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ON THE (STRICT) POSITIVITY OF SOLUTIONS
OF THE STOCHASTIC HEAT EQUATION

BY GREGORIO R. MORENO FLORES1
Pontificia Universidad Catélica de Chile

We give a new proof of the fact that the solutions of the stochastic heat
equation, started with nonnegative initial conditions, are strictly positive at
positive times. The proof uses concentration of measure arguments for dis-
crete directed polymers in Gaussian environments, originated in M. Tala-
grand’s work on spin glasses and brought to directed polymers by Ph. Car-
mona and Y. Hu. We also get slightly improved bounds on the lower tail of the
solutions of the stochastic heat equation started with a delta initial condition.

A very well-known theorem proved by Mueller insures the strict positivity of
the solution of the Stochastic Heat Equation (SHE) with nonnegative initial data
[9].

Mueller’s theorem has gained new attention due to the links between the SHE
and the Continuum Directed Polymer (CDP) [2], and, more generally, with the
KPZ equation (see the review [5]). In particular, it implies the positivity of the
partition function of the CDP. This random measure on directed paths from (0, 0)
to (T, x) is defined by

MX,T(th € dXI, ceey Xlk € ka)

= mgz(fj,xj; tir1, Xjr ) Z (e, X T, x) dxy - - - dxy,

where Z (s, u; t, v) is obtained as the solution of
WZ(s,us ) =5AZ(s,us )+ Z(s,us -, )W,
Z(s,u;8,) =0,(-).

The SHE arises as the limit of the renormalized partition function of discrete di-
rected polymers [1] and the CDP as the weak limit of the discrete directed polymer
path measure (see [4] for a general review on directed polymers).
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A proof of the positivity of the solutions of the SHE contained inside the theory
of directed polymers is hence desirable and this is the approach we will follow in
this note. Our proof, together with providing a more straightforward argument, also
improves existing bounds on the tails of the solution of the SHE. Our methods are
strongly inspired by Talagrand’s use of Gaussian concentration in spin glasses, and
Carmona—Hu [3] where these ideas are applied to directed polymers in a Gaussian
environment.

1. Results. In the following, unless stated otherwise, Z(¢, x) is the continuous
modification of the solution of the stochastic heat equation

(1) WZ=FAZ+ZW,
2) Z(0,x) = do(x),

where 7 is a space—time white noise.

THEOREM 1. (a) There exists a locally bounded function c(t, x) > 0, locally
bounded away from 0, such that

3) P[Z(1,x) < c(t, x)e /D] < g/2,

hence, for all p > 0, there is a locally bounded function k,(t,x) > 0, locally
bounded away from 0, such that,

4) EZ(t,x)7? <k,(t,x) exp{pz//cp(t, x)} Vt>0,x eR.
(b) We have
®) P[Z(t,x) =0, for some t > 0,x € R] =0.

REMARK 1. A few remarks are in order:

1. We note that, in [10], an estimate similar to (3) is proved (in a slightly dif-
ferent context), but the right-hand side is exp{ —u3/2=#}. Based on the links
between KPZ and random matrices (see, e.g., [5]), it is reasonable to expect
that the optimal bound in our setting is exp{—u°>}. Our bound exp{—u?} comes
from Gaussian concentration arguments and is unlikely to be improved with
our methods.

2. Theorem 1(b) for general positive initial datas can be obtained by integrating
the solution of (1)—(2) against the initial conditions, together with comparison
arguments with respect to the initial conditions (see [10]). Theorem 2 below,
which provides the convergence of partition functions of directed polymers to
the SHE, can in fact be extended to provide convergence for general initial datas
by introducing boundary values for the polymer (see [8]). Then the aformen-
tionned comparison arguments can be obtained very easily noting that, at the
discrete level, they hold path-by-path and are preserved by taking weak limit.
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3. With a bit of work, Theorem 2 can also be extended to cover the case of the
SHE

WZ=3AZ+bZ+oWZ

for a bounded drift b = b(¢, x) and some nice o = o(t, x). The drift can be
handled using standard comparison arguments (see [10], proof of Theorem 2,
where this argument is presented) and the arguments of our proof will also fol-
low with minor modifications. Again, the comparison argument can be obtained
very easily from directed polymers.

