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ASYMPTOTIC SUPPORT THEOREM FOR PLANAR ISOTROPIC
BROWNIAN FLOWS1

BY MORITZ BISKAMP

Technische Universität Berlin

It has been shown by various authors that the diameter of a given non-
trivial bounded connected set X grows linearly in time under the action of an
isotropic Brownian flow (IBF), which has a nonnegative top-Lyapunov ex-
ponent. In case of a planar IBF with a positive top-Lyapunov exponent, the
precise deterministic linear growth rate K of the diameter is known to exist. In
this paper we will extend this result to an asymptotic support theorem for the
time-scaled trajectories of a planar IBF ϕ, which has a positive top-Lyapunov
exponent, starting in a nontrivial compact connected set X ⊆ R2; that is, we
will show convergence in probability of the set of time-scaled trajectories in
the Hausdorff distance to the set of Lipschitz continuous functions on [0,1]
starting in 0 with Lipschitz constant K .

1. Introduction. Isotropic Brownian flows (IBFs) are a fairly natural class of
stochastic flows and were first introduced by Itô [8] and Yaglom [16]. For this class
of stochastic flows, the image of a single point is a Brownian motion, and the co-
variance tensor between two different Brownian motions is an isotropic function of
their positions. IBFs, and in particular their local structure, have been extensively
studied in the 1980s by [11] and [3], among others.

The study of the global behavior of stochastic flows was stimulated by Car-
mona’s conjecture [4], Section 5.2., that the diameter of the image of a compact
set could expand linearly in time, but not faster. For stochastic flows this conjec-
ture was proved by Cranston, Scheutzow and Steinsaltz [6] and improved by Lisei
and Scheutzow [12] as well as by Scheutzow [13]. Even more surprising than this
upper bound is maybe the existence of points that move with linear speed, al-
though each individual point as a diffusion grows on average, like the square-root
of the time. This lower bound was proved first for IBFs, which have a strictly posi-
tive top-Lyapunov exponent, by Cranston, Scheutzow and Steinsaltz [5] and under
more general conditions by Scheutzow and Steinsaltz [14]. Nevertheless, upper
and lower bounds for the linear growth turn out to be far from each other in some
examples. In the case of planar periodic stochastic flows (stochastic flows on the
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torus) Dolgopyat, Kaloshin and Koralov [7] used a new approach based on the
so-called stable norm, to identify the precise deterministic linear growth rate of
such flows. By this approach, van Bargen [15] identified the precise deterministic
growth rate for planar IBFs, which have a strictly positive top-Lyapunov exponent.

Not only has the linear growth rate been analyzed in the last years, but also the
behavior of the individual trajectories of stochastic flows. Scheutzow and Stein-
saltz [14] investigated so-called ball-chasing properties of the flow, which is the
existence of a trajectory that follows a given Lipschitz path in a logarithmic neigh-
borhood [14], Theorem 4.2, where the Lipschitz constant is basically the lower
bound of linear growth mentioned in the previous paragraph.

Here we are looking at the individual trajectories of a planar IBF, or, to be
more precise, at the linear time-scaled versions. Getting a better understanding
of these trajectories yields a deeper understanding of the expansion of nontrivial
bounded connected sets under the action of an IBF. In this paper we will show
convergence in probability of the set of time-scaled trajectories in the Hausdorff
distance to the set of Lipschitz continuous functions starting in 0 with Lipschitz
constant K , which is the deterministic growth rate for a planar IBF mentioned
above. Roughly speaking we will show the following: On the one hand, for any
time-scaled trajectory, there exists a Lipschitz function with Lipschitz constant K

starting in 0 such that this function is close to the time-scaled trajectory. This yields
an upper bound on the speed of the trajectories. Hence we will call this inclusion
the upper bound. On the other hand we show that for any given Lipschitz function
with Lipschitz constant K starting in 0, there exists a trajectory that approximates
this Lipschitz function. This gives a lower bound on the maximum speed of the
trajectories. Thus we will refer to this inclusion as the lower bound. As far as
the author knows such a complete characterization of the asymptotic behavior of
the trajectories of stochastic flows is a novelty in the present context and hence
yields a new and deeper understanding of the expansion of nontrivial bounded
connected sets under the action of IBFs.

The paper is organized as follows: In Section 2.1 we first introduce the notion of
stochastic flows, and in particular of IBFs and some of their main properties used
within this paper. After stating the main theorem in Section 3, we first introduce
the notion of stable norm in Section 4. The proof of the main theorem is divided
into the proof of the upper bound (Section 5.1) and the lower bound (Section 5.2).

2. Preliminaries.

2.1. Isotropic Brownian flows. We provide a short introduction to isotropic
Brownian flows (IBF) following mainly [2].

A stochastic flow of homeomorphisms on Rd is a family of random homeomor-
phisms {ϕs,t : s, t ∈ R+} of Rd , which almost surely satisfies the flow property,
that is, ϕs,t = ϕu,t ◦ ϕs,u for all s, t, u ∈ R+, and ϕt,t = id |Rd for all t ∈ R+, and
is jointly continuous; that is, (s, t, x) �→ ϕs,t (x) is continuous. The flow is called a
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Brownian flow if the increments ϕs,t on disjoint intervals are independent and time
homogeneous.

Due to [10], Theorem 4.2.8, under suitable regularity conditions, Brownian
flows of homeomorphisms can be realized as solutions of Kunita-type stochastic
differential equations

ϕs,t (x) = x +
∫ t

s
M(du,ϕs,u(x)) +

∫ t

s
v(ϕs,u(x))du, s ≤ t,

where v : Rd → Rd is a vector field, and M : R+ × Rd × � → Rd is a mean-zero
Gaussian martingale field on a complete probability space (�, F ,P). M is called
the generating Brownian field and its distribution is determined by the covariances

E[〈M(t, x), ξ 〉〈M(s, y), η〉] = (s ∧ t)〈b(x, y)ξ, η〉, ξ, η ∈ Rd,

where b : Rd × Rd → Rd×d is a covariance tensor. The distribution of the flow
{ϕs,t : s, t ∈ R+} is determined by the functions b(x, y) and v(x). If there is no
risk of ambiguity, we will abbreviate ϕ0,t (x) by ϕt(x). Due to the independent
increments and the flow property, a Brownian flow satisfies, according to [10],
Theorem 4.2.1, a Markov property in the following sense: Let Fs,t be the least sub
σ -algebra of F containing all null sets and

⋂
ε>0{ϕu,r : s − ε ≤ u, r ≤ t + ε}. Then

for 0 ≤ s < t < u, n ∈ N and x1, . . . , xn ∈ Rd , we have

P
(
(ϕs,u(x1), . . . , ϕs,u(xn)) ∈ E|Fs,t

)
(1)

= P
(
(ϕt,u(y1), . . . , ϕt,u(yn)) ∈ E

)|yi=ϕs,t (xi ),

where E is a Borel sets in Rnd .
An isotropic Brownian flow on Rd is a Brownian flow of homeomorphisms of

