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STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION
EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED

MEASURABLE DRIFT

BY G. DA PRATO, F. FLANDOLI, E. PRIOLA1 AND M. RÖCKNER2

Scuola Normale Superiore, Università di Pisa, Università di Torino
and University of Bielefeld

We prove pathwise (hence strong) uniqueness of solutions to stochastic
evolution equations in Hilbert spaces with merely measurable bounded drift
and cylindrical Wiener noise, thus generalizing Veretennikov’s fundamental
result on Rd to infinite dimensions. Because Sobolev regularity results imply-
ing continuity or smoothness of functions do not hold on infinite-dimensional
spaces, we employ methods and results developed in the study of Malliavin–
Sobolev spaces in infinite dimensions. The price we pay is that we can prove
uniqueness for a large class, but not for every initial distribution. Such restric-
tion, however, is common in infinite dimensions.

1. Introduction. We consider the following abstract stochastic differential
equation in a separable Hilbert space H :

dXt = (
AXt + B(Xt)

)
dt + dWt, X0 = x ∈ H,(1)

where A :D(A) ⊂ H → H is self-adjoint, negative definite and such that
(−A)−1+δ , for some δ ∈ (0,1), is of trace class, B :H → H and W = (Wt) is
a cylindrical Wiener process. About B , we only assume that it is Borel measurable
and bounded.

B ∈ Bb(H,H).

Our aim is to prove pathwise uniqueness for (1), thus gaining an infinite-
dimensional generalization of the famous fundamental result of Veretennikov [33]
in the case H = Rd . We refer to [35] and [32] for the case H = R as well as to the
generalizations of [33] to unbounded drifts in [23, 34] and also to the references
therein; see [17, 18]. We note that [32] also includes the case of α-stable noise,
α ≥ 1, which in turn was extended to Rd in [29].

Received September 2011; revised January 2012.
1Supported in part by the M.I.U.R. research project Prin 2008 “Deterministic and stochastic meth-

ods in the study of evolution problems.”
2Supported by the DFG through IRTG 1132 and CRC 701 and the I. Newton Institute, Cambridge,

UK.
MSC2010 subject classifications. 35R60, 60H15.
Key words and phrases. Pathwise uniqueness, stochastic PDEs, bounded measurable drift.

3306

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/12-AOP763
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS 3307

Explicit cases of parabolic stochastic partial differential equations, with space–
time white noise in space-dimension one, have been solved on various levels of
generality for the drift by Gyöngy and coworkers, in a series of papers; see [1, 16,
19, 20] and the references therein. The difference of the present paper with respect
to these works is that we obtain a general abstract result, applicable, for instance,
to systems of parabolic equations or equations with differential operators of higher
order than two. As we shall see, the price to pay for this generality is a restriction
on the initial conditions. Indeed, using that for B = 0 there exists a unique non-
degenerate (Gaussian) invariant measure μ, we will prove strong uniqueness for
μ-a.e. initial x ∈ H or random H -valued x with distribution absolutely continuous
with respect to μ.

At the abstract level, this work generalizes [5] devoted to the case where B is
bounded and in addition Hölder continuous, but with no restriction on the initial
conditions. To prove our result we use some ideas from [5, 10, 13, 14] and [23].

The extension of Veretennikov’s result [33] and also of [23] to infinite dimen-
sions has resisted various attempts of its realization for many years. The rea-
son is that the finite-dimensional results heavily depend on advanced parabolic
Sobolev regularity results for solutions to the corresponding Kolmogorov equa-
tions. Such regularity results, leading to continuity or smoothness of the solutions,
however, do not hold in infinite dimensions. A technique different from [33] is used
in [14]; see also [5, 10] and [29]. This technique allows us to prove uniqueness for
stochastic equations with time independent coefficients by merely using elliptic
(not parabolic) regularity results. In the present paper we succeed in extending this
approach to infinite dimensions, exploiting advanced regularity results for ellip-
tic equations in Malliavin–Sobolev spaces with respect to a Gaussian measure on
Hilbert space. To the best of our knowledge this is the first time that an analogue
of Veretennikov’s result has been obtained.

Given a filtered probability space (�, F , (Ft ),P), a cylindrical Wiener process
W and an F0-measurable r.v. x, we call mild solution to the Cauchy problem (1) a
continuous Ft -adapted H -valued process X = (Xt) such that

Xt = etAx +
∫ t

0
e(t−s)AB(Xs) ds +

∫ t

0
e(t−s)A dWs.(2)

Existence of mild solutions on some filtered probability space is well known; see
Chapter 10 in [7] and also Appendix A.1. Our main result is:

THEOREM 1. Assume Hypothesis 1. For μ-a.e. (deterministic) x ∈ H , there is
a unique (in the pathwise sense) mild solution of the Cauchy problem (1).

Moreover, for every F0-measurable H -valued r.v. x with law μ0 such that μ0 �
μ and ∫

H

(
dμ0

dμ

)ζ

dμ < ∞
for some ζ > 1, there is also a unique mild solution of the Cauchy problem.
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The proof, performed in Section 3, uses regularity results for elliptic equations
in Hilbert spaces, given in Section 2 where we also establish an Itô type formula
involving u(Xt) with u in some Sobolev space associated to μ. In comparison
with the finite-dimensional case (cf. [23]), to prove such an Itô formula, we do
not only need analytic regularity results, but also the fact that all transition prob-
ability functions associated with (2) are absolutely continuous with respect to μ.
This result heavily depends on an infinite-dimensional version of Girsanov’s the-
orem. Though, also under our conditions, this is a “folklore result” in the field; it
seems hard to find an accessible reference in the literature. Therefore, we include
a complete proof of the version we need in the Appendix for the convenience of
the reader.

Concerning the proof of Theorem 1 given in Section 3, we remark that, in com-
parison to the finite-dimensional case (see, in particular, [9] and [10]), it is nece-
sary to control infinite series of second derivatives of solutions to Kolmogorov
equations which is much more elaborate.

Examples are given in Section 4.

1.1. Assumptions and preliminaries. We are given a real separable Hilbert
space H and denote its norm and inner product by | · | and 〈·, ·〉, respectively.
We follow [4, 7, 8] and assume:

HYPOTHESIS 1. A :D(A) ⊂ H → H is a negative definite self-adjoint oper-
ator and (−A)−1+δ , for some δ ∈ (0,1), is of trace class.

Since A−1 is compact, there exists an orthonormal basis (ek) in H and a se-
quence of positive numbers (λk) such that

Aek = −λkek, k ∈ N.(3)

Recall that A generates an analytic semigroup etA on H such that etAek = e−λkt ek .
We will consider a cylindrical Wiener process Wt with respect to the previous
basis (ek). The process Wt is formally given by “Wt = ∑

k≥1 βk(t)ek” where βk(t)

are independent, one-dimensional Wiener process; see [7] for more details.
By Rt we denote the Ornstein–Uhlenbeck semigroup in Bb(H) (the Banach

space of Borel and bounded real functions endowed with the essential supremum
norm ‖ · ‖0) defined as

Rtϕ(x) =
∫
H

ϕ(y)N
(
etAx,Qt

)
(dy), ϕ ∈ Bb(H),(4)

where N(etAx,Qt) is the Gaussian measure in H of mean etAx and covariance
operator Qt given by

Qt = −1
2A−1(

I − e2tA)
, t ≥ 0.(5)
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We notice that Rt has a unique invariant measure μ := N(0,Q) where Q =
−1

2A−1. Moreover, since under the previous assumptions the Ornstein–Uhlenbeck
semigroup is strong Feller and irreducible, we have by Doob’s theorem that, for
any t > 0, x ∈ H , the measures N(etAx,Qt) and μ are equivalent; see [8]. On the
other hand, our assumption that (−A)−1+δ is trace class guarantees that the OU
process,

Zt = Z(t, x) = etAx +
∫ t

0
e(t−s)A dWs(6)

has a continuous H -valued version.
If H and K are separable Hilbert spaces, the Banach space Lp(H,μ, K), p ≥ 1,

is defined to consist of equivalent classes of measurable functions f :H → K such
that

∫
H |f |pKμ(dx) < +∞ [if K = R we set Lp(H,μ,R) = Lp(H,μ)]. We also

use the notation Lp(μ) instead of Lp(H,μ,K) when no confusion may arise.
The semigroup Rt can be uniquely extended to a strongly continuous semigroup

of contractions on Lp(H,μ), p ≥ 1, which we still denote by Rt , whereas we
denote by Lp (or L when no confusion may arise) its infinitesimal generator, which
is defined on smooth functions ϕ as

Lϕ(x) = 1
2Tr

(
D2ϕ(x)

) + 〈
Ax,Dϕ(x)

〉
,

where Dϕ(x) and D2ϕ(x) denote, respectively, the first and second Fréchet deriva-
tives of ϕ at x ∈ H . For Banach spaces E and F we denote by Ck

b(E,F ), k ≥ 1,
the Banach space of all functions f :E → F which are bounded and Fréchet dif-
ferentiable on E up to the order k ≥ 1 with all derivatives bounded and continuous.
We also set Ck

b(E,R) = Ck
b(E).

According to [8], for any ϕ ∈ Bb(H) and any t > 0 one has Rtϕ ∈ C∞
b (H) =⋂

k≥1 Ck
b(H). Moreover,〈
DRtϕ(x),h

〉 = ∫
H

〈
	th,Q

−1/2
t y

〉
ϕ

(
etAx + y

)
N(0,Qt)(dy), h ∈ H,(7)

where Qt is defined in (5),

	t = Q
−1/2
t etA = √

2(−A)1/2etA(
I − e2tA)−1/2(8)

and y �→ 〈	th,Q
−1/2
t y〉 is a centered Gaussian random variable under μt =

N(0,Qt) with variance |	th|2 for any t > 0; cf. [7], Theorem 6.2.2. Since

	tek = √
2(λk)

1/2e−tλk
(
1 − e−2tλk

)−1/2
ek,

we see that, for any ε ∈ [0,∞), there exists Cε > 0 such that∥∥(−A)ε	t

∥∥
L ≤ Cεt

−1/2−ε.(9)

In the sequel ‖ · ‖ always denotes the Hilbert–Schmidt norm; on the other hand
‖ · ‖L indicates the operator norm.
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By (7) we deduce

sup
x∈H

∣∣(−A)εDRtϕ(x)
∣∣ = ∥∥(−A)εDRtϕ

∥∥
0 ≤ Cεt

−1/2−ε‖ϕ‖0,(10)

which by taking the Laplace transform yields, for ε ∈ [0,1/2),∥∥(−A)εD(λ − L2)
−1ϕ

∥∥
0 ≤ C1,ε

λ1/2−ε
‖ϕ‖0.(11)

Similarly, we find ∥∥(−A)εDRtϕ
∥∥
L2(μ) ≤ Cεt

−1/2−ε‖ϕ‖L2(μ)(12)

and ∥∥(−A)εD(λ − L2)
−1ϕ

∥∥
L2(μ) ≤ C1,ε

λ1/2−ε
‖ϕ‖L2(μ).(13)

Recall that the Sobolev space W 2,p(H,μ), p ≥ 1, is defined in [3], Section 3, as
the completion of a suitable set of smooth functions endowed with the Sobolev
norm; see also [7], Section 9.2, for the case p = 2 and [31]. Under our initial
assumptions, the following result can be found in [8], Section 10.2.1.

