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TAYLOR EXPANSIONS OF SOLUTIONS OF STOCHASTIC
PARTIAL DIFFERENTIAL EQUATIONS WITH ADDITIVE NOISE1

BY ARNULF JENTZEN AND PETER KLOEDEN

Johann Wolfgang Goethe University, Frankfurt am Main

The solution of a parabolic stochastic partial differential equation
(SPDE) driven by an infinite-dimensional Brownian motion is in general
not a semi-martingale anymore and does in general not satisfy an Itô for-
mula like the solution of a finite-dimensional stochastic ordinary differential
equation (SODE). In particular, it is not possible to derive stochastic Taylor
expansions as for the solution of a SODE using an iterated application of the
Itô formula. Consequently, until recently, only low order numerical approx-
imation results for such a SPDE have been available. Here, the fact that the
solution of a SPDE driven by additive noise can be interpreted in the mild
sense with integrals involving the exponential of the dominant linear operator
in the SPDE provides an alternative approach for deriving stochastic Taylor
expansions for the solution of such a SPDE. Essentially, the exponential fac-
tor has a mollifying effect and ensures that all integrals take values in the
Hilbert space under consideration. The iteration of such integrals allows us to
derive stochastic Taylor expansions of arbitrarily high order, which are robust
in the sense that they also hold for other types of driving noise processes such
as fractional Brownian motion. Combinatorial concepts of trees and woods
provide a compact formulation of the Taylor expansions.

1. Introduction. Taylor expansions are a fundamental and repeatedly used
method of approximation in mathematics, in particular in numerical analysis. Al-
though numerical schemes for ordinary differential equations (ODEs) are often
derived in an ad hoc manner, those based on Taylor expansions of the solution of
an ODE, the Taylor schemes, provide a class of schemes with known convergence
orders against which other schemes can be compared to determine their order. An
important component of such Taylor schemes are the iterated total derivatives of
the vector field corresponding higher derivatives of the solution, which are ob-
tained via the chain rule; see [8].

An analogous situation holds for Itô stochastic ordinary differential equations
(SODEs), except, due to the less robust nature of stochastic calculus, stochastic
Taylor schemes instead of classical Taylor schemes are the starting point to obtain
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consistent higher order numerical schemes, see [29] for the general theory. An-
other important difference is that SODEs are really just a symbolic representation
of stochastic integral equations since their solutions are not differentiable, so an
integral version of Taylor expansions based on iterated application of the stochas-
tic chain rule, the Itô formula, is required. Underlying this method is the fact that
the solution of a SODE is an Itô-process or, more generally, a semi-martingale and
in particular of finite quadratic variation.

This approach fails, however, if a SODE is driven by an additive stochastic
process with infinite quadratic variation such as a fractional Brownian motion, be-
cause the Itô formula is in general no longer valid. A new method to derive Taylor
expansions in such cases was presented in [20, 23, 28]. It uses the smoothness of
the coefficients, but only minimal assumptions on the nature of the driving sto-
chastic process. The resulting Taylor expansions there are thus robust with respect
to assumptions concerning the driving stochastic process and, in particular, remain
valid for other noise processes.

A similar situation holds for stochastic partial differential equations (SPDEs).
In this article, we consider parabolic SPDEs with additive noise of the form

dUt = [AUt + F(Ut)]dt + B dWt, U0 = u0, t ∈ [0, T ],(1)

