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INVARIANT MONOTONE COUPLING NEED NOT EXIST1

BY PÉTER MESTER

Indiana University

We show by example that there is a Cayley graph, having two invari-
ant random subgraphs X and Y , such that there exists a monotone coupling
between them in the sense that X ⊂ Y , although no such coupling can be in-
variant. Here, “invariant” means that the distribution is invariant under group
multiplications.

1. Introduction. There are several models when one is selecting a random
subset of vertices or edges of a given graph G = G(V,E) according to some dis-
tribution. Formally these are 2V -valued random objects where V is the vertex set
of G (which can be replaced by E, the set of edges). We can look at this as a
{0,1}-labeling of the vertices; then it is natural to allow more general label sets �

replacing {0,1} = 2.
We are interested in particular in Cayley graphs, and in this case, most naturally

occurring examples have an extra common feature: invariance. This means that
their distribution is invariant under the group multiplication of the base graph.
More precisely, if G is a right Cayley graph of the group �, then the random object

R is invariant if for for any finite {v1, . . . , vn} ⊂ V and γ ∈ �, the distribution of
(R(γ v1), . . . , R(γ vn)) does not depend on γ . Note that in this case V = �, so it
may seem confusing to use different notation. The reason is that many concepts
we define naturally generalize to the case of a graph with a transitive group of
automorphisms acting on the vertices, and in general these are distinct notions.
The abundance of invariant processes on Cayley graphs motivates an investigation
of them in general. This was done, for example, in [2].

In this context, our result is a counterexample. To explain it, we first need to
recall the notion of coupling.

DEFINITION 1.1. If S1, S2 are random objects taking values in �1,�2, re-
spectively, then a coupling of them is a random pair (S̃1, S̃2) taking values in
�1 × �2 such that for i ∈ {1,2}, S̃i has the same distribution as Si .

Intuitively this means that we manage to produce the two objects using the same
random source, so that pointwise comparison makes sense. Proofs using coupling
arguments are usually very conceptual and fit well with probabilistic intuition.
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REMARK 1.2. If Ri is a random �i-labeling for i ∈ {1,2}, then a coupling of
them is a �1 × �2-labeling, and we say that this is an invariant coupling if this
labeling is invariant in the above sense.

A very simple instance of this is the simultaneous coupling of all
Bernoulli(E,p) percolations corresponding to possible parameters p ∈ [0,1]
which we briefly recall. A Bernoulli(E,p)-percolation is obtained by putting i.i.d.
{0,1}-labels on the edges, where for a given edge e, its label is 1 with probability p,
and 0 otherwise. Note that replacing the edge set E with the set of vertices V in the
above definition is well defined, and we denote this process by Bernoulli(V ,p).
There is a strong intuition that “the bigger p is, the bigger the subgraph with la-
bel 1.” We can make this intuition have a precise formal meaning as follows: Put
first i.i.d. uniform (from [0,1]) labels on the edges, which we call U . Then for
each p, define a {0,1}-label Up so that if an edge has U label U(e), its Up label
is 1 if U(e) ≤ p, and 0 otherwise. Clearly, as a distribution, Up is nothing but a
Bernoulli(E,p)-percolation, and for p ≤ p+ we have Up ⊂ Up+ .

This is an example of what is called monotone coupling. For the definition as-
sume that the label set � is partially ordered by �.

DEFINITION 1.3. If X and Y are random �-labelings of the same graph, then
we say that a coupling (X̃, Ỹ ) of X and Y is a monotone coupling if X̃ � Ỹ almost
surely.

The next two examples we mention are related to open questions which moti-
vates the question we are going to ask.

The first is the case of wired and free uniform spanning forest measures (WUSF
and FUSF, resp.); see [3]. These processes both can be considered as natural gen-
eralizations of the uniform spanning tree (easily defined on finite graphs) to infinite
graphs. It is known that there is a monotone coupling where the free one dominates
the wired one. However, in general, it is still open if there is an invariant monotone
coupling.

There are partial results which show that for certain classes of graphs there in-
deed exists an invariant monotone coupling between the FUSF and WUSF. For
example, Lewis Bowen [4] showed it for Cayley graphs of residually amenable
groups, while recently Russell Lyons and Andreas Thom (personal communica-
tion, [8]) showed it for the Cayley graphs of so-called sofic groups.