THEOREM 2. Let λ > 0, f ∈ L2(H,μ) and let ϕ ∈ D(L2) be the solution of
the equation

λϕ − L2ϕ = f.(14)

Then ϕ ∈ W 2,2(H,μ), (−A)1/2Dϕ ∈ L2(H,μ) and there exists a constant C(λ)

such that

‖ϕ‖L2(μ) +
(∫

H

∥∥D2ϕ(x)
∥∥2

μ(dx)

)1/2

+ ∥∥(−A)1/2Dϕ
∥∥
L2(μ)

(15)
≤ C‖f ‖L2(μ).

The following extension to Lp(μ), p > 1 can be found in Section 3 of [3]; see
also [2] and [26]; a finite-dimensional result analogous to this for nonsymmetric
OU operators was proved in [27].

THEOREM 3. Let λ > 0, f ∈ Lp(H,μ) and let ϕ ∈ D(Lp) be the solution of
the equation

λϕ − Lpϕ = f.(16)

Then ϕ ∈ W 2,p(H,μ), (−A)1/2Dϕ ∈ Lp(H,μ;H) and there exists a constant
C = C(λ,p) such that

‖ϕ‖Lp(μ) +
(∫

H

∥∥D2ϕ(x)
∥∥p

μ(dx)

)1/p

+ ∥∥(−A)1/2Dϕ
∥∥
Lp(μ)

(17)
≤ C‖f ‖Lp(μ).
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2. Analytic results and an Itô-type formula.

2.1. Existence and uniqueness for the Kolmogorov equation. We are here con-
cerned with the equation

λu − L2u − 〈B,Du〉 = f,(18)

where λ > 0, f ∈ Bb(H) and B ∈ Bb(H,H).

REMARK 4. Since the corresponding Dirichlet form

E (u, v) :=
∫
H

〈Du,Dv〉dμ −
∫
H

〈B,Du〉v dμ + λ

∫
H

uv dμ,

u, v ∈ W 1,2(μ), is weakly sectorial for λ big enough, it follows by [25], Chap-
ter I and Subsection 3e) in Chapter II, that (18) has a unique solution in D(L2).
However, we need more regularity for u.

PROPOSITION 5. Let λ ≥ λ0, where

λ0 := 4‖B‖2
0C

2
1,0.(19)

Then there is a unique solution u ∈ D(L2) of (18) given by

u = uλ = (λ − L2)
−1(I − Tλ)

−1f,(20)

where

Tλϕ := 〈
B,D(λ − L2)

−1ϕ
〉
.(21)

Moreover, u ∈ C1
b(H) with

‖u‖0 ≤ 2‖f ‖0,
∥∥(−A)εDu

∥∥
0 ≤ 2C1,ε

λ1/2−ε
‖f ‖0, ε ∈ [0,1/2),(22)

and, for any p ≥ 2, u ∈ W 2,p(H,μ) and, for some C = C(λ,p,‖B‖0),∫
H

∥∥D2u(x)
∥∥p

μ(dx) ≤ C

∫
H

∣∣f (x)
∣∣pμ(dx).(23)

PROOF. Setting ψ := λu − L2u, equation (18) reduces to

ψ − Tλψ = f.(24)

If λ ≥ λ0 by (13), we have

‖Tλϕ‖L2(μ) ≤ 1
2‖ϕ‖L2(μ), ϕ ∈ L2(μ),

so that (24) has a unique solution given by

ψ = (I − Tλ)
−1f.
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Consequently, (18) has a unique solution u ∈ L2(H,μ) given by (20). The same
argument in Bb(H), using (11) instead of (13) shows that

‖Tλϕ‖0 ≤ 1
2‖ϕ‖0, ϕ ∈ Bb(H),

and that ψ ∈ Bb(H) and hence by (20) also u ∈ Bb(H). In particular, (22) is ful-
filled by (11). To prove the last assertion we write λu − L2u = 〈B,Du〉 + f and
use estimate (22) with ε = 0 and Theorem 3. �

2.2. Approximations. We are given two sequences (fn) ⊂ Bb(H) and (Bn) ⊂
Bb(H,H) such that:

(i) fn(x) → f (x), Bn(x) → B(x), μ-a.s.;
(25)

(ii) ‖fn‖0 ≤ M, ‖Bn‖0 ≤ M.

PROPOSITION 6. Let λ ≥ λ0, where λ0 is defined in (19). Then the equation

λun − Lun − 〈Bn,Dun〉 = fn(26)

has a unique solution un ∈ C1
b(H) ∩ D(L2) given by

un = (λ − L)−1(I − Tn,λ)
−1fn,(27)

where

Tn,λϕ := 〈
Bn,D(λ − L2)

−1ϕ
〉
.(28)

Moreover, for any ε ∈ [0,1/2), with constants independent of n,

‖un‖0 ≤ 2M,
∥∥(−A)εDun

∥∥
0 ≤ 2C1,ε

λ1/2−ε
M.(29)

Finally, we have un → u, and Dun → Du, in L2(μ), where u is the solution
to (18).

PROOF. Set

ψn := (I − Tn,λ)
−1fn, ψ := (I − Tλ)

−1f.

It is enough to show that

ψn → ψ in L2(H,μ).(30)

Let λ ≥ λ0, and write

ψ − ψn = Tλψ − Tn,λψn + f − fn.

Then, setting ‖ · ‖2 = ‖ · ‖L2(μ),

‖ψ − ψn‖2 ≤ ‖Tn,λψ − Tn,λψn‖2 + ‖Tλψ − Tn,λψ‖2 + ‖f − fn‖2

≤ 1
2‖ψ − ψn‖2 + ‖Tλψ − Tn,λψ‖2 + ‖f − fn‖2.
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Consequently,

‖ψ − ψn‖2 ≤ 2‖Tλψ − Tn,λψ‖2 + 2‖f − fn‖2.

We also have

‖Tλψ − Tn,λψ‖2
2 ≤

∫
H

∣∣B(x) − Bn(x)
∣∣2∣∣D(λ − L2)

−1ψ(x)
∣∣2μ(dx).

Therefore, by the dominate convergence theorem, it follows that

lim
n→∞‖Tλψ − Tn,λψ‖2 = 0.

The conclusion follows. �

2.3. Modified mild formulation. For any i ∈ N we denote the ith component
of B by B(i), that is,

B(i)(x) := 〈
B(x), ei

〉
.

Then for λ ≥ λ0 we consider the solution u(i) of the equation

λu(i) − Lu(i) − 〈
B,Du(i)〉 = B(i), μ-a.s.(31)

THEOREM 7. Let Xt be a mild solution of equation (1) on some filtered prob-
ability space, let u(i) be the solution of (31) and set X

(i)
t = 〈Xt, ei〉. Then we have

X
(i)
t = e−λi t

(〈x, ei〉 + u(i)(x)
) − u(i)(Xt)

+ (λ + λi)

∫ t

0
e−λi(t−s)u(i)(Xs) ds

(32)

+
∫ t

0
e−λi(t−s)(d〈Ws, ei〉 + 〈

Du(i)(Xs), dWs

〉)
,

t ≥ 0, P-a.s.

PROOF. The proof uses in an essential way that, for any t > 0, x ∈ H , the law
πt(x, ·) of Xt = X(t, x) is equivalent to μ. This follows from Theorem 13 (Gir-
sanov’s theorem) in the Appendix, by which the law on C([0, T ];H) of X(·, x) is
equivalent to the law of the solution of (1) with B = 0, that is, it is equivalent to
the law of the OU process Z(t, x) given in (6). In particular, their transition prob-
abilities are equivalent. But it is well known that the law of Z(t, x) is equivalent to
μ for all t > 0 and x ∈ H in our case; see [7], Theorem 11.3.

Let us first describe a formal proof based on an heuristic use of Itô’s formula,
and then give the necessary rigorous details by approximations.

Step 1. Formal proof.
By Itô’s formula we have

du(i)(Xt ) = 〈
Du(i)(Xt ), dXt

〉 + 1
2 Tr

[
D2u(i)(Xt)

]
dt
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and so

du(i)(Xt) = Lu(i)(Xt ) dt + 〈
B(Xt),Du(i)(Xt )

〉
dt + 〈

Du(i)(Xt ), dWt

〉
.

Now, using (31), we find that

du(i)(Xt) = λu(i)(Xt ) dt − B(i)(Xt ) dt + 〈
Du(i)(Xt ), dWt

〉
.(33)

On the other hand, by (1) we deduce

dX
(i)
t = −λiX

(i)
t dt + B(i)(Xt) dt + dW

(i)
t .

The expression for B(i)(Xt ) that we get from this identity, we insert into (33). This
yields

dX
(i)
t = −λiX

(i)
t dt + λu(i)(Xt ) dt − du(i)(Xt) + dW

(i)
t + 〈

Du(i)(Xt ), dWt

〉
.

By the variation of constants formula, this is equivalent to

X
(i)
t = e−λi t 〈x, ei〉 + λ

∫ t

0
e−λi(t−s)u(i)(Xs) ds

−
∫ t

0
e−λi(t−s) du(i)(Xs) +

∫ t

0
e−λi(t−s)[dW(i)

s + 〈
Du(i)(Xs), dWs

〉]
.

Finally, integrating by parts in the second integral yields (32).

Step 2. Approximation of B and u.
Set

Bn(x) =
∫
H

B
(
eA/nx + y

)
N(0,Q1/n)(dy), x ∈ H.(34)

Then Bn is of C∞ class and all its derivatives are bounded. Moreover, ‖Bn‖0 ≤
‖B‖0. It is easy to see that, possibly passing to a subsequence,

Bn → B, μ-a.s.(35)

[indeed Bn → B in L2(H,μ;H); this result can be first checked for continuous
and bounded B].

Now we denote by u
(i)
n the solution of the equation

λu(i)
n − Lu(i)

n − 〈
Bn,Du(i)

n

〉 = B(i)
n ,(36)

where B
(i)
n = 〈Bn, ei〉. By Proposition 6 we have, possibly passing to a subse-

quence,

lim
n→∞u(i)

n = u(i), lim
n→∞Du(i)

n = Du(i), μ-a.s.,
(37)

sup
n≥1

∥∥u(i)
n

∥∥
C1

b (H) = Ci < ∞,
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where u(i) is the solution of (31).

