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RANDOM LIE GROUP ACTIONS ON COMPACT MANIFOLDS:
A PERTURBATIVE ANALYSIS1

BY CHRISTIAN SADEL AND HERMANN SCHULZ-BALDES

Universität Erlangen–Nürnberg

A random Lie group action on a compact manifold generates a discrete
time Markov process. The main object of this paper is the evaluation of asso-
ciated Birkhoff sums in a regime of weak, but sufficiently effective coupling
of the randomness. This effectiveness is expressed in terms of random Lie
algebra elements and replaces the transience or Furstenberg’s irreducibility
hypothesis in related problems. The Birkhoff sum of any given smooth func-
tion then turns out to be equal to its integral w.r.t. a unique smooth measure on
the manifold up to errors of the order of the coupling constant. Applications
to the theory of products of random matrices and a model of a disordered
quantum wire are presented.

1. Main results, discussion and applications. This work provides a pertur-
bative calculation of invariant measures for a class of Markov chains on continuous
state spaces and shows that these perturbative measures are unique and smooth.
Let us state the main result right away in detail, and then place it into context with
other work towards the end of this section and explain our motivation to study this
problem.

Suppose given a Lie group G ⊂ GL(L,C), a compact, connected, smooth Rie-
mannian manifold M without boundary and a smooth, transitive group action
· : G × M → M. Thus, M is a homogeneous space. Furthermore, let Tλ,σ ∈ G
be a family of group elements depending on a coupling constant λ ≥ 0 and a para-
meter σ varying in some probability space (�,p), which is of the following form:

Tλ,σ = R exp

( ∞∑
n=1

λnPn,σ

)
,(1)

where R ∈ G and Pn,σ are measurable maps on � with compact image in the Lie
algebra g of G such that

lim sup
n→∞

sup
σ∈�

(‖Pn,σ‖)1/n < ∞(2)

for some norm on g. This implies that Tλ,σ is well defined and analytic in λ for
λ sufficiently small. The expectation value of the first-order term P1,σ will be
denoted by P = ∫

p(dσ )P1,σ .
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Let us consider the product probability space (�,P) = (�N,pN). Associated to
ω = (σn)n∈N ∈ �, there is a sequence (Tλ,σn)n∈N of group elements. An M-valued
Markov process xn(λ,ω) with starting point x0 ∈ M is defined iteratively by

xn(λ,ω) = Tλ,σn · xn−1(λ,ω).(3)

The averaged Birkhoff sum of a complex function f on M is

Iλ,N(f ) = Eω

1

N

N−1∑
n=0

f (xn(λ,ω)) = 1

N

N−1∑
n=0

(T n
λ f )(x0),(4)

where in the second expression we used the Markov transition operator (Tλf )(x) =
Eσ (f (Tλ,σ ·x)). Here and below, expectation values w.r.t. P (or p) will be denoted
by E (or Eω and Eσ ). Next, recall that an invariant measure νλ on M is defined
by the property

∫
νλ(dx)f (x) = ∫

νλ(dx)(Tλf )(x). The operator ergodic theorem
[16], Theorem 19.2, then states that Iλ,N(f ) converges almost surely (in x0) w.r.t.
any invariant measure νλ and for any integrable function f . In the case that M is
a projective space and the action is matrix multiplication, one is in the world of
products of random matrices. If then the group generated by Tλ,σ , with σ varying
in the support of p, is noncompact and strongly irreducible, Furstenberg, Guivarch
and Raugi have proved [2, 9, 11] that there is a unique invariant measure νλ which
is, moreover, Hölder continuous [2]. To our best knowledge, little seems to be
known in more general situations and also concerning the absolute continuity of
νλ (except if p is absolutely continuous [18], for some and under supplementary
hypothesis [4, 28]).

Let p1 be the distribution of the random variable P1,σ on the Lie algebra g,
that is, for any measurable b ⊂ g one has p1(b) = p({P1,σ ∈ b}). We are interested
in a perturbative calculation of Iλ,N(f ) in λ for smooth functions f with rigorous
control on the error terms. This can be achieved if the support of p1 is large enough
in the following sense. First, let us focus on the special case R = 1 and P = 0.

THEOREM 1. Let Tλ,σ be of the form (1) and assume R = 1, P = E(P1,σ ) =
0. Let xn be the associated Markov process on M as given by (3) and let v =
Lie(supp(p1)) be the smallest Lie subalgebra of g that contains the support of p1.
Recall that μ(dx) denotes the Riemannian volume measure on M.

Coupling hypothesis: Suppose that the smallest subgroup V of G containing
{exp(λP), P ∈ v, λ ∈ [0,1]} acts transitively on M. (This is a Lie subgroup with
Lie algebra v, but it may not be a submanifold.)

Then there is a sequence of smooth functions ρm with
∫

M dμρm = δm,0 and
ρ0 > 0 μ-almost surely, such that for any M ∈ N and any function f ∈ C∞(M),
one obtains

Iλ,N(f ) =
M∑

m=0

λm
∫

M
μ(dx)ρm(x)f (x) + O

(
1

Nλ2 , λM+1
)
.(5)
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Here, the expression O( 1
Nλ2 , λM+1) means that there are two error terms, one

of which is bounded by C1
1

Nλ2 and the other by C2λ
M+1 with C1,C2 depending

on f and M . Especially, C2 may grow in M so that we cannot deduce uniqueness
of the invariant measure for small λ this way (cf. Remark 1 below).

When R �= 1 or P �= 0 further assumptions are needed in order to control the
Birkhoff sums. We assume that R and P generate commuting compact groups, that
is, R P R−1 = AdR(P) = P and the closed Abelian Lie groups 〈R〉 = {Rk :k ∈ Z}
and 〈P〉 = {exp(λP) :λ ∈ R)} are compact. While 〈P〉 is always connected, 〈R〉
can possibly be disconnected. However, there exists K ∈ N such that 〈RK〉 is
connected. By considering the suspended Markov process (yn)n∈N with yn = xKn

corresponding to the family

Tλ,σ1,...,σK
= Tλ,σK

· · · Tλ,σ1

for (σ1, . . . , σK) ∈ (�K,pK), one can always assume that 〈R〉 is connected
and we shall do so from now on. Note that the product 〈R〉〈P〉 is also a
compact, connected, Abelian subgroup of G which will be denoted by 〈R, P〉.
All these groups are tori in G and their dimensions are LR, LP and LR,P .
Hence, 〈R〉 ∼= T

LR , 〈P〉 ∼= T
LP and 〈R, P〉 ∼= T

LR,P , where T
L = R

L/(2πZ)L

is the L-dimensional torus. The (chosen) isomorphisms shall be denoted by
RR,RP and RR,P , respectively, for example, RR(θ) ∈ 〈R〉 ⊂ GL(L,C) for
θ = (θ1, . . . , θLR ) ∈ T

LR .
The isomorphism RR directly leads to the Fourier decomposition of the function

θ ∈ T
LR �→ f (RR(θ) · x), notably

f (RR(θ) · x) = ∑
j∈Z

LR

fj (x)eıj ·θ ,(6)

where

fj (x) =
∫

T
LR

dθ

(2π)LR
e−ıj ·θf

(
RR(θ) · x)

, j · θ =
LR∑
l=1

jlθl.

Similarly, the maps θ ∈ T
LP �→ f (RP (θ) · x) and θ ∈ T

LR,P �→ f (RR,P (θ) · x)

lead to Fourier series.

DEFINITION 1. A function f ∈ C∞(M) is said to consist of only low fre-
quencies w.r.t. 〈R〉 if the Fourier coefficients fj ∈ C∞(M) vanish for j with norm

‖j‖ = ∑LR
l=1 |jl| larger than some fixed integer J > 0. Similarly, f is defined to

consist of only low frequencies w.r.t. 〈P〉 or 〈R, P〉.

The following definitions are standard (see [17] for references).



RANDOM LIE GROUP ACTIONS 2227

DEFINITION 2. Let us define θ̂R ∈ T
LR by RR(θ̂R) = R and θ̂P ∈ R

LP by
RP (λθ̂P ) = exp(λP). Then R is said to be a Diophantine rotation or simply Dio-
phantine if there is some s > 1 and some constant C such that for any nonzero
multi-index j ∈ Z

LR \ {0} one has

|eıj ·θ̂R − 1| ≥ C‖j‖−s .

Similar, P is said to be Diophantine, or a Diophantine generator of a rotation, if
there is some s > 1 and some constant C, such that for any nonzero multi-index
j ∈ Z

LP \ {0} one has

|j · θ̂P | ≥ C‖j‖−s .

As final preparation before stating the result, let us introduce the measure p on
the Lie algebra g obtained from averaging the distribution p1 of the lowest-order
terms P1,σ w.r.t. the Haar measure dR on the compact group 〈R, P〉, namely for
any measurable set b ⊂ g,

p(b) =
∫
〈R,P〉

dR p({σ ∈ � :RP1,σR−1 ∈ b}).

THEOREM 2. Let Tλ,σ be of the form (1) and xn the associated Markov
process on M as given in (3). Denote the Lie algebra of 〈R, P〉 by r and let
v = Lie(supp(p), r) be the Lie subalgebra of g generated by the support of p and r.
Suppose that the smallest subgroup V of G containing {exp(λP) : P ∈ v, λ ∈ [0,1]}
acts transitively on M. Further, suppose that f ∈ C∞(M) and one of the follow-
ing conditions hold:

(i) R and P are Diophantine and M = K/H where K and H ⊂ K are compact
Lie groups.

(ii) f consist of only low frequencies w.r.t. 〈R, P〉.
Then there is a μ-almost surely positive function ρ0 ∈ C∞(M) normalized w.r.t.

the Riemannian volume measure μ on M, such that

Iλ,N(f ) =
∫

M
μ(dx)ρ0(x)f (x) + O

(
1

Nλ2 , λ

)
,(7)

where μ is the Riemannian volume measure on M. Moreover, the probability mea-
sure ρ0μ is invariant under the action of 〈R, P〉.

The probability measures
∑M

m=0 λmρmμ in Theorem 1 and ρ0μ in Theorem 2
can be interpreted as perturbative approximations of invariant measures νλ. In fact,
integrating (5) over the initial condition x0 w.r.t. any invariant measure νλ and then
taking the limit N → ∞, shows that for any smooth function∫

M
νλ(dx)f (x) =

M∑
m=0

λm
∫

M
μ(dx)ρm(x)f (x) + O(λM+1).(8)
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This means that the invariant measure is unique in a perturbative sense and, more-
over, its unique approximations are absolutely continuous with smooth density. In
fact, one obtains the following.