Rd , where the distribution of each ϕs,t is invariant under rigid transformations of
Rd . The invariance in distribution of ϕs,t under rigid motions implies the invari-
ance in distribution of the generating Brownian field M(t, x); in this case M(t, x)

is said to be an isotropic Brownian field. The invariance under translations implies
that b(x, y) = b(x − y,0) ≡ b(x − y), and then the invariance under rotations and
reflections implies that

b(x) = OT b(Ox)O(2)

for all orthogonal matrices O on Rd . Moreover we have v(x) ≡ 0. In this paper we
will assume b ∈ C∞, since we will use results of [15], where smoothness of b has
to be assumed. In this case ϕs,t (·) ∈ C∞(Rd) are diffeomorphims. Furthermore,
the isotropy property (2) implies that b(0) = c id |Rd for some constant c > 0. At
the cost of rescaling time by a constant factor, we can and will assume that b(0) =
id |Rd . In order to avoid the trivial case where the flow consists of translations, we
assume also that b(x) 
≡ id |Rd . Since the properties of the flow we are interested
in do not depend on rigid translations of the space by a Brownian motion added to
the generated IBF, we can and will assume that lim|x|→∞ b(x) = 0.
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According to [16], Section 4 (and as described in [3]), a covariance tensor with
the above properties can be written in the form

bij (x) =
⎧⎨
⎩
(
BL(|x|) − BN(|x|))xixj

|x|2 + δijBN(|x|), if x 
= 0,

δij , if x = 0

for i, j = 1, . . . , d , where BL and BN are the so-called longitudinal and transverse
(normal) covariance functions defined by

BL(r) := bii(rei), BN(r) := bii(rej )

for r ≥ 0 and i 
= j , where ei denotes the ith unit vector in Rd . For future reference
define

βL := −B ′′
L(0) > 0, βN := −B ′′

N(0) > 0,

to be the negative second right-hand derivative of the longitudinal and respectively
transverse covariance function. In Lemma A.1 we will give an estimate of the lon-
gitudinal and transverse covariance functions in terms of βL and βN , respectively.

Lyapunov exponents can be defined for dynamical systems and characterize the
exponential rate of separation of infinitesimally close trajectories. Baxendale and
Harris [3] have shown under the assumptions mentioned above, that IBFs have
Lyapunov exponents, which satisfy

μi = 1
2

(
(d − i)βN − iβL

)
, i = 1, . . . , d.

The top-Lyapunov exponent μ1, and more precisely its sign, crucially affects the
asymptotic behavior of the flow. As shown in [5] and [14], a nonnegative top Lya-
punov exponent μ1 ≥ 0 implies that any nontrivial bounded set (a set is said to be
nontrivial if it is connected and contains more than one point) does not contract
to a single point under the action of the flow. On the other hand, if μ1 < 0, then
according to [14] there is a positive probability that a small set contracts to a single
point, and hence our result cannot be true. By this remark, and since we would like
to use results from [15], we always will assume a strictly positive top-Lyapunov
exponent. But we conjecture that the results in [15], and hence our main result, are
also true for μ1 = 0. For more details on Lyapunov exponents for random dynam-
ical systems we refer to [1].

If the flow ϕ is restricted to {(s, t) ∈ R+ × R+ : s ≤ t}, it is called the forward
flow, whereas if restricted to {(s, t) ∈ R+ × R+ : s ≥ t}, it is called the backward
flow. In Kunita [10], Theorem 4.2.10, the generating Brownian field of the back-
ward Brownian flow has been calculated. If the flow is isotropic it turns out that it
is in fact equal to the generating Brownian field of the forward Brownian flow; see
[3], (3.7). This implies that for fixed T > 0, we have

L[ϕs,t (·) : 0 ≤ s ≤ t ≤ T ] = L[ϕT −s,T −t (·) : 0 ≤ s ≤ t ≤ T ],(3)

the so-called time reversal property of IBFs.
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2.2. Time-scaled trajectories. Let X ⊆ Rd be compact, and denote the set of
time-scaled trajectories of the flow starting in X up to some time T > 0 by

FT (X ,ω) := ⋃
x∈X

{
[0,1] � t �→ 1

T
ϕ0,tT (x,ω)

}

for ω ∈ �. Since X is compact, and (x, t) �→ ϕ0,t (x) is continuous, we have that
FT (X ) is a compact subset of the continuous functions on [0,1] with respect to the
supremum norm ‖ · ‖∞. Further denote by Lip0(K) the set of Lipschitz continuous
functions f on [0,1] with f (0) = 0 and Lipschitz constant K , which is as well a
compact set with respect to ‖ · ‖∞. The Hausdorff distance between two nonempty
compact sets A and B of a metric space is defined by

dH (A,B) := max
{

sup
x∈A

d(x,B); sup
y∈B

d(y,A)
}
,

where d denotes the metric. Since FT (X ) and Lip0(K) are compact subsets of
C([0,1],‖ · ‖∞), the function

(T ,ω) �→ dH (FT (X ,ω),Lip0(K))

is well defined.

3. Main theorem. From here on we will consider the case of planar IBFs;
that is, the dimension of the space will be d = 2. Given a planar IBF ϕ, which
has a strictly positive top-Lyapunov exponent, our main result is: For any non-
trivial compact connected set X ⊆ R2, we have convergence in probability of
dH (FT (X ),Lip0(K)) to 0 for T → ∞, that is, the following theorem.

THEOREM 3.1. Let ϕ be a planar IBF, which has a strictly positive top-
Lyapunov exponent. Then there exists a deterministic constant K > 0 such that
for any ε > 0 and any nontrivial compact and connected set X ⊆ R2, we have

lim
T →∞ P

(
dH (FT (X ),Lip0(K)) > ε

)= 0,

where dH denotes the Hausdorff distance, FT (X ) the set of time-scaled trajec-
tories (see Section 2.2) and Lip0(K) the set of Lipschitz continuous functions on
[0,1] starting in 0 with Lipschitz constant K .

The theorem will be proved in Section 5.

4. Stable norm. The concept of stable norm presented in this section traces
back to Dolgopyat, Kaloshin and Koralov [7], where they considered planar peri-
odic stochastic flows.

Denote by Br(w) the closed ball in R2 of radius r around w ∈ R2. For any R ≥
1, let CR be the set of all connected compact large subsets of R2 fully contained
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in B2R(0), where a set is called large if its diameter is greater or equal than 1. For
v ∈ R2, X ⊆ R2 and s ≥ 0, define the stopping time

τR(X , v, s) := inf{t ≥ 0 :ϕs,s+t (X ) ∩ BR(v) 
= ∅;diam(ϕs,s+t (X )) ≥ 1},
which is the first time when, starting at time s, the initial set X under the action of
the flow hits an R-neighborhood of v as a large set. For s = 0, we will abbreviate
in the following: τR(X , v,0) by τR(X , v). By temporal homogeneity of the flow,
the laws of τR(X , v, s) and τR(X , v) coincide. If only the distribution matters, we
will use τR(X , v). Then it is known from [15] that for v ∈ R2 the following limit
(uniformly in X ∈ CR) exists:

‖v‖R := lim
t→∞

1

t
sup
γ∈CR

E[τR(γ, vt)] = lim
t→∞

1

t
E[τR(X , vt)].