Step 3. Approximation of Xt .
For any m ∈ N we set Xm,t := πmXt , where πm = ∑m

j=1 ej ⊗ ej . Then we have

Xm,t = πmx +
∫ t

0
AmXs ds +

∫ t

0
πmB(Xs) ds + πmWt,(38)

where Am = πmA.
Now we denote by u

(i)
n,m the solution of the equation

λu(i)
n,m − Lu(i)

n,m − 〈
πmBn ◦ πm,Du(i)

n,m

〉 = B(i)
n ◦ πm,(39)

where (Bn ◦ πm)(x) = Bn(πmx), x ∈ H . Since only a finite number of variables is
involved, we have, equivalently,

λu(i)
n,m − Lmu(i)

n,m − 〈
πmBn ◦ πm,Du(i)

n,m

〉 = B(i)
n ◦ πm

with

Lmϕ = 1
2 Tr

[
πmD2ϕ

] + 〈Amx,Dϕ〉.(40)

Moreover, since u
(i)
n,m depends only on the first m variables, we have

u(i)
n,m(πmy) = u(i)

n,m(y), y ∈ H,n,m, i ≥ 1.(41)

Applying a finite-dimensional Itô formula to u
(i)
n,m(Xm,t ) = u

(i)
n,m(Xt) yields

du(i)
n,m(Xm,t ) = 1

2 Tr
[
D2u(i)

n,m(Xm,t )
]
dt

+ 〈
Du(i)

n,m(Xm,t ),AmXt + πmB(Xt)
〉
dt(42)

+ 〈
Du(i)

n,m(Xm,t ), πmdWt

〉
.

On the other hand, by (39) we have

λu(i)
n,m(Xm,t ) − 1

2 Tr
[
D2u(i)

n,m(Xm,t )
]

− 〈
Du(i)

n,m(Xm,t ),AmXm,t + πmBn(Xm,t )
〉

= B(i)
n (Xm,t ).

Comparing with (42) yields

du(i)
n,m(Xm,t ) = λu(i)

n,m(Xm,t ) dt − B(i)
n (Xm,t ) dt

+ 〈
Du(i)

n,m(Xm,t ), πm

(
B(Xt) − Bn(Xm,t )

)〉
dt(43)

+ 〈
Du(i)

n,m(Xm,t ), πmdWt

〉
.
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Taking into account (41), we rewrite (43) in the integral form as

u(i)
n,m(Xt) − u(i)

n,m(Xr)

=
∫ t

r
λu(i)

n,m(Xs) ds −
∫ t

r
B(i)

n (Xm,s) ds

(44)

+
∫ t

r

〈
Du(i)

n,m(Xs),
(
B(Xs) − Bn(Xm,s)

)〉
ds

+
∫ t

r

〈
Du(i)

n,m(Xs), dWs

〉
,

t ≥ r > 0. Let us fix n, i ≥ 1 and x ∈ H .
Possibly passing to a subsequence, and taking the limit in probability (with

respect to P), from identity (44), we arrive at

du(i)
n (Xt) = λu(i)

n (Xt) dt − B(i)
n (Xt) dt

+ 〈
Du(i)

n (Xt),
(
B(Xt) − Bn(Xt)

)〉
dt(45)

+ 〈
Du(i)

n (Xt), dWt

〉
, P-a.s.

Let us justify such assertion.
First note that in equation (39) we have the drift term πmBn ◦ πm which

converges pointwise to Bn and B
(i)
n ◦ πm which converges pointwise to B

(i)
n as

m → ∞. Since such functions are also uniformly bounded, we can apply Proposi-
tion 6 and obtain that, possibly passing to a subsequence (recall that n is fixed),

lim
m→∞u(i)

n,m = u(i)
n , lim

m→∞Du(i)
n,m = Du(i)

n , μ-a.s.,
(46)

sup
m≥1

∥∥u(i)
n,m

∥∥
C1

b (H) = Ci < ∞.

Now we only consider the most involved terms in (44).
We have, using that the law πt(x, ·) of Xt is absolutely continuous with respect

to μ,

E

∫ t

r

∣∣u(i)
n,m(Xs) − u(i)

n (Xs)
∣∣ds

=
∫ t

r
ds

∫
H

∣∣u(i)
n,m(y) − u(i)

n (y)
∣∣ dπs(x, ·)

dμ
(y)μ(dy),

which tends to 0, as m → ∞, by the dominated convergence theorem [using (46)].
This implies limm→∞

∫ t
r λu

(i)
n,m(Xs) ds = ∫ t

r λu
(i)
n (Xs) ds in L1(�,P). Simi-

larly, we prove that u
(i)
n,m(Xt) and u

(i)
n,m(Xr) converge, respectively, to u

(i)
n (Xt) and

u
(i)
n (Xr) in L1.
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To show that

lim
m→∞ E

∫ t

r

∣∣〈Du(i)
n,m(Xs),πm

(
B(Xs) − Bn(Xm,s)

)〉
(47)

− 〈
Du(i)

n (Xs),
(
B(Xs) − Bn(Xs)

)〉∣∣ds = 0,

it is enough to prove that limm→∞ Hm + Km = 0, where

Hm = E

∫ t

r

∣∣〈Du(i)
n,m(Xs) − Du(i)

n (Xs),πm

(
B(Xs) − Bn(Xm,s)

)〉∣∣ds

and

Km = E

∫ t

r

∣∣〈Du(i)
n (Xs),

[
πmB(Xs) − B(Xs)

] + [
Bn(Xs) − πmBn(Xm,s)

]〉∣∣ds.

It is easy to check that limm→∞ Km = 0. Let us deal with Hm. We have

Hm ≤ 2‖B‖0

∫ t

r
E

∣∣Du(i)
n,m(Xs) − Du(i)

n (Xs)
∣∣ds

(48)

≤
∫ t

r
ds

∫
H

∣∣Du(i)
n,m(y) − Du(i)

n (y)
∣∣ dπs(x, ·)

dμ
(y)μ(dy),

which tends to 0 as m → ∞ by the dominated convergence theorem [using (46)].
This shows (47).

It remains to prove that

lim
m→∞

∫ t

r

〈
Du(i)

n,m(Xs), dWs

〉 = ∫ t

r

〈
Du(i)

n (Xs), dWs

〉
in L2(�,P).

For this purpose we use the isometry formula together with

lim
m→∞

∫ t

r
E

∣∣Du(i)
n,m(Xs) − Du(i)

n (Xs)
∣∣2 ds = 0

[which can be proved arguing as in (48)]. Thus we have proved (45).
In order to pass to the limit as n → ∞ in (45), we recall formula (37) and argue

as before [using also that πt(x, ·) � μ]. We find

u(i)(Xt ) − u(i)(Xr) =
∫ t

r
λu(i)(Xs) ds −

∫ t

r
B(i)(Xs) ds

(49)

+
∫ t

r

〈
Du(i)(Xs), dWs

〉
,

t ≥ r > 0. Since u is continuous and trajectories of (Xt) are continuous, we can
pass to the limit as r → 0+ in (49), P-a.s., and obtain an integral identity on [0, t].

But

dX
(i)
t = −λiX

(i)
t dt + B(i)(Xt) dt + dW

(i)
t , P-a.s.
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Now we proceed as in step 1. Namely, we derive B(i)(Xt ) from the identity above
and insert in (49); this yields

dX
(i)
t = −λiX

(i)
t dt + λu(i)(Xt ) dt − du(i)(Xt ) + dW

(i)
t + 〈

Du(i)(Xt ), dWt

〉
,

P-a.s. Then we use the variation of constants formula. �

REMARK 8. Formula (49) with r = 0 seems to be of independent interest. As
an application, one can deduce, when x ∈ H is deterministic, the representation
formula

E
[
u(i)(Xt)

] =
∫ ∞

0
e−λtE

[
B(i)(Xt )

]
dt.

This follows by taking the Laplace transform in both sides of (49) (with r = 0) and
integrating by parts with respect to t .

The next lemma shows that u(x) = ∑
k≥1 u(k)(x)ek [u(k) as in (31)] is a well-

defined function which belongs to C1
b(H,H). Recall that λ0 is defined in (19).

LEMMA 9. For λ sufficiently large, that is, λ ≥ λ̃, with λ̃ = λ̃(A,‖B‖0), there
exists a unique u = uλ ∈ C1

b(H,H) which solves

u(x) =
∫ ∞

0
e−λtRt

(
Du(·)B(·) + B(·))(x) dt, x ∈ H,

where Rt is the OU semigroup defined as in (4) and acting on H -valued functions.
Moreover, we have the following assertions:

(i) Let ε ∈ [0,1/2[. Then, for any h ∈ H , (−A)εDu(·)[h] ∈ Cb(H,H) and
‖(−A)εDu(·)[h]‖0 ≤ Cε,λ|h|;

(ii) for any k ≥ 1, 〈u(·), ek〉 = u(k), where u(k) is the solution defined in (31);
(iii) there exists c3 = c3(A,‖B‖0) > 0 such that, for any λ ≥ λ̃, u = uλ satisfies

‖Du‖0 ≤ c3√
λ
.(50)

PROOF. Let E = C1
b(H,H), and define the operator Sλ,

Sλv(x) =
∫ ∞

0
e−λtRt

(
Dv(·)B(·) + B(·))(x) dt, v ∈ E,x ∈ H.

To prove that Sλ :E → E, we take into account estimate (11) with ε = 0. Note
that to check the Fréchet differentiability of Sλv in each x ∈ H , we first show its
Gâteaux differentiability. Then using formulas (7) and (11), we obtain the con-
tinuity of the Gâteaux derivative from H into L(H). [L(H) denotes the Banach
space of all bounded linear operators from H into H endowed with ‖ · ‖L], and
this implies, in particular, the Fréchet differentiability.
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For λ ≥ (λ0 ∨ 2‖B‖0), Sλ is a contraction and so there exists a unique u ∈
E which solves u = Sλu. Using again (11) we obtain (i). Moreover, (ii) can be
deduced from the fact that, for each k ≥ 1, uk = 〈u(·), ek〉 is the unique solution to
the equation

uk(x) =
∫ ∞

0
e−λtRt

(〈
Duk(·),B(·)〉 + Bk(·))(x) dt, x ∈ H,

in C1
b(H) (the uniqueness follows by the contraction principle) and also the func-

tion u(k) ∈ C1
b(H) given in (31) solves such equation. Finally (iii) follows easily

from the estimate

‖Du‖0 ≤ C1,0

λ1/2

(‖Du‖0‖B‖0 + ‖B‖0
)
, λ ≥ (

λ0 ∨ ‖B‖0
)
. �

3. Proof of Theorem 1. We start now the proof of pathwise uniqueness.
Let X = (Xt) and Y = (Yt ) be two continuous Ft -adapted mild solutions (de-

fined on the same filtered probability space, solutions with respect to the same
cylindrical Wiener process), starting from the same x.