COROLLARY 1. Let the assumptions of Theorems 1 or 2 be fulfilled and
(νλ)λ>0 be a family of invariant probability measures for the Markov processes
xn(λ). Then

w∗- lim
λ→0

νλ = ρ0μ,

where w∗- lim denotes convergence in the weak-∗ topology on the set of Borel
measures.

PROOF. Approximating a continuous function by its Fourier series shows that
the set of smooth functions consisting of only low frequencies w.r.t. 〈R, P〉 is
dense in the set of continuous functions w.r.t. the ‖ · ‖∞-norm. The set of probabil-
ity measures is norm bounded by 1 w.r.t. the dual norm. Now, let g ∈ C(M). For
any ε > 0, there is a smooth function g consisting of only low frequencies such
that ‖f − g‖∞ < ε. Then one has

|νλ(f ) − ρ0μ(f )| ≤ |νλ(f − g)| + |νλ(g) − ρ0μ(g)| + |ρ0μ(g − f )|
≤ 2ε + |νλ(g) − ρ0μ(g)|.

One obtains lim supλ→0|νλ(f ) − ρ0μ(f )| ≤ 2ε for any ε > 0, so that by (8)

lim sup
λ→0

|νλ(f ) − ρ0μ(f )| = 0,

for any continuous function f ∈ C(M), which gives the desired result. �

REMARK 1. According to the unique weak-∗-limit for a family of invariant
measures νλ, one might expect uniqueness for the invariant measure at least in a
small interval around 0. However, we will briefly describe a simple example satis-
fying all conditions of Theorem 1 such that for any rational λ the invariant measure
is not unique. Let G = M = S

1 = {z ∈ C : |z| = 1} and let the Lie group action be
the ordinary multiplication. Furthermore, let R = 1 and P1,σ be Bernoulli distrib-
uted with probability 1

2 at ıπ and −ıπ and let Pn,σ = 0 for n ≥ 2. Any measure
on S

1 which is invariant under a rotation by λπ is an invariant measure and for
rational λ there are many of them. Therefore, we expect the following to hold:
given the conditions of Theorem 2 one finds λ0 > 0 such that for Lebesgue a.e.
λ ∈ [0, λ0] there is a unique invariant measure.

REMARK 2. The main hypothesis of Theorems 1 and 2 is that the Lie group
associated to the Lie algebra v acts transitively on M. This can roughly be thought
of as a Lie algebra equivalent of Furstenberg’s irreducibility condition or the



RANDOM LIE GROUP ACTIONS 2229

Goldsheid–Margulis criterion [10]. Let us note that nontrivial R, P lead to a larger
support for p and hence weaken this hypothesis. A second hypothesis is that the
group 〈R〉 is compact. This excludes many situations appearing in physical models
where hyperbolic or parabolic channels appear. In some particular situations, this
could be dealt with [24, 25].

REMARK 3. As by the main hypothesis the action of G on M is transitive,
M is always a homogeneous space and given as a quotient of G w.r.t. some isotropy
group, but hypothesis (i) requires that M is, moreover, a quotient of a compact
group (which in the examples of Section 5 is a subgroup of G ). The assumption
that G ⊂ GL(L,C) (or, equivalently G has a faithful representation) is only needed
for the proof of Theorem 2 under hypothesis (ii).

REMARK 4. Suppose K is a compact subgroup of G acting transitively on M
[which is a special case of the condition in Theorem 2(i)]. Then the Haar mea-
sure dk on K induces a unique natural K-invariant measure on M which one may
choose to be μ (which is also the volume measure of the metric

∫
dK K∗g). It

is interesting to examine whether ρ0 = 1M, that is, the lowest-order approxima-
tion of the invariant measure is given by the natural measure. The proof below
provides a technique to check this. More precisely, in the notation developed be-
low, L̂∗1M = 0 implies that ρ0 is constant. An example, where this can indeed be
checked is developed in Section 5. Note that, if K is as above, then any conjuga-
tion N KN −1 with an element N ∈ G has another natural measure, given by JN μ

where JN is the Jacobian of the map x �→ N · x. Unless μ is invariant under all
of G , the equality ρ0 = 1M is hence linked to a good choice of K. If μ is invariant
under G , then it is also an invariant measure for the Markov process and under the
hypothesis of Theorem 2 one therefore has ρ0 = 1M.

REMARK 5. If 〈R, P〉 acts transitively on M, then the measure ρ0μ is
uniquely determined by the fact that it is invariant under the action of 〈R, P〉 and
normalized. Moreover, M is isomorphic to the quotient of 〈R, P〉 and the stabi-
lizer Sx of any point x ∈ M (which is a compact Abelian subgroup of 〈R, P〉).
Hence, in this case, M is a torus and the action is simply the translation on the
torus. Consequently, the measure ρ0μ is the Haar measure. Note that, if P = 0,
this holds independently of the perturbation and is imposed by the deterministic
process for λ = 0.

REMARK 6. If the action of 〈R〉 on M is not transitive, there are many invari-
ant measures ν0 for the deterministic dynamics (in particular, if R = 1 any measure
is invariant under 〈R〉). Under the hypothesis of Theorems 1 and 2, the random per-
turbations P1,σ and P2,σ single out a unique perturbative invariant measure ρ0μ.
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REMARK 7. We believe that condition that R and P commute is unnecessary.
In fact, we expect that conditions on P can be replaced by conditions on P̂ =∫
〈R〉 dR RPR−1.

REMARK 8. Let us cite prior work on the rigorous perturbative evaluation of
the averaged Birkhoff sums (4). In the case of G =SL(2,R), M = RP(1) and a
rotation matrix R in (1), Pastur and Figotin [20] showed (7) for the lowest two har-
monics whenever R, R2 �= ±1. The above result combined with the calculations
in Section 5 shows that (7) holds also for other functions with ρ0 = 1M. Without
the conditions R, R2 �= ±1, Theorem 2 was proved in [24, 26]. Moreover, when
RK = 1 (at so-called anomalies) and for an absolutely continuous distribution
on G , Theorem 1 was proved by Campanino and Klein [4]. Quasi-one-dimensional
generalizations of [20] in the case where G is a symplectic group were obtained in
[25, 27]. The work [7] is an attempt to treat higher-dimensional anomalies. To fur-
ther generalize, the above results to quasi-one-dimensional systems was our main
motivation for this work.

REMARK 9. Our main application presented in Section 5 is the perturbative
calculation of Lyapunov exponents associated to products of random matrices of
the form (1). Moreover, we show how to choose N (cf. Remark 5) such that ρ0 =
1M. This property is called the random phase property in [22] which is related to
the maximal entropy Ansatz in the physics literature. Section 5 can be read directly
at this point if Theorem 2 is accepted without proof.

REMARK 10. The recent work by Dolgopyat and Krikorian [6] on random
diffeomorphisms on S

d contains results on the associated invariant measure and
Lyapunov spectrum which are related to the results of the present paper. The main
difference is that [6] assume the random diffeomorphisms to be close to a set of
rotations which generate SO(d +1) while in the present work the diffeomorphisms
are to lowest order given by the identity (Theorem 1) or close to one fixed rotation
(Theorem 2). As a result, the invariant measure in Proposition 2 of [6] is close to
the Haar measure while it is determined by the random perturbations in the present
paper. In the particular situation of the example studied in Section 5, the random-
ness is such that the invariant measure is the Haar measure and as a consequence
the Lyapunov spectrum is equidistant, just as in [6].

In order to clearly exhibit the strategy of the proof of the theorems, we first
focus on the case R = 1 and P = 0 in Sections 2 and 3, which corresponds to a
higher-dimensional anomaly in the terminology of our prior work [24, 26]. The
main idea is then to expand Tλf into a Taylor expansion in λ. This directly leads
to a second-order differential operator L on M of the Fokker–Planck type, for
which the Birkhoff sums Iλ,N(Lf ) vanish up to order λ. Under the hypothesis of
Theorem 1, it can be shown to be a sub-elliptic Hörmander operator on the smooth
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functions on M with a one-dimensional cokernel. Then one can deduce that C +
L(C∞(M)) = C∞(M) and that the kernel of L∗ is spanned by a smooth positive
function ρ0. These are the main elements of the proof of Theorem 1 for M = 1.
Then using the properties of the operators L and L∗ and a further Taylor expansion
of Tλf one can prove Theorem 1 by induction. The additional difficulties for other
R, P in Theorem 2 are dealt with in the more technical Section 4. The applications
to Lyapunov exponents are presented in Section 5.

2. Fokker–Planck operator and its properties. In this section, we suppose
R = 1 and P = E(P1,σ ) = 0 in (1) and introduce in this case the backward
Kolmogorov operator L and its adjoint L∗, called forward Kolmogorov or also
Fokker–Planck operator [21]. Their use for the calculation of the averaged Birk-
hoff sum is exhibited and several properties of these operators are studied. One
way to define the operator L :C∞(M) → C∞(M) is

(Lf )(x) = d2

dλ2

∣∣∣∣
λ=0

(Tλf )(x).(9)

Let us rewrite this using the smooth vector fields ∂P associated to any element
P ∈ g by

∂P f (x) = d

dλ

∣∣∣∣
λ=0

f (eλP · x).(10)

Then L is given by

L = Eσ (∂2
P1,σ

+ 2∂P2,σ
).(11)

PROPOSITION 1. For F ∈ C∞(M), one has

Iλ,N(LF) = O
(

1

Nλ2 , λ

)
.

PROOF. For P ∈ g, a Taylor expansion with Lagrange remainder gives

F(eP · x) = F(x) + (∂P F )(x) + 1
2(∂2

P F )(x) + 1
6(∂3

P F )(eχP · x),

for some χ ∈ [0,1]. Choose P = λP1,σ + λ2P2,σ + λ3Sσ (λ), where Sσ (λ) =∑∞
n=3 λn−3Pn,σ and use that P1,σ is centered to obtain

EσF (Tλ,σ · x) = F(x) + Eσ

(
λ2(1

2∂2
P1,σ

F (x) + ∂P2,σ
F (x)

)) + O(λ3)

= F(x) + 1
2λ2LF(x) + O(λ3).

The error terms depend on derivatives of F up to order 3 and are uniform in x

because M is compact and P1,σ , P2,σ and Sσ (λ) are compactly supported by (2).
Due to definition (3), this implies

Eω

1

N

N∑
n=1

F(xn(λ,ω)) = Eω

1

N

N−1∑
n=0

F(xn(λ,ω)) + λ2

2
Iλ,N(LF) + O(λ3).
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As the appearing sums only differ by a boundary term, resolving for Iλ,N(LF)

finishes the proof. �

Next, let us bring the operator L into a normal form. According to Appendix A,
one can decompose P1,σ into a finite linear combination of fixed Lie algebra vec-
tors Pi ∈ g, i ∈ I , with uncorrelated real random coefficients, namely

P1,σ =
I∑

i=1

vi,σ Pi , vi,σ ∈ R, Eσ (vi,σ ) = 0, Eσ (vi,σ vi′,σ ) = δi,i′ .