This limit is called the stable norm of v. Further it is known that ‖ · ‖R does not
depend on the precise choice of R ≥ 1, and it is indeed a norm on R2; see [15],
Section 3.2.2. Hence for the sequel, fix some arbitrary R ≥ 1. If we denote the
closed unit ball in R2 with respect to ‖ · ‖R by B, then, as shown by van Bargen
[15], Theorem 2.1, for any ε > 0 and any nontrivial bounded connected X ⊆ R2,

lim
T →∞ P

(
(1 − ε)T B ⊆ ⋃

x∈X

⋃
0≤t≤T

ϕt (x) ⊆ (1 + ε)T B
)

= 1.(4)

For our purpose this immediately implies that for ε > 0 and t ∈ (0,1], we have

lim
T →∞ P

(
ϕtT (X ) ⊆ tT (1 + ε)B

)= 1.(5)

Since the flow is isotropic, B is a ball in R2 with (Euclidean) radius K , that is,
K = 1/‖e1‖R > 0. This deterministic constant K is the Lipschitz constant in The-
orem 3.1.

In the sequel we will need the following lemma from [15] on convergence in
probability of the time-scaled hitting time to the stable norm.

LEMMA 4.1. For any ε > 0 and v ∈ R2, we have

lim
T →∞ sup

γ∈CR

P
(∣∣∣∣τR(γ, T v)

T
− ‖v‖R

∣∣∣∣> ε

)
= 0.

Moreover for any m ∈ N, there exists a constant c(1)
m such that

sup
γ∈CR

P
(
τR(γ, T v) > (‖v‖R + ε)T

)≤ c(1)

m T −m.

PROOF. See [15], Corollary 4.7, and [15], (3.27). �

The following lemma ensures that the diameter uniformly in γ ∈ CR under the
action of the flow stays large after

√
T with high probability for T large.
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LEMMA 4.2. For any m ∈ N there exists a constant c(2)
m such that for T large,

sup
γ∈CR

P
(

inf
s≥√

T

diam(ϕs(γ )) < 1
)

≤ c(2)

m T −m.

PROOF. Following the ideas of van Bargen [15], (3.15) and (3.16), for any
m ∈ N there exists some constant c̃(2)

m such that for sufficiently small δ > 0 and
n ∈ N large, we have

sup
γ∈CR

P(Sn(γ )) := sup
γ∈CR

P
(

inf
s∈N

s≥�√n�
diam(ϕs(γ )) < δn

)
≤ c̃(2)

m n−m.

Similar to [13], Lemma 6, for x, y ∈ R2, there exists a Brownian motion W such
that we have almost surely

inf
0≤t≤1

‖ϕt (x) − ϕt(y)‖ ≥ ‖x − y‖ exp
(
−κ

2
+ √

κ inf
0≤t≤1

Wt

)
,

where, according to Lemma A.1, which can be found in the Appendix, we have
κ := max{βL;βN }. For γ ∈ CR and any integer k ≥ �√T �, we choose on S�T �(γ )c

points x(k), y(k) ∈ ϕk(γ ) such that ‖x(k) −y(k)‖ = δk. Hence we get for m ∈ N and
k large enough,

sup
γ∈CR

P
(

inf
k≤t≤k+1

diam(ϕt (γ )) < 1|S�T �(γ )c
)

≤ sup
γ∈CR

P
(

inf
0≤t≤1

‖ϕt

(
x(k))− ϕt

(
y(k))‖ < 1|S�T �(γ )c

)

≤ P
(
δk exp

(
−κ

2
+ √

κ inf
0≤t≤1

Wt

)
< 1

)

≤ 2√
2π

(δk)1/2 exp
(
−(log(δk))2

2κ

)
.

Choosing k such that (δk)log(δk) ≥ δkm, we get

sup
γ∈CR

P
(

inf
k≤t≤k+1

diam(ϕt (γ )) < 1
∣∣S�T �(γ )c

)

≤ 2√
2π

(δk)1/2 exp
(
− log(δkm)

2κ

)
= 2√

2π
δ(κ−1)/(2κ)k(κ−m)/(2κ).

Then there exists a constant c(2)
m such that for T large,

sup
γ∈CR

P
(

inf
s≥√

T

diam(ϕs(γ )) < 1
)

≤ ∑
k≥�√T �

sup
γ∈CR

P
(

inf
k≤t≤k+1

diam(ϕt (γ )) < 1
∣∣S�T �(γ )c

)
+ sup

γ∈CR

P
(
S�T �(γ )

)

≤ c(2)

m T −m,
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which completes the proof. �

REMARK. Observe that in the previous lemma uniform convergence in γ ∈
CR is only achieved because the sets in CR are large.

5. Proof of Theorem 3.1. As usual we consider a planar IBF ϕ, which has
a strictly positive top-Lyapunov exponent. The upper bound (Section 5.1) and the
lower bound (Section 5.2) of Theorem 3.1 will be proved for large sets, that is, the
initial set X is assumed to be in CR for some arbitrary fixed R ≥ 1. The generaliza-
tion to nontrivial compact connected sets will be done in Section 5.3, which then
completes the proof of Theorem 3.1.

5.1. Upper bound. This section is devoted to the proof of the upper bound of
Theorem 3.1, that is, the following theorem.

THEOREM 5.1. For any ε > 0 and X ∈ CR , we have

lim
T →∞ P

(
sup

g∈FT (X )

d(g,Lip0(K)) > ε
)

= 0,

where K is the Euclidean radius of the stable norm unit ball; see Section 4.

The proof of Theorem 5.1 is divided into several steps. The main idea is to
show that the time-scaled trajectories behave like Lipschitz functions on some suf-
ficiently small discrete grid (Lemma 5.2), and between two supporting points large
growth of the initial set does not occur (Lemma 5.3). For the first estimate we have
to control trajectories starting inside some linearly growing set, which extends the
result of Lemma 4.1, where the initial set has a fixed diameter. The basic lemma to
control this is the following.

LEMMA 5.1. For all ε > 0, v ∈ R2 and 0 < ε̃ ≤ ε
6‖e1‖R , we have

lim
T →∞ P

(∣∣∣∣τR(Bε̃T (0), vT )

T
− ‖v‖R

∣∣∣∣> ε

)
= 0.

PROOF. Since BR(0) ⊂ Bε̃T (0) for T large, we have, because of Lemma 4.1,

P
(
τR(Bε̃T (0), vT ) > (‖v‖R + ε)T

)
≤ P

(
τR(BR(0), vT ) > (‖v‖R + ε)T

)→ 0.