The second example is random walk in random environment. In [1], Aldous
and Lyons considered a continuous time nearest-neighbor random walk RW(t,μ),
with jumps governed by Poisson clocks on the edges with rates given by a distribu-
tion μ. The walks start at the origin o of the Cayley graph, and we are interested in
how different environments affect the return probabilities. In [1] they showed that
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if for two random environments μ1,μ2 (different clock frequencies in this case)
there exists a monotone coupling μ1 ≤ μ2, which is itself invariant, then

Eμ1

(
P

(
RW(t,μ1) = o

)) ≥ Eμ2

(
P

(
RW(t,μ2) = o

))
.

We may ask what happens if we drop the condition for the coupling being invariant.
Is it enough, for example, that the marginals are invariant? Note that in [1] they
actually dealt with so-called unimodular processes, but this condition always holds
for invariant processes on Cayley graph (this fact is the mass transport principle
which we prove later).

Schramm and Lyons asked (unpublished, [7]) the following; note that a positive
answer would immediately settle the above problems (note also that a more general
question was asked in [1], as Question 2.4):

QUESTION 1.4. Let X and Y be invariant subgraphs of a Cayley graph �,
so that there exists a monotone coupling between them. Does it follow that there
exists a monotone coupling between them which is also invariant?

It is known that the answer to the above question is “yes” if the Cayley graph is
amenable; see Proposition 8.6. in [1]. In this paper we show by an example that in
full generality the answer is “no.”

The Cayley graph we use is T3�Cn for n large enough. Here T3 is the 3-regular
tree, and Cn is the cycle of length n, and, in general, for graphs G and H their
Cartesian product G�H is the graph with vertex set V (G�H) = V (G) × V (H),
and two vertices (u1, u2) and (v1, v2) are connected in G�H if and only if either
u1 = v1 and u2 is adjacent with v2 in H , or u2 = v2 and u1 is adjacent with v1 in
G. It is easy to see that if G1,G2 are Cayley graphs of �1,�2, respectively, then
G1�G2 is a Cayley graph of �1 × �2.

Note that T3 is a Cayley graph of Z
∗3
2 := Z2 ∗ Z2 ∗ Z2 (here H ∗ K is the free

product of H and K), and Cn is a Cayley-graph of Zn, so T3�Cn is a Cayley graph
of Z

∗3
2 × Zn.

For simplicity we make an assumption about n which may not be optimal. See
Remark 1.7 at the end of this section for an explanation.

THEOREM 1.5. If n ≥ 376, then there exist two invariant random {0,1}-
labelings X and Y of T3�Cn so that there is a coupling (X̃, Ỹ ) of them for which
X̃ ≤ Ỹ holds, but no such coupling can be invariant.

The proof will be more succinct if we first show a similar result with labels
different from {0,1}. In this case the (partially ordered) label set will be the power
set P(S) of some finite set S. Note also that in this case we can use a tree as the
underlying Cayley graph:
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LEMMA 1.6. If n ≥ 376 and |S| = n, then there exist invariant P(S)-labelings
X and Y of T3 so that there is a coupling (X̃ , Ỹ) of them for which X̃ ⊂ Ỹ holds,
but no such coupling can be invariant.

Although the examples themselves might be artificial, they will have some
“nice” properties as well. So if we want to add some extra conditions to Ques-
tion 1.4 to get an affirmative answer, then we know for sure that these nice proper-
ties will not work (at least not alone). For a discussion of these, see the end of the
last section.

We summarize some conventions we use: When S is a random object and μ is
its distribution, we often will just express this by saying that S is a copy of μ, and
in a similar way with a further abuse of notation, if T is a random object with the
same distribution as S , we will also say that S is a copy of T . We also note that
one way to specify a probability measure is to describe a random object with the
given measure as distribution. We will do it without further comments.

If the graph G is understood, V (G) will be its set of vertices and E(G) its
set of edges. We use right Cayley graphs and then left multiplications are graph
automorphisms.

REMARK 1.7. The condition that n ≥ 376 we made in Theorem 1.5 was
meant to ensure the following: If S is a finite set of cardinality n, and α1, α2, . . . ,

α20 are i.i.d. uniform elements of S, and β1, . . . , β9 are also i.i.d. uniform elements
of S (we emphasize that we make no extra assumption on the joint distribution
of the full family α1, . . . , α20, β1, . . . , β9), then with probability strictly greater
than 1

2 the random elements α1, . . . , α20 are all distinct, and the random elements
β1, . . . , β9 are all distinct as well (but it may happen that some βi = αj ). It is
easy to see that if (1 − ∏19

i=1(1 − i
n
)) + (1 − ∏8

i=1(1 − i
n
)) < 1

2 (which is true for
n ≥ 376), then this holds.