in a separable Hilbert space H , where A is an unbounded linear operator, F is a
nonlinear smooth function, B is a bounded linear operator and Wt , t ≥ 0, is an
infinite-dimensional Wiener process. (See Section 2 for a precise description of
the equation above and the assumptions, we use.) Although the SPDE (1) is driven
by a martingale Brownian motion, the solution process is with respect to a rea-
sonable state space in general not a semi-martingale anymore (see [10] for a clear
discussion of this problem) and except of special cases a general Itô formula does
not exist for its solution (see, e.g., [10, 37]). Hence, stochastic Taylor expansions
for the solution of the SPDE (1) cannot be derived as in [29] for the solutions of
finite-dimensional SODEs. Consequently, until recently, only low order numeri-
cal approximation results for such SPDEs have been available (except for SPDEs
with spatially smooth noise; see, e.g., [14]). For example, the stochastic convo-
lution of the semigroup generated by the Laplacian with Dirichlet boundary con-
ditions on the one-dimensional domain (0,1) and a cylindrical I -Wiener process
on H = L2((0,1),R) has sample paths which are only (1

4 − ε)-Hölder continuous
(see Section 5.4) and previously considered approximations such as the linear im-
plicit Euler scheme or the linear implicit Crank–Nicolson scheme are not of higher
temporal order. The reason is that the infinite-dimensional noise process has only
minimal spatial regularity and the convolution of the semigroup and the noise is
only as smooth in time as in space. This comparable regularity in time and space
is a fundamental property of the dynamics of semigroups; see [41] or also [9], for
example. To overcome these problems, we thus need to derive robust Taylor ex-
pansions for a SPDE of the form (1) driven by an infinite-dimensional Brownian
motion.
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An idea used in [24] to derive what was called the exponential Euler scheme for
the SPDE (1), that has a better convergence rate than hitherto analyzed schemes,
can be exploited here. It is based on the fact that the SPDE (1) can be understood
in the mild sense, that is as an integral equation of the form

Ut = eAtu0 +
∫ t

0
eA(t−s)F (Us) ds +

∫ t

0
eA(t−s)B dWs(2)

for all t ∈ [0, T ] rather than as an integral equation obtained by directly integrat-
ing the terms of the SPDE (1). (This mild integral equation form of the SPDE is
considered in some detail in the monograph [6], (7.1) and (7.3.4), and in the mono-
graph [37], (F.0.2).) The crucial point here is that all integrals in the mild integral
equation (2) contain the exponential factor eA(t−s) of the operator A, which acts in
a sense as a mollifier and ensures that iterated versions of the terms remain in the
Hilbert space H . The main idea of the Taylor expansions presented in this article
is to use a classical Taylor expansion for the nonlinearity F in the mild integral
equation above and then to replace the higher order terms recursively by Taylor
expansions of lower orders (see Section 3). Hence, this method avoids the need of
an Itô formula but nevertheless yields stochastic Taylor expansions of arbitrarily
high order for the solution of the SPDE (1) (see Section 5.1 for details). Moreover,
these Taylor expansions are robust with respect to the type of noise used and can
easily be modified to other types of noise such as fractional Brownian motion.

The paper is organized as follows. In the next section, we describe precisely
the SPDE that we are considering and state the assumptions that we require on
its terms and coefficients and on the initial value. Then, in the third section, we
sketch the idea and the notation for deriving simple Taylor expansions, which we
develop in section four in some detail using combinatorial objects, specifically
stochastic trees and woods, to derive Taylor expansions of an arbitrarily high order.
We also provide an estimate for the remainder terms of the Taylor expansions there.
(Proofs are postponed to the final section.) These results are illustrated with some
representative examples in the fifth section. Numerical schemes based on these
Taylor expansions are presented in the sixth section.

2. Assumptions. Fix T > 0 and let (�, F ,P) be a probability space with a
normal filtration Ft , t ∈ [0, T ]; see, for example, [6] for details. In addition, let
(H, 〈·, ·〉) be a separable R-Hilbert space with its norm denoted by | · | and consider
the SPDE (1) in the mild integral equation form (2) on H , where Wt , t ∈ [0, T ], is
a cylindrical Q-Wiener process with Q = I on another separable R-Hilbert space
(U, 〈·, ·〉) (space–time white noise), B :U → H is a bounded linear operator and
the objects A, F and u0 are specified through the following assumptions.

