residue calculus. When we ex-
pand z1 to infinity, we now only encounter a pole at z1 = α/q (which becomes
zero when α = 0 recovering the step initial data). Evaluating this residue, we find

u(0; �n) =
n1∏

m=1

am

am − α/q

(−1)k−1q((k−1)(k−2))/2

(2πι)k−1

×
∫

· · ·
∫ ∏

2≤A<B≤k

zA − zB

zA − qzB

k∏
j=2

( nj∏
m=1

am

am − zj

)
dzj

zj − α/q2 .

Expanding z2 the pole is now at z2 = α/q2 and a similar formula results from
evaluating the residue. Repeating this procedure shows that u(0; �n) is given by the
right-hand side of (12) as desired. �

3. A general scheme from nested contour integrals to Fredholm determi-
nants. The output of Theorem 2.11 and Corollary 2.12 is that for step and half
stationary initial data we have relatively simple formulas for a large class of expec-
tations. In principle, these expectations should characterize the joint distribution
of the locations of any fixed collection of particles xn1(t), . . . , xn�

(t) in q-TASEP.
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One may hope to achieve this via certain generating functions. However, the chal-
lenge is to find expressions for these generating functions which have clear asymp-
totic limits (in time and particle labels). For this, we focus here only on the dis-
tribution of a single particle xn(t). Applying Corollary 2.12 with ni ≡ n yields a
nested contour integral formula for E[qkxn(t)].

There are two ways to deform this type of nested contour integrals so that all
contours coincide. After accounting for the residues encountered during these de-
formations, we are led to two types of formulas for expectations: those involving
partition-indexed sums of contour integrals and those involving single row-indexed
sums of contour integrals. By taking suitable generating functions of these indexed
sums of contour integrals, we are led to two types of Fredholm determinants. All
of these manipulations are quite general and can be done purely formally. Given
some analytic estimates, these manipulations turn into numerical equalities as is
the case for q-TASEP.

We record these manipulations (and conditions for them to hold as numerical
equalities) as well as their consequences without proofs, since they can be found
in Section 3.2 of [9]. We do this for completeness and also because when we turn
to consider ASEP, the same manipulations will be used. When we apply this to
q-TASEP, we will only consider step initial data. If we consider half stationary for
any α > 0 fixed, then when k gets so large that α > qk , the expectation E[qkxn(t)]
is infinite. Thus, when forming a generating function from these q-moments, we
are forced to take α = 0, which corresponds to the step initial data.

Before going into these manipulations, the reader may want to quickly browse
Section B.1 where we record some useful q-deformations as well as briefly review
Fredholm determinants.

3.1. Mellin–Barnes type determinants. The below proposition describes the
result of deforming the contours of a general nested contour integral formula in
such a way that all of the poles corresponding to zA = qzB for A < B are encoun-
tered. The residues associated with these poles group into clusters, and hence the
resulting formula is naturally indexed by partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ 0). No-
tationally, we write λ � k if

∑
i λi = k, λ = 1m12m2 · · · if i appears mi times in λ

(for all i ≥ 1), and �(λ) = ∑
i mi for the number of nonzero elements of λ.

DEFINITION 3.1. For a meromorphic function f (z) and k ≥ 1 set A to be a
fixed set of poles of f (not including 0) and assume that qm

A is disjoint from A

for all m ≥ 1. Define

μk = (−1)kqk(k−1)/2

(2πι)k

∫
· · ·

∫ ∏
1≤A<B≤k

zA − zB

zA − qzB

k∏
i=1

f (zi)
dzi

zi

,(13)

where the integration contour for zA contains {qzB}B>A, the fixed set of poles A
of f (z) but not 0 or any other poles.
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PROPOSITION 3.2. We have that for μk as in Definition 3.1,

μk = kq !
∑
λ�k

λ=1m1 2m2 ···

1

m1!m2! · · ·
(1 − q)k

(2πι)�(λ)

×
∫

· · ·
∫

det
[

1

wiqλi − wj

]�(λ)

i,j=1
(14)

×
�(λ)∏
j=1

f (wj )f (qwj ) · · ·f (
qλj−1wj

)
dwj ,

where the integration contour for wj contains the same fixed set of poles A of f

and no other poles.

PROOF. This is proved in [9] as Proposition 3.2.1 via residue calculus. �

As a quick example, consider f (z) which has a pole at z = 1. Then the
zk-contour is a small circle around 1, the zk−1-contour goes around 1 and q , and
so on until the z1-contour encircles {1, q, . . . , qk−1} (this is illustrated for k = 3 in
Figure 2). All the w contours are small circles around 1 and can be chosen to be
the same.

We form a generating function of the μk and identify the result as a Fredholm
determinant.

PROPOSITION 3.3. Consider μk as in equation (14) defined with respect to
the same set of poles A of f (w) for k = 1,2, . . . and set CA to be a closed con-
tour which contains A and no other poles of f (w)/w. Then the following formal
equality holds: ∑

k≥0

μk

ζ k

kq ! = det
(
I + K1

ζ

)
,

FIG. 2. Possible contours when k = 3 for the zj contour integrals in Proposition 3.2.
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where det(I + K1
ζ ) is the formal Fredholm determinant expansion of

K1
ζ :L2(Z>0 × CA) → L2(Z>0 × CA) defined in terms of its integral kernel

K1
ζ (n1,w1;n2;w2) = (1 − q)n1ζ n1f (w1)f (qw1) · · ·f (qn1−1w1)

qn1w1 − w2
.

The above identity is formal, but also holds numerically if the following is true: for
all w,w′ ∈ CA and n ≥ 1, |qnw−w′|−1 is uniformly bounded from zero; and there
exists a positive constant M such that for all w ∈ CA and all n ≥ 0, |f (qnw)| ≤ M

and |(1 − q)ζ | < M−1.

PROOF. This is proved in [9], Proposition 3.2.8. The proof amounts to reorder-
ing the sums defining μk and recognizing a Fredholm determinant. �

We may replace the space L2(Z>0 × CA) by L2(CA) via the following Mellin–
Barnes representation.

LEMMA 3.4. For all functions f which satisfy the conditions below, we have
the identity that for ζ ∈ {ζ : |ζ | < 1, ζ /∈R+}:

∞∑
n=1

f
(
qn)

ζ n = 1

2πι

∫
C1,2,...

�(−s)�(1 + s)(−ζ )sf
(
qs)ds,(15)

where the infinite contour C1,2,... is a negatively oriented contour which encloses
1,2, . . . and no poles of f (qs) (e.g., C1,2,... = 1

2 + ιR oriented from 1
2 − ι∞ to

1
2 + ι∞), and zs is defined with respect to a branch cut along z ∈ R

−. For the
above equality to be valid, the left-hand side must converge, and the right-hand
side integral must be able to be approximated by integrals over a sequence of
finite contours Ck which enclose the poles at 1,2, . . . , k and which partly coincide
with C1,2,... in such a way that the integral along the symmetric difference of the
contours C1,2,... and Ck goes to zero as k goes to infinity.

PROOF. The identity follows from Ress=k �(−s)�(1 + s) = (−1)k+1. �

DEFINITION 3.5. The infinite contour DR,d is defined as follows. DR,d goes
by straight lines from R − ι∞, to R − ιd , to 1/2 − ιd , to 1/2 + ιd , to R + ιd ,
to R + ι∞. See Figure 3 for an illustration. The finite contour DR,d;k is defined
as follows. Let p, p̄ be the points [let Im(p) > 0] at which the circle of radius
k + 1/2, centered at 0, intersects DR,d . Then DR,d;k is the union of the portion of
DR,d inside the circle with reversed orientation, with the arc from p̄ to p (oriented
counterclockwise).
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FIG. 3. Left: The contour DR,d;k ; Right: The contour DR,d .

PROPOSITION 3.6. Assume f (w) = g(w)/g(qw) for some function g. Then
the following formal equality holds:

det
(
I + K1

ζ

) = det
(
I + K2

ζ

)
,

where det(I +K1
ζ ) is given in Proposition 3.3 and where det(I +K2

ζ ) is the formal

Fredholm determinant expansion of K2
ζ :L2(CA) → L2(CA). The operator K2

ζ is
defined in terms of its integral kernel

K2
ζ

(
w,w′) = 1

2πι

∫
C1,2,...

�(−s)�(1 + s)
(−(1 − q)ζ

)s g(w)

g(qsw)

1

qsw − w′ ds.

The above identity holds numerically if det(I + K1
ζ ) is a convergent Fredholm

expansion and if C1,2,... is chosen as DR,d with d > 0 and R > 0 such that

inf
w,w′∈CA

k∈Z>0,s∈DR,d;k

∣∣qsw − w′∣∣ > 0 and sup
w,w′∈CA

k∈Z>0,s∈DR,d;k

∣∣∣∣ g(w)

g(qsw)

∣∣∣∣ < ∞.

In that case the function ζ �→ det(I + K2
ζ ) is analytic for all ζ /∈R+.

PROOF. This result can readily be extracted from the proof of [9] Theo-
rem 3.2.11. In fact, the strong analytic bounds which we require can be signif-
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icantly relaxed, however, as they will be sufficient for our purposes, we do not
explore this. �

We say that Fredholm determinants similar to det(I + K2
ζ ) are of Mellin–

Barnes-type [because (15) is a basic tool for classical Mellin–Barnes integrals].

3.2. Cauchy-type determinants. Instead of deforming contours so as to en-
counter the zA = qzB poles, we may deform our contours to only encounter the
pole at 0. The residue calculus becomes easier and the resulting sum of contour in-
tegrals is indexed by partitions with just a single row (equivalently by nonnegative
integers).

DEFINITION 3.7. For a meromorphic function f (z) and k ≥ 1 set A to be
a fixed set of poles of f and assume that qm

A is disjoint from A for all m ≥ 1.
Define

μ̃k = (−1)kqk(k−1)/2

(2πι)k

∫
· · ·

∫ ∏
1≤A<B≤k

zA − zB

zA − qzB

k∏
i=1

f (zi)
dzi

zi

,(16)

where the integration contour for zA contains {qzB}B>A, the fixed set of poles A
of f (z) and 0, but no other poles.

Notice that μk and μ̃k differ only by the inclusion of 0 in the contour for μ̃k .
They can be related via the following.

PROPOSITION 3.8. Assume f (0) = 1. Then

μ̃k = (−1)kqk(k−1)/2
k∑

j=0

(
k

j

)
q−1

(−1)j q−j (j−1)/2μj .

PROOF. This is proved in [9], Proposition 3.2.5. �

If, for instance, we assume now that A contains all poles of f , then we can
deform the contours in (16) to all lie on a single, large circle. The following sym-
metrization proposition then applies.

PROPOSITION 3.9. If the contours of integration in (16) can be deformed
(without passing any poles) to all coincide with a contour C̃A, then

μ̃k = kq !
k!

(1 − q−1)k

(2πι)k

∫
C̃A

· · ·
∫
C̃A

det
[

1

wiq−1 − wj

]k

i,j=1

k∏
j=1

f (wj ) dwj .(17)

PROOF. This is proved in [9], Proposition 3.2.2. �
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PROPOSITION 3.10. If the contours of integration in (16) can be deformed
(without passing any poles) to all coincide with a contour C̃A, then the following
formal identity holds:

∑
k≥0

μ̃k

ζ k

kq ! = det
(
I + ζ K̃1)

,

where det(I + K̃1) is the formal Fredholm determinant expansion of
K̃1 :L2(C̃A) → L2(C̃A) defined in terms of its integral kernel

K̃1(
w,w′) = (1 − q)

f (w)

qw′ − w
.

The above identity is formal, but also holds numerically for ζ such that the left-
hand side converges absolutely and the right-hand side operator K̃1 is trace-class.

PROOF. This is proved in [9], Proposition 3.2.9. �

REMARK 3.11. By considering the Fredholm series expansion [whose terms
are given by (17)], it is clear that since f arises multiplicatively, it can be paired
either with wi or wj in the Cauchy determinant. As a consequence, it follows that

det
(
I + ζ K̃1) = det

(
I + ζ K̃2)

,

where K̃1 :L2(C̃A) → L2(C̃A) is defined in terms of its integral kernel

K̃2(
w,w′) = (1 − q)

f (w)

qw − w′ .

We call Fredholm determinants of this form Cauchy type.

3.3. Application to q-TASEP. The following theorems about q-TASEP are ap-
plications of the manipulations of the previous section. The required estimates
necessary to make these numerical equalities are provided in [9].

3.3.1. Mellin–Barnes-type Fredholm determinant for q-TASEP.

THEOREM 3.12. Fix 0 < q < 1 and n ≥ 1. Fix 0 < δ < 1 and a1, . . . , an

such that for all i, ai > 0 and |ai − 1| ≤ d for some constant d <
1−qδ

1+qδ . Con-
sider q-TASEP with step initial data and jump parameters ai . Then for all t ∈ R+
and ζ ∈ C \R+, the following characterizes the distribution of xn(t):

E

[
1

(ζqxn(t);q)∞

]
= det

(
I + K

q-TASEP
ζ

)
,(18)
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where det(I + K
q-TASEP
ζ ) is the Fredholm determinant of Kζ :L2(Ca) → L2(Ca)

for Ca a positively oriented circle |w−1| = d . The operator Kζ is defined in terms
of its integral kernel

K
q-TASEP
ζ

(
w,w′) = 1

2πι

∫ ι∞+δ

−ι∞+δ
�(−s)�(1 + s)

(−q−nζ
)s g(w)

g(qsw)

1

qsw − w′ ds,

where

g(w) =
n∏

m=1

1

(w/am;q)∞
e−tw.(19)

PROOF. This is proved in [9], Theorem 3.2.11. A similar approach is described
in its entirety in the proof of Theorem 5.3, for ASEP. �

The above is an eq -Laplace transform and can be inverted via Proposition B.1.
Since xn(t) is supported on {−n,−n + 1, . . .}, in order to apply Proposition B.1 it

is necessary to shift everything by n. Let f̂ q(ζ ) = det(I +K
q-TASEP
ζ ) and redefine

Cm to encircle the poles ζ = q−M for −n ≤ M ≤ m − n. Under these modifica-
tions, Proposition B.1 gives P(xn(t) = m).