According to [15], Lemma 4.4, there exists a constant α > 0 such that

inf
γ∈C∗

R

inf
t≥α

P
(
ϕt(γ ) ∩ ∂BR(0) 
= ∅;diam(ϕt (γ )) ≥ 1

)=: p1 > 0,(6)

where C∗
R denotes the set of all large connected subsets γ of R2 with γ ∩∂BR(0) 
=

∅. Estimate (6) basically tells that, given some extra time α uniformly in γ ∈ C∗
R ,
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there is a positive probability that ϕt(γ ) will stay intersected with ∂BR(0). By
spatial homogeneity, the time reversal property of IBFs [see (3)] and (6), we get

P
(
ϕt+α(BR(0)) ∩ Bε̃T (vT ) 
= ∅

)
= P

(
BR(vT ) ∩ ϕt+α(Bε̃T (0)) 
= ∅

)
≥ P

(
BR(vT ) ∩ ϕt+α(Bε̃T (0)) 
= ∅|τR(Bε̃T (0), vT ) ≤ t

)
· P
(
τR(Bε̃T (0), vT ) ≤ t

)
≥ p1P

(
τR(Bε̃T (0), vT ) ≤ t

)
.

According to Lemma 4.2, for any m ∈ N there exists a constant c(2)
m such that for

t ≥ √
T , we have

P
(
diam(ϕt+α(BR(0))) < 1

)≤ c(2)

m T −m.

Thus we get for t ≥ √
T

P
(
τR(Bε̃T (0), vT ) ≤ t

)≤ 1

p1
P
(
τ ε̃T (BR(0), vT ) ≤ t + α

)+ c(2)
m

p1
T −m.(7)

Further we have

P
(
τ ε̃T (BR(0), vT ) ≤

(
‖v‖R − ε

2

)
T

)

≤ P
(
τ ε̃T (BR(0), vT ) ≤

(
‖v‖R − ε

2

)
T ; τR(BR(0), vT ) >

(
‖v‖R − ε

6

)
T

)
(8)

+ P
(
τR(BR(0), vT ) ≤

(
‖v‖R − ε

6

)
T

)
,

where the second term converges to 0 for T → ∞ by Lemma 4.1. To estimate
the first term consider an R-net on ∂Bε̃T (vT ), that is, there exists N(ε̃T ) ∈ N and
points T w1, . . . , T wN(ε̃T ) ∈ ∂Bε̃T (0) such that

∂Bε̃T (vT ) ⊆
N(ε̃T )⋃
i=1

BR

(
(v + wi)T

)
,

where N(ε̃T ) grows at most polynomial in T for a fixed degree m̃ ∈ N. Thus we
get, estimating the first term in (8), using isotropy of the flow,

P
(
τ ε̃T (BR(0), vT ) ≤

(
‖v‖R − ε

2

)
T ; τR(BR(0), vT ) >

(
‖v‖R − ε

6

)
T

)

≤
N(ε̃T )∑
i=1

P
(
τR(BR(0), vT )

>

(
‖v‖R − ε

6

)
T |τR(BR(0), (v + wi)T

)≤ (‖v‖R − ε

2

)
T

)
(9)
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≤
N(ε̃T )∑
i=1

P
(
τR(ϕτR(BR(0),(v+wi)T )(BR(0)), vT

)
>

ε

3
T

)

≤ N(ε̃T ) sup
γ∈CR

P
(
τR(γ, e1ε̃T ) >

ε

3
T

)

≤ N(ε̃T ) sup
γ∈CR

P
(
τR(γ, e1ε̃T ) >

(
ε̃‖e1‖R + ε

6

)
T

)
.

This last probability converges according to Lemma 4.1, uniformly in γ ∈ CR , as
o(T −m) for m > m̃ to 0 as T → ∞. Hence combining (7), (8) and (9), we get for
t = (‖v‖R − ε)T and T ≥ 2α

ε
,

P
(
τR(Bε̃T (0), vT ) ≤ (‖v‖R − ε)T

)
≤ 1

p1
P
(
τ ε̃T (BR(0), vT ) ≤

(
‖v‖R − ε

2

)
T

)
+ c(2)

m

p1
T −m

→ 0,

as T → ∞, which completes the proof. �

Using Lemma 5.1 we will show that all time-scaled trajectories starting in a
linearly growing set behave like a Lipschitz function for a given mesh size �t .

LEMMA 5.2. Let ε ∈ (0,1) and �t ∈ (0,1). Then for 0 < ε̃ ≤ K(1+ε/2)�tε
6(4+ε)

,
we have

lim
T →∞ P

(
sup

x∈Bε̃T (0)

∣∣∣∣ 1

T
x − 1

T
ϕ�tT (x)

∣∣∣∣≥ �tK(1 + ε)

)
= 0.

PROOF. Since |v| = K‖v‖R and ε̃ ≤ �tK ε
2 , we have for some constant c∗,

specified below, and T large,

P
(

sup
x∈Bε̃T (0)

|x − ϕ�tT (x)| ≥ �tK(1 + ε)T
)

≤ P
(

sup
x∈Bε̃T (0)

‖ϕ�tT (x)‖R ≥ �t

(
1 + ε

2

)
T

)

≤ P
(
∃x ∈ Bε̃T (0) :‖ϕ�tT (x)‖R = �t

(
1 + ε

2

)
T

)

+ P
(

inf
x∈Bε̃T (0)

‖ϕ�tT (x)‖R > �t

(
1 + ε

2

)
T

)

≤ P
(
∃v ∈ R2 :‖v‖R = �t

(
1 + ε

2

)
;ϕ�tT (Bε̃T (0)) ∩ BR(vT ) 
= ∅

)
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+ P
(

inf
x∈Bε̃T (0)

|ϕ�tT (x)| > c∗ log(�tT )
)

≤ P
(
∃v ∈ R2 :‖v‖R = �t

(
1 + ε

2

)
; τR(Bε̃T (0), vT ) ≤ �tT

)
+ P

(
diam(ϕ�tT (Bε̃T (0))) < 1

)
+ P

(
inf

x∈Bε̃T (0)
|ϕ�tT (x)| > c∗ log(�tT )

)
.

First observe that [14], Theorem 4.2, yields the existence of a constant c∗ such
that the probability that there exists some x ∈ Bε̃T (0), which remains in a loga-
rithmic neighborhood of the origin, that is, |ϕs(x)| ≤ c∗ log s for all s ≥ �tT , con-
verges to 1 for T → ∞. Hence the third probability converges to 0, and, because
of Lemma 4.2, the second probability converges to 0 as well. Thus we get

lim
T →∞ P

(
sup

x∈Bε̃T (0)

|x − ϕ�tT (x)| ≥ �tK(1 + ε)T
)

≤ lim
T →∞ P

(
∃v ∈ R2 :‖v‖R = �t

(
1 + ε

2

)
; τR(Bε̃T (0), vT ) ≤ �tT

)
(10)

= lim
T →∞ P

(
∃v ∈ �t∂B : τR(B(ε̃/(1+ε/2))T (0), vT

)≤ �t

1 + ε/2
T︸ ︷︷ ︸

:=S1(T )