ASSUMPTION 1 (Linear operator A). Let I be a countable or finite set, let
(λi)i∈I ⊂ R be a family of real numbers with infi∈I λi > −∞ and let (ei)i∈I ⊂ H
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be an orthonormal basis of H . Assume that the linear operator A :D(A) ⊂ H → H

is given by

Av = ∑
i∈I

−λi〈ei, v〉ei

for all v ∈ D(A) with D(A) = {v ∈ H |∑i∈I |λi |2|〈ei, v〉|2 < ∞}.
ASSUMPTION 2 (Drift term F ). The nonlinearity F :H → H is smooth and

regular in the sense that F is infinitely often Fréchet differentiable and its deriva-
tives satisfy supv∈H |F (i)(v)| < ∞ for all i ∈ N := {1,2, . . .}.

Fix κ ≥ 0 with supi∈I (κ + λi) > 0 and let D((κ − A)r), r ∈ R, denote the
domains of powers of the operator κ − A :D(κ − A) = D(A) ⊂ H → H , see, for
example, [41].

ASSUMPTION 3 (Stochastic convolution). There exist two real numbers γ ∈
(0,1), δ ∈ (0, 1

2 ] and a constant C > 0 such that∫ T

0
|(κ − A)γ eAsB|2HS ds < ∞,

∫ t

0
|eAsB|2HS ds ≤ Ct2δ

holds for all t ∈ [0,1], where | · |HS denotes the Hilbert–Schmidt norm for Hilbert–
Schmidt operators from U to H .

ASSUMPTION 4 (Initial value u0). The F0/B(D((κ −A)γ ))-measurable map-
ping u0 :� → D((κ − A)γ ) satisfies E|(κ − A)γ u0|p < ∞ for every p ∈ [1,∞),
where γ ∈ (0,1) is given in Assumption 3.

Similar assumptions are used in the literature on the approximation of this kind
of SPDEs (see, e.g., Assumption H1–H3 in [15] or see also [24, 32–34]). This setup
also includes trace class noise (see Section 5.5) and finite-dimensional SODEs with
additive noise (see Section 5.2).

Henceforth, we fix t0 ∈ [0, T ) and denote by P the set of all adapted stochastic
processes

X :� → C([t0, T ],H) with sup
t0≤t≤T

|Xt |Lp < ∞ ∀p ≥ 1,

and with continuous sample paths, where |Z|Lp := (E|Z|p)1/p is the Lp-norm of
a random variable Z :� → H . Under Assumptions 1 and 3, it is well known that
the stochastic convolution∫ t

0
eA(t−s)B dWs, t ∈ [t0, T ],

has an (up to indistinguishability) unique version with continuous sample paths
(see Lemma 5 in Section 7.3). From now on, we fix such a version of the stochas-
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tic convolution. Hence, under Assumptions 1–4 it is well known that there is a
pathwise unique adapted stochastic process U :� → C([0, T ],H) with continu-
ous sample paths, which satisfies (2) (see Theorems 7.4 and 7.6 in [6]). Even more,
this process satisfies

sup
0≤t≤T

|(κ − A)γ Ut |Lp < ∞(3)

for all p ≥ 1.

3. Taylor expansions. In this section, we present the notation and the basic
idea behind the derivation of Taylor expansions. We write

�Ut := Ut − Ut0, �t := t − t0

for t ∈ [t0, T ] ⊂ [0, T ], thus �U denotes the stochastic process �Ut , t ∈ [t0, T ],
in P . First, we introduce some integral operators and an expression relating them
and then we show how they can be used to derive some simple Taylor expansions.