3.3.2. Cauchy-type Fredholm determinant for q-TASEP.

THEOREM 3.13. Fix 0 < q < 1, n ≥ 1 and a1, . . . , an such that for all i,
ai > 0. Consider q-TASEP with step initial data and jump parameters ai > 0 for
all i ≥ 1. Let xn(t) by the location of particle n at time t . Then for all ζ ∈ C \
{q−i}i∈Z≥0

E

[
1

(ζqxn(t)+n;q)∞

]
= det(I + ζ K̃q-TASEP)

(ζ ;q)∞
,(20)

where det(I + ζ K̃q-TASEP) is an entire function of ζ and is the Fredholm determi-
nant of K̃q-TASEP :L2(C̃a) → L2(C̃a) defined in terms of its integral kernel

K̃q-TASEP(
w,w′) = f (w)

qw′ − w

with

f (w) =
(

n∏
m=1

am

am − w

)
exp

{
(q − 1)tw

}
and C̃a a star-shaped contour with respect to 0 (i.e., it strictly contains 0 and every
ray from 0 crosses C̃a exactly once) contour containing a1, . . . , an.
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PROOF. This is proved in [9], Theorem 3.2.16. A similar approach is described
in its entirety in the proof of Theorem 5.5, for ASEP. �

The above shows that det(I +ζ K̃q-TASEP)/(ζ ;q)∞ equals the eq -Laplace trans-
form of qxn(t)+n.

4. Duality and the nested contour integral ansatz for ASEP. The asymmet-
ric simple exclusion process (ASEP) was introduced by Spitzer [35] in 1970 and
also arose in biology in the work of MacDonald, Gibbs and Pipkin [26] in 1968.
Since then, it has become a central object of study in interacting particle systems
and nonequilibrium statistical mechanics.

The ASEP is a continuous time Markov process with state η(t) = {ηx(t)}x∈Z ∈
{0,1}Z at time t ≥ 0. The ηx(t) are called occupation variables and can be thought
of as the indicator function for the event that a particle is at site x at time t . The
dynamics of this process is specified by nonnegative real numbers p ≤ q (normal-
ized by p+q = 1) and uniformly bounded (from infinity and zero) rate parameters
{ax}x∈Z. For each pair of neighboring sites (y, y + 1), the following exchanges
happen in continuous time:

η �→ ηy,y+1 at rate ayp if (ηy, ηy+1) = (1,0),

η �→ ηy,y+1 at rate ayq if (ηy, ηy+1) = (0,1),

where ηy,y+1 denotes the state in which the value of the occupation variables at
site y and y + 1 are switched, and all other variables remain unchanged. All ex-
changes occur independently of each other according to exponential clocks. These
dynamics are called the ASEP occupation process and are defined in terms of the
generator Locc which acts on local functions f : {0,1}Z →R by(

Loccf
)
(η)

(21)
= ∑

y∈Z
ay

[
pηy(1 − ηy+1) + q(1 − ηy)ηy+1

](
f

(
ηy,y+1) − f (η)

)
.

The existence of a Markov process with this generator is shown, for example,
in [24].

In terms of particles, the dynamics of ASEP are that each particle attempts, in
continuous time, to jump right at rate pay and to the left at rate qay−1 (presently
the particle is at position y ∈ Z), subject to the exclusion rule that says that jumps
are suppressed if the destination site is occupied. We assume p ≤ q (drift to the
left) and define γ := q − p ≥ 0 and τ := p/q ≤ 1.

The ASEP preserves the number of particles, thus we can consider ASEP with
k particles as a process on the particle locations. Define

W̃ k = {�x = (x1, x2, . . . , xk) ∈ Z
k :x1 < x2 < · · · < xk

}
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FIG. 4. ASEP with four particles: x1 = 5, x2 = 6, x3 = 9 and x4 = 11. The first two particles
form a cluster, and the third and fourth form two separate clusters. The arrows represent admissible
moves.

and �x±
i = (x1, . . . , xi−1, xi ± 1, xi+1, . . . , xk). Then �x(t) = (x1(t) < x2(t) < · · · <

xk(t)) ∈ W̃ k denotes the locations of the k particles of ASEP at time t .
In order to describe the generator of ASEP in terms of particle locations, it

is convenient to introduce particle cluster notation (see Figure 4). A cluster is a
collection of particles next to each other: xi = xi+1 −1 = · · · = xi+j −j . There is a
unique way of dividing the particles �x into clusters so that each cluster is separated
by a buffer of at least one site: let c(�x) be the number of such clusters, �(�x) =
(�1, . . . , �c) be the collection of labels of the left-most particles of each cluster, and
r(�x) = (r1, . . . , rc) be the collection of labels for the right-most particles of each
cluster. For instance, if k = 4 and x1 = 5, x2 = 6, x3 = 9, x4 = 11 then c(�x) = 3,
�(�x) = (1,3,4) and r(�x) = (2,3,4).

For k ≥ 1, the ASEP particle process generator acts on bounded functions
f : W̃ k →R by(

Lpartf
)
(�x) = ∑

i∈�(�x)

axi−1p
[
f

(�x−
i

) − f (�x)
] + ∑

i∈r(�x)

axi
q
[
f

(�x+
i

) − f (�x)
]
.

We will consider initial configurations for ASEP in which there is at most a
finite number of nonzero occupation variables (i.e., particles) to the left of the
origin—we call these left-finite initial data. When ASEP is initialized with left-
finite initial data, its state remains left-finite for all time (simply because it will
always have a left-most particle). We will use Eη and P

η to denote expectation and
probability (resp.) of the Markov dynamics on occupation variables with initial
data η (and likewise E

�x and P
�x for the Markov evolution on particle locations

with initial data �x). When the initial data is itself random, we write E and P to
denote expectation and probability (resp.) of the Markov dynamics as well as the
initial data. We also use E and P when the initial data is otherwise specified.

4.1. Duality. Recall that τ = p/q ≤ 1 by assumption and define the following
functions of a state η:

Nx(η) =
x∑

y=−∞
ηy, Qx(η) = τNx(η),

(22)

Q̃x(η) = Qx(η) − Qx−1(η)

τ − 1
= τNx−1(η)ηx.
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The following result shows that (with general bond rate parameters) the ASEP
occupation process and the ASEP particle process with the role of p and q re-
versed, are dual with respect to a given function H̃ . This is sometimes called self-
duality, despite the fact that the processes involved are independent and defined
with respect to different state spaces.

THEOREM 4.1. Fix nonnegative real numbers p ≤ q (normalized by
p + q = 1) and uniformly bounded (from infinity and zero) bond rate parameters
{ax}x∈Z. For any k ≥ 1, the ASEP occupation process η(t) with state space {0,1}Z,
and the ASEP particle process �x(t) with state space W̃ k and the role of p and q

reversed, are dual with respect to

H̃ (η, �x) =
k∏

i=1

Q̃xi
(η).

If we restrict to ax ≡ 1 we can prove another ASEP duality.

THEOREM 4.2. Fix nonnegative real numbers p ≤ q (normalized by
p + q = 1) and bond rate parameters ax ≡ 1. For any k ≥ 1, the ASEP occu-
pation process η(t) with state space {0,1}Z, and the ASEP particle process �x(t)

with state space W̃ k and the role of p and q reversed, are dual with respect to

H(η, �x) =
k∏

i=1

Qxi
(η).

Recall that the concept of duality is given in Definition 2.1. A few remarks are
in order.

REMARK 4.3. For p < q , both forms of duality are trivial for initial data
which is not left-finite, since then Qx(η) ≡ 0 and likewise Q̃x(η) ≡ 0. By working
with a height function, rather than Nx(η) it is likely possible to extend considera-
tion to left-infinite initial data. We do not pursue this here.

REMARK 4.4. For the symmetric simple exclusion process (p = q = 1/2),
the duality from Theorem 4.1 has been known for some time (see [24], Chapter 8,
Theorem 1.1). For p < q , the result of Theorem 4.1 was discovered by Schütz [34]
in the late 1990s via a spin chain representation of ASEP (the result was stated for
all ax ≡ 1, though the proof is easily extended to general ax). The approach used
therein to show duality was computationally based on a Uq(sl2) symmetry for
ASEP [31]. Our proof proceeds directly via the Markov dynamics, without any
use of, or reference to, the Uq(sl2). Even though in our applications we quickly
set ax ≡ 1, it is both useful (in simply the proof) and informative (in showing that
duality is weaker than integrability) to prove our result for general ax .
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The duality of Theorem 4.2 appears to be new. It does not seem possible to
extend it to general ax . For instance, when k = 1, as a function of the process η(t),
H(η(t), x) only changes value when a particle moves across the bond between x

and x + 1. This only involves the rate ax . On the other hand, as a process of x(t),
H(η,x(t)) changes value when a particle moves across either the bond between
x − 1 and x, or the bond between x and x + 1. This involves the rates ax−1 and ax .
Hence, the two sides can only match when ax−1 = ax .

REMARK 4.5. Gärtner [16] observed that ASEP respected a microscopic (i.e.,
particle-level) version of the Hopf–Cole transform (see, e.g., the review [14]). This
observation is equivalent to the k = 1, ax ≡ 1 case of the duality given in Theo-
rem 4.2. It says that

dQx

(
η(t)

) = (
pQx−1

(
η(t)

) + qQx+1
(
η(t)

) − Qx

(
η(t)

))
dt + Qx

(
η(t)

)
dM(t),

where dM(t) is an explicit martingale. This is a particular semidiscrete SHE (dif-
ferent than the one coming from q-TASEP, Definition A.1) with a somewhat in-
volved noise (the martingale is not exactly a discrete space–time white noise).
A Feynman–Kac representation for this equation shows that Qx(η(t)) can be
thought of as a polymer partition function with respect to an environment defined
by the martingale. Therefore, Theorem 4.2 can be thought of as a version of the
polymer replica approach (see Section A.2).

The proof of the two duality theorems boils down to two propositions which we
now state and prove. After this, we prove the theorems.

PROPOSITION 4.6. Fix nonnegative real numbers p ≤ q (normalized by
p + q = 1) and uniformly bounded (from infinity and zero) bond rate parameters
{ax}x∈Z. Then, with η, �x, and H̃ (η, �x) defined in Theorem 4.1,

LoccH̃ (η, �x) = LpartH̃ (η, �x),(23)

where the generator Locc acts in the η variable and the generator Lpart acts in the
�x variable.

PROOF. We will first prove the desired result for a single cluster configuration
�x = (x, x + 1, . . . , x + �) and then easily deduce it for general �x ∈ W̃ k . For the
single cluster �x, by the definition of Locc,

LoccH̃ (η, �x) =
�∑

i=−1

ax+iAx+i (η),

where

Ay(η) = (
pηy(1 − ηy+1) + q(1 − ηy)ηy+1

)[
H̃

(
ηy,y+1, �x) − H̃ (η, �x)

]
.
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We now compute the Ay ’s explicitly. Recall the notations introduced in (22). There
are three different types of Ay that must be considered: (1) Ax−1(η); (2) Ax+i (η)

for 0 ≤ i ≤ � − 1; (3) Ax+�(η).

(1) Consider Ax−1(η). We may rewrite

H̃ (η, �x) = τNx−2(η)τ ηx−1ηx

�∏
j=1

Q̃x+j (η)

and

H̃
(
ηx−1,x, �x) = τNx−2(η)τ ηxηx−1

�∏
j=1

Q̃x+j (η).

Thus,

Ax−1(η) = τNx−2(η)
�∏

j=1

Q̃x+j (η)
(
pηx−1(1 − ηx) + q(1 − ηx−1)ηx

)
(24)

× [
τηxηx−1 − τηx−1ηx

]
.

(2) Consider Ax+i (η) for 0 ≤ i ≤ � − 1. We may rewrite

H̃ (η, �x) = τ 2Nx+i−1(η)+ηx+i ηx+iηx+i+1

�∏
j=0

j �=i,i+1

Q̃x+j (η)

and

H̃
(
ηx+i,x+i+1, �x) = τ 2Nx+i−1(η)+ηx+i+1ηx+i+1ηx+i

�∏
j=0

j �=i,i+1

Q̃x+j (η).

Thus,

Ax+i (η) = τ 2Nx+i−1(η)

(
�∏

j=0
j �=i,i+1

Q̃x+j (η)

)
(25)

× (
pηx+i (1 − ηx+i+1) + q(1 − ηx+i)ηx+i+1

)
(26)

× [
τηx+i+1 − τηx+i

]
ηx+iηx+i+1.

(3) Consider Ax+�(η). We may rewrite

H̃ (η, �x) = τNx+�−1(η)ηx+�

�−1∏
j=0

Q̃x+j (η)
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and

H̃
(
ηx+�,x+�+1, �x) = τNx+�−1(η)ηx+�+1

�−1∏
j=0

Q̃x+j (η).

Thus,

Ax+�(η) = τNx+�−1(η)

(
�−1∏
j=0

Q̃x+j (η)

)
(27)

× (
pηx+�(1 − ηx+�+1) + q(1 − ηx+�)ηx+�+1

)
(28)

× [ηx+�+1 − ηx+�].
Observe that Ax+i (η) = 0 for 0 ≤ i ≤ � − 1. To see this, it suffices to consider

the four values that the pair (ηx+i , ηx+i+1) may take: for (0,0) or (1,1)(
pηx+i (1 − ηx+i+1) + q(1 − ηx+i )ηx+i+1

)[
τηx+i − τηx+i+1

] = 0

and thus (25) = 0; for (0,1) or (1,0), the factor ηx+iηx+i+1 = 0 and thus (25) = 0
again.

The above observation shows that, in fact,(
Loccf

)
(η) = ax−1Ax−1(η) + ax+�Ax+�(η).

In light of equations (24) and (27), we may rewrite

Ax−1(η) = M(η)A′
x−1(η) and Ax+�(η) = M(η)A′

x+�(η),

where

M(η) = τNx−2(η)+Nx+�−1(η)
�−1∏
j=1

Q̃x+j (η)

and

A′
x−1(η) = ηx+�

(
pηx−1(1 − ηx) + q(1 − ηx−1)ηx

)[
τηxηx−1 − τηx−1ηx

]
,

A′
x+�(η) = τηx−1ηx

(
pηx+�(1 − ηx+�+1) + q(1 − ηx+�)ηx+�+1

)[ηx+�+1 − ηx+�].
Now turn to the right-hand side of equation (23). We may also factor M(η) out

from that expression

RHS (23) = M(η)
[
ax−1pηx−1ηx+� + ax+�qτηx−1ηxτ

ηx+�ηx+�+1

− (ax−1q + ax+�p)τηx−1ηxηx+�

]
.

Therefore, for the single cluster case of the proposition, we are left to prove

ax−1A
′
x−1(η) + ax+�A

′
x+�(η)

= ax−1pηx−1ηx+� + ax+�qτηx−1ηxτ
ηx+�ηx+�+1

− (ax−1q + ax+�p)τηx−1ηxηx+�.
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The above equation is a function of only four occupation variables ηx−1, ηx, ηx+�

and ηx+�+1 and one can systematically check that for all sixteen combinations of
values of these variables, the above equation is true. In fact, it is even easier than
this since the coefficients of ax−1 and ax+� coincide separately. For instance, we
must show that A′

x−1(η) = ηx+�(pηx−1 − qτηx−1ηx). There are only four cases
of (ηx−1, ηx) that have to be considered and this can be confirmed in one’s head
[similarly for A′

x+�(η)]. This completes the proof of Proposition 4.6 for �x with just
a single cluster.