)
,

where B denotes the unit ball with respect to the stable norm. Let now δ := ε�t
16‖e1‖R

and v1, . . . , vN a δ-net on �t∂B. Because of Lemma 5.1 with η̃ := ε̃
(1+ε/2)

≤
K
6

�tε
4+ε

, we have

P(S2(T )) := P
(
∃j : τR(Bη̃T (0), vjT ) ≤ �t

(1 + ε/4)
T

)
→ 0.(11)

Because of the isotropy of the flow, we get

P(S2(T )c|S1(T ))

= P
(
∀j : τR(Bη̃T (0), vjT ) >

�t

(1 + ε/4)
T
∣∣∣S1(T )

)

≤ P
(
∀j : |v − vj | ≤ δ; τR(Bη̃T (0), vjT ) >

�t

(1 + ε/4)
T
∣∣∣S1(T )

)

≤ P
(
∀j : |v − vj | ≤ δ; τR(ϕτR(Bη̃T (0),vT )(Bη̃T (0)), vjT

)
>

(
1

(1 + ε/4)
− 1

(1 + ε/2)

)
�tT

∣∣∣S1(T )

)
(12)
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≤ sup
γ∈CR

P
(
τR(γ, δe1T ) >

(
1

(1 + ε/4)
− 1

(1 + ε/2)

)
�tT

)

≤ sup
γ∈CR

P
(
τR(γ, δe1T ) >

(
δ‖e1‖R + ε

16
�t

)
T

)
,

which converges to 0 for T → ∞ according to Lemma 4.1. Combining (11) and
(12) now yields

P(S1(T )) ≤ P(S2(T )c|S1(T )) + P(S2(T )) → 0,

which completes the proof because of (10). �

The event that between two supporting points of the grid (chosen sufficiently
close) the trajectories move not too quickly will be treated in the following lemma.
It is an application of the chaining techniques introduced by Scheutzow [13].

LEMMA 5.3. For any bounded X ⊆ R2, a > 0 and any partition 0 = t0 < t1 <

· · · < tn = 1 of [0,1] with �t := maxi |ti−1 − ti | < a2

12κ
with κ := max{βL;βN }, we

have

lim
T →∞ P

(
sup
x∈X

max
i

sup
ti≤t≤ti+1

∣∣∣∣ 1

T
ϕtiT (x) − 1

T
ϕtT (x)

∣∣∣∣> a

)
= 0.

PROOF. Denote by N(X , δ) the minimal number of closed balls of radius δ >

0 needed to cover X . Let Xj , j = 1, . . . ,N(X , e−3κT ) be compact sets of diameter
at most e−3κT , which cover X , and choose arbitrary points xj ∈ Xj . Then there
exists a constant L > 0 (depending only on X ) such that

N(X , e−3κT ) ≤ Le3κT .

We have

P
(

sup
x∈X

max
i

sup
ti≤t≤ti+1

∣∣∣∣ 1

T
ϕtiT (x) − 1

T
ϕtT (x)

∣∣∣∣> a

)
≤ P1 + P2,

where

P1 := Le3κT nmax
i,j

P
(

sup
ti≤t≤ti+1

|ϕtiT (xj ) − ϕtT (xj )| > T a − 1
)

and

P2 := Le3κT nmax
j

P
(

sup
0≤t≤1

diam(ϕtT (Xj )) > 1
)
.

Because of the temporal and spatial homogeneity of the flow, and since the one-
point motion is Brownian, we get, by denoting a one-dimensional Brownian mo-
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tion by W ,

P1 ≤ 2Lne3κT P
(

sup
0≤s≤�tT

|Ws | > T a − 1√
2

)

≤ 8Lne3κT

√
�t

(a − 1)
√

2πT
exp

(
− a2

4�t
T

)

= 8Ln

√
�t

(a − 1)
√

2πT
exp

((
3κ − a2

4�t

)
T

)
→ 0

for T → ∞; see [9], Problem II.8.2. On the other hand we use Theorem 2.1
of [13] (see Theorem B.1 in the Appendix) to bound P2, which gives an up-
per bound on the exponential decay of the probability of the expansion of expo-
nentially shrinking sets, that is, the sets Xj . Because of Lemma A.1 the deriva-
tive of the quadratic variation of the difference M(t, x) − M(t, y), where M

is the generating isotropic Brownian field, satisfies the Lipschitz property with
κ = max{βL;βN } > 0. Lemma 2.6 of [13] ensures that Theorem 2.1 can be ap-
plied with σ 2 = κ and � = κ

2 . Hence there exists T̃ such that for T ≥ T̃ ,

P2 ≤ Le3κT nmax
j

P
(

sup
x,y∈Xj

sup
0≤s≤T

|ϕs(x) − ϕs(y)| > 1
)

≤ Le3κT n exp
(
−
(

1

2κ

(
3κ − κ

2

)2

+ κ

16

)
T

)
= Ln exp

(
− κ

16
T

)
→ 0,

for T → ∞, which completes the proof. �

The next lemma shows that it is sufficient to analyze the Lipschitz behavior of
the time-scaled trajectories to get rid of the infimum over all Lipschitz functions.

LEMMA 5.4. For any ε > 0, X ⊆ R2 and any partition 0 = t0 < t1 < · · · <

tn = 1 of [0,1], we have{
sup
x∈X

inf
f ∈Lip0(K)

max
i

∣∣∣∣ 1

T
ϕtiT (x) − f (ti)

∣∣∣∣> ε

3

}
⊆ S1 ∪ S2,

where

S1 :=
{

sup
x∈X

max
i

1

(ti+1 − ti)

∣∣∣∣ 1

T
ϕtiT (x) − 1

T
ϕti+1T (x)

∣∣∣∣>
(
K + ε

3

)}

and

S2 :=
{

sup
x∈X

max
i

∣∣∣∣ 1

tiT
ϕtiT (x)

∣∣∣∣>
(
K + ε

3

)}
.
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PROOF. Let x ∈ X . Then

max
i

1

(ti+1 − ti)

∣∣∣∣ 1

T
ϕtiT (x) − 1

T
ϕti+1T (x)

∣∣∣∣≤
(
K + ε

3

)
and

max
i

∣∣∣∣ 1

tiT
ϕtiT (x)

∣∣∣∣≤
(
K + ε

3

)
(13)

imply that the function fx , defined by

fx(0) = 0 and fx(ti) := 1

T
ϕtiT (x)

K

(K + ε/3)
, i ∈ {1, . . . , n}

and linear interpolation for t ∈ (ti, ti+1), is Lipschitz continuous with Lipschitz
constant K , hence fx ∈ Lip0(K). Further, by (13) and definition of fx , we have

max
i

∣∣∣∣ 1

T
ϕtiT (x) − fx(ti)

∣∣∣∣≤ ε

3
,

which completes the proof by taking complements and unifying over all x ∈ X .
�

Finally we provide the proof of Theorem 5.1.