3.1. Integral operators. Let j ∈ {0,1,2,1∗}, where the indices {0,1,2} will
label expressions containing only a constant value or no value of the SPDE solu-
tion, while 1∗ will label a certain integral with time dependent values of the SPDE
solution in the integrand. Specifically, we define the stochastic processes I 0

j ∈ P by

I 0
j (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(eA�t − I )Ut0, j = 0,∫ t

t0

eA(t−s)F (Ut0) ds, j = 1,∫ t

t0

eA(t−s)B dWs, j = 2,∫ t

t0

eA(t−s)F (Us) ds, j = 1∗,

for each t ∈ [t0, T ]. Note that the stochastic process
∫ t
t0

eA(t−s)B dWs for t ∈ [t0, T ]
given by∫ t

t0

eA(t−s)B dWs =
∫ t

0
eA(t−s)B dWs − eA(t−t0)

(∫ t0

0
eA(t0−s)B dWs

)

for every t ∈ [t0, T ] is indeed in P . Given i ∈ N and j ∈ {1,1∗}, we then define the
i-multilinear symmetric mapping I i

j : P i → P by

I i
j [g1, . . . , gi](t) := 1

i!
∫ t

t0

eA(t−s)F (i)(Ut0)(g1(s), . . . , gi(s)) ds,

when j = 1 and by

I i
j [g1, . . . , gi](t)

:=
∫ t

t0

eA(t−s)

(∫ 1

0
F (i)(Ut0 + r�Us)(g1(s), . . . , gi(s))

(1 − r)(i−1)

(i − 1)! dr

)
ds,
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when j = 1∗ for all t ∈ [t0, T ] and all g1, . . . , gi ∈ P . One immediately checks that
the stochastic processes I 0

j ∈ P , j ∈ {0,1,2,1∗}, and the mappings I i
j : P i → P ,

i ∈ N, j ∈ {1,1∗}, are well defined.
The solution process U of (2) obviously satisfies

�Ut = (eA�t − I )Ut0 +
∫ t

t0

eA(t−s)F (Us) ds +
∫ t

t0

eA(t−s)B dWs(4)

or, in terms of the above integral operators,

�Ut = I 0
0 (t) + I 0

1∗(t) + I 0
2 (t)

for every t ∈ [t0, T ], which we can write symbolically in the space P as

�U = I 0
0 + I 0

1∗ + I 0
2 .(5)

The stochastic processes I i
j [g1, . . . , gi] for g1, . . . , gi ∈ P , j ∈ {0,1,2} and i ∈

{0,1,2, . . .} only depend on the solution at time t = t0. These terms are therefore
useful approximations for the solution process Ut , t ∈ [t0, T ]. However, the sto-
chastic processes I i

1∗[g1, . . . , gi] for g1, . . . , gi ∈ P and i ∈ {0,1,2, . . .} depend on
the solution path Ut with t ∈ [t0, T ]. Therefore, we need a further expansion for
these processes. For this, we will use the important formula

I 0
1∗ = I 0

1 + I 1
1∗[�U ]

(6)
= I 0

1 + I 1
1∗[I 0

0 ] + I 1
1∗[I 0

1∗] + I 1
1∗[I 0

2 ],
which is an immediate consequence of integration by parts and (5), and the iterated
formula

I i
1∗[g1, . . . , gi] = I i

1[g1, . . . , gi] + I
(i+1)
1∗ [�U,g1, . . . , gi]

= I i
1[g1, . . . , gi] + I

(i+1)
1∗ [I 0

0 , g1, . . . , gi](7)

+ I
(i+1)
1∗ [I 0

1∗, g1, . . . , gi] + I
(i+1)
1∗ [I 0

2 , g1, . . . , gi]
for every g1, . . . , gi ∈ P and every i ∈ N (see Lemma 1 for a proof of the equations
above).