2. The mass-transport principle and ends. This section owes a lot to the
exposition in [6]. An effective tool in showing that there is no invariant random
process on a Cayley graph satisfying a certain requirement is the so-called mass-
transport principle. Recall that � is the label set, which will always be finite in our
case, and � is the group to which the Cayley graph is associated. The “space of
configurations” � := �V will be naturally equipped with the product σ -algebra.
Assume that R is a probability measure on �. Note that � acts on �: for ω ∈ �,
γ ∈ � and v ∈ V , let γω be the element of � for which γω(v) = ω(γ −1(v)).

Let F :V × V × � → [0,∞] be a diagonally invariant measurable function
[meaning that F(x, y,ω) = F(γ x, γy, γω) for all γ ∈ �]. The quantity F(x, y,ω)

is often called the mass sent by x to y or the mass received by y from x, and then
F is thought to describe a “mass transport” among the vertices which may depend
on some randomness created by R. The mass-transport principle says that if R is
invariant, then for the identity o ∈ V the expected overall mass o receives is the
same as the expected overall mass it sends out. Now we formalize and prove this:
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THEOREM 2.1. If R and F are as above, R is invariant, f (x, y) :=
ERF(x, y,∗), then

∑

x∈V

f (o, x) = ∑

x∈V

f (x, o).

To prove it, first observe that the invariance of R implies that f is also diago-
nally invariant. This implies that f (o, x) = f (x−1o, x−1x) = f (x−1, o), and this
finishes the proof since inversion is a bijection.

This means that in order to show that a random process with a given property
cannot be invariant, it is enough to show that the property in question allows us to
define a mass transport contradicting the above equality. We emphasize that it is
important here that we mean invariant processes on a Cayley graph and not just on
a graph which has a transitive group of automorphism. The notion of an “end” in a
tree, which we are about to define, will also lead to an example where the obvious
generalization of the mass transport principle to an arbitrary transitive graph fails.

From now until Section 5, the base graph is always T3, the 3-regular tree. If v is
a vertex, then J (v) will denote the set of edges for which v is one of the endpoints.

A “ray” is a one-sided infinite path (i.e., a sequence of vertices v0, . . . , vn, . . . so
that there is no repetition and vi and vi+1 are adjacent). We call two rays equivalent
if their symmetric difference is finite. An equivalence class is then called an end. If
we fix an end ξ , then for any vertex v there is a unique ray v = v

ξ
0 , v

ξ
1 , . . . , v

ξ
n, . . .

so that the ray starts at v and belongs to the equivalence class ξ . Let the unique
edge joining v with v

ξ
1 be ev→ξ , and let us denote J (v)−{ev→ξ } as J ξ (v). Observe

that for distinct vertices v1, v2, we have

J ξ (v1) ∩ J ξ (v2) = ∅.

This will be important in constructing a monotone coupling of our processes,
and it also implies that an end cannot be determined using invariant processes.
The intuition is simple: given an end ξ(ω) (which is “somehow determined” by a
configuration ω) a vertex v could send mass 1 to each of the two vertices that are
the other endpoints of the two edges in J ξ(ω)(v). In this way the overall mass sent
out is 2, while the overall mass received is 1. To make this precise in a general
setting, we have to deal with measurability issues related to how a configuration ω

determines an end ξ(ω), but this is not needed for our purposes. While it is not
important for our later work, note that if we put extra edges into T3 by connecting
every vertex v with v

ξ
2 , then we get a transitive graph where the obvious general-

ization of the mass transport principle fails.

3. The fixed-end trick. As we have indicated, an end cannot be determined
using invariant processes in a tree, and Lalley (unpublished, [5]) proposed a way
to exploit this fact to settle Question 1.4. Here we present a simpler version of the
idea; see the last paragraph in this section for the original one. Given an end ξ in
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T3, we shall define a {0,1}2-labeling (Xξ ,Yξ ) so that its components, Xξ and Yξ ,
are invariant, and (Xξ ,Yξ ) is a monotone coupling of them, that is,

Xξ ≤ Yξ .

Let {η(e)}e∈E be a Bernoulli(E, 1
2) label. For a vertex v, let

Xξ (v) := max
{
η(e); e ∈ J ξ (v)

}
,

while

Yξ (v) := max
{
η(e); e ∈ J (v)

}
.