For a general �x ∈ W̃ k there may be many clusters, each pair separated by at least
one empty site. The terms in H̃ (η, x) factor into clusters and the generator Locc

acts on each of these clusters according to the above proved single cluster result.
This immediately yields the general statement and completes the proof. �

PROPOSITION 4.7. Fix nonnegative real numbers p ≤ q (normalized by p +
q = 1) and set all bond rate parameters ax ≡ 1. Then, with η, �x, and H(η, �x)

defined in Theorem 4.2,

LoccH(η, �x) = LpartH(η, �x),

where the generator Locc acts in the η variable and the generator Lpart acts in the
�x variable.

PROOF. As in the proof of Proposition 4.6, we will first prove the desired
result for a single cluster configuration �x = (x, x + 1, . . . , x + �) and then easily
deduce it for general �x ∈ W̃ k . For the single cluster �x, by the definition of Locc,

LoccH(η, �x) =
�∑

i=0

Ax+i (η),

where

Ay(η) = (
pηy(1 − ηy+1) + q(1 − ηy)ηy+1

)[
H

(
ηy,y+1, �x) − H(η, �x)

]
.

By grouping terms, this may be rewritten as

Ax+i (η) = Qx+i−1(η)

(
�∏

j=0
j �=i

Qx+j (η)

)(
pηx+i (1 − ηx+i+1) + qηx+i+1(1 − ηx+i)

)

× [
τηx+i+1 − τηx+i

]
=

�∏
j=0

Qx+j−1(η)

�∏
j=0
j �=i

τ ηx+j · (
p + qτηx+i τ ηx+i+1 − τηx+i

)
.
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In order to get the second line above, we utilized the definition of Qx+i−1(η) and
separately the fact (which can readily be checked) that for the four possible pairs
of values that (ηx+i , ηx+i+1) can take(

pηx+i(1 − ηx+i+1) + qηx+i+1(1 − ηx+i )
)[

τηx+i+1 − τηx+i
]

= p + qτηx+i τ ηx+i+1 − τηx+i .

Recall that we seek to show
�∑

i=0

Ax+i (η)

= pQx−1(η)

�∏
j=1

Qx+j (η) + qQx+�+1(η)

�−1∏
j=0

Qx+j (η) −
�∏

j=0

Qx+j (η).

Factoring out (
∏�

j=0 Qx+j−1(η)) from both sides we are left to prove(
�∑

i=0

�∏
j=0
j �=i

τ ηx+j

)(
p + qτηx+i τ ηx+i+1 − τηx+i

)
(29)

= p

�∏
j=1

τηx+j + q

�+1∏
j=0

τηx+j −
�∏

j=0

τηx+j .

The terms in the left-hand side of the above expression can be grouped as

p

�∏
j=1

τηx+j +
�∑

i=1

�∏
j=0
j �=i

τ ηx+j
(
p + qτ 2ηx+i − τηx+i

) + q

�+1∏
j=0

τηx+j −
�∏

j=0

τηx+j .

We may now utilize the easily checked identity that for η ∈ {0,1},
p + qτ 2η − τη = 0,

to see that the above expression reduces to the right-hand side of (29), thus com-
pleting the proof of Proposition 4.7 for �x with just a single cluster.

From a general �x ∈ W̃ k , there might be many clusters, each pair separated by
at least one empty site. The terms in H(η,x) factor into clusters and the generator
Locc acts on each of these clusters according to the above proved single cluster
result. This immediately yields the general statement and completes the proof. �

Before giving the proof of Theorem 4.1 we define the following system
of ODEs.

DEFINITION 4.8. We say that h̃(t; �x) :R+ × W̃ k → R solves the true evolu-
tion equation with initial data h̃0(�x) if:
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(1) For all �x ∈ W̃ k and t ∈ R+,

d

dt
h̃(t; �x) = Lparth̃(t; �x);

(2) There exist constants c,C > 0 and δ > 0 such that for all �x ∈ W̃ k , t ∈ [0, δ]∣∣h̃(t; �x)
∣∣ ≤ Cec‖�x‖1;

(3) As t → 0, h̃(t; �x) converges pointwise to h̃0(�x).

PROPOSITION 4.9. Assume that there exists constants c,C > 0 such that for
all �x ∈ W̃ k , ∣∣h̃0(�x)

∣∣ ≤ Cec‖�x‖1 .(30)

Then there exists a unique solution to the system of ODEs given in Definition 4.8
which is given by

h̃(t; �x) := E
−t;�x[

h0
(�x(0)

)]
,(31)

where the expectation is with respect to the ASEP particle process �x(·) started at
time −t in configuration �x.

This existence and uniqueness result is proved in Appendix C. We use this result
presently in the proof of Theorem 4.1, and also later in the proof of Theorem 4.13.
It is in the second application of this result that we fully utilize the weakness of
conditions 2 and 3 in Definition 4.8.

PROOF OF THEOREM 4.1. We follow the same approach as in the proof of
Theorem 2.2. Our present theorem follows from Proposition 4.6 along with Propo-
sition 4.9. Observe that

d

dt
E

η[
H̃

(
η(t), �x)] = Locc

E
η[

H̃
(
η(t), �x)]

= E
η[

LoccH̃
(
η(t), �x)]

= E
η[

LpartH̃
(
η(t), �x)]

= Lpart
E

η[
H̃

(
η(t), �x)]

.

The equality of the first line is from the definition of the generator of η(t); the
equality between the first and second lines is from the commutativity of the gener-
ator with the Markov semigroup; the equality between the second and third lines
is from applying Proposition 4.6 to the expression inside the expectation; the final
equality is from the fact that the generator Lpart now acts on the �x coordinate and
the expectation acts on the η coordinate. This shows that, as a function of t and �x,
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E
η[H̃ (η(t), �x)] solves the true evolution equation of Definition 4.8 (checking con-

dition 2 is straightforward and condition 3 can be checked as in the proof of Propo-
sition 4.9).

On the other hand, Proposition 4.9 implies that Eη[H̃ (η, �x(t))] also solves the
true evolution equation of Definition 4.8 and that it is the unique such solution.
This proves the desired equality to show the claimed duality. �

PROOF OF THEOREM 4.2. This follows exactly as in the proof of Theo-
rem 4.1, with Proposition 4.6 replaced by Proposition 4.7. �

4.2. Systems of ODEs. As a result of duality, we provide two different systems
of ODEs to characterize E

η[H̃ (η(t), �x)]. These two systems should be compared
to the first two systems of ODEs associated to q-TASEP duality, given in Propo-
sition 2.7. It is not entirely clear how to formulate a Schrödinger equation with
Bosonic Hamiltonian for ASEP due to the strict ordering of �x ∈ W̃ k . This does
not, however, pose any significant impediment as we are more concerned with
solving the free evolution equation with k − 1 boundary conditions.

We first state the result for the H̃ (η, �x) duality.

PROPOSITION 4.10. Let η be a left-finite occupation configuration in {0,1}Z
and η(t) be ASEP started from η(0) = η.

(A) True evolution equation: If h̃(t; �x) :R+ × W̃ k → R solves the system of
ODEs given in Definition 4.8 with initial data h̃0(�x) = H̃ (η, �x), then for all
�x ∈ W̃ k , Eη[H̃ (η(t), �x)] = h̃(t; �x).

(B) Free evolution equation with k − 1 boundary conditions: If ũ :R+ ×Z
k →

R solves:

(1) For all �x ∈ Z
k and t ∈ R+,

d

dt
ũ(t; �x)

(32)

=
k∑

i=1

[
axi−1pũ

(
t; �x−

i

) + axi
qũ

(
t; �x+

i

) − (axi−1q + paxi
)ũ(t; �x)

];
(2) For all �x ∈ Z

k such that for some i ∈ {1, . . . , k − 1}, xi+1 = xi + 1,

pũ
(
t; �x−

i+1

) + qũ
(
t; �x+

i

) = ũ(t; �x);(33)

(3) There exist constants c,C > 0 and δ > 0 such that for all �x ∈ W̃ k , t ∈ [0, δ]∣∣ũ(t; �x)
∣∣ ≤ Cec‖�x‖1;

(4) For all �x ∈ W̃ k , as t → 0, ũ(t; �x) → H̃ (η, �x).

Then for all �x ∈ W̃ k , Eη[H̃ (η(t), �x)] = ũ(t; �x).
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PROOF. Part (A) is an immediate consequence of the duality result of The-
orem 4.1 along with its proof. Call the three conditions contained in Defini-
tion 4.8 (A.1), (A.2) and (A.3).

Part (B) follows by showing that if the four conditions for ũ given in (B)
hold, then it implies that u(t; �x) restricted to �x ∈ W̃ k actually satisfies condi-
tions (A.1), (A.2) and (A.3). Conditions (B.3) and (B.4) immediately imply con-
ditions (A.2) and (A.3), respectively. It is easy to check that the k − 1 boundary
conditions (B.2) along with the free evolution equation (B.1) combine to yield the
generator Lpart and hence yield (A.1). Applying part (A), we see that given the
conditions of (B), we may conclude that for all �x ∈ W̃ k , Eη[H̃ (η(t), �x)] = ũ(t; �x).

�

We have an almost identical result and proof associated with the H(η, �x) dual-
ity.

PROPOSITION 4.11. Let η be a left-finite occupation configuration in {0,1}Z
and η(t) be ASEP started from η(0) = η.

(A) True evolution equation: If h(t; �x) :R+ × W̃ k → R solves the system of
ODEs given in Definition 4.8 with initial data h0(�x) = H(η, �x), then for all
�x ∈ W̃ k , Eη[H(η(t), �x)] = h(t; �x).

(B) Free evolution equation with k − 1 boundary conditions: If ũ :R+ ×Z
k →

R solves:

(1) For all �x ∈ Z
k and t ∈ R+,

d

dt
u(t; �x) =

k∑
i=1

[
pu

(
t; �x−

i

) + qu
(
t; �x+

i

) − u(t; �x)
];

(2) For all �x ∈ Z
k such that for some i ∈ {1, . . . , k − 1}, xi+1 = xi + 1,

pu
(
t; �x−

i+1

) + qu
(
t; �x+

i

) = u(t; �x);
(3) There exist constants c,C > 0 and δ > 0 such that for all �x ∈ W̃ k , t ∈ [0, δ]∣∣u(t; �x)

∣∣ ≤ Cec‖�x‖1;
(4) For all �x ∈ W̃ k , as t → 0, u(t; �x) → H(η, �x).

Then for all �x ∈ W̃ k , Eη[H(η(t), �x)] = u(t; �x).

PROOF. Similar to that of Proposition 4.10. �
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4.3. Nested contour integral ansatz. From now on, we assume that all bond
rate parameters ax ≡ 1, in which case equation (32) becomes

d

dt
ũ(t; �x) =

k∑
i=1

[
pũ

(
t; �x−

i

) + qũ
(
t; �x+

i

) − ũ(t; �x)
]
.(34)

It is not a priori clear how one might explicitly solve the systems of ODEs
in Propositions 4.10 and 4.11. For q-TASEP, when confronted with the analo-
gous problem of solving the system of ODEs in Proposition 2.7, we appealed to a
nested contour integral ansatz which was suggested from the algebraic framework
of Macdonald processes (into which q-TASEP fits).

ASEP, on the other hand, is not known to fit into the Macdonald process frame-
work, nor any similar framework from which solutions to these systems of ODEs
would be suggested. Nevertheless, we demonstrate now that we may apply a nested
contour integral ansatz. We focus on solving the system of ODEs in Proposi-
tion 4.10 for two distinguished types of initial data. Notice that in the below theo-
rem, the contours are not nested, however, they are chosen in a particular manner
to avoid poles coming from the denominator zA − τzB .

DEFINITION 4.12. For ρ ∈ [0,1] consider an i.i.d. collection {Yx}x≥1 of
Bernoulli random variables taking value 1 with probability ρ. Then the step
Bernoulli initial data for ASEP is given by setting ηx(0) = 0 for x ≤ 0 and
ηx(0) = Yx for x ≥ 1. When ρ = 1, this is called step initial data and (determinis-
tically) ηx(0) = 1x≥1. We also define θ = ρ/(1 − ρ).

Define the function

fz(x, t;ρ) = exp
[
− z(p − q)2

(1 + z)(p + qz)
t

](
1 + z

1 + z/τ

)x−1 1

τ + z

−τθ

z − τθ
.(35)

When ρ = 1 (and hence θ = ∞), the definition of fz(x, t;1) corresponds to the
expression above, with the final fraction removed. Also define

Fz(x, t;ρ) = exp
[
− z(p − q)2

(z + 1)(p + qz)
t

](
1 + z

1 + z/τ

)x −τθ

z − τθ
(36)

and likewise extend to ρ = 1.
Finally, define an integration contour C−τ ;−1 as a circle around −τ , chosen with

small enough radius so that −1 is not included, nor is the image of C−τ ;−1 under
multiplication by τ . It is also important that τθ and 0 are not contained in C−τ ;−1,
but these facts are necessarily true from the definition.

THEOREM 4.13. Fix nonnegative real numbers 0 < p < q (normalized by
p+q = 1) and set all bond rate parameters ax ≡ 1. Consider step Bernoulli initial
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data with density ρ ∈ (0,1]. The system of ODEs given in Proposition 4.10(B) is
solved by the following formula:

ũ(t; �x) = τ k(k−1)/2

(2πι)k

∫
· · ·

∫ ∏
1≤A<B≤k

zA − zB

zA − τzB

k∏
i=1

fzi
(xi, t;ρ)dzi,(37)

where the integration contour is given by C−τ ;−1.

As an immediate corollary of Theorem 4.13 and Proposition 4.10(B) we find
formulas for joint moments of the Q̃x(t) defined in (22).

COROLLARY 4.14. Fix k ≥ 1, nonnegative real numbers 0 < p < q (normal-
ized by p + q = 1) and set all bond rate parameters ax ≡ 1. For step Bernoulli
initial data with density ρ ∈ (0,1] and any �x ∈ W̃ k ,

E
[
Q̃x1

(
η(t)

) · · · Q̃xk

(
η(t)

)]
(38)

= τ k(k−1)/2

(2πι)k

∫
· · ·

∫ ∏
1≤A<B≤k

zA − zB

zA − τzB

k∏
i=1

fzi
(xi, t;ρ)dzi,

where the integration contour is given by C−τ ;−1.