For the time being, x is not specified (it may be also random, F0-measurable).
In the last part of the proof a restriction on x will emerge.

Let us fix T > 0. Let u = uλ :H → H be such that u(x) = ∑
i≥1 u(i)(x)ei ,

x ∈ H , where u(i) = u
(i)
λ solve (31) for some λ large enough; see Proposition 5.

By (50) we may assume that ‖Du‖0 ≤ 1/2. We have, for t ∈ [0, T ],
Xt − Yt = u(Yt ) − u(Xt)

+ (λ − A)

∫ t

0
e(t−s)A(

u(Xs) − u(Ys)
)
ds

+
∫ t

0
e(t−s)A(

Du(Xs) − Du(Ys)
)
dWs.

It follows that

|Xt − Yt | ≤ 1

2
|Xt − Yt | +

∣∣∣∣(λ − A)

∫ t

0
e(t−s)A(

u(Xs) − u(Ys)
)
ds

∣∣∣∣
+

∣∣∣∣∫ t

0
e(t−s)A(

Du(Xs) − Du(Ys)
)
dWs

∣∣∣∣.
Let τ be a stopping time to be specified later. Using that 1[0,τ ](t) = 1[0,τ ](t)·
1[0,τ ](s), 0 ≤ s ≤ t ≤ T , we have (cf. [7], page 187)

1[0,τ ](t)|Xt − Yt |
≤ C1[0,τ ](t)

∣∣∣∣(λ − A)

∫ t

0
e(t−s)A(

u(Xs) − u(Ys)
)
ds

∣∣∣∣
+ C

∣∣∣∣1[0,τ ](t)
∫ t

0
e(t−s)A(

Du(Xs) − Du(Ys)
)
1[0,τ ](s) dWs

∣∣∣∣,
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where by C we denote any constant which may depend on the assumptions on A,
B and T .

Writing 1[0,τ ](s)Xs = X̃s and 1[0,τ ](s)Ys = Ỹs , and, using the Burkholder–
Davis–Gundy inequality with a large exponent q > 2 which will be determined
below, we obtain (recall that ‖ · ‖ is the Hilbert–Schmidt norm (cf. [7], Chapter 4)
with C = Cq ),

E
[|X̃t − Ỹt |q]

≤ CE

[
eλqt

∣∣∣∣(λ − A)

∫ t

0
e(t−s)Ae−λs(u(Xs) − u(Ys)

)
1[0,τ ](s) ds

∣∣∣∣q]

+ CE

[(∫ t

0
1[0,τ ](s)

∥∥e(t−s)A(
Du(Xs) − Du(Ys)

)∥∥2
ds

)q/2]
.

In the sequel we introduce a parameter θ > 0, and Cθ will denote suitable con-
stants such that Cθ → 0 as θ → +∞ (the constants may change from line to line).
This idea of introducing θ and Cθ is suggested by [21], page 8. Similarly, we will
indicate by C(λ) suitable constants such that C(λ) → 0 as λ → +∞.

From the previous inequality we deduce, multiplying by e−qθt , for any θ > 0,

E
[
e−qθt |X̃t − Ỹt |q]

≤ CE

[∣∣∣∣(λ − A)

∫ t

0
e−θ(t−s)e(t−s)A(

u(Xs) − u(Ys)
)

× e−θs1[0,τ ](s) ds

∣∣∣∣q]
(51)

+ CE

[(∫ t

0
e−2θ(t−s)

∥∥e(t−s)A(
Du(Xs) − Du(Ys)

)∥∥2

× e−2θs1[0,τ ](s) ds

)q/2]
.

Let us deal with the first term in the right-hand side. Integrating over [0, T ], and
assuming θ ≥ λ, we get∫ T

0
CE

[∣∣∣∣(λ − A)

∫ t

0
e−θ(t−s)e(t−s)A(

u(Xs) − u(Ys)
)
e−θs1[0,τ ](s) ds

∣∣∣∣q]
dt

= CE

[∫ T

0

∣∣∣∣(λ − A)

∫ t

0
e−θ(t−s)e(t−s)A(

u(Xs) − u(Ys)
)

× e−θs1[0,τ ](s) ds

∣∣∣∣q dt

]
≤ I1 + I2,
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where

I1 = C2q−1E

[∫ T

0

∣∣∣∣(θ − A)

∫ t

0
e(t−s)(A−θ)(u(Xs) − u(Ys)

)
e−θs1[0,τ ](s) ds

∣∣∣∣q dt

]
,

I2 = CE

[∫ T

0

∣∣∣∣∫ t

0
2θe−θ(t−s)e(t−s)A(

u(Xs) − u(Ys)
)
e−θs1[0,τ ](s) ds

∣∣∣∣q dt

]
,

Let us estimate I1 and I2 separately. To estimate I1, we use the Lq -maximal in-
equality; see, for instance, [24], Section 1. This implies that, P-a.s.,∫ T

0

∣∣∣∣(θ − A)

∫ t

0
e(t−s)(A−θ)(u(Xs) − u(Ys)

)
e−θs1[0,τ ](s) ds

∣∣∣∣q dt

≤ C4

∫ T

0
e−θqs

∣∣u(Xs) − u(Ys)
∣∣q1[0,τ ](s) ds,

where it is important to remark that C4 is independent on θ > 0. To see this, look
at [24], Theorem 1.6, page 74, and note that for a fixed α ∈ (π/2, π), there exists
c = c(α) such that for any θ > 0, μ ∈ C, μ �= 0, such that |arg(μ)| < α, we have∥∥(

μ − (A − θ)
)−1∥∥

L ≤ c(α)

|μ| .(52)

Continuing we get

I1 ≤ C(λ)

∫ T

0
e−θqs |X̃s − Ỹs |q ds

with C(λ) = C0‖Du‖q
0 → 0 as λ → +∞.

Let us deal with the term I2. Given t ∈ (0, T ], the function s �→ θ e−θ(t−s)(1 −
e−θt )−1 is a probability density on [0, t], and thus, by Jensen’s inequality,

I2 = C2qE

[∫ T

0

(
1 − e−θt )q

×
∣∣∣∣∫ t

0
e(t−s)A(

u(Xs) − u(Ys)
)
e−θs1[0,τ ](s)

θe−θ(t−s)

1 − e−θt
ds

∣∣∣∣q dt

]

≤ C̃E

[∫ T

0

(
1 − e−θt )q ∫ t

0

∣∣u(Xs) − u(Ys)
∣∣qe−qθs1[0,τ ](s)

θe−θ(t−s)

1 − e−θt
ds dt

]

≤ C̃‖Du‖q
0E

[∫ T

0

(
1 − e−θt )q−1

∫ t

0
θe−θ(t−s)|X̃s − Ỹs |qe−qθs ds dt

]

= C̃‖Du‖q
0E

[∫ T

0

(∫ T

s

(
1 − e−θt )q−1

θe−θ(t−s) dt

)
|X̃s − Ỹs |qe−qθs ds

]

≤ C̃(λ)E

[∫ T

0
|X̃s − Ỹs |qe−qθs ds

]
,
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because
∫ T
s (1 − e−θt )q−1θe−θ(t−s) dt ≤ 1, for any θ ≥ λ. Thus we have found

E

[∣∣∣∣(λ − A)

∫ t

0
e−θ(t−s)e(t−s)A(

u(Xs) − u(Ys)
)
e−θs1[0,τ ](s) ds

∣∣∣∣q]
(53)

≤ C(λ)E

[∫ T

0
|X̃s − Ỹs |qe−qθs ds

]
.

Now let us estimate the second term on the right-hand side of (51). For t > 0 fixed,
Lemma 23 from Appendix A.2 implies that ds ⊗ P-a.s. on [0, t] × �∥∥e(t−s)A(

Du(Xs) − Du(Ys)
)∥∥2

= ∑
n≥1

e−2λn(t−s)
∣∣Du(n)(Xs) − Du(n)(Ys)

∣∣2
= ∑

k≥1

∑
n≥1

e−2λn(t−s)
∣∣Dku

(n)(Xs) − Dku
(n)(Ys)

∣∣2
= ∑

k,n≥1

e−2λn(t−s)

∣∣∣∣∫ 1

0

〈
DDku

(n)(Zr
s

)
,Xs − Ys

〉
dr

∣∣∣∣2

≤ ∑
n≥1

e−2λn(t−s)

(∫ 1

0

∥∥D2u(n)(Zr
s

)∥∥2
dr

)
|Xs − Ys |2

=
∫ 1

0

(∑
n≥1

e−2λn(t−s)
∥∥D2u(n)(Zr

s

)∥∥2
)

dr |Xs − Ys |2,

where Dku
(n) = 〈Du(n), ek〉, DhDku

(n) = 〈D2u(n)eh, ek〉 and ‖D2u(n)(z)‖2 =∑
h,k≥1 |DhDku

(n)(z)|2, for μ-a.e. z ∈ H , and as before,

Zr
t = Z

r,x
t = rXt + (1 − r)Yt .

Integrating the second term in (51) in t over [0, T ], we thus find

�T :=
∫ T

0
E

[(∫ t

0
e−2θ(t−s)1[0,τ ](s)e−2θs

× ∥∥e(t−s)A(
Du(Xs) − Du(Ys)

)∥∥2
ds

)q/2]
dt

≤
∫ T

0
E

[(∫ t

0
e−2θ(t−s)1[0,τ ](s)

×
∫ 1

0

(∑
n≥1

e−2λn(t−s)
∥∥D2u(n)(Zr

s

)∥∥2
)

dr

× e−2θs |Xs − Ys |2 ds

)q/2]
dt.
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Now we consider δ ∈ (0,1) such that (−A)−1+δ is of finite trace. Then

�T ≤
∫ T

0
E

[(∫ t

0

e−2θ(t−s)

(t − s)1−δ
1[0,τ ](s)

×
∫ 1

0

(∑
n≥1

(
λn(t − s)

)1−δ

× e−2λn(t−s) ‖D2u(n)(Zr
s )‖2

λ1−δ
n

)
dr

× e−2θs |Xs − Ys |2 ds

)q/2]
dt

≤ C

∫ T

0
E

[(∫ t

0

e−2θ(t−s)

(t − s)1−δ
1[0,τ ](s)

×
∫ 1

0

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)

dr

× e−2θs |Xs − Ys |2 ds

)q/2]
dt.

Let us explain the motivation of the previous estimates: on the one side we isolate

the term e−2θ(t−s)

(t−s)1−δ which will produce a constant Cθ arbitrarily small for large θ ;

on the other side, we keep the term 1
λ1−δ

n
in the series

∑
n≥1

1
λ1−δ

n
‖D2u(n)(Zr

s )‖2;

otherwise, later on (in the next proposition), we could not evaluate high powers of
this series.