It is clear that Yξ itself is an invariant labeling.
However, Xξ is also invariant since the family Xξ (v)v∈V is actually i.i.d.! This is

because of the observation from the last section that J ξ (v1) and J ξ (v2) are disjoint
for v1 
= v2. So Xξ itself is actually Bernoulli(V , 3

4). Since the monotone coupling
of these processes was defined using an end (a noninvariant step), it is reasonable
that maybe these processes already witness Theorem 1.5.

However, the construction below—which is due to Peres (unpublished, [9])—
shows that there exists an invariant monotone coupling between Xξ and Yξ .

PROPOSITION 3.1. Let {η(e)}e∈E be as above. For each vertex v with J (v) =:
{e1(v), e2(v), e3(v)}, define X̂(v) := 0 if and only if {η(e1) = η(e2) = η(e3)}, and
X̂(v) := 1 otherwise.

Then (X̂,Yξ ) is an invariant and monotone coupling of Xξ and Yξ .

PROOF. It is clear that X̂ ≤ Yξ and the coupling (X̂,Yξ ) is clearly invariant.
What we need to show is that the above defined X̂ is a Bernoulli(V , 3

4) vertex
labeling (i.e., a copy of Xξ ) so (X̂,Yξ ) is a coupling of Xξ and Yξ .

First let us introduce a notation: if V1,V2 are finite disjoint sets of vertices,
then let S[V1,V2] := {X̂ � V1 = 1, X̂ � V2 = 0}. We show that X̂ is Bernoulli(V , 3

4)

directly by proving that P(S[V1,V2]) = (3
4)|V1|(1

4)|V2|.
The proof goes by induction on |V1 ∪ V2|. The statement holds when

|V1 ∪ V2| = 1.
To proceed, consider the subgraph spanned by V1 ∪ V2. This is a forest, so it

has some vertex t which is either a leaf or an isolated point (i.e., t has at most one
neighbor in V1 ∪V2). Let e1, e2, e3 be the edges emanating from t , and assume that
the other endpoints of e1, e2 are not in V1 ∪ V2.

A key observation is that “flipping” the η labels of each edge leaves the X̂ la-
bels unchanged. That means that for any pair of finite disjoint vertex sets W1,W2
and any edge e the event {η(e) = 1} [and similarly {η(e) = 0}] cuts S[W1,W2]
exactly in half: P({η(e) = 1} ∩ S[(W1,W2]) = P({η(e) = 0} ∩ S[W1,W2]) =
1
2P(S[W1,W2]).
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Using the η-flipping observation it is enough to show that P({η(e3) = 1} ∩
S[V1,V2]) = (1

2)(3
4)|V1|(1

4)|V2|.
Consider first the case where t ∈ V1. In that case {η(e3) = 1} ∩ S[V1,V2] =

{X̂(t) = 1} ∩ {η(e3) = 1} ∩ S[V1 − {t},V2] = {at least one of η(e1) and η(e2) is
0}∩{η(e3) = 1}∩S[V1 −{t},V2]. The point of this is that {at least one of η(e1) and
η(e2) is 0} and {η(e3) = 1} ∩ S[V1 − {t},V2] are independent, and by induc-
tion and the η-flipping observation, we know the probability of the latter; it is
(1

2)(3
4)|V1|−1(1

4)|V2|. Combining this with the fact that P{at least one of η(e1) and
η(e2) is 0} = 3

4 gives us P({η(e3) = 1} ∩ S[V1,V2]) = (1
2)(3

4)|V1|(1
4)|V2|.

If t ∈ V2 we have {η(e3) = 1} ∩ S[V1,V2] = {X̂(t) = 0} ∩ {η(e3) = 1} ∩
S[V1,V2 − {t}] = {η(e1) = η(e2) = 1} ∩ {η(e3) = 1} ∩ S[V1,V2 − {t}]. The in-
dependence of {η(e1) = η(e2) = 1} and {η(e3) = 1} ∩ S[V1,V2 − {t}] combined
with what we know by induction proves the claim again. �

Although the above processes could be coupled in an invariant way, it is clear
that the idea leaves us a lot of freedom to use other partially ordered sets and
other monotone operations (instead of taking maxima, we could take the sum, e.g.,
which was Lalley’s original suggestion). But it seems that other examples are diffi-
cult to analyze from the point of view of Question 1.4. With our next construction,
however, it will be very succinct why a monotone coupling cannot be invariant.