REMARK 4.15. The true evolution equation (A) in Proposition 4.10 can alter-
natively be solved using the Green’s function formula of [38] for the ASEP particle
process generator. This results in a rather different expression than we find in (38)
since the Green’s function is expressed as a sum of k!, k-fold contour integrals.
The equivalence of the expression in (38) to the expression one arrives at using
[38] is a result of a nontrivial symmetrization. The single k-fold contour integral
formula we find is essential as it enables us to proceed from duality to the two types
(Mellin–Barnes and Cauchy) of Fredholm determinant formulas we find for ASEP.

PROOF OF THEOREM 4.13. We give the proof for step Bernoulli initial data
with ρ ∈ (0,1), and hence θ ∈ (0,∞). The modification for the ρ = 1 case is
trivial.

We need to prove that ũ(t; �x), as defined in (37), satisfies the four conditions of
Proposition 4.10(B).

Condition (B.1) is satisfied by linearity and the fact that[
d

dt
− �p,q

]
fz(x, t;ρ) = 0,

where �p,qg(x) = pg(x − 1) + qg(x + 1) − g(x) acts on the x-variable in
fz(x, t;ρ).

Condition (B.2) relies on the Vandermonde factors as well as the choice of con-
tours. Without loss of generality, assume that x2 = x1 + 1. We wish to show that

pũ
(
t; �x−

2

) + qũ
(
t; �x+

1

) − ũ(t; �x) = 0.
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Thinking of the left-hand side as an operator applied to ũ(t; �x), we compute the
effect of this operator on the integrand of (37) and find that it just brings out an
extra factor in the integrand [when compared to ũ(t; �x−

2 )] which is

p + q

(
1 + z1

1 + z1/τ

)(
1 + z2

1 + z2/τ

)
−

(
1 + z2

1 + z2/τ

)
(39)

= (z1 − τz2)
(p − q)/τ

(1 + z1/τ)(1 + z2/τ)
.

We must show that the integral with this new factor times the integrand in (37) is
zero. The factor (z1 − τz2) cancels the term corresponding to A = 1 and B = 2 in
the denominator of ∏

1≤A<B≤k

zA − zB

zA − τzB

.

The term (z1 − z2) in the numerator remains, and the additional terms coming
from (39) are symmetric in z1 and z2. Therefore, we can write

ũ(t; �x) =
∫ ∫

(z1 − z2)G(z1)G(z2) dz1 dz2,

where G(z) involves the integrals in z3, . . . , zk . Since the contours are identical,
this integral is zero, proving (B.2).

Condition (B.3) follows via very soft bounds. Observe that as z varies along
the contour C−τ ;−1, and as t varies in [0, δ] for any δ, it is easy to bound
|fz(x, t;ρ)| ≤ Cec‖x‖1 for some constants c,C > 0. Since the contours are finite
and since the other terms in the integrand defining ũ are bounded along C−τ ;−1,
ũ(t; �x) is likewise bounded, thus implying the desired inequality to show condi-
tion (B.3).

Condition (B.4) follows from residue calculus. In order to check it, however, we
must first determine what initial data corresponds to step Bernoulli ASEP initial
data.

LEMMA 4.16. For step Bernoulli initial data with density parameter
ρ ∈ (0,1] and �x ∈ W̃ k ,

E
[
Q̃x1

(
η(0)

) · · · Q̃xk

(
η(0)

)]
(40)

= 1x1>0

k∏
j=1

ρτk−j (
ρτk−j+1 + 1 − ρ

)xj−xj−1−1

with the convention that x0 = 0.

PROOF. From the definition of Q̃x(η), one readily sees that

Q̃x1

(
η(0)

) · · · Q̃xk

(
η(0)

) =
k∏

j=1

ηxj
τ

(k−j)ηxj τ
(k−j+1)(

∑xj −1
y=xj−1+1 ηy)

.(41)
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This expression involves two types of terms: ηxτ
�ηx and τ �ηx . Observe that

E
[
ηxτ

�ηx
] = ρτ�, E

[
τ �ηx

] = ρτ� + 1 − ρ.

Taking expectations of (41) and using the above formulas, we get the desired re-
sult. �

Thus, in order to show (B.4) we must prove that

lim
t→0

ũ(t; �x) = 1x1>0

k∏
j=1

ρτk−j (
ρτk−j+1 + 1 − ρ

)xj−xj−1−1
.(42)

(Note that for ρ = 1 this simply reduces to 1x1>0
∏k

j=1 τxj−1.) The first observa-
tion is that we can take the limit of t → 0 inside of the integral defining ũ(t; �x).
This is because the integral defining ũ is along a finite contour and the integrand is
uniformly converging to its t = 0 limiting value along this contour.

When t = 0 the exponential term in the integrand of (37) disappears. If x1 ≤ 0,
then the integrand no longer has a pole at z1 = −τ . Since there are no other poles
contained in the z1 contour, Cauchy’s theorem implies that the integral is zero,
hence the condition that ũ(0; �x) = 0 is satisfied.

Alternatively, we must consider the case where 0 < x1 < x2 < · · · < xk . We can
write ũ(0; �x) as

ũ(0; �x) = τ kτ k(k−1)/2g1(x1, . . . , xk),(43)

where we define (for � ≥ 1),

g�(x1, . . . , xk) = (−1)k

(2πι)k

∫
· · ·

∫ ∏
1≤A<B≤k

zA − zB

zA − τzB

×
k∏

i=1

(
1 + zi

1 + zi/τ

)xi−1 1

τ + zi

θ

zi − τ �θ
dzi.

As a convention, when k = 0 we define g� ≡ 1.

LEMMA 4.17. For � ≥ 1 and 0 < x1 < x2 < · · · < xk ,

g�(x1, . . . , xk) =
(

1 + τ �θ

1 + τ �−1θ

)xk−1 θ

τ + τ �θ
g�+1(x1, . . . , xk−1).

PROOF. The lemma follows from residue calculus. Expand zk to infinity. Due
to quadratic decay in zk at infinity there is no pole. Thus, the integral is equal to −1
times the sum of the residues at zk = τ−1zj for j < k and at zk = τ �θ .
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First, consider the residue at zk = τ−1zj for some j < k. That residue equals an
integral with one fewer variable:

(−1)k−1

(2πι)k−1

∫
· · ·

∫ ∏
1≤A<B≤k−1

zA − zB

zA − τzB

k−1∏
i=1

(
1 + zi

1 + zi/τ

)xi−1 1

τ + zi

dzi

zi − τ �θ

× zj /τ − zj

τ

k−1∏
i=1
i �=j

zi − zj /τ

zi − zj

(
1 + zj /τ

1 + zj/τ 2

)xk−1 1

τ + zj /τ

1

zj/τ − τ �θ
.

This integrand has no pole at zj = −τ . This is because the new factor contains
(1 + zj /τ )xk−1 in the numerator and, since xk > xj , this factor cancels the pole
coming from the denominator (1+zj /τ )xj−1. Since the contour for zj was a small
circle around −τ the fact that this pole is no longer present implies that the entire
integral is zero. This shows that the residue at zk = zj /τ for any j < k is zero.

The remaining residue to consider is from zk = τ �θ . One readily checks
that evaluating this residue leads to the desired recursion relation between
g�(x1, . . . , xk) and g�+1(x1, . . . , xk−1). Finally, note that when k = 1 the recur-
sion holds under the convention which we adopted that without any arguments,
g� equals 1. �

We may now conclude the proof of condition (B.4). Iteratively applying
Lemma 4.17 leads to

g1(x1, . . . , xk) =
k∏

j=1

(
1 + τ j θ

1 + τ j−1θ

)xk−j+1−1 θ

τ + τ j θ
.

After some algebra one confirms that plugging this into (43) leads to the desired
equation of (42), and hence completes the proof of condition (B.4). �

4.4. ASEP moment formula. We seek to compute an integral formula for
the moments of Qx(η(t)). Even if we were to solve the system of equations
in Proposition 4.11(B), this would not suffice since �x is restricted to lie in W̃ k

(i.e., all xi distinct). The extension of that solution outside W̃ k does not have
any necessary meaning as an expectation. Instead, the following lemma shows
that we may recover the moments of Qx from the formula given in Corol-
lary 4.14 for E[Q̃x1(t) · · · Q̃xk

(t)]. Theorem 4.20 below gives the final formula
for E[(Qx(η))n].

LEMMA 4.18. Recalling Qx(η) and Q̃x(η) defined in (22), we have

(
Qx(η)

)n =
n∑

k=0

(
n

k

)
τ

(τ ; τ)k(−1)k
∑

x1<···<xk≤x

Q̃x1(η) · · · Q̃xk
(η),(44)

where the empty sum (when k = 0) is defined as equal to 1.



FROM DUALITY TO DETERMINANTS FOR q-TASEP AND ASEP 2353

PROOF. This lemma can be found as Proposition 3 in [19]. The derivation
provided therein utilizes the Uq(sl2) symmetry of the spin chain representation
of ASEP. We provide an elementary proof.

Recall that Qx(η) and Q̃x(η) are functions of the occupation variables η and if
η is not left-finite, then both sides above are zero.

In order to prove the identity, we develop generating functions for both sides and
show that they are equal. Multiply both sides of the claimed identity by un/(τ ; τ)n
and sum over n ≥ 0. The τ -binomial theorem (see Section B.1 with q replaced
by τ ) implies that the generating function for the left-hand side of (44) can be
summed as

∞∑
n=0

un

(τ ; τ)n

(
Qx(η)

)n = 1

(uQx(η); τ)∞
.

For |u| small enough, this series is convergent and it represents an analytic function
of u.

Turning to the generating function for the right-hand side of (44), if |u| is suffi-
ciently small, it is justifiable to rearrange the series in u into

∞∑
k=0

∑
x1<x2<···<xk≤x

(−1)kukQ̃x1(η) · · · Q̃xk
(η)

∞∑
n≥k

un−k

(τ ; τ)n−k

.

The summation over n ≥ k can be evaluated as 1/(u; τ)∞ and factored out. Also,
the summation over k and ordered sets x1 < x2 < · · · < xk ≤ x can be rewritten
yielding the right-hand side of (44) equals∏

y≤x(1 − uQ̃y(η))

(u; τ)∞
.

The above manipulations are justified as long as |u| is small enough, due to the
fact that all but finitely many of the Q̃y(η) are zero.

The proof now reduces to showing that

1

(uQx(η); τ)∞
=

∏
y≤x(1 − uQ̃y(η))

(u; τ)∞
.

This, however, is an immediate consequence of the definitions of Qx(η) and
Q̃y(η). To see this, assume that ηy = 0 for all y ≤ x except when y = n1, . . . , nr .
Then Qx(η) = τ r and the left-hand side can be written as

(1 − u) · · · (1 − uτ r−1)

(u; τ)∞
.

On the other hand, note that Q̃y(η) = 0 for all y ≤ x except Q̃ni
(η) = τ i−1. Thus,

the right-hand side can also be rewritten as

(1 − u) · · · (1 − uτ r−1)

(u; τ)∞
,

hence completing the proof of the lemma. �



2354 A. BORODIN, I. CORWIN AND T. SASAMOTO

For step and step Bernoulli initial data, using Corollary 4.14 and the sym-
metrization identities contained in Lemma B.2 we can evaluate part of (44) via
the following result.

LEMMA 4.19. For step Bernoulli initial data with ρ ∈ (0,1] and for all k ≥ 1,

(τ ; τ)k(−1)k
∑

x1<···<xk≤x

E
[
Q̃x1

(
η(t)

) · · · Q̃xk

(
η(t)

)]
(45)

= τ k(k−1)/2

(2πι)k

∫
· · ·

∫ ∏
1≤A<B≤k

zA − zB

zA − τzB

k∏
i=1

Fzi
(x, t;ρ)

dzi

zi

,

where the contours of integration are all C−τ ;−1.

PROOF. The starting point for this is the formula provided in Corollary 4.14
for E[Q̃x1(η) · · · Q̃xk

(η)]. In that formula, set ξi = (1 + zi)/(1 + zi/τ ) and note
that the contour C−τ ;−1 can be chosen to be a sufficiently small circle around −τ

so that |ξi | > 1 as zi varies in C−τ ;−1. The summation over x1 < · · · < xk ≤ x on
the left-hand side of (4.19) can be brought into the integrand and is performed by
using (here we rely upon |ξi | > 1 for convergence)

∑
x1<···<xk≤x

k∏
i=1

ξ
xi−1
i = (ξ1 · · · ξk)

x
k∏

i=1

1

ξ1 · · · ξi − 1
.

After performing the summation as above, we observe that since all contours are
the same, we may symmetrize the left-hand side. For the same reason, we may
symmetrize the right-hand side integrand in (45). The symmetrization is achieved
by using the two combinatorial identities in Lemma B.2—identity (68) is used to
symmetrize the left-hand side, while (69) is used to symmetrize the right-hand side.
The two resulting symmetrized formulas are identical, thus yielding the proof. �

We may now prove the following moment formula.

THEOREM 4.20. Fix nonnegative real numbers 0 < p < q (normalized by
p+q = 1) and set all bond rate parameters ax ≡ 1. Consider step Bernoulli initial
data with density ρ ∈ (0,1]. Then for all n ≥ 1,

E
[
τnNx(η(t))]

= E
[(

Qx

(
η(t)

))n]
(46)

= τn(n−1)/2 1

(2πι)n

∫
· · ·

∫ ∏
1≤A<B≤n

zA − zB

zA − τzB

n∏
i=1

Fzi
(x, t;ρ)

dzi

zi

,

where the integration contour for zA is composed of two disconnected pieces which
include 0,−τ but does not include −1, τθ or {τzB}B>A (see Figure 5 for an
illustration of such contours).
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FIG. 5. The contour for zA includes 0,−τ but does not include −1, τθ or {τzB }B>A. The dotted
lines represent the images of the contours under multiplication by τ . For instance, observe that the
z1 contour does not include the image under multiplication by τ of z2 or z3.

PROOF. The left-most equality of (46) is just by definition. The proof of the
second equality relies on the following lemma. For an illustration of the types of
contours involved, see Figure 5.

LEMMA 4.21. Fix n ≥ 1. Assume f (z) is a meromorphic function on C which
has no poles in a ball around 0 and which has f (0) = 1. Let C0 be a small circle
centered at 0 and C1 be another closed contour. Assume that there exists r > τ−1

such that τC1 is not contained inside rnC0, and such that f has no poles in-
side rnC0. Define C0

i = riC0, C1
i = C1 and Ci = C0

i ∪ C1
i for 1 ≤ i ≤ n. Let

νn = 1

(2πι)n

∫
C1

· · ·
∫
Cn

∏
1≤A<B≤n

zA − zB

zA − τzB

n∏
i=1

f (zi)
dzi

zi

and

ν̃k = 1

(2πι)k

∫
C1

· · ·
∫
C1

∏
1≤A<B≤k

zA − zB

zA − τzB

k∏
i=1

f (zi)
dzi

zi

with the convention that ν̃0 = 1. Then

νn =
n∑

k=0

(
n

k

)
τ

τ (k(k−1)/2)−(n(n−1)/2)ν̃k.