PROOF OF THEOREM 5.1. For any partition 0 = t0 < t1 < · · · < tn = 1 of
[0,1] with

�t := max
i

{ti+1 − ti} ≤ min
{

ε

3(K + ε/3)
; ε2

108κ

}
,

by the triangle inequality and according to Lemma 5.4, we have

P
(

sup
g∈FT (X )

d(g,Lip0(K)) > ε
)

= P
(

sup
x∈X

inf
f ∈Lip0(K)

∥∥∥∥ 1

T
ϕ·T (x) − f

∥∥∥∥∞ > ε

)

≤ P1 + P2 + P3,

where

P1 := P
(

sup
x∈X

max
i

1

(ti+1 − ti)

∣∣∣∣ 1

T
ϕtiT (x) − 1

T
ϕti+1T (x)

∣∣∣∣> K

(
1 + ε

3

))

and

P2 := P
(

sup
x∈X

max
i

∣∣∣∣ 1

tiT
ϕtiT (x)

∣∣∣∣> K

(
1 + ε

3

))

and

P3 := P
(

sup
x∈X

max
i

sup
ti≤t≤ti+1

∣∣∣∣ 1

T
ϕtiT (x) − 1

T
ϕtT (x)

∣∣∣∣> ε

3

)
.
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According to Lemma 5.3, since �t ≤ ε2

108κ
, we immediately get P3 → 0. Accord-

ing to (5) we have

P2 ≤
n∑

i=1

P
(
ϕtiT (X ) � tiT

(
1 + ε

3

)
B
)

→ 0,

where B denotes the unit ball with respect to the stable norm. For the convergence
of P1 it hence suffices to show that for all i ∈ {1, . . . , n},

P
(

sup
x∈X

∣∣∣∣ 1

T
ϕtiT (x) − 1

T
ϕti+1T (x)

∣∣∣∣
> (ti+1 − ti)K

(
1 + ε

3

)∣∣∣ϕtiT (X ) ⊆ tiT (1 + ε)B
)

converges to 0 for T → ∞. Let ε̃ ≤ K(1+ε/6)�̃tε
18(4+ε/3)

, where �̃t := mini{ti+1 − ti}; then
there exists for fixed i ∈ {1, . . . , n} an integer N ∈ N and v1, . . . , vN ∈ ti(1 + ε)B
such that

tiT (1 + ε)B ⊆
N⋃

j=1

Bε̃T (vjT ).

Hence we get, using isotropy of the flow,

P
(

sup
x∈X

∣∣∣∣ 1

T
ϕtiT (x) − 1

T
ϕti+1T (x)

∣∣∣∣
> (ti+1 − ti)K

(
1 + ε

3

)∣∣∣ϕtiT (X ) ⊆ tiT (1 + ε)B
)

≤ N · P
(

sup
x∈Bε̃T (0)

∣∣∣∣ 1

T
x − 1

T
ϕ(ti+1−ti )T (x)

∣∣∣∣> (ti+1 − ti)K

(
1 + ε

3

))

→ 0

for T → ∞, according to Lemma 5.2. Thus the assertion is proved. �

5.2. Lower bound. This section is devoted to the proof of the lower bound of
Theorem 3.1, that is, the following theorem.

THEOREM 5.2. For any ε > 0 and X ∈ CR , we have

lim
T →∞ P

(
sup

f ∈Lip0(K)

d(f,FT (X )) > ε
)

= 0,

where K is the Euclidean radius of the stable norm unit ball; see Section 4.
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The proof of Theorem 5.2 is divided into several steps. Since the Lipschitz func-
tions are compact with respect to the supremum norm, the problem can be reduced
to a finite set of Lipschitz functions; see the proof of Theorem 5.2. The main idea is
then to show that for any given Lipschitz function, there exists a point in the initial
set such that the image of this point, under the action of the flow, approximates the
Lipschitz function on a discrete grid (Lemma 5.5). Further, Lemma 5.3 shows that
between two supporting points, if chosen sufficiently close, the trajectories move
not too quickly.

LEMMA 5.5. For any ε > 0, f ∈ Lip0(K − ε), X ∈ CR and any partition
0 = t0 < t1 < · · · < tn = 1 of [0,1], we have

lim
T →∞ P

(
inf
x∈X

max
i

∣∣∣∣ 1

T
ϕtiT (x) − f (ti)

∣∣∣∣≤ ε

)
= 1.

PROOF. Consider the following sequence of random subsets of R2:

X (T )
0 := X ,

X (T )
i := ϕti−1T ,tiT

(
X (T )

i−1

)∩ BT 2/3(Tf (ti))

for i = 1, . . . , n, which is the part of ϕtiT (X ) that has been close (in lin-
ear scaling) to Tf (tj ) for all 0 ≤ j ≤ i. Further define the set [abbreviating

τR(X (T )
i−1, Tf (ti), T ti−1) by τR

i ]

γ
(T )
i := ϕti−1T ,ti−1T +τR

i

(
X (T )

i−1

)∩ B2R(Tf (ti))

for i = 1, . . . , n, which is the part of X (T )
i−1 that is at first in a 2R-neighborhood of

Tf (ti). Observe that X (T )
i−1 
= ∅ implies that τR

i is almost surely finite. To simplify
notation we will denote the largest (with respect to the diameter) connected com-
ponent of X (T )

i and γ
(T )
i , respectively, by the same symbol. Let A

(T )
i be the event

that X (T )
i−1 reaches an R-neighborhood of Tf (ti) in time, that is,

A
(T )
i := {

τR(X (T )
i−1, Tf (ti), T ti−1

)≤ (ti − ti−1)T
}

for i = 1, . . . , n, and B
(T )
i , the event that there exists a point in the first intersection

of X (T )
i−1 with an R-neighborhood of Tf (ti) that stays close (in linear scaling) to

Tf (ti) up to time tiT , and X (T )
i−1 is large at time ti , that is, on{

τR(X (T )
i−1, Tf (ti), T ti−1

)≤ (ti − ti−1)T
}
,

that is [abbreviating τR(X (T )
i−1, Tf (ti), T ti−1) by τR

i ],

B
(T )
i :=

{
inf

x∈γ
(T )
i−1

sup
ti−1T +τR

i ≤t≤tiT

|ϕti−1T +τR
i ,t (x) − Tf (ti)| ≤ T 2/3;

diam
(
ϕti−1T ,tiT

(
X (T )

i−1

))≥ 1
}
.
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Hence we get by construction that if there exists x ∈ X such that ϕ·(x) reaches
successively the R-neighborhoods of Tf (ti) for all i ∈ {1, . . . , n} in time (before
time tiT ) and is still close to these points at time tiT , then the time-scaled trajec-
tory 1

T
ϕ·T (x) starting in this particular x is close to the Lipschitz function f at the

time ti for all i ∈ {0, . . . , n}, that is,

P
(

inf
x∈X

max
i

∣∣∣∣ 1

T
ϕtiT (x) − f (ti)

∣∣∣∣≤ ε

)

≥ P

(
n⋂

i=1

A
(T )
i ∩

n⋂
i=1

B
(T )
i

)
(14)

= P
(
A

(T )
1

)
P
(
B

(T )
1 |A(T )

1

) · · ·P

(
B(T )

n

∣∣∣ n⋂
i=1

A
(T )
i ∩

n−1⋂
i=1

B
(T )
i

)
.