Using the (triple) Hölder inequality in the integral with respect to s, with 2
q

+
1
β

+ 1
γ

= 1, γ > 1 and β > 1 such that (1 − δ)β < 1, and Jensen’s inequality in the
integral with respect to r , we find

�T ≤ C̃θE

[
	T

∫ T

0
e−qθs |X̃s − Ỹs |q ds

]
,(54)

where

C̃θ =
(∫ T

0

e−2βθr

r(1−δ)β
dr

)q/2β

(which converges to zero as θ → ∞) and

	T :=
∫ T

0

(∫ t

0
1[0,τ ](s)

∫ 1

0

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)γ

dr ds

)q/2γ

dt.

We may choose γ = q
2 so that q

2γ
= 1. This is compatible with the other con-

straints, namely q > 2, 2
q

+ 1
β

+ 1
γ

= 1, β > 1 such that (1 − δ)β < 1, because we
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may choose β > 1 arbitrarily close to 1 and then solve 4
q

+ 1
β

= 1 for q , which
would require q > 4. So, from now on we fix q ∈ (4,∞) and γ = q/2. Hence

	T :=
∫ T

0

∫ t

0
1[0,τ ](s)

∫ 1

0

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)γ

dr ds dt

≤ T ·
∫ T ∧τ

0

∫ 1

0

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)γ

dr ds.

Define now, for any R > 0, the stopping time

τx
R = inf

{
t ∈ [0, T ] :

∫ t

0

∫ 1

0

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)γ

dr ds ≥ R

}
and τx

R = T if this set is empty. Take τ = τx
R in the previous expressions and collect

the previous estimates. Using also (53) we get from (51), for any θ ≥ λ,∫ T

0
e−qθtE|X̃t − Ỹt |q dt

≤ C(λ)

∫ T

0
e−qθsE|X̃s − Ỹs |q ds

+ C̃θR

∫ T

0
e−qθsE|X̃s − Ỹs |q ds.

Now we fix λ large enough such that C(λ) < 1 and consider θ greater of such λ.
For sufficiently large θ = θR , depending on R,

E

[∫ T

0
e−qθRt1[0,τR](t)|Xt − Yt |q dt

]
= E

[∫ τR

0
e−qθRt |Xt − Yt |q dt

]
= 0.

In other words, for every R > 0, P-a.s., X = Y on [0, τR] (identically in t , since X

and Y are continuous processes). We have limR→∞ τR = T , P-a.s., because of the
next proposition. Hence, P-a.s., X = Y on [0, T ], and the proof is complete.

PROPOSITION 10. For μ-a.e. x ∈ H , we have P(Sx
T < ∞) = 1, where

Sx
T =

∫ T

0

∫ 1

0

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)γ

dr ds

with γ = q/2. The result is true also for a random F0-measurable, H -valued ini-
tial condition under the assumptions stated in Theorem 1.

PROOF. We will show that, for any x ∈ H , μ-a.s.,

E
[
Sx

T

]
< +∞.
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We will also show this result for random initial conditions under the specified
assumptions.

Step 1. In this step x ∈ H is given, without restriction. Moreover, the result is
true for a general F0-measurable initial condition x without restrictions on its law.

We have

Zr
t = etAx +

∫ t

0
e(t−s)AB̄r

s ds +
∫ t

0
e(t−s)A dWs,

where

B̄r
s = [

rB(Xs) + (1 − r)B(Ys)
]
, r ∈ [0,1].

Define

ρr = exp
(
−

∫ t

0
B̄r

s dWs − 1

2

∫ t

0

∣∣B̄r
s

∣∣2 ds

)
.

We have, since |B̄r
s | ≤ ‖B‖0,

E

[
exp

(
k

∫ T

0

∣∣B̄r
s

∣∣2 ds

)]
≤ Ck < ∞(55)

for all k ∈ R, independently of x and r , simply because B is bounded. Hence an
infinite-dimensional version of Girsanov’s theorem with respect to a cylindrical
Wiener process (the proof of which is included in the Appendix; see Theorem 13)
applies and gives us that

W̃t := Wt +
∫ t

0
B̄r

s ds

is a cylindrical Wiener process on (�, F , (Ft )t∈[0,T ], P̃r ) where dP̃r
dP

|FT
= ρr .

Hence

Zr
t = etAx +

∫ t

0
e(t−s)A dW̃s

is the sum of a stochastic integral which is Gaussian with respect to P̃r , plus the
independent (because F0-measurable) random variable etAx. Its law is uniquely
determined by A, r and the law of x.

Denote by WA(t) the process

WA(t) :=
∫ t

0
e(t−s)A dWs.

We have e·Ax + WA(·) = Zr in law. We have

E
[
Sx

T

] = E

[∫ T

0

∫ 1

0

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)γ

dr ds

]
(56)

=
∫ T

0

∫ 1

0
E

[(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)γ ]

dr ds.
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Applying the Girsanov theorem, we find, for r ∈ [0,1],
E

[
ρ−1/2

r ρ1/2
r

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)γ ]

≤ (
E

[
ρ−1

r

])1/2
(

E

[
ρr

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(Zr
s

)∥∥2
)2γ ])1/2

≤ E
[
ρ−1

r

] + E

[(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(esAx + WA(s)
)∥∥2

)2γ ]
.

By (56) it follows that

E
[
Sx

T

] ≤ T

∫ 1

0
E

[
ρ−1

r

]
dr

(57)

+
∫ T

0
E

[(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(esAx + WA(s)
)∥∥2

)2γ ]
ds.

Step 2. We have E[ρ−1
r ] ≤ C < ∞ independently of x ∈ H (also in the case of

an F0-measurable x) and r ∈ [0,1]. Indeed,

E
[
ρ−1

r

] = E

[
exp

(∫ t

0
B̄r

s dWs + 1

2

∫ t

0

∣∣B̄r
s

∣∣2 ds

)]
= E

[
exp

(∫ t

0
B̄r

s dWs +
(

3

2
− 1

)∫ t

0

∣∣B̄r
s

∣∣2 ds

)]

≤ E

[
exp

(∫ t

0
2B̄r

s dWs − 1

2

∫ t

0

∣∣2B̄r
s

∣∣2 ds

)]1/2

C
1/2
3

by (55). But

E

[
exp

(∫ t

0
2B̄r

s dWs − 1

2

∫ t

0

∣∣2B̄r
s

∣∣2 ds

)]
= 1,

because of Girsanov’s theorem. Therefore, E[ρ−1
r ] is bounded uniformly in x

and r .

Step 3. Let us come back to (57). To prove that E[Sx
T ] < +∞ and hence finish

the proof, it is enough to verify that∫ T

0
E

[(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(esAx + WA(s)
)∥∥2

)2γ ]
ds < ∞.(58)

If μx
s denotes the law of esAx + WA(s), we have to prove that∫ T

0

∫
H

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(y)
∥∥2

)2γ

μx
s (dy) ds < ∞.(59)
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Now we check (58) for deterministic x ∈ H . In step 4 below, we will consider the
case where x is an F0-measurable r.v.

We estimate(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(y)
∥∥2

)2γ

≤
(∑

n≥1

1

λ
(1−δ)(2γ /(2γ−1))
n

)2γ−1 ∑
n≥1

∥∥D2u(n)(y)
∥∥4γ

.

Since 2γ
2γ−1 > 1 we have

∑
n≥1

1
λ

(1−δ)(2γ /(2γ−1))
n

< ∞. Hence we have to prove that∫ T

0

∫
H

∑
n≥1

∥∥D2u(n)(y)
∥∥4γ

μx
s (dy) ds < ∞.(60)

Unfortunately, we cannot verify (60) for an individual deterministic x ∈ H . On the
other hand, by (23) we know that, for any η ≥ 2,∫

H

∥∥D2u(n)(z)
∥∥η

μ(dz) ≤ Cη

∫
H

∣∣B(n)(x)
∣∣ημ(dx),

where Cη is independent of n. Hence we obtain∫
H

∑
n≥1

∥∥D2u(n)(y)
∥∥4γ

μ(dy) ≤ C4γ

∫
H

∑
n≥1

∣∣B(n)(y)
∣∣4γ

μ(dy)

≤ C4γ ‖B‖4γ−2
0

∫
H

∣∣B(x)
∣∣2μ(dx)

≤ C4γ ‖B‖4γ
0 .

This estimate is clearly related to (60) since the law μx
s is equivalent to μ for every

s > 0 and x. The problem is that dμx
s

dμ
degenerates too strongly at s = 0. Therefore

we use the fact that∫
H

(∫
H

f (z)μx
s (dz)

)
μ(dx) =

∫
H

f (z)μ(dz)

for all s ≥ 0, for every nonnegative measurable function f . Thus, for any s ≥ 0
with f (y) = ∑

n≥1 ‖D2u(n)(y)‖4γ , we get∫
H

(∫
H

∑
n≥1

∥∥D2u(n)(y)
∥∥4γ

μx
s (dy)

)
μ(dx)

=
∫
H

∑
n≥1

∥∥D2u(n)(y)
∥∥4γ

μ(dy)

≤ C4γ ‖B‖4γ
0 < ∞.

Step 4. We prove (58) in the case of a random initial condition x F0-measurable
with law μ0 such that μ0 � μ and

∫
H h

ζ
0 dμ < ∞ for some ζ > 1, where h0 :=

dμ0
dμ

.
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Denote by μs the law of esAx + WA(s), s ≥ 0. We have to prove that∫ T

0

∫
H

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(y)
∥∥2

)2γ

μs(dy) ds < ∞.(61)

But, since esAx and WA(s) are independent, it follows that

μs(dz) =
∫
H

μy
s (dz)μ0(dy).

Hence, for every Borel measurable f :H → R, if 1
ζ

+ 1
ζ ′ = 1, with ζ > 1, we have∫

H

∣∣f (y)
∣∣μs(dy) ≤ ‖h0‖Lζ (μ)‖f ‖

Lζ ′
(μ)

.(62)

By (62), we have (similar to step 3)

aT :=
∫ T

0

∫
H

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(y)
∥∥2

)2γ

μs(dy) ds

≤ T ‖h0‖Lζ (μ)

(∫
H

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(y)
∥∥2

)2γ ζ ′
μ(dy)

)1/ζ ′
.

By (∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(y)
∥∥2

)2γ ζ ′

≤
(∑

n≥1

1

λ
(1−δ)(2γ ζ ′/(2γ ζ ′−1))
n

)2γ ζ ′−1 ∑
n≥1

∥∥D2u(n)(y)
∥∥4γ ζ ′

≤ C
∑
n≥1

∥∥D2u(n)(y)
∥∥4γ ζ ′

,

we obtain

aT ≤ CT ‖h0‖Lζ (μ)

(∫
H

∑
n≥1

∥∥D2u(n)(y)
∥∥4γ ζ ′

μ(dy)

)1/ζ ′
,

which is finite since ∫
H

∑
n≥1

∥∥D2u(n)(y)
∥∥4γ ζ ′

μ(dy)

≤ C4γ ζ ′‖B‖4γ ζ ′−2
0

∫
H

∣∣B(x)
∣∣2μ(dx)

≤ C4γ ζ ′‖B‖4γ ζ ′
0 .