The proof of Theorem 1 using concentration of measure is given in Section 3.
Section 2 provides useful preliminaries, while the technical estimates are deferred
to the Appendix.

2. Some preliminaries.

2.1. Directed polymers and the AKQ theory. Let P be the law of the simple
symmetric random walk S; on Z, let {w (i, x) : i, x} be a collection of real numbers
(the environment) and let

©6) Zn(w, B, x) = E[eP Ti=1 @05 | sy = x]

be the partition function of the directed polymers in environment w at inverse tem-
perature 8 > 0, where E denotes expectation with respect to P. In the following,
we will often denote Zy(w, 8) = Zy(w, B, x), or even Zy(B) = Zy(w, B, X),
when no confusion is possible. In this paper, the w’s are chosen to be independent
standard normal random variables. We denote the law of the environment by P
and expectation with respect to P by E. In this case, EZy (w, 8, x) = exp{% B2}.
Define

ZtN((,l), N_1/4’ _X\/N)
EZy(w, N~V4 xJ/N)

The following theorem by Alberts—Khanin—Quastel (AKQ) shows the scaling limit
of the partition function to the solutions of the stochastic heat equation.

7 Zn(t.x) = VIVNZ (0, N“V4 xV/N) =

THEOREM 2 ([1]). Foreacht > and x € R, we have the convergence in law,
(8) Zn(t, x) = Vam et 4 201 x),

where Z is the solution of (1)—(2). Furthermore, the convergence holds at the pro-
cess level in t and x.
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2.2. Gaussian concentration. We borrow the following from [11] (Lem-
ma 2.2.11). Let d(-, -) denote the Euclidean distance.

THEOREM 3 (Talagrand). Let w be an R™-valued Gaussian vector with co-

variance matrix 1, the identity matrix in R™. Then, for any measurable set
ACR" ifPlwe Al = ¢ > 0, then, for any u > 0,

) Pld(w, A) > u +/2log(1/c)] < e™/2.

The distance appears naturally when we compare the partition function over
different environments. First, define the polymer measure in a fixed environment
by

(100 (F(S))y .= E[F(S)eP X265 |5, = x/N].

Zy(w, B, x)

We will denote (F(S))n.o = (F(S))N.w.x When no confusion is possible. De-

note the expected value over two independent copies of the polymer in the same

environment by (-)%?w’x and, for two paths S and S@, let Ly(SD, $@) =

Zf’: 11 s_g@ be the overlap. Let dy (w, @) denote the Euclidean distance be-
t Tt

tween two environments @ and o’ when they are considered as vectors with coor-
dinates in the cone {(¢,x):0 <t < N, |x| <t}. The proof of the next lemma can
be found in Carmona—Hu [3], page 443, as part of the proof of their Theorem 1.5.

LEMMA 1. Let w and o' be two environments. Then

(11) log Zy(o', B, x) > log Zn (w, B, x) — Bdn (w, CU/)\/(LN(S(I)v S(Z)))g\%,)a),x‘

3. Proof of Theorem 1. Fix x and let £ )(623\, denote the expected value with

respect to two independent walks of length N conditioned to end at x+/N. Define
the event

(12) A=l{w:Zy(,B.x) = YEZy (B, x). (Ln(SD,5P))7, . < CVN}.

Versions of the following lemma for fixed 8 can be found in [11], Lemma 2.2.9,
for spin glasses, and in [3], proof of Theorem 1.5, for directed polymers.

LEMMA 2. Take B = N~'/*. For C > 0 large enough, there exists § > 0 such
that P[A] > §,VN > 1. Furthermore, § can be taken uniformly bounded away from
0 for x in a compact set.
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PROOF. The key to prove this fact is the estimate (30) proved in the Appendix.
Let Hy(SD, @) =YY @, S") + o, S2).