PROOF. In order to evaluate the integrals defining νn we split them into 2n

integrals indexed by S ⊂ {1, . . . , n} which determines which integrations are along
C0

i (all zi with i ∈ S) and which are along C1
i (all zi with i /∈ S). This shows that

νn =
n∑

k=0

∑
S⊂{1,...,n}

|S|=k

1

(2πι)n

∫
C

ε1
1

· · ·
∫
C

εn
n

∏
1≤A<B≤n

zA − zB

zA − τzB

n∏
i=1

f (zi)
dzi

zi

,
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where εi = 1i /∈S , 1 ≤ i ≤ n. We now claim that for any S ⊂ {1, . . . , n} with |S| = k,

1

(2πι)n

∫
C

ε1
1

· · ·
∫
C

εn
n

∏
1≤A<B≤n

zA − zB

zA − τzB

n∏
i=1

f (zi)
dzi

zi

= τ−nk+‖S‖ν̃n−k,(47)

where we use the notation ‖S‖ = ∑
i∈S i. Note that C

εi

i is C0
i when i ∈ S and

C1
i (and hence C1) when i /∈ S. To prove this claim, label the elements of S as

i1 < i2 < · · · < ik . By the fact that zi1 is contained in τC0
j for all j > i1, we may

shrink the zi1 contour to zero without crossing any poles except at zi1 = 0. The
residue at that pole is τ−(n−i1). Then we may shrink the zi2 contour to zero with
contribution of τ−(n−i2). Repeating this up to zik yields a factor of

k∏
j=1

τ−(n−ij ) = τ−nk+‖S‖.

The remaining integration variables can be relabeled so as to yield the expression
for ν̃n−k .

By using (47), we find that

νn =
n∑

k=0

∑
S⊂{1,...,n}

|S|=k

τ−nk+‖S‖ν̃n−k

=
n∑

k=0

ν̃n−kτ
−nk+(k(k+1)/2)

∑
S⊂{1,...,n}

|S|=k

τ ‖S‖−(k(k+1)/2)

=
n∑

k=0

ν̃n−kτ
−nk+(k(k+1)/2)

(
n

k

)
τ

=
n∑

k=0

(
n

k

)
τ

τ (k(k−1)/2)−(n(n−1)/2)ν̃k

as desired. From the first line to second line is by factoring. The second line to
third is by (63). The third line to fourth line is via changing k to n − k. �

We return now to the proof of Theorem 4.20. Consider the second equal-
ity in (46). By virtue of the conditions imposed on the contours, we may apply
Lemma 4.21 with f (z) = Fz(x, t;ρ) and Ci chosen to match the contours defined
in Theorem 4.20. This shows that

RHS of (46) =
n∑

k=0

(
n

k

)
τ

τ k(k−1)/2 1

(2πι)k

(48)

×
∫

· · ·
∫ ∏

1≤A<B≤k

zA − zB

zA − τzB

k∏
i=1

Fzi
(x, t;ρ)

dzi

zi

,
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where the integration contours are C−τ ;−1 (which coincide with C1 from
Lemma 4.21). By Lemma 4.19, we rewrite (48) as

RHS of (46) =
n∑

k=0

(
n

k

)
τ

(τ ; τ)k(−1)k
∑

x1<···<xk≤x

Q̃x1 · · · Q̃xk
,

where the empty sum (when k = 0) is defined as equal to 1. Lemma 4.18 implies
that this expression equals E[(Qx)

n], proving the theorem. �

5. From nested contour integrals to Fredholm determinants for ASEP.
Using the nested contour integral formula of Theorem 4.20 for E[τnNx(η(t))] under
step-Bernoulli initial data for ASEP, we prove Mellin–Barnes and Cauchy-type
Fredholm determinant formulas for the eτ -Laplace transform of τNx(η(t)). This
transform characterizes the distribution of Nx(η(t)) and is the starting point for
asymptotic analysis. The Mellin–Barnes-type formula we discover is new. The
Cauchy-type formula is, after inverting the eτ -Laplace transform, equivalent to
Tracy and Widom’s ASEP formula for step Bernoulli [41] initial data (see also
[38, 39] for step initial data where ρ = 1).

The route from the nested contour integral of Theorem 4.20 to the Fredholm
determinants is similar to what was outlined in Section 3.1 (for the Mellin–Barnes-
type) and Section 3.2 (for the Cauchy-type). There are, however, some differences
due to the nature of the nested contours. For q-TASEP the integration contour for
zA was on a single connected contour and the set of such contours (as A varied)
was nested so that the zA contour contained {qzB}B>A. For ASEP, the integra-
tion contour for zA is the union of two contours and the set of such contours (as
A varies) is chosen such that the zA contour does not contain {qzB}B>A. This
difference in contours necessitates an analogous result to Proposition 3.2 (given
below as Proposition 5.2) when developing the Mellin–Barnes-type formula, and
an analogous result to Proposition 3.8 (given via the combination of Lemmas 4.18
and 4.19 above) when developing the Cauchy-type formula.

5.1. Mellin–Barnes-type determinant.

DEFINITION 5.1. Fix α ∈ C \ {0} and consider a meromorphic function f (z)

which has a pole at α but does not have any other poles in an open neighborhood
of the line segment connecting α to 0. For such a function and for any k ≥ 1, define

μk = τ k(k−1)/2

(2πι)k

∫
· · ·

∫ ∏
1≤A<B≤k

zA − zB

zA − τzB

k∏
i=1

f (zi)
dzi

zi

,(49)

where the integration contour for zA contains 0, α but does not include any other
poles of f or {τzB}B>A. For instance, when f is as in (36) and α = −τ , then the
contours illustrated in Figure 5 suffice (for k = 3).
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PROPOSITION 5.2. We have that for μk as in Definition 5.1,

μk = kτ !
∑
λ�k

λ=1m1 2m2 ···

1

m1!m2! · · ·
(1 − τ)k

(2πι)�(λ)

×
∫
C

· · ·
∫
C

det
[ −1

wiτλi − wj

]�(λ)

i,j=1
(50)

×
�(λ)∏
j=1

f (wj )f (τwj ) · · ·f (
τλj−1wj

)
dwj ,

where the integration contour C for wj contains 0, α and no other poles of f , and
it does not intersect its image under multiplication by any positive power of τ (see
Figure 6).

PROOF. The proof is via residue calculus and follows in the same manner
as Proposition 3.2, whose proof is found in [9] as Proposition 3.2.1. Rather than
repeating that proof, we just illustrate the k = 2 case.

Consider μ2 as in Definition 5.1 with contours like in Figure 5. Initially, the z1
contour is chosen so as not to contain τz2. Because the contours include α and 0,
they must be composed of two disjoint closed parts. Around α, the contours can
be the same small circle, but around 0, the z2 contour must have radius which is
at least τ−1 times that of the z1 contour. For k = 2, such a contour is given in
Figure 7(A). We may freely (without crossing any poles) deform the z2 contour to
a single circle C enclosing 0 and α (but no poles of f ). Such a resulting contour is
given in Figure 7(B). The integration in z1 and z2 may be taken sequentially, so that
for each fixed value of z2 along its contour of integration, we perform the integral
in z1. Thinking of z2 as fixed, we see that the z1 contour can be deformed to the
circle C by crossing a single pole at z1 = τz2. This shown in Figure 7(C) and (D).

FIG. 6. The contour C is chosen so as to contain 0, α and no other poles of f (such as the one
indicated with a black dot to the left of α).
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FIG. 7. (A): Both contours contain 0 and α, but the z1 contour must not contain τz2 (and neither
contour may contain any other poles such as the one indicated by the black dot to the right of α).
(B) The z2 contour may freely (without crossing poles) be deformed to a single circle containing 0
and α. (C) For z2 fixed along that circle, the z1 contour can be deformed and only picks a pole when
crossing the point τz2. (D) After crossing that pole, the z1 contour can be freely deformed to the
same contour on which z2 is integrated.

On account of crossing a pole, we find that μ2 can be expressed as

μ2 = τ

(2πι)2

∫
C

∫
C

z1 − z2

z1 − τz2
f (z1)f (z2)

dz1

z1

dz2

z2

− 1

2πι

∫
C
(τ − 1)f (τz2)f (z2)

dz2

z2
.

Observe that there are also two terms contained in the right-hand side of (50)—
one term is a single integral and one is a double integral. The single integral term
matches exactly while to match the double integral we simply symmetrize the
integrand (as can be done since z1 and z2 are on the same contour) and find those
terms match as well. In general, the partition λ indexes the clustering of residues
into chains. �

Using the above result as well as Proposition 3.3, we find following Fredholm
determinant formula for the eτ -Laplace transform of Qx(η(t)) = τNx(η(t)).
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THEOREM 5.3. Consider ASEP with 0 < p < q (normalized by p + q = 1),
all bond rate parameters ax ≡ 1, and step Bernoulli initial data with density pa-
rameter ρ ∈ (0,1]. Then with notation θ = ρ

1−ρ
we have that for all ζ ∈ C \R+,

E

[
1

(ζ τNx(η(t)); τ)∞

]
= det

(
I + KASEP

ζ

)
,

where det(I +KASEP
ζ ) is the Fredholm determinant of KASEP

ζ :L2(C0,−τ ;−1,τθ ) →
L2(C0,−τ ;−1,τθ ), where C0,−τ ;−1,τθ a positively oriented contour containing 0,
−τ on its interior and with −1 and τθ on its exterior. The operator Kζ is defined
in terms of its integral kernel

KASEP
ζ

(
w,w′) = 1

2πι

∫
DR,d

�(−s)�(1 + s)(−ζ )s
gw(x, t;ρ)

gτsw(x, t;ρ)

−1

τ sw − w′ ds.

The contour DR,d is given in Definition 3.5 with d > 0 taken to be sufficiently
small and R > 0 sufficiently large so that

inf
w,w′∈C0,−τ ;−1,τθ

s∈DR,d

∣∣qsw − w′∣∣ > 0 and sup
w,w′∈C0,−τ ;−1,τθ

s∈DR,d

∣∣∣∣ g(w)

g(qsw)

∣∣∣∣ < ∞.

The function gz(x, t;ρ), is given by

gz(x, t;ρ) = exp
[
(q − p)t

τ

z + τ

](
τ

z + τ

)x 1

(z/(τθ); τ)∞
.(51)

COROLLARY 5.4. We have that

P
(
Nx

(
η(t)

) = m
) = −τm

2πι

∫ (
τm+1ζ ; τ )

∞ det
(
I + KASEP

ζ

)
dζ,

where the contour of integration encloses ζ = τ−M for 0 ≤ M ≤ m and only inter-
sects R+ in finitely many points.

PROOF. This follows almost immediately from the inversion formula in
Proposition B.1. The one small impediment is that our formula for the q-Laplace
transform via the Fredholm determinant det(I +KASEP

ζ ) is not defined for ζ ∈ R+.
On the other hand, it is easy to see (and explained in the proof of Theorem 5.3) that
the function f (ζ ) defined by ζ �→ E[1/(ζ τNx(η(t)); τ)∞] is analytic away from
ζ = τ−M , for integers M ≥ 0. Thus P(Nx(η(t)) = m) can be computed via a con-
tour integral (as specified in the inversion formula) involving f (ζ ) in the integrand.

On the other hand, we know that f (ζ ) = det(I + KASEP
ζ ) for ζ not on R+,

and hence det(I +KASEP
ζ ) extends analytically through R+ \ {τ−M}M≥0. Thus, as

long as the integration contour for ζ only intersects R+, in finitely many points,
we can compute the necessary inversion contour integral with f (ζ ) replaced by
det(I + KASEP

ζ ). �
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PROOF OF THEOREM 5.3. Theorem 4.20 gives a nested contour inte-
gral formula for E[τ kNx(η(t))]. Comparing it with Definition 5.1 we see that
μk = E[τ kNx(η(t))] if the contour is chosen as the one in Theorem 4.20 and if
f (z) = Fz(x, t;ρ). This function can be written as f (z) = g(z)/g(τz) where
g(z) = gz(x, t;ρ), is given in (51).

We apply Proposition 5.2, yielding an expression for μk as in (50). This matches
the expression in (14) up to changing q to τ and sign inside the determinant. We
may therefore apply Proposition 3.3, followed by Proposition 3.6 (with q replaced
by τ ). At a formal level, this shows that

∑
k≥0

μk

ξk

kτ ! = det
(
I + K1

ξ

) = det
(
I + K2

ξ

)
(52)

the kernels K1
ξ and K2

ξ defined with respect to Fz(x, t;ρ) and gz(x, t;ρ), as above.
The contour CA in those propositions should be taken to be C0,−τ ;−1,τθ , as in the
hypothesis of Theorem 5.3. In applying Proposition 3.6, the contour C1,2,... should
be chosen to be DR,d with d > 0 sufficiently small, and R > 0 sufficiently large,
and the contours Ck , k ≥ 1 should be chosen to be DR,d;k . From the definition of
C0,−τ ;−1,τθ and gz(x, t;ρ), it is easy to check that as long as |ξ | is sufficiently
small, the criteria for these to be numerical equalities is satisfied.

Since by definition Nx(η(t)) ≥ 0 and τ < 1, it is immediate that τ kNx(η(t)) ≤ 1.
Hence, considering the left-hand side of (52), by choosing |ξ | small enough it
is justifiable to interchange the summation in k and the expectation. By the τ -
Binomial theorem (see Section B.1), we find

E

[
1

((1 − τ)ξτNx(η(t)); τ)∞

]
= det

(
I + K2

ξ

)
.(53)

This equality holds for all |ξ | sufficiently small. However, the right-hand side is
analytic in ξ /∈R+ due to Proposition 3.6. From the definition of the left-hand side,

E

[
1

((1 − τ)ξτNx(η(t)); τ)∞

]
=

∞∑
�=0

P(Nx(η(t)) = �)

((1 − τ)ξτ �; τ)∞
.

For any ξ /∈ {(1−τ)−1τ−M}M=0,1,..., within a neighborhood of ξ the infinite prod-
ucts are uniformly convergent and bounded away from zero. As a result, the series
is uniformly convergent in a neighborhood of any such ξ which implies that its
limit is analytic. Therefore, both sides of (53) are analytic for ξ /∈ R+ and hence
by uniqueness of the analytic continuation they are equal on this set.

The desired result for this theorem is achieved by setting ξ = (1 − τ)−1ζ thus
completing the proof. �
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5.2. Cauchy-type determinant.