4. Set valued labels on T3. In this section, we describe an example that will
prove Lemma 1.6.

Let S be a finite set with |S| = n ≥ 376, and let P(S) denote its power set. We
will use P(S) as a label set with inclusion as a partial order. The two invariant
P(S)-labelings YS and XS of the vertices of T3 are defined as follows (for the rest
of this section we drop the subscript S but in the next section we use it again).

To construct Y , we first label the edges of T3 with independent uniform elements
from S. Let us call this labeling λ. Then for a vertex v, let Y(v) := ⋃

e∈J (v){λ(e)}.
To construct X , we first define its marginal ν on the vertices. To get a copy

of ν first pick a uniform (x1, x2) ∈ S × S, and then take {x1} ∪ {x2}. Finally let
{X (v)}v∈V (T3) be a labeling of the vertices with i.i.d. copies of ν.

REMARK 4.1. Observe that if Ŷ is any copy of Y , then the following is true:
if v0 is any vertex with neighbors v1, v2, v3, then any s ∈ Ŷ(v0) is also contained
in at least one of the Ŷ(vi)’s for i ∈ {1,2,3}.

By fixing an end ξ , we can present a monotone coupling of X and Y just as in
Lalley’s example. Get the copy of Y in the exact same way as above using λ as a
source, but also use this λ to get the copy of X as X ξ (v) := ⋃

e∈J ξ (v){λ(e)}. Then
clearly X ξ (v) ⊂ Y(v) holds for all v, and X ξ is indeed a copy of X [recall that



NONINVARIANT MONOTONE COUPLING 1187

the disjointness of the different J ξ (v)’s guarantees the independence for different
vertices and the marginals are clearly the same].

However there cannot be any invariant monotone coupling as we will show now
(which together with the previous paragraph proves Lemma 1.6).

PROPOSITION 4.2. There exists no coupling of X and Y which is both invari-
ant and monotone.

PROOF. Let (X ∗, Y ∗) be any monotone coupling of X and Y . We will show
that using this monotone coupling, we can define a mass transport F which con-
tradicts the mass transport principle, showing that the coupling cannot be invari-
ant. To define the mass transport we have to say for every pair (v0, v) of ver-
tices and every possible configuration ω [defined in terms of (X ∗, Y ∗)] the value
F(v0, v,ω) ∈ [0,∞]. The dependence on ω will be through an event E(v0) which
we define now.

DEFINITION 4.3. First, let v1, v2, v3 be the neighbors of v0 and v4, . . . , v9 be
the vertices at graph distance 2 from v0 (in any order).

We say that E1(v0) holds if for each 1 ≤ i, j ≤ 3, i 
= j , we have |Y ∗(vj )| = 3,
Y ∗(vj ) ∩ Y ∗(vi) = ∅.

We say that E2(v0) holds if for each 0 ≤ i, j ≤ 9, i 
= j , we have |X ∗(vi)| = 2
and X ∗(vi) ∩ X ∗(vj ) = ∅.

Finally, let E(v0) := E1(v0) ∩ E2(v0).

Note the connection with the condition in Remark 1.7: the labels X (v0), . . . ,

X (v9) can be identified with {α1, α2}, . . . , {α19, α20}, while the edge labels of
those 9 edges which are relevant in the Y labels of v0, v1, v2, v3 can be identi-
fied with β1, . . . , β9. Then the condition we made on n ensures that P(E(v0)) > 1

2 .
Now we are ready to define the mass transport F :V × V × � → [0,∞]. If

E(v0) does not hold, then set F(v0, v,ω) := 0 for each vertex v. If E(v0) holds,
then let F(v0, v,ω) := 1 if v0 is a neighbor of v and X ∗(v0) ∩ Y ∗(v) 
= ∅, while
in every other case, set F(v0, v,ω) := 0.

We claim that the expected mass the origin sends out is strictly greater than 1,
while the mass it receives is not greater than 1 (even point-wise).

To prove this we show first that if E(v0) holds, then the mass v0 sends out is
exactly 2. This combined with the fact that P(E(v0)) > 1