Then (11) implies that L is in the so-called Hörmander form

L =
I∑

i=1

∂2
Pi

+ 2∂Q,

where Q = Eσ (P2,σ ). Using the main assumption of Theorem 1 (i.e., v ⊂ u), one
can show that L satisfies the strong Hörmander property of rank r ∈ N [14, 15,
23].

PROPOSITION 2. Under the assumptions of Theorem 1, there exists r ∈ N such
that L satisfies a strong Hörmander property of rank r , that is, the vector fields ∂Pi

and their r-fold commutators span the whole tangent space at every point of M.

In order to check this, one needs to calculate the commutators of vector fields
∂P , ∂Q for P,Q ∈ g. Let XP ,XQ denote the left-invariant vector fields on G and
furthermore introduce for each x ∈ M a function on G by fx(T ) = f (T · x),
T ∈ G . Then one obtains

∂P ∂Qf (x) = d

dλ

∣∣∣∣
λ=0

(∂Qf )(eλP · x) = d2

dλdμ

∣∣∣∣
λ,μ=0

f (eμQeλP · x)

= XQXP fx(1),

which implies

(∂P ∂Q − ∂Q∂P )f (x) = (XQXP − XP XQ)fx(1) = X[Q,P ]fx(1)
(12)

= ∂[Q,P ]f (x),

where [Q,P ] denotes the Lie bracket (this is well known, see Theorem II.3.4 in
[12]). We also need the following lemma for the proof of Proposition 2.

LEMMA 1. Let U ⊂ G be a Lie subgroup of G that acts transitively on M and
denote the Lie algebra of U by u. Then the vector fields ∂P , P ∈ u, span the whole
tangent space at each point of M.
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PROOF. First, let us show that there is a dense set of points in M for which the
vector fields ∂P , P ∈ u, span the whole tangent space. Indeed, for a fixed x ∈ M
consider the surjective, smooth map ϕx : U → M, ϕx(U) = U · x. A point x′ ∈
M is called regular for ϕx if and only if for any point in the preimage of x′ the
differential Dϕx is surjective. For each point x′, the hypothesis implies that there
is a U ∈ U such that x′ = ϕx(U) = U · x and the regularity of x′ then shows that
the paths λ �→ ϕx(e

λP U) = eλP · x′, P ∈ u, span the whole tangent space at x′. By
Sard’s theorem [13], the set of regular points is dense in M.

Actually, the existence of only 1 regular point x implies that all points are reg-
ular. In fact, again any other point is of the form x′ = U · x. As the map x �→ x′ =
U · x is a diffeomorphism, the push-forward of the paths λ �→ exp(λP ) · x, P ∈ u,
given by the paths λ �→ U exp(λP ) · x = eλUPU−1 · x′, P ∈ u, span the tangent
space also at x′. �

PROOF OF PROPOSITION 2. Define iteratively the subspaces vr ⊂ g by

v1 = span{Pi : 1 ≤ i ≤ I }, vr = span(vr−1 ∪ [vr−1,v1]).(13)

By definition, one has v1 = span(supp(Pσ )). The space v ⊂ g defined in Theo-
rem 1 is equal to v = Lie(v1). Due to (12), the strong Hörmander property of rank
r is equivalent to the property that ∂P , P ∈ vr , spans the whole tangent space at
every point x ∈ M.

By the Lemma 1 and the assumption of Theorem 1, this is fulfilled if vr = v for
some r . As the vector spaces vr are nested and g is finite dimensional, the sequence
has to become stationary. This means, there is some r such that vr = vr+1. Using
the Jacobi identity, one then checks that vr is closed under the Lie bracket and
therefore vr = v. �

Next, we want to recollect the consequences of the strong Hörmander property
of rank r as proved in [14, 15, 23]. The first basic fact is the subelliptic estimate
within any chart

‖f ‖(1/r) ≤ C
(‖Lf ‖(0) + ‖f ‖(0)

)
,(14)

where ‖·‖(s) denotes the Sobolev norms. Using a finite atlas of M, one can define a
global Sobolev space Hs(M) with norm also denoted by ‖ ·‖(s). Then the estimate
(14) holds also w.r.t. these global norms. Moreover, the norm ‖ · ‖(0) can be seen
to be equivalent to the norm in L2(M,μ) where μ is the Riemannian volume
measure. As usual, the embedding of Hs+ε(M) in Hs(M) is compact for any
ε > 0.

The second basic fact is the hypoellipticity of L. In order to state this property,
let us first extend L in the usual dual way to an operator Ldis on the space D′ =
(C∞(M))′ of distributions on M. Then hypoellipticity states that, for any smooth
function g, the solution f of Ldisf = g is itself smooth.
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The Fokker–Planck operator L∗ is the adjoint of L in L2(M,μ). Because M is
compact and has no boundary, the domain D(L∗) of L∗ contains the smooth func-
tions C∞(M). Furthermore, L∗ is again a second-order differential operator with
the same principal symbol as L. Therefore, L∗ also satisfies the strong Hörmander
condition of rank r . Thus, the subelliptic estimate as well as the hypoellipticity
property also holds for L∗

dis. We, moreover, deduce that L is closable with closure
L = L∗∗ ⊂ Ldis.

The following proposition recollects properties of L as a densely defined oper-
ator on the Hilbert space L2(M,μ).

PROPOSITION 3. There exists c0 > 0 such that for c > c0 the following holds:

(i) L − c is dissipative.
(ii) (L − c)(C∞(M)) is dense in L2(M,μ).

(iii) L − c is maximally dissipative.
(iv) L − c is the generator of a contraction semigroup on L2(M,μ).
(v) The resolvent (L − c)−1 exists and is a compact operator on L2(M,μ).

PROOF. (i) Let us rewrite L:

Lf =
I∑

i=1

[div(∂Pi
(f )∂Pi

) − div(∂Pi
)∂Pi

(f )] + 2∂Q(f ).

Defining X to be the smooth vector field 2∂Q − ∑
i div(∂Pi

)∂Pi
, one has

Lf =
I∑

i=1

div(∂Pi
(f ) ∂Pi

) + X(f ).

For a real, smooth function f , the divergence theorem and estimate on the negative
quadratic term gives

〈f |Lf 〉 =
∫

M
dμ

[
−

I∑
i=1

∂Pi
(f ) ∂Pi

(f ) + f X(f )

]
≤

∫
M

dμf X(f ).

Using 2f X(f ) = X(f 2) = div(f 2X) − f 2 div(X) and again the divergence theo-
rem, it follows that

〈f |Lf 〉 ≤ −1

2

∫
M

dμ div(X)f 2 ≤ 1

2
‖div(X)‖∞‖f ‖2

2.(15)

As L is real, it follows that �e〈f |(L −c)f 〉 ≤ 0 for f ∈ C∞(M) and c > c0 where
c0 = 1

2‖div(X)‖∞. By definition, this means precisely that L − c is dissipative.
(ii) Let h ∈ L2(M,μ) such that 〈h|Lf − cf 〉 = 0 for all f ∈ C∞(M) = D(L).

Then h is in the kernel of L∗
dis. By hypoellipticity, it follows that h ∈ C∞(M).

Therefore, 〈h|Lh〉 = c‖h‖2
2 contradicting (15) unless h = 0.
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The statement (iii) means that there is no dissipative extension, which follows
directly from (i) and (ii) by [5], Theorems 2.24, 2.25 and 6.4. Item (iv) follows
from the same reference.

Concerning (v), the existence of the resolvent follows directly upon integration
of the contraction semigroup. Its compactness follows from the subelliptic estimate
(14) and the compact embedding of Hs(M) into L2(M,μ). �

The next proposition is based on Bony’s maximum principle for strong Hör-
mander operators [1], as well as standard Fredholm theory.

PROPOSITION 4. (i) The kernel of L consists of the constant functions on M.
(ii) The kernel of L∗ is one dimensional and spanned by a smooth function ρ0.

(iii) Ran L = (ker L∗)⊥ and Ran L∗ = (ker L)⊥ = (ker L)⊥.
(iv) ρ0 is μ-almost surely positive.

PROOF. (i) By Corollaire 3.1 of [1], a smooth function f which has a local
maximum and for which Lf = 0 has to be constant on (the pathwise connected
compact set) M. If f lies in the kernel of the closure L = L∗∗, then Ldisf = 0. As
L is hypoelliptic, f ∈ C∞(M) and therefore f is again constant.

(ii) Choose c > c0 as in Proposition 3 and let K = (L + c)−1. Then one has

Lf = g ⇔ (L + c)f = cf + g ⇔ f = cKf + Kg

⇔ (1 − cK)f = Kg,

and similarly L∗f = g ⇔ (1 − cK∗)f = K∗g. For g = 0, this implies ker L =
ker(1 − cK) and ker L∗ = ker(1 − c̄K∗). By the Fredholm alternative (the index
of 1 + cK is 0), the dimension of these two kernels are equal and by (i) hence,
both one dimensional. The smoothness of the function in the kernel follows from
the hypoellipticity of L∗.

(iii) For v ∈ ker L∗ = ker(1 − cK∗) and 〈g|v〉 = 0, one has 0 = 〈g|v〉 =
〈g|cK∗v〉 = c〈Kg|v〉, therefore g ∈ (ker L∗)⊥ implies Kg ∈ ker(1 − cK)⊥ and
the Fredholm alternative states that (1 − cK)f = Kg is solvable. Hence by the
above, Lf = g is solvable. Therefore, Ran L = (ker L∗)⊥. The other equality is
proved analogously.

(iv) Let f ≥ 0 be smooth and suppose that
∫

dμρ0f = 0. According to (ii),
(iii) and hypoellipticity this implies that f = LF ≥ 0 for some smooth F . Again
by Bony’s maximum principle F is constant and therefore f = 0. Hence, for any
nonvanishing positive function f one has

∫
dμρ0f > 0. �

Even though not relevant for the sequel, let us also prove the following.

PROPOSITION 5. L generates a contraction semigroup in (C(M),‖ · ‖∞),
also called a Feller semigroup.
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PROOF. This will follow directly from the Hille–Yosida theorem [16], The-
orem 19.11, once we verified that (L − c)C∞(M) is dense in C(M) for some
c > 0 and that L satisfies the positive-maximum principle. The first property fol-
lows from the existence of the resolvent (Proposition 3) and the hypoellipticity. For
the second, let a smooth f have a positive local maximum at some x ∈ M. Then
one only has to check (Lf )(x) ≤ 0, which follows because the first derivatives
of f vanish, its second derivative is negative and the principal symbol is positive
definite. �

One can rewrite (9) as limλ→0
1

2λ2 (Tλ − 1)f = Lf in ‖ · ‖∞ and for f ∈
C∞(M). Hence, the above statement and [16], 19.28, implies directly the fol-
lowing approximation result of the Feller process by the discrete time Markov
processes.