THEOREM 5.5. Consider ASEP with 0 < p < q (normalized by p + q = 1),
all bond rate parameters ax ≡ 1, and step Bernoulli initial data with density pa-
rameter ρ ∈ (0,1]. Then with notation θ = ρ

1−ρ
we have that for all ζ ∈ C

E

[
1

(ζ τNx(η(t)); τ)∞

]
= det(I − ζ K̃ASEP)

(ζ ; τ)∞
,(54)

where det(I − ζ K̃ASEP) is an entire function of ζ and is the Fredholm determinant
of K̃ASEP :L2(C−τ ;−1) → L2(C−τ ;−1) defined in terms of its integral kernel

K̃ASEP(
w,w′) = Fw(x, t;ρ)

τw − w′
with Fw(x, t;ρ) defined in (36), and C−τ ;−1 is a circle around −τ , chosen with
small enough radius so that −1 is not included, and nor is the image of the circle
under multiplication by τ (see Definition 4.12).

COROLLARY 5.6. Consider ASEP with 0 < p < q (normalized by p + q = 1),
all bond rate parameters ax ≡ 1, and step Bernoulli initial data with density pa-
rameter ρ ∈ (0,1]. Then

P
(
Nx

(
η(t)

) = m
) = −τm 1

2πι

∫ det(I − ζ K̃TW-ASEP)

(ζ ; τ)m+1
dζ,(55)

where the integral is over a contour enclosing ζ = q−M for 0 ≤ M ≤ m − 1.
Here, det(I −ζ K̃TW-ASEP) is the Fredholm determinant of K̃TW-ASEP :L2(CR) →
L2(CR) defined in terms of its integral kernel

K̃TW-ASEP(
ξ, ξ ′) = q

ξxeε(ξ)t

p + qξξ ′ − ξ

ρ(ξ − τ)

ξ − 1 + ρ(1 − τ)

and ε(ξ) = pξ−1 + qξ − 1 and CR is a circle around zero of radius R so large
that the denominator p + qξξ ′ − ξ and ξ − 1ρ(1 − τ) are nonzero on and outside
the contour. As a function of ζ , det(I − ζ K̃TW-ASEP) is entire.

PROOF. This follows from Theorem 5.5 (after a change of variables) and the
eτ -Laplace transform inversion formula in Proposition B.1. The change of vari-
ables is

ξ = 1 + w

1 + w/τ
.

Using the equivalences given in Remark B.3, and using the definition of θ =
ρ/(1 − ρ) we find that

f (w) �→ eε(ξ)ξx ρ(ξ − τ)

ξ − 1 + ρ(1 − τ)
.
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Similarly, we find

1

τw − w′ �→ (τ − ξ)(τ − ξ ′)
τ (1 − τ)

q

(p + qξξ ′ − ξ)
.

The change of variables introduces an additional Jacobian factor into the new ker-
nel which is given by

−τ(1 − τ)

(τ − ξ)(τ − ξ ′)
.

Finally, under this change of variables, the contour C−τ ;−1 becomes CR as spec-
ified in the statement of the corollary, but with clockwise orientation. Changing
this to the standard counterclockwise orientation introduces a factor of −1 into the
kernel. Combining these calculations, we find

E

[
1

(ζ τNx(η(t)); τ)∞

]
= det(I − ζ K̃TW-ASEP)

(ζ ; τ)∞
,

where K̃TW-ASEP is as in the statement of the corollary.
From Proposition B.1, it follows that

P
(
Nx

(
η(t)

) = m
) = −τm 1

2πι

∫ (
τm+1ζ ; τ )

∞
det(I − ζ K̃TW-ASEP)

(ζ ; τ)∞
dζ

= −τm 1

2πι

∫ det(I − ζ K̃TW-ASEP)

(ζ ; τ)m+1
dζ,

where the integral is taken over a contour enclosing ζ = q−M for 0 ≤ M ≤ m − 1,
thus proving the corollary. �

REMARK 5.7. For ASEP with step-Bernoulli initial data, Tracy and Widom
[41] (for step initial data see [38, 39]) arrive at a very similar formula which says

P
(
Nx

(
η(t)

) ≥ m
) = 1

2πι

∫ det(I − ζ K̃TW-ASEP)

(ζ ; τ)m

dζ

ζ
,(56)

where the integral is taken over a contour enclosing ζ = 0 and ζ = q−M for 0 ≤
M ≤ m − 1. Since P(Nx(η(t)) ≥ m) − P(Nx(η(t)) ≥ m + 1) = P(Nx(η(t)) = m),
it is straightforward to go from (56) to (55) since

1

(ζ ; τ)mζ
− 1

(ζ ; τ)m+1ζ
= −τm 1

(ζ ; τ)m+1
.

Going in the reverse direction uses a telescoping sum and would require an a priori
confirmation that the right-hand side of (56) goes to zero as m goes to infinity.
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PROOF OF THEOREM 5.5. Let μ̃k be given as in (16) with f (w) = Fw(x, t;ρ)

defined by (36) and contour C−τ ;−1 as in Definition 4.12. Then Proposition 3.10
and Remark 3.11 imply that

∑
k≥0

μ̃k

ξk

kτ ! = det(I + ξK̃),(57)

where det(I + ξK̃) is the Fredholm determinant of

K̃
(
w,w′) = (1 − τ)

f (w)

τw − w′ .

We need to check that this is a numerical equality (not just formal). Because the
kernel is bounded as w varies along C̃−τ it follows that K̃ is trace-class, and hence
det(I + ξK̃) is an entire function of ξ .

In order to see that the left-hand side is uniformly convergent for small
enough |ξ |, we utilize the probabilistic interpretation for μ̃. By combining Lem-
mas 4.18 and 4.19, we find that

E
[
τnNx(η(t))] =

n∑
k=0

(
n

k

)
τ

(−1)kμ̃k.

This transformation from μ̃k to E[τnNx(η(t))] is upper-triangular, and hence can be
inverted. One checks that the inverse is given by

(−1)kμ̃k = (−1)kτ k(k−1)/2
k∑

j=0

(
k

j

)
τ−1

τ−j (j−1)/2(−1)jE
[
τ jNx(η(t))].

By (65), we find

(−1)kμ̃k = (−1)kτ k(k−1)/2
E

[(
1 − τNx(η(t))) · · · (1 − τNx(η(t))−k)]

= E
[(

τNx(η(t)) − 1
)(

τNx(η(t)) − τ
) · · · (τNx(η(t)) − τ k)].

This probabilistic interpretation of μ̃k implies that |μ̃k| ≤ 1, hence for |ξ | small
enough the series on the left-hand side of (57) is convergent and the equality is
numerical.

By replacing ξ = −ζ/(1 − τ) and using the probabilistic interpretation for μ̃k

to justify the exchange of summation and expectation (assuming |ζ | small enough)
this left-hand side series equals

∑
k≥0

μ̃k

(−ζ/(1 − τ))k

kτ ! = E

[∑
k≥0

(τ−Nx(η(t)); τ)k

(τ ; τ)k

(
ζ τNx(η(t)))k]

= E

[
(ζ ; τ)∞

(ζ τNx(η(t)); τ)∞

]
.
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Since we already wrote down the Fredholm determinant for this expression in (57),
this establishes the claimed result of the theorem, for |ζ | small enough.

Finally, note that

E

[
(ζ ; τ)∞

(ζ τNx(η(t)); τ)∞

]
= ∑

k≥0

P
(
Nx

(
η(t)

) = k
)
(ζ ; τ)k.

For any ζ ∈ C and any compact neighborhood � of ζ , it is clear at as k → ∞, the
product defining (ζ ; τ)k converges uniformly over � to a finite limit. This implies
that the series is likewise uniformly convergent in that compact neighborhood and,
therefore, the series is analytic in a neighborhood of ζ . As ζ was arbitrary, this
implies that the left-hand side of (54) is an entire function of ζ . We showed earlier
that the right-hand side is entire, therefore, since the two functions of ζ are equal
for |ζ | small enough, by the uniqueness of analytic continuations it follows that
the equality holds for all ζ ∈ C, completing the proof. �

APPENDIX A: SEMIDISCRETE DIRECTED POLYMERS

There are three main parameters in q-TASEP: time t , particle label n and the
repulsion strength q (the ai are also present, but play a somewhat auxiliary role).
On account of this, there are many interesting scaling limits to be explored. We
will presently focus on one which involves scaling q → 1 and t → ∞, but keeping
n fixed. We show that the limit of q-TASEP corresponds to a certain semidis-
crete version of the multiplicative stochastic heat equation (and hence also the
O’Connell–Yor semidiscrete directed polymer partition function [29]). We then
introduce the limit of the q-TASEP free evolution equation with k − 1 bound-
ary conditions and the Schrödinger equation with Bosonic Hamiltonian [Proposi-
tion 2.7(B) and (C)] and show how these limits are achieved from the analogous
statement for q-TASEP. Finally, we remark on the fact that taking a limit of the
Mellin–Barnes-type Fredholm determinant formula for the eq -Laplace transform
of q-TASEP yields a rigorous derivation of an analogous formula for the Laplace
transform of the solution to the semidiscrete multiplicative stochastic heat equa-
tion.

From this semidiscrete limit, it is possible to take another limit to the fully
continuous (space–time) multiplicative stochastic heat equation [1]. The free evo-
lution equation with k − 1 boundary conditions and the Schrödinger equation with
Bosonic Hamiltonian limit to the two different formulations of the attractive quan-
tum delta Bose gas.

DEFINITION A.1. The semidiscrete multiplicative stochastic heat equation
(SHE) with initial data z0 and drift vector ã = (ã1, . . . , ãN) is the solution to the
system of stochastic ODEs

dz(τ, n) = ∇z(τ, n) dτ + z(τ, n) dBn, z(0, n) = z0(n), z(τ,0) ≡ 0,



2366 A. BORODIN, I. CORWIN AND T. SASAMOTO

where (B1(s), . . . ,BN(s)) are independent standard Brownian motions such that
Bi has drift ãi , and we use the notation ∇z(τ, n) = z(τ, n − 1) − z(τ, n).

There is a Feynman–Kac path integral representation for z(τ, n). Let φ be a
Markov process with state space Z which increases by one at rate one (this is
a standard Poisson jump process whose generator is the adjoint of ∇). Let E denote
the expectation with respect to this path measure on φ. Define the energy of φ as
the path integral through the disorder (the white noises given by dBi) along φ:

Eτ (φ) =
∫ τ

0
dBφ(s) ds.

Also write: Eτ (φ): for Eτ (φ) − τ
2 . Then

z(τ, n) = Eφ(τ)=n[
e:Eτ (φ):z0

(
φ(0)

)]
.(58)

This path integral is essentially the O’Connell–Yor semidiscrete directed polymer
partition function [29].

A.1. Semidiscrete limit of q-TASEP dynamics. We now show how
q-TASEP rescales to the semidiscrete SHE. We state the result for step initial
data and then provide a scaling argument which makes clear the correspondence
for general initial data. For the below proposition, let C([0, T ],RN) represent
the space of functions from [0, T ] to R

N endowed with the topology of uniform
convergence on compact subsets.

PROPOSITION A.2. Consider q-TASEP started from step initial data and
scaled according to

q = e−ε, ai = e−εãi , t = ε−2τ,
(59)

xn(t) = ε−2τ − (n − 1)ε−1 log ε−1 − ε−1Fn
ε (τ ).

Let zε(τ, n) = exp(−3τ
2 + Fn

ε (τ )). Then for any N ≥ 1, T > 0, as ε → 0, the
law of the stochastic process {zε(τ, n) : τ ∈ [0, T ],1 ≤ n ≤ N} converges in the
topology of measures on C([0, T ],RN) to a limit given by the law of {z(τ, n) : τ ∈
[0, T ],1 ≤ n ≤ N} where z(τ, n) solves the semidiscrete SHE with drift vector
ã = (ã1, . . . , ãN ) and initial data z0(n) = δn=1.

This result is a corollary of [9] Theorem 4.1.26 which deals with a larger two-
dimensional extension of q-TASEP and its limit. That result is not entirely ele-
mentary as it relies upon the convergence of q-Whittaker processes to Whittaker
processes [9] as well as the relationship of Whittaker processes to the semidiscrete
directed polymer [28]. We will presently provide a purely probabilistic sketch of
why this result is true, without making any attempt to fill in the details of rigorous
justifications.

It is easy to check the initial data. Observe that via the scalings, zε(0, n) =
εn−1eεn. Hence, if n > 1 the limit is 0, whereas for n = 1 the limit is 1. This shows
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that as ε → 0, zε(0, n) → δn=1. To achieve a general initial data z0, one should
scale xn(0) so that εn−1e−εxn(0) → z0(n).

To see how the dynamics behave under scaling, it is easiest to work in terms
of Fn

ε (τ ). Observe that

dFn
ε (τ ) = Fn

ε (τ ) − Fn
ε (τ − dτ)

= (
ε−1τ − (n − 1) log ε−1 − εxn

(
ε−2τ

))
− (

ε−1(τ − dτ) − (n − 1) log ε−1 − εxn

(
ε−2τ − ε−2 dτ

))
= ε−1 dτ − ε

(
xn

(
ε−2τ

) − xn

(
ε−2τ − ε−2 dτ

))
.

The jump rate for q-TASEP, in the rescaled variables, is given by

an

(
1 − qxn−1(t)−xn(t)−1) = 1 − ε

(
ãn + eFn−1

ε (τ )−Fn
ε (τ )) + O

(
ε2)

.

This means that in an increment of time ε−2 dτ , we should see that

ε
(
xn

(
ε−2τ

)−xn

(
ε−2τ −ε−2 dτ

)) = ε−1 −(
ãn+eFn−1

ε (τ )−Fn
ε (τ ))dτ +dWn+o(1),

where the Wn are independent Brownian motions which arise from the approxima-
tion of a Poisson process by a Brownian motion. Setting Bn = ãn − Wn (a Brown-
ian motion with drift ãn now), we find that

dFn
ε (τ ) = eFn−1

ε (τ )−Fn
ε (τ ) + dBn + o(1).

By Itô’s lemma,

d exp
(
Fn

ε (τ )
) = (1

2 exp
(
Fn

ε (τ )
) + exp

(
Fn−1

ε (τ )
))

dτ + exp
(
Fn

ε (τ )
)
dBn + o(1)

and hence rewriting this in terms of zε(τ, n) we have

dzε(τ, n) = ∇zε(τ, n) dτ + zε(τ, n) dBn + o(1).

As ε → 0, this equation limits to that for z(τ, n) as desired.

A.2. Semidiscrete limit of q-TASEP duality. By utilizing the path integral
formulation of z(τ, n) given in (58) let us compute expressions for joint moments
of z(τ, n) for fixed τ but different values of n. For simplicity, we assume below
that all ãi ≡ 0, though the general case is no more difficult. This procedure is
sometimes called the replica approach (not to be confused with the replica trick—
see Section A.4) as it involves replication of the path measure.