1
PA] = P{zNw,x) = JEZy(6, ),
EZN[Ln(SY, s@)exp{BHy(SD, SP)}] < CVNZy (B, x)z}
1
> P{zNw,x) > JEZy(f,x).
ECN[Ln(s%, 5P expl iy (5, 5] = VN EZn (5. 1)’
1
> P{zNw) > 5EzNos)}

—PEQ [La(5. 5P explp (1. 5] = TN EZN (5.

We treat the first summand: by Paley—Zygmund’s inequality (see, e.g., [11], Propo-
sition 2.2.3),

- 1LEZNB.x))* 1 1
~4 EZy(B.x)?  4EZ3(1,x)

1
(13) P{ZN(ﬂ,x> > 5EzNw,x)}

if we take 8 = N~!'/4. Now, by an application of Fubini’s theorem together

with Eef© = ¢f’/2 (remember w is a standard normal random variable), we have
EZIZV(I, x) = Eﬁv [exp N=Y2L Ny (SM | §@)]. The estimate (29) then provides a
constant 0 < L < 400 such that

(14) EZ3(1,x)<L VN=>1.
This gives

(15) P{ZN(,B,x) > %EZN(ﬂ, x)} > ﬁ VN >1when 8 = N~ /4,

For the second summand above, using Chebyshev followed by Fubini

P{Efgv[LN(S(”, S@)exp{N "4 Hy (sV, s?)}]
(16)
¢ 2
> Z\/N(EZN(IB,)C)) }
4
<
CVNEZy(B. x))>
xEE; Ly (SM, 5P)exp{N " Hy (sV, 5P))]

A7)
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4
(18) = WNE)((?V[LN(S(D’ S(z)) eXp{N_l/zLN(S(I), S(Z))}]
(19) LK
- C

for some K > 0, thanks to (30), where we also used
EE)[Ly(SD, $@)exp{N~*Hy (sD, s®)}]

2 _
= (EZy(B, )" ECN[La(SD, sP) exp{N 2Ly (S, sP)}].
Overall, we have P[A] > ﬁ — 47]( =: §, which is positive provided we choose C
large enough. Finally, note that the constants L and K can be chosen uniformly
bounded for x in a compact set. [

PROOF OF THEOREM 1(a). Recall the distance dy (-, -) from Lemma 1. By
Lemma 2 and Talagrand’s theorem,

(20) Plw:dy(w, A) > u+C']<e/

for all u > 0 and some explicit constant 0 < C’ < +o00 depending on C, K and L.
In particular, for any o’ € A, if w is any environment, by Lemma 1,

log Zy(w, B,x) > logEZy (B, x) —log2

(2D

— Bdy (o, w')\/(LN(S“)’ S(z))>§3,)w/
(22) >1ogEZy (B, x) —log2 — BNY4/Cdy (0, o)
(23) >1ogEZN(B,x) —log2 — C"dy(w, o)

for some 0 < C” < +o0, if B = N~1/4, As a consequence, if log Zy (w, B, x) <
logEZN (B, x) — cou — ¢y, then

logEZN (B, x) —log2 — C"dy(w, o) <logEZN (B, x) — cou — c1.

Taking ¢ = C” and ¢; =log2+ C’C”, this in turns implies that d (w, ®') > u+ C’
forall ' € A and

Pllog Zy(w, B, x) <logEZN (B, x) — cou — c1] < Pldn(w, A) > u + C’]
(24)

< e—u2/2.

This proves the following intermediate result: for all ¥ > 0, N > 1 [remember
Zn(l,x)=Zn(x)/EZN(X)],

(25) P[Zy(1,x) < Cre 2] < /2
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with Cy = e~¢1. Using that Zy (1, x) — vAmwe* 4 Z(2, x) in law, we get
(26) P[2(2,x) < Co(dm) 2™ /4eme2u] < g~4*/2

for all u > 0. This proves Theorem 1(a) when ¢t = 2. If we take the length of the
polymer to be ¢ N, the proof is unchanged, and the estimates of the Appendix imply
that the constants C’ and C” above are uniformly bounded for (z, x) in a compact
set. [

PROOF OF THEOREM 1(b). We will use the following standard estimate: for
any p > 1 and any compact set K, there exists a constant Cx > 0 such that

Q7) E|Z(t,x) = Z(s, )P <Cx(Ix —y|P? + |t —s|P/*)  V(,x) eK.