COROLLARY 2. Let et L denote the Feller semigroup of Proposition 5. Then
with convergence in (C(M),‖ · ‖∞),

lim
λ→0

T
[t/(2λ2)]
λ f = et Lf.

Finally, let us note yet another representation of the generator L following from
the two above, namely L = limN→∞ 1

2Nβ((TN−α )N − 1) where β = 2α − 1 > 0
and with strong convergence.

3. Control of Birkhoff sum in the case R = 1,P = 0. The aim of this sec-
tion is the proof of Theorem 1.

PROPOSITION 6. Let R = 1 and P = 0. The kernel of L∗
dis is spanned by

a nonnegative smooth function ρ0 that is normalized by
∫

M dμρ0 = 1. For f ∈
C∞(M),

Iλ,N(f ) =
∫

M
dμρ0f + O

(
1

Nλ2 , λ

)
.

PROOF. By hypoellipticity, the kernel of L∗
dis coincides with the kernel of L∗.

First, we show C∞(M) = C1M + LC∞(M). Indeed, let f ∈ C∞(M). Set
C = ∫

M dμfρ0 and f̂ = f − C. Then one has
∫

M dμ f̂ ρ0 = 0 and therefore
f̂ ∈ (ker L∗)⊥ = Ran L by Proposition 4. By hypoellipticity, f̂ ∈ L(C∞(M)).

Now using Proposition 1 and the above decomposition

Iλ,N(f ) = Iλ,N(f̂ + C) = C + Iλ,N(LF) = C + O(N−1λ−2, λ),

one completes the proof. �
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In order to prove Theorem 1, let us define the operators

L(M)f (x) = dM

dλM

∣∣∣∣
λ=0

(Tλf )(x), f ∈ C∞(M).

Then L(1) = 0 as P1,σ is centered and L(2) = L. Using (1), these operators can be
written as

L(M)f = Eσ

(
M∑

m=0

∑
a1+···+am=M

M!
m! ∂Pa1 ,σ · · · ∂Pam,σ f

)
.

Hence, L(M) is a differential operator of order M . As 1M ∈ ker L(m) and hence
ker L ⊂ ker L(m) for all positive m, one obtains using Proposition 4(iii)

Ran L(m)∗ ⊂ (
ker L(m))⊥ ⊂ (ker L)⊥ = Ran L∗.

Therefore, and as ker L∗ is one dimensional, the functions ρM for M ∈ N are iter-
atively and uniquely defined by

L∗ρM =
M∑

m=1

2

(m + 2)! L(m+2)∗ρM−m,

∫
M

dμρM = 0,(16)

with ρ0 given by Proposition 6. By induction and hypoellipticity of L∗, it follows
that ρM is a smooth function for all M , therefore the right-hand side of (16) always
exists. Now we can complete the following proof.

PROOF OF THEOREM 1. The proof will be done by induction. The case M = 0
is contained in Proposition 6. For the step from M − 1 to M , we first need a Taylor
expansion of higher order than done so far. As P1,σ is centered and due to the
compact support of Pn,σ and

∑
m≥n λm−nPn,σ [uniform for small λ by (2)], one

obtains with uniform error bound

TλF (x) = F(x) + 1

2
λ2LF(x) +

M+2∑
m=3

λm

m! L(m)F (x) + O(λM+3),

which using the induction hypothesis implies for Birkhoff sums

Iλ,N(LF) =
M∑

m=1

2λm

(m + 2)!Iλ,N

(
L(m+2)F

) + O
(
λM+1,

1

λ2N

)

=
M∑

m=1

M−m∑
l=0

2λl+m

(m + 2)!
∫

dμρl L(m+2)F + O
(
λM+1,

1

λ2N

)

=
M∑

m=1

m∑
l=1

2λm

(l + 2)!
∫

dμ
(

L(l+2)∗ρm−l

)
F + O

(
λM+1,

1

λ2N

)

=
M∑

m=1

λm
∫

dμρm(LF) + O
(
λM+1,

1

λ2N

)
.
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The last step follows from the definition (16) of ρm. Now given any smooth func-
tion f , we can write it as f = ∫

dμρ0f + LF and obtain

Iλ,N(f ) =
∫

dμρ0f +
M∑

m=1

λm
∫

dμρmLF + O
(
λM+1,

1

λ2N

)

=
M∑

m=0

λm
∫

dμρmf + O
(
λM+1,

1

λ2N

)
,

where the last step follows from
∫

dμρm = 0 for m ≥ 1. �

4. Extension to lowest-order rotations. In this section, the lowest-order ma-
trix R is an arbitrary rotation and E(P1,σ ) = P commutes with R and gener-
ates a rotation. For any R ∈ G , let us consider the associated diffeomorphism
x ∈ M �→ R · x and its differential DR. Then the push-forward of functions
f : M → C and vector fields X = (Xx)x∈M are defined by

(R∗f )(x) = f (R−1 · x), (R∗X)R·x = DRx(Xx).

The pull-back is then R∗ = (R∗)−1. With this notation, R∗(Xf ) = (R∗X)(R∗f )

and

R∗(∂P (R∗f )) = (R∗∂P )f = ∂RPR−1f.

Furthermore, we set R∗(XY) = (R∗X)(R∗Y) for the composition of two vector
fields X and Y .

Now let L be defined as in (11) [note that this is not equal to the right-hand side
of (9)]. As R is a zeroth-order term in λ, the Birkhoff sums are to lowest order
given by averages along the orbits of R. Furthermore the expectation of the first-
order term, λP , then leads to averages over the group 〈P〉 to order λ. It is hence
reasonable to expect that an averaged Kolmogorov operator has to be considered.
In order to define it, recall that there are unique, normalized Haar measures on the
compact groups 〈R〉, 〈P〉 and 〈R, P〉. Averages with respect to these measures will
be denoted by E〈R〉, E〈P〉 and E〈R,P〉; the integration variable will be R. As the
Haar measure is defined by left invariance and the groups 〈R〉 and 〈P〉 commute
by hypothesis, one has E〈R,P〉(g(R)) = E〈P〉(ĝ(R) for ĝ(R̃) = E〈R〉(g(R̃R)) and
any function g on 〈R, P〉. Then set

L̂ = E〈R,P〉(R∗L) = E〈R,P〉
(

I∑
i=1

∂2
RPiR

−1 + ∂2
P + 2∂RQR−1

)
,(17)

where Pi are obtained by decomposing the centered random variable P1,σ − P
into a sum

∑
i vi,σ Pi such that the real coefficients satisfy E(vi,σ vi′,σ ) = δi,i′ (cf.

Appendix A). With this definition, we are able to prove a result similar to Proposi-
tion 1.
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PROPOSITION 7. Let f ∈ C∞(M) and assume one of the following condi-
tions to hold:

(i) R and P are Diophantine and M = K/H for compact Lie groups K and
H ⊂ K.

(ii) f consists of only low frequencies w.r.t. 〈R, P〉.
Then one has

Iλ,N(L̂f ) = O
(

1

Nλ2 , λ

)
.

For the proof, we first need the following lemma.

LEMMA 2. Let f ∈ C∞(M), f0 = E〈R〉(R∗f ) and f̃0 = E〈P〉(R∗f0) =
E〈R,P〉(R∗f ). If either (i) or (ii) as in the Proposition 7 holds, then

f − f0 = g − R∗g, f0 − f̃0 = ∂P E〈R〉(R∗g̃),(18)

for smooth functions g, g̃ ∈ C∞(M).

PROOF. The group 〈R〉 is isomorphic to a torus T
LR with isomorphism

RR(θ) ∈ 〈R〉. Furthermore we define θ̂R by R = RR(θ̂R). If f consists of only
low frequencies w.r.t. 〈R, P〉, it can be written as finite sum of its Fourier coeffi-
cients

f = ∑
‖j‖<J

fj where fj

(
RR(θ) · x) = eıj ·θfj (x),

where the Fourier coefficients are calculated as in (6). Now set

g = ∑
0<‖j‖<J

fj

1 − eıj ·θ̂R
.

This is well defined because θ̂R is irrational as it generates the whole torus. Then
g − R∗g = ∑

0<‖j‖<J fj = f − f0.
As 〈P〉 is an embedded subtorus in 〈R, P〉, f0 consists of only low frequencies

w.r.t. 〈P〉. Let RP (θ) denote the isomorphism of T
LP with 〈P〉 such that eλP =

RP (λθ̂P ). One can decompose f0 = E〈R〉((R)∗f ) into a Fourier sum w.r.t. the
group 〈P〉:

f0 = ∑
‖j‖<J

f̃j where f̃j

(
RP (θ) · x) = eıj ·θ f̃j (x).

Then

g̃ = ∑
0<‖j‖<J

f̃j

ıj · θ̂P
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satisfies ∂P g̃ = f0 − f̃0. Furthermore, f0 − f̃0 is invariant under R which com-
mutes with P , thus

f0 − f̃0 = E〈R〉(R∗∂P g̃) = ∂P E〈R〉(R∗g̃).

In case (i), g and g̃ will be defined by the same formulas, but with infinite sums.
Thus, we have to show that these sums are well defined and that they define smooth
functions on M. Let p :K → M be the projection identifying M with K/H and
define the smooth class function F(K, θ) = f (RR(θ) · p(K)) on the compact Lie
group K × T

LR . We want to compare the Fourier series (6) of f w.r.t. R with
the Fourier series of F as given by the Peter–Weyl theorem. By Theorem 5 in
Appendix B, this Fourier series of F is given by

f
(
RR(θ) · p(K)

) = F(K, θ) = ∑
a∈W+

∑
j∈Z

LR

d(a)Tr(F F(a, j)πa(K))eıj ·θ ,

where W+ denotes the set of highest weight vectors of K, πa :K → U(d(a)) is the
d(a)-dimensional, unitary representation of K parameterized by a, and F F(a, j)

is a d(a) × d(a) matrix given by

F F(a, j) =
∫
K

dK

∫
T

LR
dθ F (K, θ)πa(K

−1)e−ıj ·θ .

Here, dθ and dK denote the normalized Haar measures. Comparing this equation
with (6), one obtains that the Fourier coefficients w.r.t. 〈R〉 satisfy

fj (p(K)) = ∑
a∈W+

d(a)Tr(F F(a, j)πa(K)).