Observe that

E

[
k∏

i=1

z(τ, ni)

]
= E

[
k∏

i=1

Eφi(τ )=ni
[
e:Eτ (φi):z0

(
φi(0)

)]]
,
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where the φi’s are independent copies of the Poisson jump process φ. Interchang-
ing the disorder and path expectations, we are left to evaluate the (now inner)
expectation

E

[
k∏

i=1

e:Eτ (φi):
]

= exp

(∫ τ

0

k∑
i<j

δφi(s)=φj (s) ds

)
.

This leads to the final formula

E

[
k∏

i=1

z(τ, ni)

]
(60)

= Eφ1(τ )=n1 · · ·Eφk(τ)=nk

[
exp

(∫ τ

0

k∑
i<j

δφi(s)=φj (s) ds

)
k∏

i=1

z0
(
φi(0)

)]
.

This identity should be thought of as a duality between the semidiscrete SHE and
a system of Poisson jump processes energetically rewarded via the sum of their
local times. The proof of the above identity follows from the simple fact that for
X distributed as a centered normal random variable with variance σ 2,

E
[
ek(X−σ 2/2)] = eσ 2k(k−1)/2.

This implies that it is the Gaussian nature of the noise and not the underlying gen-
erator ∇ which is behind this identity. Therefore, if ∇ is replaced in Definition A.1
by an arbitrary generator L, the same identity holds if φ is defined via the adjoint
generator of L. For more on these generalities, see Section 6 of [9]. Note that for
the continuum SHE, there exist other types of noise for which dualities have been
shown (see, e.g., [18]).

Just as for q-TASEP, (60) implies that the joint moments of z satisfy systems of
ODEs (recall Proposition 2.7). The (A) system follows from (60) directly. We now
record the limiting versions of Proposition 2.7(B) and (C).

PROPOSITION A.3. Let z(τ ;n) be as above with initial data z0(n) supported
on Z>0.

(B) Free evolution equation with k − 1 boundary conditions: If ũ :R+ ×
(Z≥0)

k →R solves:

(1) For all �n ∈ (Z≥0)
k and τ ∈ R+,

d

dτ
ũ(τ ; �n) =

k∑
i=1

∇i ũ(τ ; �n);

(2) For all �n ∈ (Z≥0)
k such that for some i ∈ {1, . . . , k − 1}, ni = ni+1,

(∇i − ∇i+1 − 1)ũ(τ ; �n) = 0;
(3) For all �n ∈ (Z≥0)

k such that nk = 0, ũ(τ ; �n) ≡ 0 for all τ ∈ R+;
(4) For all �n ∈ Wk

>0, ũ(0; �n) = ∏k
i=1 z0(ni).
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Then for all �n ∈ Wk
>0, E[∏k

i=1 z(τ, ni)] = ũ(τ ; �n).
(C) Schrödinger equation with Bosonic Hamiltonian: If ṽ :R+ × (Z≥0)

k

solves:

(1) For all �n ∈ (Z≥0)
k and τ ∈ R+,

d

dτ
ṽ(τ ; �n) = H̃ ṽ(τ ; �n), H̃ =

[
k∑

i=1

∇i +
k∑

i<j

δni=nj

]
;

(2) For all permutations of indices σ ∈ Sk , ṽ(τ ;σ �n) = ṽ(τ ; �n);
(3) For all �n ∈ (Z≥0)

k such that nk = 0, ṽ(τ ; �n) ≡ 0 for all τ ∈ R+;
(4) For all �n ∈ Wk

>0, ṽ(0; �n) = ∏k
i=1 z0(ni).

Then for all �n ∈ Wk
>0, E[∏k

i=1 z(τ, ni)] = ṽ(τ ; �n).

These systems of ODEs can be proved from (60) directly. Instead, we sketch
how they arise as limits of the analogous ODEs for q-TASEP.

Let us first consider (B). Recall that u(t; �n) = E[∏k
i=1 qxni

(t)+ni ]. Thus, defining

ũε(τ, �n) =
k∏

i=1

eε−1τ ε(ni−1)u
(
ε−2τ, �n)

,

we expect (from Section A.1) that

lim
ε→0

e−(3kτ)/2ũε(τ, �n) = E

[
k∏

i=1

z(τ, ni)

]
.

Call this limit ũ(τ, �n). We now check that ũ indeed satisfies conditions (B.1)–(B.4)
above. The fact that it satisfies (B.3) and (B.4) is clear. Note that

k∏
i=1

eε−1τ ε(ni−1)∇iu
(
ε−2τ, �n) = εũε

(
τ, �n−

i

) − ũε(τ, �n).(61)

Using this, it follows by rescaling (B.1) of Proposition 2.7 that

d

dτ
ũε(τ, �n) = kε−1ũε(τ, �n) +

(
ε−1 − 1

2

) k∑
i=1

(
εũε

(
τ, �n−

i

) − ũε(τ, �n)
) + O(ε).

The factor ε−1 − 1
2 comes from the expansion of ε−2(1 − q). The above can be

rewritten as

d

dτ
ũε(τ, �n) =

k∑
i=1

(
ũε

(
τ, �n−

i

) + 1

2
ũε(τ, �n)

)
+ O(ε),

which in turn implies that

d

dτ
e−(3kτ)/2ũε(τ, �n) =

k∑
i=1

∇ie
−(3kτ)/2ũε(τ, �n) + O(ε).
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This shows that in the ε → 0 limit, ũ satisfies (B.1) above.
Using (61) and the expansion q = 1−ε+O(ε2), it follows from (B.2) of Propo-

sition 2.7 that

ũε

(
τ, �n−

i

) = ũε

(
τ, �n−

i+1

) + ũε(τ, �n) + O(ε).

Multiplying by e−(3kτ)/2 has no effect on this equality, and so in the limit ε → 0,
we find that ũ satisfies (B.2).

We now consider (C). Define ṽε and ṽ analogously to ũε and ũ above. The
fact that ṽ satisfies (C.2), (C.3) and (C.4) is clear. Using (61) and second-order
expansions of (1 − q) and (1 − q−1), we find that

d

dτ
ṽε(τ, �n) =

k∑
i=1

(
ṽε

(
τ, �n−

i

) + 1

2
ṽε(τ, �n)

)
+ ∑

i<j

δni=nj
ṽε(τ, �n) + O(ε).

Multiplying by e−(3kτ)/2 and taking ε → 0 leads to (C.1) as desired.
For z0(�n) = ∏k

i=1 δni=1 initial data, it is possible to explicitly solve (B) and (C)
in Proposition A.3 via nested contour integral formulas which arise as scaling lim-
its (7). In fact, if we change the boundary condition in (B.2) to (∇i −∇i+1 − c) for
any c ∈ R [or analogously put this c factor in (C.1) in front of the sum over i < j ]
essentially the same integral formulas work and we find that (B) is solved by

ũ(τ, �n) = e−kτ

(2πι)k

∫
· · ·

∫ ∏
1≤A<B≤k

wA − wB

wA − wB − c

k∏
j=1

etwj

w
nj

j

dwj ,(62)

where the integration contour for wA contains 0 and {wB + c}B>A. These systems
of ODEs are semidiscrete versions of the delta Bose gas, and c plays the role of
the coupling constant. This remarkable symmetry between attractive (c > 0) and
repulsive (c < 0) systems is discussed more in Section 6 of [9].

A.3. Semidiscrete limit of q-TASEP Fredholm determinant. Proposi-
tion A.2 implies that as q → 1, under proper scaling q-TASEP converges to the
solution of the semidiscrete SHE. From this weak convergence result, it follows
that the eq -Laplace transform of particle location for q-TASEP converges to the
Laplace transform of the limiting SHE. This Laplace transform completely char-
acterizes the one-point distribution of the solution z(τ, n). The q-TASEP Mellin–
Barnes-type Fredholm determinant formula has a nice scaling limit, and thus yields
(we will state it for a zero drift vector) the following.

THEOREM A.4. For τ ∈ R+, and n ≥ 1, the solution of the SHE with delta
initial data and drift vector ã = (0, . . . ,0) is characterized by (for Reu ≥ 0):

E
[
e−ue(3τ)/2z(τ,n)] = det(I + Ku),
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where det(I + Ku) is the Fredholm determinant of Ku :L2(C0) → L2(C0) for C0
a positively oriented contour containing zero and such that for all v, v′ ∈ C0, we
have |v − v′| < 1/2. The operator Ku is defined in terms of its integral kernel

Ku

(
v, v′) = 1

2πι

∫ ι∞+1/2

−ι∞+1/2
ds�(−s)�(1 + s)

�(v)n

�(s + v)n

usevts+ts2/2

v + s − v′ .

PROOF. This is proved in [9], Theorem 5.2.10. An alternative choice of con-
tours is developed in [10], Theorem 1.16. The formula follows from rigorous
asymptotic analysis of Theorem 3.12. �

A.4. The replica trick. It is enticing to think that one might be able to com-
pute the Laplace transform formula in Theorem A.4 directly from the explicit
formula for E[z(τ, n)k] [such as the one given by combining (62) with Proposi-
tion A.3(B)]. If X is a suitably nice nonnegative random variable (e.g., if X were
bounded), then for u with Re(u) > 0,

E
[
e−uX] =

∞∑
k=0

(−u)k

k! E
[
Xk].

This identity only makes sense if one can rigorously justify interchanging the sum-
mation. Yet worse, if the moments of X grow too rapidly, the right-hand side might
not even be convergent for any value of u even though the left-hand side would be
necessarily finite. This is exactly the case when X = e(3τ)/2z(τ, n). From (62), one
can estimate that for this choice of X, E[Xk] ≈ eckk

2
where ck > c > 0 for all k.

This means that, from a mathematical perspective, one cannot use this approach to
compute the Laplace transform.

One variation of the so-called replica trick discussed in physics literature is
an attempt to sum this divergent series in such a way as to guess the Laplace
transform. (In fact, the most typical version of the replica trick asks for less than
the Laplace transform, rather just for E[log z(τ, n)], and tries to access it from
analytically continuing formulas for integer moments to k = 0.)

This replica trick procedure has been implemented for the continuum SHE
(a scaling limit of the semidiscrete SHE) in which the ODEs in Proposi-
tion A.3(B) and (C) become two equivalent forms of the attractive quantum delta
Bose gas. The moments of the solutions of the continuum SHE grow even faster,
like eckk

3
for ck > c > 0. By diagonalizing the Bosonic Hamiltonian [the limit of

(C)] via the Bethe ansatz, [12, 15] both made initial attempts at computing the
Laplace transform via the replica trick. These initial attempts yielded a wrong an-
swer. However, very soon afterward, the formula of [1, 32] was posted (with a
rigorous proof given in [1]) and [12, 15] showed that their approach was able to
recover the correct Laplace transform formula.
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APPENDIX B: COMBINATORICS

B.1. Useful q-deformations. We record some q-deformations of classical
functions and transforms. Section 10 of [2] is a good reference for many of these
definitions and statements. We assume throughout that |q| < 1. The classical func-
tions are recovered in the q → 1 limit.

The q-Pochhammer symbol is written as (a;q)n and defined via the product
(infinite convergent product for n = ∞)

(a;q)n = (1 − a)(1 − aq)
(
1 − aq2) · · · (1 − aqn−1)

,

(a;q)∞ = (1 − a)(1 − aq)
(
1 − aq2) · · · .

There are two different q-exponential functions which were introduced by Hahn
[17] in 1949. The first (which we will use) is denoted eq(x) and defined as

eq(x) = 1

((1 − q)x;q)∞
,

while the second is defined as

Eq(x) = (−(1 − q)x;q)
∞.

Both eq(x) and Eq(x) converge to ex as q → 1, cf. (64) below. In fact, eq(x)

converges uniformly to ex on x ∈ [−∞, a] for any a ∈ R.
The q-factorial is written as either [n]q ! or just nq ! and is defined as

nq ! = (q;q)n

(1 − q)n
= (1 − q)(1 − q2) · · · (1 − qn)

(1 − q)(1 − q) · · · (1 − q)
.

The q-binomial coefficients are defined in terms of q-factorials as(
n

k

)
q

= nq !
kq !(n − k)q ! = (q;q)n

(q;q)k(q;q)n−k

.

We also have [22] (
n

k

)
q

= ∑
S⊂{1,...,n}

|s|=k

q‖S‖−(k(k+1)/2),(63)

where

‖S‖ = ∑
i∈S

i.

The q-binomial theorem ([2], Theorem 10.2.1) says that for all |x| < 1 and
|q| < 1,

∞∑
k=0

(a;q)k

(q;q)k
xk = (ax;q)∞

(x;q)∞
.
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Two corollaries of this theorem ([2], Corollary 10.2.2a/b) are that under the same
hypothesis on x and q ,

∞∑
k=0

xk

kq ! = eq(x),

∞∑
k=0

qk(k−1)/2(−x)k

kq ! = Eq(x).(64)

For any x and q , we also have ([2], Corollary 10.2.2.c)

n∑
k=0

(
n

k

)
q

(−1)kqk(k−1)/2xk = (x;q)n.(65)

Define the following transform of a function f ∈ �1(Z≥0):

f̂ q(ζ ) := ∑
n≥0

f (n)

(ζqn;q)∞
,(66)

where ζ ∈ C.
We call this the eq -Laplace transform of qX since if X is a random variable

taking values in Z≥0 and f (n) = P(X = n),

f̂ q(ζ ) = E

[
eq

(
ζqX

1 − q

)]
.

An inversion formula is given as Proposition 3.1.1 of [9] and can also be found
in [4].

PROPOSITION B.1. One may recover the function f ∈ �1(Z≥0) from its trans-
form f̂ q(ζ ) with ζ ∈ C \ {q−k}k≥0 via the inversion formula

f (m) = −qm 1

2πι

∫
Cm

(
qm+1ζ ;q)

∞f̂ q(ζ ) dζ,(67)

where Cm is any positively oriented contour which encircles ζ = q−M for 0 ≤
M ≤ m.

B.2. Symmetrization identities. We state and prove the following two useful
symmetrization identities.

LEMMA B.2. For all k ≥ 1∑
σ∈Sk

∏
1≤A<B≤k

zσ(A) − zσ(B)

zσ(A) − τzσ(B)

(68)

= (τ ; τ)kτ
−k(k−1)/2z1 · · · zk det

[
1

zi − τzj

]k

i,j=1
.
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Setting ξi = 1+zi

1+zi/τ
we also have

∑
σ∈Sk

∏
1≤A<B≤k

zσ(A) − zσ(B)

zσ(A) − τzσ(B)

k∏
i=1

1

ξσ(1) · · · ξσ(i) − 1
(69)

= (−1)kτ−k(k−1)/2 det
[

1

zi − τzj

]k

i,j=1

k∏
i=1

(τ + zi).