Observe that the conditional distribution L(τR(X (T )
i−1, Tf (ti), T ti−1)|X (T )

i−1) coin-

cides with the conditional distribution L(τR(X (T )
i−1, Tf (ti))|X (T )

i−1) for i ∈ {1, . . . ,

n}, and hence the results from Section 4 are applicable.
For any k ∈ {1, . . . , n}, because of the Markov property (1) of the flow, we have

P

(
A

(T )
k

∣∣∣ k−1⋂
i=1

A
(T )
i ∩

k−1⋂
i=1

B
(T )
i

)

= P

(
τR(X (T )

k−1, Tf (tk), T tk−1
)≤ (tk − tk−1)T

∣∣∣ k−1⋂
i=1

A
(T )
i ∩

k−1⋂
i=1

B
(T )
i

)
(15)

≥ inf
γ∈CR

inf
v∈B1(0)

P
(
τR(γ,T

(
f (tk) − f (tk−1)

)+ vT 2/3)≤ (tk − tk−1)T
)

≥ 1 − sup
γ∈CR

P
(
τR(γ,T

(
f (tk) − f (tk−1)

))
> (tk − tk−1)

T

1 + ε/K

)

− sup
γ∈CR

sup
v∈B1(0)

P
(
τR(γ, vT 2/3) > (tk − tk−1)

ε

1 + ε/K
T

)
.

Because of the isotropy of the flow, the last probability reduces to

sup
γ∈CR

P
(
τR(γ, e1T

2/3) > (tk − tk−1)
ε

1 + ε/K
T

)
→ 0,

and converges to 0 according to Lemma 4.1. Since f ∈ Lip0(K − ε) and |v| =
K‖v‖R , we have ‖f (tk)−f (tk−1)‖R ≤ (tk − tk−1)(1− ε

K
), which implies, because
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of Lemma 4.1,

sup
γ∈CR

P
(
τR(γ,T

(
f (tk) − f (tk−1)

))
> (tk − tk−1)

T

1 + ε/K

)

≤ sup
γ∈CR

P
(
τR(γ,T

(
f (tk) − f (tk−1)

))
> ‖f (tk) − f (tk−1)‖R 1

1 − (ε/K)2 T

)

→ 0,

and hence convergence to 0 of the first probability in (15). On the other hand,
we get for k ∈ {1, . . . , n}, by fixing some x̃k−1 ∈ γ

(T )
k−1 for T large [abbreviating

τR(X (T )
k−1, Tf (tk), T tk−1) by τR

k ],

P

(
B

(T )
k

∣∣∣ k⋂
i=1

A
(T )
i ∩

k−1⋂
i=1

B
(T )
i

)

≥ P

(
sup

tk−1T +τR
k ≤t≤tkT

|ϕtk−1T +τR
k ,t (x̃k−1) − Tf (tk)|

(16)

≤ T 2/3
∣∣∣ k⋂
i=1

A
(T )
i ∩

k−1⋂
i=1

B
(T )
i

)

+ P

(
diam

(
ϕtk−1T ,tkT

(
X (T )

k−1

))≥ 1
∣∣∣ k⋂
i=1

A
(T )
i ∩

k−1⋂
i=1

B
(T )
i

)
− 1.

Since the one-point motions are Brownian, the first term can be estimated for some
δ ∈ (0,1) via [denoting by W = (W(1),W(2)) a 2-dimensional Brownian motion]

P

(
sup

tk−1+τR
k ≤t≤tk

|ϕtk−1T +τR
k ,tT (x̃k−1) − Tf (tk)| ≤ T 2/3

∣∣∣ k⋂
i=1

A
(T )
i ∩

k−1⋂
i=1

B
(T )
i

)

≥ P
(

sup
0≤t≤tk−tk−1

|WtT | ≤ (1 − δ)T 2/3
)

(17)

≥ 1 − 8 · P
(
W

(1)
1 >

(1 − δ)√
2(tk − tk−1)

T 1/6
)

→ 1;
see [9], Problem II.8.2. Further, we have, because of Lemma 4.2,

P

(
diam

(
ϕtk−1T ,tkT

(
X (T )

k−1

))≥ 1
∣∣∣ k⋂
i=1

A
(T )
i ∩

k−1⋂
i=1

B
(T )
i

)

≥ inf
γ∈CR

P
(
diam

(
ϕ0,(tk−tk−1)T (γ )

)≥ 1
)

→ 1.
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This, together with (17), yields convergence of (16) to 1. Combining (15) and (16)
via (14) implies the assertion. �

Finally we provide the proof of Theorem 5.2.

PROOF OF THEOREM 5.2. Because of compactness of the Lipschitz functions
with respect to the supremum norm, we can reduce the problem to a finite set
of Lipschitz functions as follows. Since Lip0(K − ε

4) is compact with respect to
‖ · ‖∞ there exists some N ∈ N and f1, . . . , fN ∈ Lip0(K − ε

4) such that for any
g ∈ Lip0(K − ε

4), there exists j ∈ {1, . . . ,N} with

‖g − fj‖∞ ≤ ε

4
.

If f ∈ Lip0(K) then K−ε/4
K

f ∈ Lip0(K − ε
4), and hence for any f ∈ Lip0(K),

because of ‖f ‖∞ ≤ K , there exists j ∈ {1, . . . ,N} such that

‖f − fj‖∞ ≤
∥∥∥∥f − K − ε/4

K
f

∥∥∥∥∞ +
∥∥∥∥K − ε/4

K
f − fj

∥∥∥∥∞ ≤ ε

2
.

Thus we get

P
(

sup
f ∈Lip0(K)

inf
x∈X

∥∥∥∥ 1

T
ϕ0,·T (x) − f

∥∥∥∥∞ > ε

)

= P
(

max
j

sup
f ∈Lip0(K)

|f −fj |≤ε/2

inf
x∈X

∥∥∥∥ 1

T
ϕ0,·T (x) − f

∥∥∥∥∞ > ε

)
(18)

≤
N∑

j=1

P
(

inf
x∈X

∥∥∥∥ 1

T
ϕ0,·T (x) − fj

∥∥∥∥∞ >
ε

2

)
.