Let gj (x) = (1−eıj ·θ̂R )−1fj for ‖j‖ > 0. The next aim is to verify that the infinite
sum g = ∑

‖j‖>0 gj defines a smooth function on M.
As F is smooth, the Fourier coefficients F F(a, j) are rapidly decreasing by

[29] or Theorem 4 in Appendix B, meaning that lim‖(a,j)‖→∞ ‖(a, j)‖h‖F F(a,
j)‖ = 0 for any natural h. Here, one may choose some norm for which ‖(a, j)‖ ≥
‖j‖ and ‖F F(a, j)‖ denotes the Hilbert–Schmidt norm. As R is Diophantine,
|eıj ·θ̂R − 1| ≥ C‖j‖−s ≥ C‖(a, j)‖−s for some natural s and the coefficients
F G(a, j) = (1 − eıj ·θ̂R )−1F F(a, j) defined for ‖j‖ > 0 are still rapidly decreas-
ing. Therefore,

G(K,θ) = ∑
‖j‖>0

∑
a∈W+

d(a)Tr(F G(a, j)πa(K))eıj ·θ = ∑
‖j‖>0

gj (p(K))eıj ·θ

is a smooth function and the series converges absolutely and uniformly by Theo-
rem 4. Setting θ = 0, this implies that

∑
‖j‖>0 gj converges uniformly to a smooth

function g on M satisfying g − R∗g = ∑
‖j‖>0 fj = f − f0.

As before, we write f0 = E〈R〉(R∗f ) as sum of Fourier coefficients w.r.t. 〈P〉,
so f0 = ∑

j f̃j , and let g̃j = (ıj · θ̂P )−1f̃j for ‖j‖ > 0. Consider the function
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F̃ (K, θ) = f0(RP (θ) · p(K)) on K × T
LP , just as above define the Fourier coef-

ficients F F̃ (a, j) for a ∈ W+, j ∈ Z
LP and let F G̃(a, j) = (ıj · θ̂P )−1F F̃ (a, j).

As |j · θ̂P | ≥ C‖j‖−s ≥ C‖(a, j)‖−s the coefficients F G̃(a, j) are rapidly de-
creasing, the series

G̃(K, θ) = ∑
a∈W+

∑
j∈Z

LP

d(a)Tr(F G̃(a, j)πa(K))eıj ·θ = ∑
‖j‖>0

g̃j (p(K))eıj ·θ

converges absolutely and G̃ is smooth. Thus, g̃ = ∑
‖j‖>0 g̃j exists, is smooth and

∂P g̃ = d

dλ

∣∣∣∣
λ=0

∑
‖j‖>0

g̃j e
ıλj ·θ̂P = ∑

‖j‖>0

f̃j = f0 − f̃0.

As f0 − f̃0 is R-invariant one obtains also ∂P E〈R〉(R∗g̃) = f0 − f̃0. �

LEMMA 3. If either (i) or (ii), as in Proposition 7 holds, one has

Iλ,N(f ) = Iλ,N

(
E〈R,P〉(R∗f )

) + O
(
λ,

1

λN

)
.

PROOF. Similarly as in the proof of Proposition 1, a Taylor expansion gives

EσF (Tλ,σ · x) = R∗F(x) + λ∂P R∗F(x) + λ2

2
L R∗F(x) + O(λ3),

where the error term is uniform in x. For Birkhoff sums, this implies

Iλ,N(F − R∗F) = λIλ,N(∂P R∗F) + λ2

2
Iλ,N(L R∗F) + O

(
λ3,

1

N

)
.(19)

Using this for F = g, it therefore follows that Iλ,N(f − f0) = Iλ,N(g − R∗g) =
O(λ,N−1). The function F = E〈R〉(R∗g̃) is R∗-invariant, so that the left-hand
side of (19) vanishes, and it follows that

Iλ,N(f0 − f̃0) = Iλ,N

(
∂P E〈R〉(R∗g̃)

) = O
(
λ,

1

λN

)
.

Combining both estimates completes the proof. �

As an immediate consequence, one obtains the following.

COROLLARY 3. The derivative dRR,P of the isomorphism RR,P : TLR,P

gives an isomorphism from ıRLR,P to the Lie algebra r of 〈R, P〉. Let Q1, . . . ,

QLR,P be the images of the standard orthonormal basis. Then one has exp(2π ×
Qi ) = 1 and the Qi span r. If either (i) or (ii) as in Proposition 7 holds, one has

Iλ,N(∂Qi
(f )) = O

(
λ,

1

λN

)
implying Iλ,N

(LR,P∑
i=1

∂2
Qi

(f )

)
= O

(
λ,

1

λN

)
.



2242 C. SADEL AND H. SCHULZ-BALDES

PROOF. First, note that ∂Qi
f consists of only low frequencies w.r.t. 〈R, P〉

whenever f does. By Lemma 3, it is sufficient to prove E〈R,P〉(R∗(∂Qi
f )) = 0.

This can be easily checked to be true as
∫ 1

0 dt exp(2πt Qi )
∗(∂Qi

f ) = 0. �

The following lemma is only needed for the proof of Theorem 2 under hypoth-
esis (ii).

LEMMA 4. For any Lie algebra element P ∈ g, smooth function f on M and
any x ∈ M, the map 〈R, P〉 → C, R �→ ∂i

RPR−1f (x), i ∈ N, is a trigonometric
polynomial on 〈R, P〉 with uniformly bounded coefficients and uniform degree in
x ∈ M (depending on i though). This implies that the function L(E〈R,P〉(R∗f ))

consists of only low frequencies w.r.t. 〈R, P〉.

PROOF. As stated above, 〈R, P〉 ⊂ G ⊂ GL(L,C) is isomorphic to T
LR,P

and the isomorphism is denoted by RR,P (θ) ∈ 〈R, P〉. Furthermore, this group
lies in some maximal torus of GL(L,C). As all maximal tori are conjugate to each
other, so that by exchanging G with some conjugate subgroup in GL(L,C) one
may assume 〈R, P〉 to be diagonal, that is, it consists of diagonal matrices R(θ) =
diag(eıϕ1(θ), . . . , eıϕL(θ)). Beneath the ϕ1(θ), . . . , ϕL(θ) there are maximally LR,P
rationally independent, and each is a linear combination with integer coefficients
of θ1, . . . , θLR,P . Hence, any trigonometric polynomial in ϕ(θ) is a trigonometric
polynomial in θ (possibly of higher degree), that is a trigonometric polynomial on
〈R, P〉.

On g ⊂ gl(L,C), consider the usual real scalar product �e Tr(P ∗Q) =
�e

∑
a,b PabQab, where Pab denotes the entries of the matrix P . Let M = dimR(g)

and B1, . . . ,BM ∈ g be some orthonormal basis for g w.r.t. this scalar product. If
R = diag(eıϕ1, . . . , eıϕL) ∈ 〈R, P〉 and P ∈ g, then one has

RPR−1 =
M∑

m=1

L∑
a,b=1

�e(Bm
ab(RPR−1)ab)B

m

=
M∑

m=1

L∑
a,b=1

�e
(
Bm

abPabe
ı(ϕa−ϕb)

)
Bm,

and therefore

∂i
RPR−1f =

(
M∑

m=1

L∑
a,b=1

�e
(
Bm

abPabe
ı(ϕa−ϕb)

)
∂Bm

)i

f

is a trigonometric polynomial in ϕ. Thus by definition of L, the map R �→
R∗(L(R∗f )) = (R∗L)f is a trigonometric polynomial on 〈R, P〉, and therefore
also R �→ R∗(Lf̂ ) for f̂ = E〈R,P〉(R∗f ). But this means precisely that Lf̂ con-
sists of only low frequencies w.r.t. 〈R, P〉. �
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PROOF OF PROPOSITION 7. As L̂ = E〈R,P〉(R∗L), it follows for R ∈
〈R, P〉 that (R∗L̂)f = L̂f = (R∗L̂)f . This implies R∗(L̂f ) = L̂(R∗f ) and
E〈R,P〉(R∗(L̂f )) = L̂(E〈R,P〉(R∗f )). Hence, the Fourier coefficients of L̂f are
given by

(L̂f )j = L̂(fj ).(20)

Therefore, L̂f consists of only low frequencies w.r.t. 〈R, P〉 whenever f does.
Furthermore, one obtains for f̂ = E〈R,P〉(R∗f ) the following equalities:

E〈R,P〉(R∗(L̂f )) = L̂f̂ = E〈R,P〉(R∗(L(R∗f̂ ))) = E〈R,P〉(R∗(Lf̂ )).

Now Lf̂ consists of only low frequencies by Lemma 4.
Thus, applying Lemma 3 twice [the hypothesis are given either by hypothesis

(i) of Proposition 7 or by (ii) and Lemma 4]. One obtains

Iλ,N(L̂f ) = Iλ,N

(
E〈R,P〉(R∗(L̂f ))

) + O
(
λ,

1

λN

)
= Iλ,N(Lf̂ ) + O

(
λ,

1

λN

)
.

As R∗f̂ = f̂ and ∂P f̂ = 0, equation (19) for F = f̂ implies

Iλ,N(Lf̂ ) = O
(

1

λ2N
,λ

)
,

which combined with the above finishes the proof. �

After these preparations, the proof of Theorem 2 is analogous to the case R = 1.

PROOF OF THEOREM 2. Consider the Markov process on M induced by the
random family

Tλ,σ̂ = exp(λP1,σ̂ + λ2P2,σ̂ ),

where σ̂ = (σ,R,α,β, i) ∈ �̂ = � ×〈R, P〉× {−1,1}× {−1,1}× {1, . . . ,LR,P }
and P1,σ̂ = (RP1,σR−1 − P)+αP +βQi , P2,σ̂ = RP2,σR−1. The Qi are defined
as in Corollary 3. �̂ is equipped with the probability measure p × dR × 1

2(δ−1 +
δ1) × 1

2(δ−1 + δ1) × 1
LR,P

(δ1 + · · · + δLR,P ) where dR denotes the Haar measure

on 〈R, P〉. Let us define L̃ = L̂ + ∑LR,P
i=1 ∂2

Qi
. As Eσ̂ (P1,σ̂ ) = 0,

L̃ =
LR,P∑
i=1

∂2
Qi

+ E〈R,P〉Eσ (∂2
RP1,σ R−1−P + ∂2

P + 2∂RP2,σ R−1) = Eσ̂ (∂2
P1,σ̂

+ 2∂P2,σ̂
)

and span(supp(P1,σ̂ )) = span(supp(p), r), this new process leads to the operator

L̃ = L̂ + ∑LR,P
i=1 ∂2

Qi
instead of L and the whole analysis done for L in the case

R = 1, P = 0 is applicable to L̃ now due to the hypothesis of Theorem 2. In partic-
ular, L̃ and L̃∗ are hypoelliptic operators, the kernel of L̃ consists of the constant
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functions and the kernel of L̃∗ is one-dimensional and spanned by a normalized,
smooth function ρ0 ≥ 0. Furthermore, C∞(M) = C1M + L̃C∞(M) and hence
for any smooth function f and C = ∫

M dμρ0f , there is a smooth function g such
that f = C + L̃g.