2 implies the first part of
the claim. Let X ∗(v0) =: {s1, s2}; observe that E2(v0) implies s1 
= s2. By mono-
tonicity of the coupling, {s1, s2} ⊂ Y ∗(v0), so by Remark 4.1 there exist neighbors
v0(s1), v0(s2) of v0 so that Y ∗(v0(si)) contains si . Since Y ∗(v1), Y ∗(v2), Y ∗(v3)

are pairwise disjoint sets [by E1(v0)], there can be at most two of them which non-
trivially intersect {s1, s2}, and this implies v0(s1) 
= v0(s2). By definition, v0(s1)

and v0(s2) are exactly the vertices receiving nonzero mass from v0.
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To prove that the expected mass v0 receives is at most 1, assume that v0 re-
ceives nonzero mass from v1 and v2. First of all, v1 sends out nonzero mass only if
E(v1) [and in particular E2(v1)] holds. Since v0 and v2 are both within distance 2
from v1, the event E2(v1) implies that {a1, a2} := X ∗(v1), {b1, b2} := X ∗(v2), and
{c1, c2} := X ∗(v0) are pairwise disjoint and each has size 2. By the condition for
the mass transport, Y ∗(v0) contains one of the ai ’s, one of the bi ’s and—by the
monotonicity of the coupling—{c1, c2} as well. But this would mean that Y ∗(v0)

has at least four distinct elements, which is impossible.
This mass transport violates the mass transport theorem, so no monotone cou-

pling of X and Y can be invariant. �

REMARK 4.4. Observe that an end ξ can be identified by the orientation on
the edges given as follows: orient the edges in J ξ (v) away from v. Then the out-
degree of a vertex is always 2 while the in-degree is always 1. The mass transport
above has some similarity with this end: if for a vertex v we define J (X ∗,Y ∗)(v) to
be the set of edges connecting v with vertices receiving nonzero mass from v and
we orient the edges in J (X ∗,Y ∗)(v) away from v, then the out-degree of a vertex is
either 0 or 2 and the in-degree is either 0 or 1.

5. The {0,1}-labels on T3�Cn. Now we prove Theorem 1.5. The Cayley
graph we use is T3�Cn defined in the Introduction. Recall that T3�Cn is a Cayley
graph of Z

∗3
2 × Zn. If we want to check the invariance of a process defined on

T3�Cn, it is enough to check invariance under group multiplication from Z
∗3
2 and

Zn since the direct components generate the full group.
The processes we define can be considered as very faithful copying of the pre-

vious processes. In the previous section, the set S whose subsets were used as
labels was not important besides its cardinality |S|. Now it will be convenient to
choose it to be S := V (Cn). If Z is any P(S)-labeling of the vertices of T3, then let
lift(Z) be the following {0,1}-labeling of T3�Cn: for a vertex (u, v) ∈ V (T3�Cn),
let lift(Z)(u, v) := 1 if v ∈ Z(u), otherwise let lift(Z)(u, v) := 0. Note that this
function lift from the P(S)-labelings of T3 to the {0,1}-labelings of T3�Cn is
invertible.

Consider the previously defined processes XS, YS . Let X := lift(XS) and Y :=
lift(YS).

PROPOSITION 5.1. The above defined X and Y witness the truth of Theo-
rem 1.5.

PROOF. First, the invariance of X and Y under group multiplication from Z
∗3
2

follows from the fact that XS and YS were invariant on T3, and the invariance under
Zn follows from the fact that for a fixed vertex v0, the distribution of XS (YS) is
invariant under any permutation of S.
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Second, there exists a monotone coupling of X,Y since if (X ∗
S , Y ∗

S) is any
monotone coupling of XS, YS , then (lift(X ∗

S ), lift(Y ∗
S)) is clearly a monotone cou-

pling of X and Y .
Third, if (X∗, Y ∗) was an invariant monotone coupling, then (lift−1(X ∗),

lift−1(Y ∗)) would have been an invariant coupling of XS, YS , which is impossible
as we have seen. �

It would be nice to have some natural condition on random subgraphs under
which the answer to Question 1.4 would be affirmative. Here we point out two
conditions which are ruled out by our example.

A random subgraph Z is said to be k-dependent if for vertex sets S1, S2, . . . , Sm

whose pairwise distances are all at least k, the random objects Fi := Z � Si,1 ≤ i ≤
m, are independent. Our example is k-dependent for large enough k (depending
on the cycle size n). So assuming k-dependence is certainly not enough.

With slight modifications, we can exclude other conditions as well. Observe that
the mass transport we used would still work [in the sense that E(v) would have
probability greater than 1

2 ] if we “perturbed” our processes with a Bernoulli(V , ε)

process for ε > 0 small enough [meaning that we change the original labels on
those vertices where Bernoulli(V , ε) turns out to be 1]. A random subgraph Z is
said to have uniform finite energy if there exists an ε ∈ (0,1) so that for a vertex v

we have ε < P(Z(v) = 1|Z � V − {v}) < 1 − ε. By using this idea of perturbing
the labels we see that assuming that the process has uniform finite energy is not
enough either.
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