See, for example, (135) in [7]. As Z is continuous, the only possible singularities
of 27! correspond to zeros of Z. We will show that Z(., 3~! has a continuous
modification as well. We estimate

Z(t,x) — Z(s, )M
Z(t,x)Z(s, y)

<E[|Z( x) - Z(s,y)|

ElZt.x) ' =26, y) M =E

2M11/2
]/

x E[Z(t, x)" M *E[Z (s, y)~*M]'/*.

By (4), the moments of order —4M are locally bounded. Together wit~h (27), we
conclude that, for each compact K C (0, +00) x R, there is a constant Cx < 400,
such that

28) sup  E|Z(1t.x) = Z(s, y) M < Cx(1x — y M2 4|1 — 5| M.
(t,x),(s,y)eK

Hence, by Kolmogorov criterion, {Z(¢, x)~1: (¢, x) € K} has a continuous modi-
fication )(-, -), and hence stays bounded. It follows that Y~! cannot assume the
value 0 in K. This proves (5). O

APPENDIX: OVERLAP ESTIMATES

The goal of this appendix is to prove the needed overlap estimates. Recall that
Ly(S (RN (2)) = 1 1 sV= SQ) and denote by P @ and E® the law and expec-
tation of two mdependent 51mple random walks.

LEMMA 3. There is a locally bounded function k (t, x) € (0, +00) such that

sup E® [eN_l/zL’N(S(l)’S(Z))|St(]l\,) = Sz(zzv) = \/N]

(29)
<k(t,x),



1642 G. R. MORENO FLORES

1 _
sup1 ——EP[L,n (8D, 5PN ]/ZL’N(S(I)’SQ))ISZ(}V) = 5% =xVN]
N>
(30)
<k(t,x).

PROOF. As the estimates will be clearly uniform for 0 < ¢ < 7', we specify
to t = 1. First, note that we can reduce to consider the overlap up to time N/2:

indeed, abbreviating L, = L, (SV, S®) and recalling the notation E )(3\/['] =
E (2)[-|S](\}) = Sz(\%) = x+/N], simple convexity arguments yield
E(z) [eﬂLN] < 2E(2) [eZﬁLN/z]E(z) [eﬂLN/z],

E(Z) [LNeﬂLN] <4E(2) [LN/zeZ,BLN/z]E(z) [ /3LN/2]

We will further reduce to consider the overlap of two unconditioned random walks.
Let m = N/2. A simple application of the local limit theorem shows that there
exists a constant C > 0 such that, for all £ > 0 and x in a compact set,

PO[L, =k} = 5% =xVN] < Ce* PO[L,, = kI,
and, consequently,
EZNetn] < Ce ED e ]
for any o > 0. The problem is now reduced to estimate the local time at O for

the walk ¥; = Sl.(l) - Si(z) under the law P, which is a homogeneous pinning

problem. Accordingly, we introduce some notions and results from [6]. Let
(3D zn(B) = E@ [P Xm0,

From [6], (1.6) and (2.12), it follows that there are two finite constants ¢, ¢y > 0
such that

(32) m(B) < c1e2P’m  Wm>1

for all 8 small enough. Taking 8 = N —1/2 yields (29). For (30), all we need is a
bound on the derivative of z,, (8) with respect to 8. Notice that g(u) = z,,, (1) is an
increasing and convex function with g(0) =1 and

(33) g )= EP[Lye"tn],

where L,, = >, 1y,—o. By convexity, 1 +ug’(u) < g(u) +ug’'(u) < g(2u), and
consequently,

1 gu) —1
34 () P a—
(34) 58 (u) < o
Together with (32),
gQu) — 1 c1e462m"2 1

1 )
(35) §8Mzm(u) == o < 4cymuem
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with ¢3 = c1cs. The last inequality follows from the convexity of exp comu?. Tak-
ing u = N~1'/2 and m = N in the string of inequalities above completes the proof
of (30). O
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