Now choose a partition 0 = t0 < t1 < · · · < tn = 1 of [0,1] with �t := maxi{ti+1 −
ti} ≤ min{ ε2

768κ
; ε

8K
}, where κ := max{βL;βN }. Using the triangle inequality we

get for any f ∈ Lip0(K − ε
4), since

max
i

sup
ti≤t≤ti+1

|f (ti) − f (t)| ≤
(
K − ε

4

)
�t ≤ ε

8
,

the estimate

P
(

inf
x∈X

∥∥∥∥ 1

T
ϕ0,·T (x) − fi

∥∥∥∥∞ >
ε

2

)

≤ P
(

inf
x∈X

max
i

∣∣∣∣ 1

T
ϕ0,tiT (x) − f (ti)

∣∣∣∣> ε

4

)
(19)

+ P
(

sup
x∈X

max
i

sup
ti≤t≤ti+1

∣∣∣∣ 1

T
ϕ0,tiT (x) − 1

T
ϕ0,tT (x)

∣∣∣∣> ε

8

)
.
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Because of Lemma 5.5 the first term in (19) converges to 0 for T → ∞, and since
�t ≤ ε2

768κ
, Lemma 5.3 yields convergence of the second term to 0. Hence com-

bining (18) and (19) proves the assertion. �

5.3. Proof of Theorem 3.1. PROOF OF THEOREM 3.1. By definition of the
Hausdorff distance, it is sufficient to show

lim
T →∞ P

(
sup

g∈FT (X )

d(g,Lip0(K)) > ε
)

= 0(20)

and

lim
T →∞ P

(
sup

f ∈Lip0(K)

d(f,FT (X )) > ε
)

= 0.(21)

For X ∈ CR equation (20) is proved in Section 5.1, namely Theorem 5.1, whereas
(21) is proved in Section 5.2, namely Theorem 5.2. For any nontrivial compact
connected X ⊆ R2 we need to construct a scaled flow on a diffusively scaled space,
such that the diameter of X becomes large, and the results of Theorem 5.1 and
Theorem 5.2 are applicable.

Let r := diam(X ) > 0. Define the scaled space R̃2 := {x
r

:x ∈ R2} equipped
with the usual Euclidean metric, and consider the function

ϕ̃ : R+ × R+ × R̃2 × � → R̃2; ϕ̃s,t (x̃,ω) := 1

r
ϕr2s,r2t (rx̃,ω).

Since ϕ is an IBF on R2, we have that ϕ̃ is also an IBF on R̃2 with generating
isotropic Brownian field M̃(t, x̃) = 1

r
M(r2t, rx̃) for t ≥ 0, x̃ ∈ R̃2 and covariance

tensor b̃(x̃) = b(rx̃) for x̃ ∈ R̃2, and thus it has the same properties as ϕ, in par-
ticular, the top-Lyapunov exponent of ϕ̃ is strictly positive. By construction of R̃2

the initial set 1
r

X has diameter 1, seen as a subset of R̃2. Denote the time-scaled
trajectories of ϕ̃ by

F̃T (X ,ω) := ⋃
x̃∈(1/r)X

{
[0,1] � t �→ 1

T
ϕ̃0,tT (x̃,ω)

}
.

One can easily deduce from (4), using the definition of ϕ̃, that the Euclidean radius
of the unit ball of the stable norm defined via ϕ̃ in R̃2 is K̃ = rK . Thus it follows
from (20) and (21) applied to ϕ̃ that

lim
T →∞ P

(
dH (F̃T (X ),Lip0(K̃)) > ε

)= 0.

By definition of F̃T (X ) one sees that this convergence also holds for the set
F̃T /r2(X ) , by definition of ϕ̃,

FT (X ) = 1

r
F̃T /r2(X ) → 1

r
Lip0(K̃) = Lip0(K),
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where convergence is meant in the Hausdorff distance in probability. This proves
the assertion for any nontrivial compact connected set X ⊆ R2. �

APPENDIX A: AN ESTIMATE ON THE COVARIANCE FUNCTION

One of the general assumptions for stochastic flows is a Lipschitz property of
the derivative of the quadratic variation of the difference M(t, x)−M(t, y), where
M denotes the generating martingale field of the flow. In case of IBFs this property
is achieved by an estimate of the second derivative of the covariance functions. The
following proof is due to Scheutzow.

LEMMA A.1. Let ϕ be an IBF with generating isotropic Brownian field M .
The function A(t, x, y) := d

dt
〈M(·, x)−M(·, y)〉t satisfies for all t ≥ 0, x, y ∈ R2,

the inequality

‖A(t, x, y)‖ ≤ max{βL;βN }|x − y|2,
where βL and βN are as in Section 2.1, and ‖ · ‖ denotes the spectral norm on
R2×2.

PROOF. Observe that, by definition of the covariance tensor, we have

A(t, x, y) = 2
(
b(0) − b(x − y)

)
.

According to [15], Lemma 1.6, x is an eigenvector of b(x) to the eigenvalue
BL(|x|), and any vector x⊥ 
= 0 perpendicular to x is an eigenvector of b(x) to
the eigenvalue BN(|x|). Since the matrix A(t, x, y) is symmetric, we have

‖A(t, x, y)‖ = ∥∥2(b(0) − b(x − y)
)∥∥

(22)
= 2 max{1 − BL(|x − y|);1 − BN(|x − y|)}.

Now consider an R2-valued centered Gaussian process U(x), x ∈ R2, with co-
variances E[Ui(x)Uj (y)] = bij (x − y) for i, j ∈ {1,2}. Then by stationarity and
Schwartz’s inequality, we have for r ≥ 0,

B ′′(r) = lim
h→0

lim
δ→0

E
[
U1(he1) − U1(0)

h

U1(−(r + δ)e1) − U1(−re1)

δ

]

= −E[U ′
1(re1)U

′
1(0)] ≥ −E[U ′

1(0)2] = B ′′
L(0).

By Taylor’s expansion ([3], Section 2), for each r > 0, there exists some θ ∈ (0, r)

such that

BL(r) = BL(0) + 1

2
B ′′

L(θ)r2 ≥ 1 + 1

2
B ′′

L(0)r2 = 1 − βL

2
r2.

The estimate on BN follows in the same way, so from (22) we get

‖A(t, x, y)‖ ≤ max{βL;βN }|x − y|2. �
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APPENDIX B: CHAINING AT WORK

The following theorem is basically Theorem 2.1 of [13]. It provides an upper
bound for the probability that the image of a ball, which is exponentially small in
T , attains a fixed diameter up to time T .

THEOREM B.1. Suppose there exist � ≥ 0, σ > 0 such that for each x, y ∈
Rd , there exists a standard Brownian motion W such that

|ϕt (x) − ϕt (y)| ≤ |x − y| exp(�t + σW ∗
t ), t ≥ 0

where W ∗
t := sup0≤s≤t Ws . Define for γ > 0

I (γ ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(γ − �)2

2σ 2 , if γ ≥ � + σ 2d,

d

(
γ − � − 1

2
σ 2d

)
, if � + 1

2
σ 2d ≤ γ ≤ � + σ 2d,

0, if γ ≤ � + 1

2
σ 2d.

Then, for all u > 0, we have

lim sup
T →∞

1

T
sup

XT

log P
(

sup
x,y∈XT

sup
0≤t≤T

|ϕt(x) − ϕt(y)| ≥ u
)

≤ −I (γ ),

where supXT
means that we take the supremum over all cubes XT in Rd with side

length exp(−γ T ).

PROOF. The theorem can be proved via Kolmogorov’s continuity theorem us-
ing the explicit probabilistic upper bound for the modulus of continuity. This proof
and four others can be found in [13], Chapter 2.3. �
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