The proof is complete. �
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REMARK 11. Let us comment on the crucial assertion (59), that is,∫ T

0

∫
H

(∑
n≥1

1

λ1−δ
n

∥∥D2u(n)(y)
∥∥2

)2γ

μx
s (dy) ds < ∞.

This holds in particular if for some p > 1 (large enough), we have∫ T

0
Rs |f |(x) ds ≤ Cx,T ,p‖f ‖Lp(μ)(63)

for any f ∈ Lp(μ) [here Rt is the OU Markov semigroup; see (4)]. Note that if
this assertion holds for any x ∈ H , then we have pathwise uniqueness for all initial
conditions x ∈ H . But so far, we could not prove or disprove (63). We expect,
however, that (63) in infinite dimensions is not true for all x ∈ H .

When H = Rd one can show that if p > c(d), then (63) holds for any x ∈ H ,
and so we have uniqueness for all initial conditions. Therefore, in finite dimension,
our method could also provide an alternative approach to the Veretennikov result.
In this respect, note that in finite dimension the SDE dXt = b(Xt) dt + dWt is
equivalent to dXt = −Xt dt + (b(Xt)+Xt) dt +dWt which is in the form (1) with
A = −I , but with linearly growing drift term B(x) = b(x) + x. Strictly speaking,
we can only recover Veretennikov’s result if we realize the generalization men-
tioned in Remark 12(i) below. In this alternative approach, basically the elliptic
Lp-estimates with respect to the Lebesgue measure used in [33] are replaced by
elliptic Lp(μ)-estimates using the Girsanov theorem.

Let us check (63) when H = Rd and x = 0 for simplicity. By [8], Lem-
ma 10.3.3, we know that

Rtf (x) =
∫
H

f (y)kt (x, y)μ(dy)

and moreover, according to [8], Lemma 10.3.8, for p′ ≥ 1,(∫
H

(
kt (0, y)

)p′
μ(dy)

)1/p′

= det
(
I − e2tA)−1/2+1/(2p′) det

(
I + (

p′ − 1
)
e2tA)−1/(2p′)

.

By the Hölder inequality (with 1/p′ + 1/p = 1),∫ t

0
Rrf (0) dr ≤

(∫
H

f (y)pμ(dy)

)1/p ∫ t

0

(∫
H

(
kr(0, y)

)p′
μ(dy)

)1/p′
dr.

Thus (63) holds with x = 0 if for some p′ > 1 near 1,∫ t

0

(∫
H

(
kr(0, y)

)p′
μ(dy)

)1/p′
dr

=
∫ t

0

[
det

(
I − e2rA)]−1/2+1/(2p′)[det

(
I + (

p′ − 1
)
e2rA)]−1/(2p′)

dr(64)

< +∞.
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It is easy to see that in Rd there exists 1 < K(d) < 2 such that for 1 < p′ < K(d),
assertion (64) holds.

REMARK 12. (i) We expect to prove more generally uniqueness for B :H →
H which is at most of linear growth (in particular, bounded on each balls) by using
a stopping time argument.

(ii) We also expect to implement the uniqueness result to drifts B which are also
time dependent. However, to extend our method we need parabolic L

p
μ-estimate

involving the Ornstein–Uhlenbeck operator which are not yet available in the lit-
erature.

4. Examples. We discuss some examples in several steps. First we show a
simple one-dimensional example of wild nonuniqueness due to noncontinuity of
the drift. Then we show two infinite dimensional, very natural generalizations of
this example. However, both of them do not fit perfectly with our purposes, so
they are presented mainly to discuss possible phenomena. Finally, in Section 4.4,
we modify the previous examples in such a way to get a very large family of
deterministic problems with nonuniqueness for all initial conditions, which fits the
assumptions of our result of uniqueness by noise.

4.1. An example in dimension one. In dimension 1, one of the simplest and
more dramatic examples of nonuniqueness is the equation

d

dt
Xt = bDir(Xt), X0 = x,

where

bDir(x) =
{

1, if x ∈ R \ Q,
0, if x ∈ Q

(the so-called Dirichlet function). Let us call solution any continuous function Xt

such that

Xt = x +
∫ t

0
bDir(Xs) ds

for all t ≥ 0. For every x, the function

Xt = x + t

is a solution: indeed, Xs ∈ R \ Q for a.e. s, hence bDir(Xs) = 1 for a.e. s, hence∫ t
0 bDir(Xs) ds = t for all t ≥ 0. But from x ∈ Q we have also the solution

X̃t = x,

because X̃s ∈ Q for all s ≥ 0 and thus bDir(Xs) = 0 for all s ≥ 0. Therefore, we
have nonuniqueness from every initial condition x ∈ Q. Not only: for every x and
every ε > 0, there are infinitely many solutions on [0, ε]. Indeed, one can start
with the solution Xt = x + t and branch at any t0 ∈ [0, ε] such that x + t0 ∈ Q,
continuing with the constant solution. Therefore, in a sense, there is nonuniqueness
from every initial condition.
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4.2. First infinite-dimensional generalization (not of parabolic type). This ex-
ample can be immediately generalized to infinite dimensions by taking H = l2 (the
space of square summable sequences),

BDir(x) =
∞∑

n=1

αnbDir(xn)en,

where x = (xn), (en) is the canonical basis of H , and αn are positive real num-
bers such that

∑∞
n=1 α2

n < ∞. The mapping B is well defined from H to H , it
is Borel measurable and bounded, but of course not continuous. Given an initial
condition x = (xn) ∈ H , if a function X(t) = (Xn(t)) has all components Xn(t)

which satisfy

Xn(t) = xn +
∫ t

0
αnbDir

(
Xn(s)

)
ds,

then X(t) ∈ H and is continuous in H (we see this from the previous identity),
and satisfies

X(t) =
∞∑

n=1

Xn(t)en = x +
∫ t

0
BDir

(
X(s)

)
ds.

So we see that this equation has infinitely many solutions from every initial condi-
tion.

Unfortunately our theory of regularization by noise cannot treat this simple ex-
ample of nonuniqueness, because we need a regularizing operator A in the equa-
tion to compensate for the regularity troubles introduced by a cylindrical noise.

4.3. Second infinite-dimensional generalization (nonuniqueness only for a few
initial conditions). Let us start in the most obvious way. Namely, consider the
equation in H = l2

X(t) = etAx +
∫ t

0
e(t−s)ABDir

(
X(s)

)
ds,

where

Ax = −
∞∑

n=1

λn〈x, en〉en

with λn > 0,
∑∞

n=1
1

λ
1−ε0
n

< ∞. Componentwise we have

Xn(t) = e−tλnxn +
∫ t

0
e−(t−s)λnbDir

(
Xn(s)

)
ds.

For x = (xn) ∈ H with all nonzero components xn, the solution is unique, with
components

Xn(t) = e−tλnxn + 1 − e−tλn

λn
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[we have Xn(s) ∈ R \ Q for a.e. s, hence bDir(Xn(s)) = 1; and it is impossible to
keep a solution constant on a rational value, due to the term e−tλnxn which always
appears]. This is also a solution for all x.

But from any initial condition x = (xn) ∈ H such that at least one component
xn0 is zero, we have at least two solutions: the previous one and any solution such
that

Xn0(t) = 0.

This example fits our theory in the sense that all assumptions are satisfied, so
our main theorem of “uniqueness by noise” applies. However, our theorem states
only that uniqueness is restored for μ-a.e. x, where μ is the invariant Gaussian
measure of the linear stochastic problem, supported on the whole H . We already
know that this deterministic problem has uniqueness for μ-a.e. x: it has a unique
solution for all x with all components different from zero. Therefore our theorem
is not empty but not competitive with the deterministic theory, for this example.

4.4. Infinite-dimensional examples with wild nonuniqueness. Let H be a sep-
arable Hilbert space with a complete orthonormal system (en). Let A be as in the
assumptions of this paper. Assume that e1 is eigenvector of A with eigenvalue −λ1.
Let H̃ be the orthogonal to e1 in H , the span of e2, e3, . . . , and let B̃ : H̃ → H̃

be Borel measurable and bounded. Consider B̃ as an operator in H , by setting
B̃(x) = B̃(

∑∞
n=2 xnen).

Let B be defined as

B(x) = (
(λ1x1) ∧ 1 + bDir(x1)

)
e1 + B̃(x)

for all x = (xn) ∈ H . Then B :H → H is Borel measurable and bounded. The
deterministic equation for the first component X1(t) is, in differential form,

d

dt
X1(t) = −λ1X1(t) + λ1X1(t) + bDir

(
X1(t)

)
= bDir

(
X1(t)

)
as soon as ∣∣X1(t)

∣∣ ≤ 1/λ1.

In other words, the full drift Ax + B(x) is given, on H̃ , by a completely general
scheme coherent with our assumption (which may have deterministic uniqueness
or not); and along e1 it is the Dirichlet example of Section 4.1, at least as soon as
a solution satisfies |X1(t)| ≤ 1/λ1.

Start from an initial condition x such that

|x1| < 1/λ1.
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Then, by continuity of trajectories and the fact that any possible solution to the
equation satisfies the inequality∣∣∣∣ d

dt
X1(t)

∣∣∣∣ ≤ λ1
∣∣X1(t)

∣∣ + 2,

there exists τ > 0 such that for every possible solution, we have∣∣X1(t)
∣∣ < 1/λ1 for all t ∈ [0, τ ].

So, on [0, τ ], all solutions solve d
dt

X1(t) = bDir(X1(t)) which has infinitely many
solutions (step 1). Therefore also the infinite-dimensional equation has infinitely
many solutions.

We have proved that nonuniqueness holds for all x ∈ H such that x1 satisfies
|x1| < 1/λ1. This set of initial conditions has positive μ-measure; hence we have a
class of examples of deterministic equations where nonuniqueness holds for a set
of initial conditions with positive μ-measure. Our theorem applies and states for
μ-a.e. such initial condition we have uniqueness by noise.

APPENDIX

A.1. Girsanov’s theorem in infinite dimensions with respect to a cylindrical
Wiener process. In the main body of the paper, the Girsanov theorem for SDEs
on Hilbert spaces of type (1) with cylindrical Wiener noise is absolutely crucial.
Since a complete and reasonably self-contained proof is hard to find in the liter-
ature, for the convenience of the reader, we give a detailed proof of this folklore
result (see, e.g., [7, 11, 15] and [12]) in our situation, but even for at most linearly
growing B . The proof is reduced to the Girsanov theorem of general real valued
continuous local martingales; see [30], (1.7) Theorem, page 329.