Assume f consists of only low frequencies, that is, fj = 0 for ‖j‖ > J . Then
by (20) one obtains for frequencies ‖j‖ > 0 that fj = (f − C)j = L̃gj and hence
L̃gj = 0 for ‖j‖ ≥ J . Therefore gj is constant, which means gj = 0 as ‖j‖ > J >

0 and g consists of only low frequencies if f does. Hence, Proposition 7 implies
for both cases (i) and (ii) the first statement of Theorem 2:

Iλ,N(f ) = C + Iλ,N(L̃g) = C + O
(
λ,

1

λ2N

)
.

To see that the measure ρ0μ is 〈R, P〉-invariant, let again f be any smooth
function. As mentioned above, there exists g ∈ C∞(M) and C ∈ C such that L̃g =
f − C. For all R ∈ 〈R, P〉, this implies L̃R∗g = R∗L̃g = R∗f − C and hence
f − R∗f = L̃(g − R∗g) ∈ (ker L̃∗)⊥ which gives∫

M
dμρ0(f − R∗f ) = 0.

This is precisely the stated invariance property of the measure ρ0μ. �

5. An application to random Jacobi matrices.

5.1. Randomly coupled wires. Here, we consider a family Hλ of random Ja-
cobi matrices with matrix entries of the form

(Hλψ)n = −ψn+1 − ψn−1 + λWσnψn, ψ = (ψn)n∈Z ∈ (CL)×Z,

where the (Wσn)n∈Z are independently drawn from an ensemble of Hermitian L ×
L matrices, for which all the entries Wi,j ∈ C, 1 ≤ i < j ≤ L, and Wk,k ∈ R, 1 ≤
k ≤ L, are independent and centered random variables with variances satisfying

E(W 2
i,j ) = 0, E(|Wi,j |2) = 1, E(W 2

k,k) = 1.(21)

This is equivalent to having E(Wi,jWk,l) = δi,lδj,k . This model is relevant for
the quantum mechanical description of a disordered wire, consisting of L iden-
tical subwires (all described by a one-dimensional discrete Laplacian) which are
pairwise coupled by random hopping elements having random magnetic phases.
Moreover, within each wire there is a random potential of the Anderson type. This
is similar to a model considered by Wegner [30] and Dorokhov [8]. We are inter-
ested in the weak coupling limit of small randomness. Next, we show how this
model leads to a question which fits the framework of the main theorems of this
work.
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For a given fixed energy E ∈ (−2,2), the associated transfer matrices [2, 20]
are

T̂ E
λ,σ =

(
λWσ − E1 −1

1 0

)
.

Let us introduce the symplectic form J , the Lorentz form G and the Cayley trans-
formation C by

J =
(

0 −1
1 0

)
, G =

(
1 0
0 −1

)
, C = 1√

2

(
1 −ı1
1 ı1

)
.

Then the transfer matrix T̂ E
λ,σ is in the Hermitian symplectic group, namely it

satisfies T̂ ∗J T̂ = J . Hence, its Cayley transform C T̂ E
λ,σ C∗ is in the generalized

Lorentz group U(L,L) of signature (L,L) consisting by definition of the complex
2L × 2L matrices T̂ satisfying T ∗G T = G . As a first step, let bring the transfer
matrix in its normal form (this corresponds to a change of conjugation as in the
proof of Lemma 4). Setting E = −2 cos(k) and

N = 1√
sin(k)

(
sin(k)1 0

− cos(k)1 1

)
,

where |E| < 2, sin(k) �= 0, it is a matter of computation to verify

Tλ,σ = C N T̂ E
λ,σ N −1C∗ = Rke

λPσ ∈ U(L,L),

where

Rk =
(

e−ık1 0
0 eık1

)
, Pσ = ı

2 sin(k)

(
Wσ Wσ

−Wσ −Wσ

)
.(22)

Note that the group generated by Rk is a subgroup of the group consisting of all
Rθ for θ ∈ T. Furthermore, E(Wσ ) = 0.

The group U(L,L) naturally acts on the Grassmanian flag manifold M of G -
isotropic subspaces of C

2L [2]. In order to describe the flag manifold, let us intro-
duce the set of isotropic frames

I = {� ∈ Mat(2L × L,C) :�∗� = 1; ,�∗G� = 0}.
One readily checks that each � ∈ I is of the from � = 2−1/2(U

V

)
with U,V ∈U(L).

Hence, I ∼= U(L) × U(L) and it has a natural measure given by the product of the
Haar measures. The column vectors of � then generate a flag. Two isotropic frames
�1 and �2 span the same flag if and only if there is an upper triangular L × L

matrix S such that �1 = �2S. Due to the above, S is also unitary so that it has to be
a diagonal unitary. These diagonal unitaries can be identified with the torus T

L and
thus I is a T

L-cover of the flag manifold, namely M = I/T
L = U(L)× U(L)/T

L.
Consequently M is a symmetric space and it also carries a natural measure μ. The
group action of U(L,L) on U(L) × U(L) is given(

A B

C D

)
·
(

U

V

)
=

(
AU + BV

CU + DV

)
S,(23)
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where S is an upper triangular matrix such that (AU + BV )S is unitary; then
automatically also (CU + DV )S is unitary. This also defines an action on the
quotient M and one readily checks that μ is invariant under the action of the
subgroup U(L,L) ∩ U(2L).

Let us recall how the general framework of the Introduction is applied in the
present situation: the Lie group is G = U(L,L) acting on the compact flag mani-
fold M by (23); equation (22) shows that the rotation is R = Rk and the random
perturbation P1,σ = Pσ , while Pn,σ = 0 for n ≥ 2. Objects of interest are now the
L positive Lyapunov exponents γl,λ(E), l = 1, . . . ,L [2]. It can be shown that

p∑
l=1

γl,λ(E) = lim
N→∞ E

1

N

N∑
n=1

fp,λ(xn) = lim
N→∞ Iλ,N(fp,λ),(24)

where xn is the Markoff process on the compact manifold M and fp,λ will be
defined next. Actually, we may also consider the action on the cover I and then
fp,λ is a class function, defined for � = (φ1, . . . ,�L) ∈ I by

fp,λ(�) = Eσ log(‖Tλ,σ φ1 ∧ · · · ∧ Tλ,σ φp‖�pC2L)

= Eσ det
p

(1p×L�∗T ∗
λ,σ Tλ,σ�1L×p),

for 1 ≤ p ≤ L, where 1p×L = (1,0) is a p × L matrix and 1L×p = 1∗
p×L. Hence,

γl,λ(E) are all given by a Birkhoff sum. Applying Theorem 2, one obtains the
following.

PROPOSITION 8. As long as E = 2 cos(k) �= 0 and |E| < 2, the lowest-order
approximation ρ0μ of the invariant measure is the Haar measure on M, that is,
ρ0 = 1. The pth greatest Lyapunov exponent γp(E) is then given by

γp(E) = λ2 1 + 2(L − p)

8 sin2(k)
+ O(λ3).(25)

For L = 1, (25) is proved in [20]. At the band center E = 0, the methods below
show that the lowest-order invariant measure is not the Haar measure. In the case
L = 1, the measure was explicitly calculated in [26]. A formula similar to (25) was
obtained in [8]. It shows, in particular, that the Lyapunov spectrum is equidistant.
Distinctness of the Lyapunov exponents can also be deduced from the Goldscheid–
Margulis criterion. The first step of the proof is to expand fp,λ w.r.t. λ for any p.
To deal with the expectation values, the following identities are useful.

LEMMA 5. Let P,Q ∈ Mat(L,C). Then one has

E(Wσ ) = 0, E(W 2
σ ) = L1, E(Tr(PWσ )Tr(QWσ )) = Tr(PQ),

E(WσPWσ ) = Tr(P )1, E(WσQWσ ) = Qt.
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Using this, some calculatory effort leads to

fp,λ(�) = λ2

8 sin2(k)
Fp(�) + O(λ3),(26)

where, setting � = 2−1/2(U
V

)
, the class function Fp is defined by

Fp(�) = 2Lp + LTr
(
1L;p(V ∗U + U∗V )

) + 1
2 [Tr(1L;p(U∗V ))]2

+ 1
2 [Tr(1L;pV ∗U)]2 − p2,

where 1L;p = 1L×p1p×L is the projection on the first p entries in C
L. Therefore,

p∑
l=1

γl,λ = λ2

8 sin2(k)
lim

N→∞ Iλ,N(Fp) + O(λ3).(27)

Note that F is a polynomial of second degree in the entries of (U,V ), and hence

consists of only low frequencies w.r.t. to 〈Rk〉 as Rθ

(U
V

) = (e−ıθU
eıθV

)
. Thus, in order

to apply Theorem 2 we just need to check the coupling hypothesis.

5.2. Verifying the coupling hypothesis for Theorem 2. First, we introduce a
connected, transitively acting subgroup U ⊂ G such that the space v as defined in
Theorem 2 fulfills u ⊂ v, where u is the Lie-algebra of U . Then U is also a sub-
group of the group V as defined in Theorem 2 and V acts transitively as required.
Set

U = {diag(U,V ) :U,V ∈ U(L) and UV ∈ SU(L)} ⊂ U(L,L).

Its Lie algebra is given by

u = {diag(u, v) :u, v ∈ u(L),Tr(u + v) = 0}.
Now the action of U via (23) on I is not transitive, but it is indeed transitive on the
quotient M = I/T

L.

PROPOSITION 9. The Lie algebra u is contained in the Lie algebra v gener-
ated by the set {R P R−1 : R ∈ 〈Rk〉, P ∈ supp(Pσ )}, where Pσ is given in (22).

PROOF. We obtain

Rk Pσ R−1
k = ı

2 sin(k)

(
Wσ e−2ıkWσ

−e2ıkWσ −Wσ

)
.