3.2. Derivation of simple Taylor expansions. To derive a further expansion
of (5), we insert formula (6) to the stochastic process I 0

1∗ , that is,

I 0
1∗ = I 0

1 + I 1
1∗[I 0

0 ] + I 1
1∗[I 0

1∗] + I 1
1∗[I 0

2 ]
into (5) to obtain

�U = I 0
0 + (I 0

1 + I 1
1∗[I 0

0 ] + I 1
1∗[I 0

1∗] + I 1
1∗[I 0

2 ]) + I 0
2 ,

which can also be written as

�U = I 0
0 + I 0

1 + I 0
2 + I 1

1∗[I 0
0 ] + I 1

1∗[I 0
1∗] + I 1

1∗[I 0
2 ].(8)
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If we can show that the double integral terms I 1
1∗[I 0

0 ], I 1
1∗[I 0

1∗] and I 1
1∗[I 0

2 ] are
sufficiently small (indeed, this will be done in the next section), then we obtain the
approximation

�U ≈ I 0
0 + I 0

1 + I 0
2 ,(9)

or, using the definition of the stochastic processes I 0
0 , I 0

1 and I 0
2 ,

�Ut ≈ (eA�t − I )Ut0 +
∫ t

t0

eA(t−s)F (Ut0) ds +
∫ t

t0

eA(t−s)B dWs

for t ∈ [t0, T ]. Hence,

Ut ≈ eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs(10)

for t ∈ [t0, T ] is an approximation for the solution of SPDE (1). Since the right-
hand side of (10) depends on the solution only at time t0, it is the first nontrivial
Taylor expansion of the solution of the SPDE (1). The remainder terms I 1

1∗[I 0
0 ],

I 1
1∗[I 0

1∗] and I 1
1∗[I 0

2 ] of this approximation can be estimated by

|I 1
1∗[I 0

0 ](t) + I 1
1∗[I 0

1∗](t) + I 1
1∗[I 0

2 ](t)|L2 ≤ C(�t)(1+min(γ,δ))

for every t ∈ [t0, T ] with a constant C > 0 and where γ ∈ (0,1) and δ ∈ (0, 1
2 ] are

given in Assumption 3 (see Theorem 1 in the next section for details).
We write Yt = O((�t)r) with r > 0 for a stochastic process Y ∈ P , if |Yt |L2 ≤

C(�t)r holds for all t ∈ [t0, T ] with a constant C > 0. Therefore, we have

Ut −
(
eA�tUt0 +

(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs

)

= O
(
(�t)(1+min(γ,δ)))

or

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs

(11)
+ O

(
(�t)(1+min(γ,δ))).

The approximation (10) thus has order 1 + min(γ, δ) in the above strong sense. It
plays an analogous role to the simplest strong Taylor expansion in [29] on which
the Euler–Maruyama scheme for finite-dimensional SODEs is based and was in
fact used in [24] to derive the exponential Euler scheme for the SPDE (1). Note
that the Euler–Maruyama scheme in [29] approximates the solution of an SODE
with additive noise locally with order 3

2 . Here, in the case of trace class noise,
we will have γ = 1

2 − ε, δ = 1
2 (see Section 5.5), and therefore the exponential

Euler scheme for the SPDE (1) in [24] also approximates the solution locally with
order 3

2 − ε (see Section 5.5.2), while other schemes in use, in particular the linear
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implicit Euler scheme or the Crank–Nicolson scheme, approximate the solution
with order 1

2 instead of order 3
2 as in the finite-dimensional case. Therefore, the

Taylor approximation (11) attains the classical order of the Euler approximation for
finite-dimensional SODEs and in general the Taylor expansion introduced above
lead to numerical schemes for SPDEs, which converge with a higher order than
other schemes in use (see Section 6).