REMARK B.3. Before proving these identities note that for ξi = 1+zi

1+zi/τ
and

τ = p/q ,

zi − zj

zi − τzj

= q
ξi − ξj

p + qξiξj − ξj

,

− zi(p − q)2

(zi + 1)(p + qzi)
= pξ−1

i + qξi − 1,(70)

τ + zi = τ − 1

1 − ξi/τ
.

PROOF OF LEMMA B.2. The first identity (68) is [25], Chapter III, equa-
tion (1.4). The second identity is equivalent to the identity (1.7) in [38]. In order to
see this equivalence expand the Cauchy determinant as

det
[

1

zi − τzj

]k

i,j=1
= τ k(k−1)/2

z1 · · · zk(1 − τ)k

∏
1≤i �=j≤k

zi − zj

zi − τzj

.

Multiply both sides of the claimed identity by the factor
∏

1≤i �=j≤k
zi−τzj

zi−zj
, reducing

the identity to

∑
σ∈Sk

∏
1≤A<B≤k

zσ(B) − τzσ(A)

zσ(B) − zσ(A)

k∏
i=1

1

ξσ(1) · · · ξσ(i) − 1
=

k∏
i=1

−(τ + zi)

zi(1 − τ)
.

Noting that −(τ+zi)
zi (1−τ)

= (ξi − 1)−1 and using the relation (70), it remains to prove
that

∑
σ∈Sk

q−k(k−1)/2
∏

1≤A<B≤k

p + q + ξσ(B)ξσ(A) − ξσ(A)

ξσ(B) − ξσ(A)

k∏
i=1

1

ξσ(1) · · · ξσ(i) − 1

=
k∏

i=1

(ξi − 1)−1.
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Using the antisymmetry of the Vandermonde determinant, we rewrite the above as

∑
σ∈Sk

sgn(σ )
∏

1≤A<B≤k

(p + qξσ(B)ξσ(A) − ξσ(A))

k∏
i=1

1

ξσ(1) · · · ξσ(i) − 1

= qk(k−1)/2
∏

A<B(ξB − ξA)∏k
i=1(ξi − 1)

.

The above identity is (1.7) in [38], and the proof is complete. �

B.3. Defining a Fredholm determinant. Fix a Hilbert space L2(X,μ) where
X is a measure space and μ is a measure on X. When X = �, a simple smooth
contour in C, we write L2(�) where μ is understood to be the path measure along
� divided by 2πι. When X is the product of a discrete set D and a contour �, μ is
understood to be the product of the counting measure on D and the path measure
along � divided by 2πι.

Let K be an integral operator acting on f (·) ∈ L2(X,μ) by (Kf )(x) =∫
X K(x, y)f (y) dμ(y). K(x,y) is called the kernel of K . A formal Fredholm de-

terminant expansion of I + K is a formal series written as

det(I + K) = 1 +
∞∑

n=1

1

n!
∫
X

· · ·
∫
X

det
[
K(xi, xj )

]n
i,j=1

n∏
i=1

dμ(xi).

If the above series is absolutely convergent, then we call this a numerical Fred-
holm determinant expansion as it actually takes a numerical value. If K is a trace-
class operator (see [23] or [7]), then the expansion is always absolutely convergent,
though it is possible to have operators which are not trace-class, for which conver-
gence still holds.

APPENDIX C: UNIQUENESS OF SYSTEMS OF ODES

We prove the uniqueness result of Proposition 4.9 by a probabilistic approach.
It is possible to extend this proof to a more general class of generators, but we do
not pursue this here.

PROOF OF PROPOSITION 4.9. Let us first demonstrate the existence of one
solution to the system of ODEs given in Definition 4.8. Let h̃1 denote the proposed
solution, equation (31), in the statement of the proposition. The definition of the
generator implies that h̃1 satisfies condition 1 of Definition 4.8.

To prove that h̃1 satisfies conditions 2 and 3 requires an estimate. In time t , the
number of jumps in ASEP is bounded by a Poisson random variable with parameter
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given by constant time t . This means that for some constant c′ > 0

P
(∥∥�x(−t) − �x∥∥

1 = n
) ≤ e−c′t (c

′t)n

n! .(71)

Observe now that∣∣h̃1(t; �x) − P
−t;�x(�x(0) = �x)

h̃0(�x)
∣∣

≤ ∑
n≥1

∑
�x′ : ‖�x−�x′‖=n

P
−t;�x(�x(0) = �x′)∣∣h̃0

(�x′)∣∣
≤ ∑

n≥1

∑
�x′ : ‖�x−�x′‖=n

e−c′t (c
′t)n

n! Ce−c‖�x′‖1

≤ ∑
n≥1

(
c′′)ne−c′t (c

′t)n

n! Ce−c(max(0,n−‖�x‖1))

≤ ec‖�x‖1
(
ec′′′t − 1

)
.

The first inequality follows from the definition of h̃1 as an expectation, along
with the triangle inequality. For the second inequality, we can use the bounds
(30) and (71) to replace P

−t;�x(�x(0) = �x′)|h̃0(�x′)| by e−c′t (c′t)n
n! Ce−c‖�x′‖1 . For the

third inequality, we observe that ‖�x′‖1 ≥ max(0, n − ‖�x‖1). Plugging this bound
into e−c‖�x′‖1 , we find that the summand is now independent of �x′ and the summa-
tion over �x′ can be replaced by a rough combinatorial bound of (c′′)n for the num-
ber of such �x′ (c′′ is some sufficiently large constant). The fourth equality comes
from factoring out ec‖�x‖1 from the summation and then bounding the remaining
summation in n ≥ 1 by the Taylor series for the exponential.

The conclusion of the above line of inequalities is that for some c′′′ > 0,∣∣h̃1(t; �x) − P
−t;�x(�x(0) = �x)

h̃0(�x)
∣∣ ≤ ec‖�x‖1

(
ec′′′t − 1

)
.

Observe that using the triangle inequality and the exponential bound on h̃0(�x),
the above inequality implies that h̃1 satisfies condition 2. Similarly, as t → 0,
P

−t;�x(�x(0) = �x) → 1 and ec‖�x‖1(ec′′′t − 1) → 0 we obtain the pointwise conver-
gence (condition 3):

h̃1(t; �x) → h̃0(�x), t → 0.

The argument to prove uniqueness is very similar to the argument used to prove
condition 3. Assume now that in addition to h̃1, there existed another solution to
the true evolution equation which we will denote by h̃2. The idea is to prove that
g := h̃1 − h̃2 must be identically 0. The solution g has zero initial data.

To prove that g ≡ 0 it suffices to show that for any T > 0 and any �x ∈ W̃ k ,
g(t; �x) = 0 for all t ∈ [0, T ]. Since h̃1 and h̃2 solve the true evolution equation, so
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too must their difference g. Hence, we readily see that for any δ ∈ (0, T ],∣∣∣∣∣g(t; �x) −
n(T )∑
n=0

∑
�x′ : ‖�x−�x′‖=n

P
−t;�x(�x(−δ) = �x′)g(

δ; �x′)∣∣∣∣∣
≤ ∑

n>n(T )

∑
�x′ : ‖�x−�x′‖=n

P
−t;�x(�x(−δ) = �x′)∣∣g(

δ; �x′)∣∣
≤ ∑

n>n(T )

(
c′′)ne−c′t (c

′t)n

n! Ce−c(max(0,n−‖�x‖1)),

where n(T ) is a positive integer which depends on T and will be specified soon.
The above inequalities follow for similar reasons as in the proof of condition 3
for h̃1. Now observe that by choosing n(T ) sufficiently large, the summation in
the last line above can be made arbitrarily small. This is due to the fact that 1/n!
decays super-exponentially. This means that for any ε > 0 and any T > 0, there
exists n(T ) such that∣∣∣∣∣g(t; �x) −

n(T )∑
n=0

∑
�x′ : ‖�x−�x′‖=n

P
−t;�x(�x(−δ) = �x′)g(

δ; �x′)∣∣∣∣∣ ≤ ε.

Since the set of �x′ such that ‖�x − �x′‖ = n with n ∈ {0,1, . . . , n(T )} is a finite
set, condition 3 implies that as δ → 0, each g(δ; �x ′) → 0 as well. Choosing δ

sufficiently small, this implies that∣∣g(t; �x)
∣∣ ≤ 2ε

and since ε was arbitrary this implies in fact that g(t; �x) = 0 for all t ∈ [0, T ]. This
completes the proof of uniqueness. �

APPENDIX D: GUE TRACY–WIDOM ASYMPTOTICS FOR ASEP

We provide a critical point analysis for the long-time asymptotics of our Mellin–
Barnes-type Fredholm determinant formula for the eτ -Laplace transform of τNx(t).
We assume that τ < 1 is fixed and straightforwardly arrive at the GUE Tracy–
Widom limit theorem recorded in (1) and proved first (via an analysis of the
Cauchy-type formula) by Tracy and Widom [40]. In order to make this analysis
a rigorous one, would need to control the tails of the integrand defining the kernel.
Another scaling limit of interest is the weakly asymmetric limit in which τ goes
to 1 simultaneously with t going to infinity. Under the correct scaling (as in [1]),
our formula should lead to the Laplace transform of the Hopf–Cole solution to the
KPZ equation with narrow wedge initial data. We do not pursue these directions
presently, but rather remark that it appears that the Mellin–Barnes-type formula is
very well suited for such a rigorous asymptotic analysis.
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For simplicity, let us consider ASEP with step initial data and fix x = 0. We
seek to study the large t behavior of N0(η(t)) via its eτ -Laplace transform. Let us
recall the formula we have proved in Theorem 5.3:

E
[
eτ

(
ζ τNx(η(t)))] = det(I − Kζ ),(72)

where det(I − Kζ ) is the Fredholm determinant of the operator
Kζ :L2(C0,−τ ;−1,τθ ) → L2(C0,−τ ;−1,τθ ) defined in terms of its integral kernel

Kζ

(
w,w′)
= 1

2πι

∫
DR,d

�(−s)�(1 + s)
[−(1 − τ)ζ

]s exp t (τ/(τ + w))

exp t (τ/(τ + τ sw))

ds

w′ − τ sw
.

As noted in Section B.1, eτ (z) converges uniformly for z ∈ [−∞,0]. This
means that if z → −∞ then eτ (z) → 0 and if z → 0 then eτ (z) → 1. On account
of this, if we set

ζ = τ−(t/4)+t1/3r

then it follows (cf. [9], Lemma 4.1.39) that

lim
t→∞E

[
eτ

(−ζ τN0(η(t/γ )))] = lim
t→∞P

(
N0(η(t/γ )) − (t/4)

t1/3 ≥ −r

)
,

where we have set γ = q − p.
Theorem 5.3 [see equation (72) above] reduces this to a problem in asymptotic

analysis. We proceed now without careful estimates and only discuss contours
briefly. There are a few estimates which would be necessary to turn this into a
rigorous proof. Making the change of variables in (72) z = τ sw and using the fact
that �(−s)�(1 + s) = π/ sin(−πs), we arrive at the following:

lim
t→∞P

(
N0(η(t/γ )) − (t/4)

t1/3 ≥ −r

)
= lim

t→∞ det
(
I − K ′

ζ

)
,

where the kernel is now given by

K ′
ζ

(
w,w′) = 1

2πι

1

log τ

∫
π

sin(π(logτ w − logτ z))
(1 − τ)logτ z−logτ w

× exp
(
t
[
G(z) − G(w)

]
+ t1/3 log τr[logτ z − logτ w]) 1

z − w′
dz

z

with

G(z) = − log z

4
− τ

τ + z
.

The critical point of G(z) is readily calculated by solving

G′(z) = − 1

4z
+ τ

(τ + z)2 = 0.
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This yields zc = τ as the critical point. Actually, it is a double root of the above
equation and accordingly one sees that G′′(zc) = 0. The fact that the third deriva-
tive is nonzero (and the second derivative is) indicates t1/3 scaling. Up to high
order terms in (z − τ) and (w − τ), we have

G(z) − G(w) ≈ −(z − τ)3

48τ 3 + (w − τ)3

48τ 3 .

The w contour can freely be deformed to go through the critical point τ and to
depart it at angles ±π/3 (oriented with increasing imaginary part). Likewise the
z contour can go through τ − t1/3 and depart at angles ±2π/3 (oriented with
decreasing imaginary part—as is a consequence of the change of variables). The
w contour needs to cross the negative real axis between −1 and −τ . The z contour
must stay inside the w contour. There is one nuance with the z curve which is that
it keeps wrapping around in a circle (since the imaginary part of s went from −∞
to ∞). However, with a suitable a priori bound one should be able to show that
this s contour can be made finite at a cost going to 0 as t goes to infinity.

The above considerations suggest scaling into a window of size t1/3 around the
critical point τ . Consider the change of variables z − τ = t−1/3τ z̃ and likewise for
w and w′. This leads to

1

log τ

π

sin(π logτ w − logτ z)
≈ t1/3 1

w̃ − z̃
,

t
[
G(z) − G(w)

] ≈ − z3

48
+ w3

48
,

t1/3 log τr(logτ z − log τw) ≈ r(z̃ − w̃),

(1 − τ)logτ z−logτ w ≈ 1,

1

z − w′ ≈ t1/3 τ−1

z̃ − w̃′ ,

dz

z
≈ t−1/3 dz̃.

Additionally, there is an extra factor of τ−1t1/3 which is factored into the kernel,
due to the Jacobian of the w and w′ change of variables. Combining all of these
factors, we get that the kernel has rescaled to

K̃r

(
w̃, w̃′) = 1

2πι

∫
e−(z̃3/48)+(w̃3/48)+r(z̃−w̃) 1

w̃ − z̃

dz̃

z̃ − w̃′ ,

where the w contour is given by two infinite rays departing 1 at angles ±π/3
(oriented with increasing imaginary part) and the z contour is given by two infi-
nite rays departing 0 at angles ±2π/3 (oriented with decreasing imaginary part).
Recalling z̃ = 24/3z and likewise for w and w′ yields

Kr

(
w,w′) = 1

2πι

∫
e−(z3/3)+(w3/3)+24/3r(z−w) 1

w − z

dz

z − w′ .
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The Fredholm determinant with this kernel is readily shown to be equivalent to the
Fredholm determinant of the Airy kernel (see, e.g., Lemma 8.6 of [10]), and hence
its Fredholm determinant is equal to FGUE(24/3r).

This implies that

lim
t→∞P

(
N0(t/γ ) − (t/4)

t1/3 ≥ −r

)
= FGUE

(
24/3r

)
as we desired to show.
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