Hence,

−2 cos(2k)Pσ + Rk Pσ R−1
k + R−1

k Pσ Rk = 1 − cos(2k)

sin(k)

(
ıWσ 0

0 −ıWσ

)
.
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Therefore, the space v contains all matrices
( ıW

0
0

−ıW

)
where W = W ∗. The com-

mutator of such two matrices is
( [ıV ,ıW ]

0
0

[ıV ,ıW ]
)
, hence also obtained in v. As

su(L) is a simple Lie-algebra and ıV and ıW are arbitrary elements of u(L), the
commutators [ıV , ıW ] contain any element of su(L). Therefore, taking linear com-
binations of these terms shows that u ⊂ v. �

Thus, Theorem 2 applies and equation (25) follows readily from (27) once one
has shown that ρ0μ is the Haar measure on M = U(L) × U(L)/T

L for E �= 0.
Furnishing M with a left invariant metric, the Haar measure is the volume measure
so that we have to show ρ0 = C1M with some normalization constant C. This
is equivalent to verifying that L̂∗1M = 0. Using ∂∗

P = −∂P − div(∂P ) and the
special form L̂ = E〈R〉Eσ (∂2

RPσ R−1) of the Fokker–Planck operator in the present
situation, one gets

L̂∗1M = E〈R〉Eσ

(([∂RPσ R−1 + div(∂RPσ R−1)]2)
1M

)
(28)

= E〈R〉Eσ

(
∂RPσ R−1(div(∂RPσ R−1)) + (div(∂RPσ R−1))

2)
.

In order to calculate this further, one needs a formula for the divergence of a vector
field ∂P , which is the object of the next section.

5.3. Divergence of vector fields. Let

P =
(

A B

B∗ D

)
∈ u(L,L), A∗ = −A, D∗ = −D.

The aim of this section is to calculate the divergence of the vector field ∂P on M.
It can be lifted to a vector field on I ∼= U(L) × U(L). At the point (U,V ), ∂P is
given by the path

t �→ (
U(1 + t[U∗AU + U∗BV + S]),V (1 + t[V ∗DU + V ∗B∗U + S]))

(29)
+ O(t2).

The upper triangular matrix S is determined by the fact that it has reals on the
diagonal such that U∗AU + U∗BV + S is in the Lie algebra u(L). This leads
to S + S∗ = −U∗BV − V ∗B∗U . In order to calculate S − S∗, let us define the
following R-linear function on Mat(L,C),

w(A) = ∑
j<k

[Ej,k(A + A∗)tEj,k − Ek,j (A + A∗)tEk,j ],(30)

where Ej,k is the matrix with a one at position j, k and a zero elsewhere. One
obtains S − S∗ = w(−U∗BV ) = −w(U∗BV ) ∈ u(L). Hence, the path defining
∂P at (U,V ) as in (29) is given by

exp(t P) · (U,V ) = (
U

(
1 + t

[
U∗AU + 1

2(U∗BV − V ∗B∗U) − 1
2w(U∗BV )

])
,

V
(
1 + t

[
V ∗DV + 1

2(V ∗B∗U − U∗BV ) − 1
2w(U∗BV )

]))
.
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Hence, we associate to the induced (lifted) vector field the function P(U,V ) =
(U∗AU + 1

2(U∗BV − V ∗BU) − 1
2w(U∗BV ),U∗DU + 1

2(V ∗B∗U − U∗BV ) −
1
2w(U∗BV )]).

This vector field induces a projected vector field ∂P on M and we want to
calculate its divergence on M. The natural metric on u(L) × u(L) induced by
the Killing form on u(2L) is given by 〈(u, v)|(ũ, ṽ)〉 = Tr(u∗ũ + v∗ṽ). The Lie
algebra h of H consists of the elements (ı�, ı�) for diagonal, real matrices �.
An orthonormal basis (ui, vi) for h⊥ in u(L) × u(L) is given by the matrices

1√
2
(Ej,k −Ek,j ,0), ı 1√

2
(Ej,k +Ek,j ,0), 1√

2
(0,Ej,k −Ek,j ), ı 1√

2
(0,Ej,k +Ek,j )

and ı 1√
2
(Ej,j ,−Ej,j ) for 1 ≤ j < k ≤ L. The derivative w.r.t. to the left-invariant

vector field on U(L) × U(L) defined by (ui, vi) will be denoted by δ(ui ,vi ). Ac-
cording to (32) in Appendix C the divergence div(∂P ) on M is given by∑

i

δ(ui ,vi )〈(u∗
i , v

∗
i )|P(U,V )〉

= ∑
i

δ(ui ,vi )

(
Tr(u∗

i U
∗AU + v∗

i V ∗DV )

− 1

2
Tr

(
(ui + vi)

∗w(U∗BV )

+ 1

2
Tr

(
(ui − vi)

∗(U∗BV − V ∗B∗U)
)))

.

Now as u∗
i = −ui , one obtains

δ(ui,vi ) Tr(u∗
i U

∗AU) = Tr
(
u∗

i (u
∗
i U

∗AU +U∗AUui)
) = Tr

(
U∗AU(u2

i −u2
i )

) = 0.

Thus, one has
∑

i δ(ui ,vi ) Tr(u∗
i U

∗AU) = 0 and analogously
∑

i δ(ui ,vi ) Tr(v∗
i V ∗ ×

DV ) = 0. Next, consider
∑

i δ(ui ,vi ) Tr((ui + vi)w(U∗BV )). It is easy to check
that for j �= k one has

∑
i uiEj,kv̄i = ∑

i ūiEj,kvi = 0 and
∑

i ūiEj,kui =∑
i uiEj,kūi = Ek,j . The same holds with vi and ui exchanged. From these equa-

tions, the cyclicity of the trace and the definition of w one obtains after some
calculatory effort

1

2

∑
i

δ(ui ,vi ) Tr
(
(ui + vi)w(U∗BV )

) = ∑
j<k

Tr
(
(Ek,k − Ej,j )(U

∗BV + V ∗B∗U)
)
.

The remaining term in div(∂P ) is given by

1

2

∑
i

δui ,vi
Tr

(
(u∗

i − v∗
i )(U∗BV − V ∗B∗U)

)

= 1

2

∑
i

Tr
(
(vi − ui)

2(U∗BV + V ∗B∗U)
)
.
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As
∑

i (vi − ui)
2 = −2L1, it follows that

div(∂P ) = 2�e Tr(CU∗BV ),(31)

where C = −L1 + ∑
j<k(Ek,k − Ej,j ) = ∑L

j=1(2j − 1 − 2L)Ej,j . Note that
div(∂P ) is in fact a function on M, that is, it is independent on the choice of
the preimage (U,V ) because C is a diagonal matrix.

5.4. Volume measure to lowest order. For E �= 0, we now want to show
L̂1M = 0 using (28). As the group 〈Rk〉 is a closed subgroup of the torus con-
sisting of all Rθ for θ ∈ T = R/2πZ, the Haar measure of 〈Rk〉 can be considered
as a probability measure on T. Expectations w.r.t. to this measure with integration
variable θ ∈ T will be denoted by Eθ . Then for any function f on 〈Rk〉, one has
ER(f (R)) = Eθ (f (Rθ )).

LEMMA 6. Away from the band center E �= 0, one has

Eθ (e
±2ıθ ) = 0, Eθ (e

±4ıθ ) = 0.

PROOF. If k is an irrational angle, that is, k
2π

is irrational, then the closed
group generated by Rk is just the set of all Rθ and the measure Eθ is the Haar
measure of the torus T implying Eθ (e

±2ıθ ) = Eθ (e
±4ıθ ) = 0. If k is a rational

angle, then the closed group generated by Rk is finite and consists of all Rθ such
that eıθ is a sth root of 1 for some natural s. The Haar measure is just the point
measure giving each point the same mass. As sin(k) �= 0, we get s > 2 which gives
Eθ (e

±2ıθ ) = 0. Similarly, as long as s �= 4 one also obtains E(e±4ıθ ) = 0. If s = 4
which means k = π/2 and E = 0, then Eθ (e

4ıθ ) = 1. �

Define Aσ = Bσ = ıWσ

2 sin2(k)
and Dσ = −Aσ . Then

Rθ Pσ R−1
θ =

(
Aσ e−2ıθBσ

e2ıθB∗
σ Dσ

)
.

From now on, we assume E �= 0. First, consider the term [div(∂Rθ Pσ R−1
θ

)]2 ap-
pearing in (28). By (31), it is equal to

e−4ıθ Tr(CU∗BσV )2 + e4ıθ Tr(CV ∗B∗
σU)2 + 2 Tr(CU∗BσV )Tr(CV ∗B∗

σU).

By Lemmas 6 and 5, one obtains

EREσ (div(∂R Pσ R−1)(U,V ))2 = 1

2 sin2 k
Tr(V CU∗UCV ∗) = Tr(C2)

2 sin2(k)
.

Next, we need to calculate the average of ∂Rθ Pσ R−1
θ

div(∂Rθ Pσ R−1
θ

) which equals

�e Tr
(
e−2ıθ2CU∗(A∗

σBσ + BσDσ )V + C(V ∗B∗
σBσV + U∗BσB∗

σU)

− e−4ıθ2U∗BσV U∗BσV − e−2ıθU∗BσV (Cw∗
θ,σ + wθ,σC)

)
,
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where wθ,σ = w(e−2ıθU∗BσV ) and w is defined as in (30). Averaging over 〈Rk〉
and σ one gets by Lemma 6 and Lemma 5 that EREσ (∂R Pσ R−1 div(∂R Pσ R−1)) is
equal to

LTr(C)

2 sin2(k)
− EθEσ�e

(
e−2ıθ Tr

(
U∗BσV (Cw∗

θ,σ + wθ,σC)
))

.

The last term with wθ,σ consists of terms of the form e−4ıθ Tr(U∗BσV Ek,j (U
∗ ×

BV )tEk,jC) and Tr(U∗BσV Ej,kU
tBσV Ej,kC). The latter one gives 1

4 sin2(k)
×

Tr(U∗UEk,jV
tV Ej,kC) = 1

4 sin2(k)
Tr(Ek,kC) after averaging over σ . Therefore

and by a similar result for the term with w∗
θ,σ as well as the definition of C, one

obtains

EθEσ Tr
(
e−2ıθU∗BσV (wθ,σC + Cw∗

θ,σ )
) =

∑
j<k Tr((Ek,k − Ej,j )C)

2 sin2(k)

= Tr((C + L1)C)

2 sin2(k)
.

Putting everything together one has

EREσ (div(div(∂R Pσ R−1)∂R Pσ R−1)) = Tr(C2) + LTr(C) − Tr((C + L1)C)

2 sin2(k)
= 0.

Therefore the lowest-order invariant measure ρ0μ on M is given by the Haar mea-
sure.

APPENDIX A: VECTOR-VALUED RANDOM VARIABLES

LEMMA 7. Let a = (a1, . . . , an)
t :� → R

n be a centered, vector-valued ran-
dom variable on a probability space (�,p), and each ak ∈ L2(�,p). Then there
exist a linear decomposition a = ∑

i vibi over finitely many fixed vectors bi ∈ R
n

with coefficient vi which are centered random variables vi ∈ L2(�,p) that are
uncorrelated E(vivi′) = E(v2

i )δi,i′ .