We consider the situation of the main body of the paper, that is, we are given a
negative definite self-adjoint operator A :D(A) ⊂ H → H on a separable Hilbert
space (H, 〈·, ·〉) with (−A)−1+δ being of trace class, for some δ ∈ (0,1), a measur-
able map B :H → H of at most linear growth and W a cylindrical Wiener process
over H defined on a filtered probability space (�, F , Ft ,P) represented in terms
of the eigenbasis {ek}k∈N of (A,D(A)) through a sequence

W(t) = (
βk(t)ek

)
k∈N, t ≥ 0,(65)

where βk , k ∈ N, are independent real valued Brownian motions starting at zero on
(�, F , Ft ,P). Consider the stochastic equations

dX(t) = (
AX(t) + B

(
X(t)

))
dt + dW(t), t ∈ [0, T ],X(0) = x,(66)

and

dZ(t) = AZ(t) dt + dW(t), t ∈ [0, T ],Z(0) = x,(67)

for some T > 0.
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THEOREM 13. Let x ∈ H . Then (66) has a unique weak mild solution, and its
law Px on C([0, T ];H) is equivalent to the law Qx of the solution to (67) (which
is just the classical OU process). If B is bounded, x may be replaced by an F0-
measurable H -valued random variable.

The rest of this section is devoted to the proof of this theorem. We first need
some preparation and start with recalling that because Tr[(−A)−1+δ] < ∞, δ ∈
(0,1), the stochastic convolution

WA(t) :=
∫ t

0
e(t−s)A dW(s), t ≥ 0,(68)

is a well defined Ft -adapted stochastic process (“OU process”) with continuous
paths in H and

Z(t, x) := etAx + WA(t), t ∈ [0, T ],(69)

is the unique mild solution of (66).
Let b(t), t ≥ 0, be a progressively measurable H -valued process on (�, F ,

Ft ,P) such that

E

[∫ T

0

∣∣b(s)
∣∣2 ds

]
< ∞(70)

and

X(t, x) := Z(t, x) +
∫ t

0
e(t−s)Ab(s) ds, t ∈ [0, T ].(71)

We set

Wk(t) := βk(t)ek, t ∈ [0, T ], k ∈ N,(72)

and define

Y(t) :=
∫ t

0

〈
b(s), dW(s)

〉 := ∑
k≥1

∫ t

0

〈
b(s), ek

〉
dWk(s), t ∈ [0, T ].(73)

LEMMA 14. The series on the right-hand side of (73) converges in L2(�,P;
C([0, T ];R)). Hence the stochastic integral Y(t) is well defined and a continuous
real-valued martingale, which is square integrable.

PROOF. We have for all n,m ∈ N, n > m, by Doob’s inequality,

E

[
sup

t∈[0,T ]

∣∣∣∣∣
n∑

k=m

∫ t

0

〈
ek, b(s)

〉
dWk(s)

∣∣∣∣∣
2]

≤ 2E

[∣∣∣∣∣
n∑

k=m

∫ T

0

〈
ek, b(s)

〉
dWk(s)

∣∣∣∣∣
2]
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= 2
n∑

k,l=m

E

[∫ T

0

〈
ek, b(s)

〉
dWk(s)

∫ T

0

〈
el, b(s)

〉
dWl(s)

]

= 2
n∑

k=m

E

[∫ T

0

〈
ek, b(s)

〉2
ds

]
→ 0

as m,n → ∞ because of (70). Hence the series on the right-hand side of (73)
converges in L2(�,P;C([0, T ];R)), and the assertion follows. �

REMARK 15. It can be shown that if
∫ t

0 〈b(s), dW(s)〉, t ∈ [0, T ], is defined as
usual, using approximations by elementary functions (see [28], Lemma 2.4.2), the
resulting process is the same.

It is now easy to calculate the corresponding variation process 〈∫ ·
0〈b(s),

dW(s)〉〉t , t ∈ [0, T ].

LEMMA 16. We have

〈Y 〉t =
〈∫ ·

0

〈
b(s), dW(s)

〉〉
t

=
∫ t

0

∣∣b(s)
∣∣2 ds, t ∈ [0, T ].

PROOF. We have to show that

Y 2(t) −
∫ t

0

∣∣b(s)
∣∣2 ds, t ∈ [0, T ],

is a martingale, that is, for all bounded Ft -stopping times τ , we have

E
[
Y 2(τ )

] = E

[∫ τ

0

∣∣b(s)
∣∣2 ds

]
,

which follows immediately as in the proof of Lemma 14. �

Define the measure

P̃ := eY(T )−〈Y 〉t /2 · P(74)

on (�, F ), which is equivalent to P. Since E (t) := eY(T )−〈Y 〉t /2, t ∈ [0, T ], is a
nonnegative local martingale, it follows by Fatou’s lemma that it is a supermartin-
gale, and since E (0) = 1, we have

E
[

E (t)
] ≤ E

[
E (0)

] = 1.

Hence P̃ is a sub-probability measure.

PROPOSITION 17. Suppose that P̃ is a probability measure, that is,

E
[

E (T )
] = 1.(75)
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Then

W̃k(t) := Wk(t) −
∫ t

0

〈
ek, b(s)

〉
ds, t ∈ [0, T ], k ∈ N,

are independent real-valued Brownian motions starting at 0 on (�, F , (Ft ), P̃),
that is,

W̃ (t) := (
W̃ (t)ek

)
k∈N, t ∈ [0, T ],

is a cylindrical Wiener process over H on (�, F , (Ft ), P̃).

PROOF. By the classical Girsanov theorem (for general real-valued martin-
gales, see [30], (1.7) Theorem, page 329), it follows that for every k ∈ N,

Wk(t) − 〈Wk,Y 〉t , t ∈ [0, T ],
is a local martingale under P̃. Set

Yn(t) :=
n∑

k=1

∫ t

0

〈
ek, b(s)

〉
dWk(s), t ∈ [0, T ], n ∈ N.

Then by Cauchy–Schwartz’s inequality∣∣〈Wk,Y − Yn〉
∣∣
t = 〈Wk〉1/2

t 〈Y − Yn〉1/2
t , t ∈ [0, T ],

and since

E
[〈Y − Yn〉t ] = E

[
(Y − Yn)

2] → 0 as n → ∞
by Lemma 14, we conclude that (selecting a subsequence if necessary) P-a.s. for
all t ∈ [0, T ]

〈Wk,Y 〉t = lim
n→∞〈Wk,Yn〉t =

∫ t

0

〈
ek, b(s)

〉
ds,

since 〈Wk,Wl〉t = 0 if k �= l, by independence. Hence each W̃k is a local martingale
under P̃.

It remains to show that for every n ∈ N, (W̃1, . . . , W̃n) is, under P̃, an n-
dimensional Brownian motion. But P-a.s. for l �= k

〈W̃l, W̃k〉t = 〈Wl,Wk〉t = δl,k(t), t ∈ [0, T ].
Since P is equivalent to P̃, this also holds P̃-a.s. Hence by Lèvy’s characterization
theorem ([30], (3.6) Theorem, page 150) it follows that (W̃1, . . . , W̃n) is an n-
dimensional Brownian motion in Rn for all n, under P̃. �

PROPOSITION 18. Let WA(t), t ∈ [0, T ], be defined as in (68). Then there
exists ε > 0 such that

E
[
exp

{
ε sup

t∈[0,T ]
∣∣WA(t)

∣∣}2]
< ∞.
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PROOF. Consider the distribution Q0 := P ◦ W−1
A of WA on E := C([0, T ];

H). If Q0 is a Gaussian measure on E, the assertion follows by Fernique’s theo-
rem. To show that Q0 is a Gaussian measure on E, we have to show that for each
l in the dual space E′ of E, we have that Q0 ◦ l−1 is Gaussian on R. We prove this
in two steps.

Step 1. Let t0 ∈ [0, T ], h ∈ H and �(ω) := 〈h,ω(t0)〉 for ω ∈ E. To see that
Q0 ◦ �−1 is Gaussian on R, consider a sequence δk ∈ C([0, T ];R), k ∈ N, such
that δk(t) dt converges weakly to the Dirac measure εt0 . Then for all ω ∈ E,

�(ω) = lim
k→∞

∫ T

0

〈
h,ω(s)

〉
δk(s) ds = lim

k→∞

∫ T

0

〈
hδk(s),ω(s)

〉
ds.

Since (e.g., by [4], Proposition 2.15, the law of WA in L2(0, T ;H) is Gaussian, it
follows that the distribution of � is Gaussian.

Step 2. The following argument is taken from [6], Proposition A.2. Let ω ∈ E;
then we can consider its Bernstein approximation

βn(ω)(t) :=
n∑

k=1

(
n

k

)
ϕk,n(t)ω(k/n), n ∈ N,

where ϕk,n(t) := tk(1 − t)n−k . But the linear map

H � x → �(xϕk,n) ∈ R

is continuous in H , and hence there exists hk,n ∈ H such that

�(xϕk,n) = 〈hk,n, x〉, x ∈ H.

Since βn(ω) → ω uniformly for all ω ∈ E, it follows that for all ω ∈ E,

�(ω) = lim
n→∞�

(
βn(ω)

) = lim
n→∞

n∑
k=1

(
n

k

) 〈
hk,n,ω(k/n)

〉
, n ∈ N.

Hence it follows by step 1 that Q0 ◦ l−1 is Gaussian. �

Now we turn to SDE (66) and define

M := e
∫ T

0 〈B(etAx+WA(t)),dW(t)〉−(1/2)
∫ T

0 |B(etAx+WA(t))|2 dt ,
(76)

P̃x := MP.

Obviously, Proposition 19 below implies (70) and that hence M is well defined.

PROPOSITION 19. P̃x is a probability measure on (�, F ), that is, E(M) = 1.
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PROOF. As before we set Z(t, x) := etAx + WA(t), t ∈ [0, T ]. By Proposi-
tion 18 the arguments below are standard (see, e.g., [22], Corollaries 5.14 and
5.16, pages 199 and 200). Since B is of at most linear growth, by Proposition 18
we can find N ∈ N large enough such that for all 0 ≤ i ≤ N and ti := iT

N
,

E
[
e
(1/2)

∫ ti
ti−1

|B(etAx+WA(t))|2 dt ]
< ∞.