PROOF. One can assume that the random variables ak as elements on L2(�,p)

are linearly independent [otherwise one takes a basis for the vector space
span(supp(a)) and rewrites the random variable a as vector using this basis]. Let
us introduce λk,j for k > j and write the Ansatz vk = ak + ∑k−1

i=1 λk,iai . Inverting
the matrix form of these equations gives

⎛
⎜⎝

a1
...

an

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 · · · 0

λ2,1 1
. . .

...
...

. . .
. . . 0

λn,1 · · · λn,n−1 1

⎞
⎟⎟⎟⎠

−1 ⎛
⎜⎝

v1
...

vn

⎞
⎟⎠ .
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Hence, one can write a as a sum
∑

k vkbk where the bk’s are the vectors of the
inverted matrix. The vk’s are pairwise uncorrelated, if E(vkai) = 0 for all i < k,
as this implies E(vkvi) = 0 for all i < k. Now E(vkai) = 0 for i = 1, . . . , k − 1 is
guaranteed if

−
⎛
⎜⎝

E(aka1)
...

E(akak−1)

⎞
⎟⎠ =

⎛
⎜⎝

E(a1a1) · · · E(a1ak−1)
...

. . .
...

E(ak−1a1) · · · E(ak−1ak−1)

⎞
⎟⎠

⎛
⎜⎝

λk,1
...

λk,k−1

⎞
⎟⎠ .

If the appearing matrix is invertible, one can resolve this equation to get λk,i for
all i < k. So it remains to show that this matrix is invertible which is equivalent to
the property that the columns are linearly independent. Now let ξi ∈ R such that

k−1∑
i=1

ξiE(ajai) = E

(
aj

k−1∑
i=1

ξiai

)
= 0

for all j = 1, . . . , k. The vector
∑

1≤i≤k−1 ξiai is then orthogonal in L2(�,μ)

to any vector in the subspace spanned by a1, . . . , ak−1 and it therefore has to be
zero. As the random variables ai are linearly independent, one gets ξi = 0 for all
i = 1, . . . , k − 1. �

APPENDIX B: FOURIER SERIES ON COMPACT LIE GROUPS

First, let us summarize some facts about the representation theory of compact
Lie groups. All this is well known and proofs can be found in the literature, for
example, [3], but we need to introduce the notation for the proof of Theorem 5.

Let K be a compact Lie group equipped with its normalized Haar measure and
let T ⊂ K be some maximal torus T ∼= T

r , where r is called the rank of K. The
continuous irreducible representations of the torus T are given by the characters,
that is, the homomorphisms into the group S1 = U(1) ⊂ C. Let us denote them by
X∗(T). They form a Z-module isomorphic to the lattice Z

r and hence X∗(T) is
a lattice in the vector space V = R ⊗Z X∗(T), the tensor product over the ring Z.
This is an abstract description of the fact, that the characters of the torus T

r are
given by the maps θ ∈ T

r �→ eıj ·θ for a fixed j ∈ Z
r . In this case, V = R

r .
Define some AdK-invariant scalar product on the Lie algebra k of K, where AdK

denotes the adjoint representation, and adopt V with an scalar product 〈·, ·〉 such
that the norm of a ∈ X∗(T) coincides with the operator norm of the derivative da

acting on t, the Lie algebra of T.
Let p be the orthogonal complement in k of t, the Lie algebra of T. Then the

group T acts on the complexification pC = C ⊗R p by the adjoint representation
and linearity. This representation of T can be decomposed into irreducible contin-
uous representations, which means pC = ⊕

a∈� pa where pa is the set of P ∈ pC

such that AdT(P ) = a(T )P for all T ∈ T. One can show that the spaces pa are one-
dimensional complex vector spaces. The appearing characters a ∈ � ⊂ X∗(T) are
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called roots of K. If a ∈ � is a root, then also −a ∈ �. Note that the character −a

as a map on T is given by (−a)(T ) = (a(T ))−1.
One can divide the vector space V in an upper half space and a lower half space

in such a way that there is no root on the boundary. A root in the upper half space
is then called a positive root. The set of vectors v ∈ V that satisfy 〈v, a〉 ≥ 0 for all
positive roots a is a so-called positive Weyl chamber C+. An element of the lattice
X∗(T) lying in the positive Weyl chamber is called a highest weight. The set of
highest weights will be denoted by W+. There is a one-to-one correspondence
between the irreducible representations and the highest weight vectors.

THEOREM 3. Any irreducible (unitary) representation of K induces (by re-
striction) a representation of T, which when decomposed into irreducible represen-
tations of T contains exactly one highest weight a ∈ W+. For any highest weight
vector a ∈ W+, there is exactly one irreducible representation of K containing a.

Let πa :K → U(d(a)) for a ∈ W+ be the corresponding irreducible unitary rep-
resentation of dimension d(a). By Schur orthogonality and the Peter–Weyl the-
orem the matrix coefficients πa(K)k,l , where 1 ≤ k, l ≤ d(a), of these represen-
tations, considered as functions on K, form an orthogonal basis for L2(K). The
L2 norm of such a matrix coefficient is d(a)−1/2. Therefore, the orthogonal pro-
jection of f onto the space spanned by the matrix coefficients of the irreducible
representation πa is given by

d(a)∑
k,l=1

∫
K

dK̃(f (K̃)πa(K̃)k,l)πa(K)k,l =
d(a)∑
k,l=1

∫
K

dK̃(f (K̃)πa(K̃
−1)l,k)πa(K)k,l

= d(a)Tr(F f (a)πa(K)),

where

F f (a) =
∫
K

dK f (K̃)πa(K
−1).

Hence Schur orthogonality and the Peter–Weyl theorem imply the following.

COROLLARY 4. Let f ∈ L2(K), then one obtains with convergence in L2(K)

f (K) = ∑
a∈W+

d(a)Tr(F f (a)πa(K)).

As shown in [29], one can characterize the smooth functions on K by their
Fourier series.

THEOREM 4. A function f on K is smooth if and only if its Fourier coefficients
are rapidly decreasing, which means that

∀h > 0 : lim‖a‖→∞‖a‖h‖F f (a)‖ = 0.
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Here ‖F f (a)‖ denotes the Hilbert–Schmidt norm. If this is fulfilled, then the
Fourier series converges absolutely in the supremum norm on K.

Note that the definition of F f (a) to be rapidly decreasing is independent of the
chosen norm on W+ ⊂ V .

Now let us consider the compact group K × T
L with the maximal torus T × T

L

and its Lie algebra t × R
L. The characters of this torus also factorize by X∗(T ×

T
L) = X∗(T) × Z

L. As {1} × T
L lies in the center, the direct product of the scalar

product on k and the canonical scalar product on R
L give a scalar product on k×R

L

that is invariant under the adjoint representation of the group K × T
L. Therefore,

the induced scalar product on the vector space V × R
L spanned by the characters

also factorizes.
As the adjoint representation of {1} × T

L is trivial, the roots of K × T
L consist

of elements (a,0) where a is a root of K. Therefore, the positive roots of K × T
L

are simply the positive roots of K and, as the scalar product on V × R
L factorizes,

the positive Weyl chamber for K × T
L is given by C+ × R

L. Hence, the highest
weight vectors are given by W+ × Z

L.
Now for a ∈ W+ the mapping (K, θ) �→ πa(K)eıj ·θ is an irreducible represen-

tation of K×T
L which contains the highest weight vector (a, j) and by Theorem 3,

it is the unique one containing this weight. Thus, we have shown the following.

THEOREM 5. The highest weight vectors of K × T
L are given by W+ × Z

L,
where W+ are the highest weight vectors of K. The irreducible representation
parameterized by (a, j) ∈ W+ × Z

L is given by

π(a,j)(K, θ) = πa(K)eıj ·θ .

Hence, the Fourier series of F is given by

F(K, θ) = ∑
a∈W+

∑
j∈ZL

d(a)Tr(F F(a, j)πa(K))eıj ·θ

with convergence in L2(K × T
L), where

F F(a, j) =
∫
K

dK

∫
TL

dθ F (K, θ)πa(K
−1)e−ıj ·θ .

APPENDIX C: DIVERGENCE OF VECTOR FIELDS

Let H ⊂ K be some compact subgroups of the unitary group U(L) and let M =
K/H be the homogeneous quotient and π :K → M. On the Lie algebra u(L) and
hence on the Lie algebra k of K, the Killing form (u, v) = Tr(u∗v) defines a bi-
invariant metric. At each point K ∈ K, the Lie algebra h of H form the vertical
vectors, that is, the kernel of the differential of π . Hence, the tangent space at
π(K) can be identified with the horizontal vectors, h⊥, the orthogonal complement



RANDOM LIE GROUP ACTIONS 2255

of h in k. This identification depends on the choice of K . Two horizontal lifts of
some tangent vector on M to two different preimages differ by a conjugation and
therefore have the same length due to the invariance of the metric. Thus, there
is a unique metric on M such that the projection π :K → M is a Riemannian
submersion. This metric is invariant under the action of K.

Let Si be some orthonormal basis for h⊥, then the push forward, π∗(Si) forms
an orthonormal basis at π(K). (This basis vectors may differ for two different
preimages.) Let X be some smooth vector field on M and denote the horizontal
lift to K by X̂ which then is also smooth. As π is a Riemannian submersion, the
covariant derivative of X with respect to π∗(Si) is given by π∗(∇Si

X̂). Let (Bj )

denote some orthonormal basis of k and identify Bj with the left invariant vector
field. Furthermore, we identify any vector field Y with a function Y :K → k such
that the vector at K is given by the path K exp(tY (K)). With ∇SX̂, we denote
the covariant derivative of the vector field X̂ and with δSX̂ the derivative of the
function w.r.t. to the left-invariant vector field S. Then one has

∇SX̂ = ∑
j

∇S Tr(B∗
j X̂)Bj = ∑

j

[
Tr(B∗

j X̂)
1

2
[S,Bj ] + δSX̂

]
.

If g denotes the metric on M, then the divergence of X at π(K) is given by

div(X) ◦ π = ∑
i

g(π∗(Si),∇π∗Si
X) ◦ π = ∑

i

Tr(S∗
i ∇Si

X̂),

where we used that Si is horizontal so that g(π∗(Si),π∗(Y )) = Tr(S∗
i Y ) for

all Y . Using the identity above and the fact that S∗
i = −Si which implies

Tr(S∗
i [Si,Bj ]) = 0, the expression reduces to

div(X) ◦ π = ∑
i

δSi
Tr(S∗

i X̂).(32)

As Tr(S∗
i Y ) = 0 for any vertical vector Y ∈ h, the lifted vector field X̂ does not

need to be horizontal for the last equation to hold.
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