Defining Bi(e
tAx + WA(t)) := 1(ti−1,ti ](t)B(etAx + WA(t)), it follows from

Novikov’s criterion ([30], (1.16) Corollary, page 333) that for all 1 ≤ i ≤ N ,

Ei (t) := e(1/2)
∫ t

0 〈Bi(e
sAx+WA(s)),dW(s)〉−(1/2)

∫ t
0 |Bi(e

sAx+WA(s)|2 ds, t ∈ [0, T ],
is an Ft -martingale under P. But then since Ei (ti−1) = 1, by the martingale prop-
erty of each Ei , we can conclude that

E
[
e

∫ t
0 〈B(esAx+WA(s)),dW(s)〉−(1/2)

∫ t
0 |B(esAx+WA(s)|2 ds]

= E
[

EN(tN)EN−1(tN−1) · · · E1(t1)
]

= E
[

EN(tN−1)EN−1(tN−1) · · · E1(t1)
]

= E
[

EN−1(tN−1) · · · E1(t1)
]

...

= E
[

E1(t1)
] = E

[
E1(t0)

] = 1. �

REMARK 20. It is obvious from the previous proof that x may always be
replaced by an F0-measurable H -valued r.v. which is exponentially integrable,
and by any F0-measurable H -valued r.v. if B is bounded. The same holds for the
rest of the proof of Theorem 13, that is, the following two propositions.

PROPOSITION 21. We have P̃x-a.s.

Z(t, x) = etAx +
∫ t

0
e(t−s)AB

(
Z(s, x)

)
ds

(77)

+
∫ t

0
e(t−s)A dW̃ (s), t ∈ [0, T ],

where W̃ is the cylindrical Wiener process under P̃x introduced in Proposition 17
with b(s) := B(Z(s, x)), which applies because of Proposition 19, that is, un-
der P̃x , Z(·, x) is a mild solution of

dZ(t) = (
AZ(t) + B

(
Z(t)

))
dt + dW̃(t), t ∈ [0, T ],Z(0) = x.

PROOF. Since B is of at most linear growth and because of Proposition 18, to
prove (77), it is enough to show that for all k ∈ N and xk := 〈ek, x〉 for x ∈ H we
have, since Aek = −λkek , that

dZk(t, x) = (−λkZk(t, x) + Bk

(
Z(t, x)

))
dt + dW̃k(t), t ∈ [0, T ],Z(0) = x.
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But this is obvious by the definition of W̃k . �

Proposition 21 settles the existence part of Theorem 13. Now let us turn to the
uniqueness part and complete the proof of Theorem 13.

PROPOSITION 22. The weak solution to (66) constructed above is unique and
its law is equivalent to Qx with density in Lp(�,P) for all p ≥ 1.

PROOF. Let X(t, x), t ∈ [0, T ], be a weak solution to (66) on a filtered proba-
bility space (�, F , (Ft ),P) for a cylindrical process of type (65). Hence

X(t, x) = etAx + WA(t) +
∫ t

0
e(t−s)AB

(
X(s, x)

)
ds.

Since B is at most of linear growth, it follows from Gronwall’s inequality that for
some constant C ≥ 0,

sup
t∈[0,T ]

∣∣X(t, x)
∣∣ ≤ C1

(
1 + sup

t∈[0,T ]
∣∣etAx + WA(t)

∣∣).
Hence by Proposition 18,

E
[
exp

{
ε sup

t∈[0,T ]
∣∣X(t, x)

∣∣}2]
< ∞.(78)

Define

M := e− ∫ T
0 〈B(X(s,x)),dW(s)〉−(1/2)

∫ T
0 |B(X(s,x))|2 ds

and P̃ := M · P. Then by exactly the same arguments as above,

E[M] = 1.

Hence by Proposition 17, defining

W̃k(t) := Wk(t) +
∫ t

0

〈
ek,B

(
X(s, x)

)〉
ds, t ∈ [0, T ], k ∈ N,

we obtain that W̃ (t) := (W̃k(t)ek)k∈N is a cylindrical Wiener process under P̃ and
thus

W̃A(t) :=
∫ t

0
e(t−s)A dW̃ (s) = WA(t) +

∫ t

0
e(t−s)AB

(
X(s, x)

)
ds, t ∈ [0, T ],

and therefore,

X(t, x) = etAx + W̃A(t), t ∈ [0, T ],
is an Ornstein–Uhlenbeck process under P̃ starting at x. But since it is easy to see
that∫ T

0

〈
B

(
X(s, x)

)
, dW(s)

〉 = ∫ T

0

〈
B

(
X(s, x)

)
, dW̃ (s)

〉 − ∫ T

0

∣∣B(
X(s, x)

)∣∣2 ds,
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it follows that

P = e
∫ T

0 〈B(X(s,x)),W̃ (s)〉−(1/2)
∫ T

0 |B(X(s,x))|2 ds · P̃.

Since

W̃k(t) = 〈
ek, W̃A(t)

〉 + λk

∫ t

0

〈
ek, W̃A(s)

〉
ds,

and since X(s, x) = esAx +W̃A(s), it follows that
∫ T

0 〈B(X(s, x)), dW̃ (s)〉 is mea-
surable with respect to the σ -algebra generated by W̃A. Hence dP

dP̃
= ρx(X(·, x))

for some ρx ∈ B(C([0, T ];H)), and thus setting Qx := Px ◦ X(·, x)−1, we get

Px := P ◦ X(·, x)−1 = ρxQx.

But since it is well known that the mild solution of (67) is unique in distribution,
the assertion follows, because clearly ρx > 0, Qx-a.s. �

A.2. A useful lemma.

LEMMA 23. Let f ∈ W 1,2(H,μ) ∩ Cb(H). Let X = (Xt) and Y = (Yt ) be
two solutions to (1) starting from a deterministic x ∈ H or from a r.v. x as in
Theorem 1. Let t ≥ 0. Then for dt ⊗ P-a.e. (t,ω), we have∫ 1

0

∣∣Df
(
rXt(ω) + (1 − r)Yt (ω)

)∣∣dr < ∞(79)

and

f
(
Xt(ω)

) − f
(
Yt (ω)

)
(80)

=
∫ 1

0

〈
Df

(
rXt(ω) + (1 − r)Yt (ω)

)
,Xt(ω) − Yt (ω)

〉
dr.

PROOF. Formula (80) is meaningful if we consider a Borel representative of
Df ∈ L2(μ); that is, we consider a Borel function g :H → H such that g = Df ,
μ-a.e.

Clearly the right-hand side of (80) is independent of this chosen version because
(setting again Zr

t = rXt + (1 − r)Yt ) it is equal to〈∫ 1

0
Df

(
Zr

t (ω)
)
dr,Xt(ω) − Yt (ω)

〉
,

and for a Borel function g :H → H with g = 0 μ-a.e., we have, for any T > 0,
ε ∈ (0, T ],

E

[∫ T

ε

∫ 1

0

∣∣g(
Zr

t

)∣∣dr dt

]
=

∫ T

ε

∫ 1

0
E

∣∣g(
Zr

t

)∣∣dr dt = 0,
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since by the Girsanov theorem (see Theorem 13) the law of the r.v. Zr
t , r ∈ [0,1],

is absolutely continuous with respect to μ.
Let us prove (80). By [8], Section 9.2, there exists a sequence of functions

(fn) ⊂ C∞
b (H) (each fn is also of exponential type) such that

fn → f, Dfn → Df in L2(μ)(81)

as n → ∞. We fix t > 0 and write, for any n ≥ 1,

fn(Xt) − fn(Yt ) =
∫ 1

0

〈
Dfn

(
rXt + (1 − r)Yt

)
,Xt − Yt

〉
dr.(82)

For a fixed T > 0 we will show that, as n → ∞, the left-hand side and the right-
hand side of (82) converge in L1([ε, T ]×�,dt ⊗P), respectively, to the left-hand
side and the right-hand side of (80) for all ε ∈ (0, T ].

We only prove convergence of the right-hand side of (82) (the convergence of
the left-hand side is similar and simpler).

Fix ε ∈ (0, T ]. We first consider the case in which x is deterministic. We get,
using the Girsanov theorem (see Theorem 13), as in the proof of Proposition 10,

an := E

[∫ T

ε

∫ 1

0

∣∣Dfn

(
rXt + (1 − r)Yt

) − Df
(
rXt + (1 − r)Yt

)∣∣
× ∣∣(Xt − Yt )

∣∣dr dt

]

≤ M

∫ T

ε

∫ 1

0
E

∣∣Dfn

(
rXt + (1 − r)Yt

) − Df
(
rXt + (1 − r)Yt

)∣∣dr dt

≤ M ′
∫ 1

0
E

[
ρ−1/2

r ρ1/2
r

∫ T

ε

∣∣Dfn

(
rXt + (1 − r)Yt

)
− Df

(
rXt + (1 − r)Yt

)∣∣dt

]
dr

≤ M

(∫ 1

0
E

[
ρ−1

r

]
dr

)1/2(∫ 1

0

∫ T

ε
E

[∣∣Dfn(Ut) − Df (Ut)
∣∣2]

dt dr

)1/2

≤ C

(∫ T

ε
E

[∣∣Dfn(Ut) − Df (Ut)
∣∣2]

dt

)1/2

,

where Ut is an OU process starting at x. By [8], Lemma 10.3.3, we know that, for
t > 0, the law of Ut has a positive density π(t, x, ·) with respect to μ, bounded on
[ε, T ] × H .

It easily follows [using (81)] that
∫ T
ε E[|Dfn(Ut) − Df (Ut)|2]dt → 0, as n →

∞, and so an → 0.
Similarly, one proves that∫ T

ε
E

[∫ 1

0

∣∣Df
(
rXt + (1 − r)Yt

)∣∣dr

]
dt < ∞.
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Now since ε ∈ (0, T ] was arbitrary, the assertion follows for every (nonrandom)
initial condition x ∈ H .

Now let us consider the case in which x is an F0-measurable r.v. Using Re-
mark 20, analogously, we find, with 1/p + 1/p′ = 1 and 1 < p < 2,

an ≤ M

∫ 1

0

∫ T

ε
E

[
ρ−1/p

r ρ1/p
r

∣∣Dfn

(
rXt + (1 − r)Yt

)
− Df

(
rXt + (1 − r)Yt

)∣∣]dt dr

≤ M ′
(∫ 1

0
E

[
ρ−p′/p

r

]
dr

)1/p′(∫ 1

0

∫ T

ε
E

[∣∣Dfn(Ut ) − Df (Ut)
∣∣p]

dt dr

)1/p

≤ C

(∫ T

ε
E

[∣∣Dfn(Ut) − Df (Ut)
∣∣p]

dt

)1/p

,

where Ut is an OU process such that U0 = x, P-a.s. Using (62) with |Dfn − Df |p
instead of f and ζ ′ = 2/p, as above, we arrive at

an ≤ Cε‖h0‖1/p

L2/(2−p)(μ)

(∫
H

∣∣Dfn(x) − Df (x)
∣∣2μ(dx)

)1/2

,

where h0 denotes the density of the law of x with respect to μ. Passing to the limit,
by (82) we get an → 0. Then analogously to the case where x is deterministic, we
complete the proof. �
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