3.3. Higher order Taylor expansions. Further expansions of the remainder
terms in a Taylor expansion give a Taylor expansion of higher order. To illustrate
this, we will expand the terms I 1

1∗[I 0
0 ] and I 1

1∗[I 0
2 ] in (8). From (7), we have

I 1
1∗[I 0

0 ] = I 1
1 [I 0

0 ] + I 2
1∗[I 0

0 , I 0
0 ] + I 2

1∗[I 0
1∗, I 0

0 ] + I 2
1∗[I 0

2 , I 0
0 ]

and

I 1
1∗[I 0

2 ] = I 1
1 [I 0

2 ] + I 2
1∗[I 0

0 , I 0
2 ] + I 2

1∗[I 0
1∗, I 0

2 ] + I 2
1∗[I 0

2 , I 0
2 ],

which we insert into (8) to obtain

�U = I 0
0 + I 0

1 + I 0
2 + I 1

1 [I 0
0 ] + I 1

1 [I 0
2 ] + R,

where the remainder term R is given by

R = I 1
1∗[I 0

1∗] + I 2
1∗[I 0

0 , I 0
0 ] + I 2

1∗[I 0
1∗, I 0

0 ] + I 2
1∗[I 0

2 , I 0
0 ]

+ I 2
1∗[I 0

0 , I 0
2 ] + I 2

1∗[I 0
1∗, I 0

2 ] + I 2
1∗[I 0

2 , I 0
2 ].

From Theorem 1 in the next section, we will see R = O((�t)(1+2 min(γ,δ))). Thus,
we have

�U = I 0
0 + I 0

1 + I 0
2 + I 1

2 [I 0
0 ] + I 1

2 [I 0
2 ] + O

(
(�t)(1+2 min(γ,δ))),

which can also be written as

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs

+
∫ t

t0

eA(t−s)F ′(Ut0)(e
A�s − I )Ut0 ds

+
∫ t

t0

eA(t−s)F ′(Ut0)

∫ s

t0

eA(s−r)B dWr ds + O
(
(�t)(1+2 min(γ,δ))).

This approximation is of order 1 + 2 min(γ, δ).
By iterating this idea, we can construct further Taylor expansions. In particular,

we will show in the next section how a Taylor expansion of arbitrarily high order
can be achieved.
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4. Systematic derivation of Taylor expansions of arbitrarily high order.
The basic mechanism for deriving a Taylor expansion for the SPDE (1) was ex-
plained in the previous section. We illustrate now how Taylor expansions of ar-
bitrarily high order can be derived and will also estimate their remainder terms.
For this, we will identify the terms occurring in a Taylor expansions by combina-
torial objects, that is, trees. It is a standard tool in numerical analysis to describe
higher order terms in a Taylor expansion via rooted trees (see, e.g., [2] for ODEs
and [1, 38–40] for SODEs). In particular, we introduce a class of trees which is
appropriate for our situation and show how the trees relate to the desired Taylor
expansions.

4.1. Stochastic trees and woods. We begin with the definition of the trees that
we need, adapting the standard notation of the trees used in the Taylor expansion
of SODEs (see, e.g., Definition 2.3.1 in [38] as well as [1, 39, 40]).

Let N ∈ N be a natural number and let

t′ : {2, . . . ,N} → {1, . . . ,N − 1}, t′′ : {1, . . . ,N} → {0,1,2,1∗}
be two mappings with the property that t′(j) < j for all j ∈ {2, . . . ,N}. The pair
of mappings t = (t′, t′′) is a S-tree (stochastic tree) of length N = l(t) nodes.

Every S-tree can be represented as a graph, whose nodes are given by the set
nd(t) := {1, . . . ,N} and whose arcs are described by the mapping t′ in the sense
that there is an edge from j to t′(j) for every node j ∈ {2, . . . ,N}. In view of
a rooted tree, τ ′ also codifies the parent and child pairings and is therefore often
referred as son-farther mapping (see, e.g., Definition 2.1.5 in [38]). The mapping
t′′ is an additional labeling of the nodes with t′′(j) ∈ {0,1,2,1∗} indicating the
type of node j for every j ∈ nd(t). The left picture in Figure 1 corresponds to the
tree t1 = (t′1, t′′1) with nd(t1) = {1,2,3,4} given by

t′1(4) = 1, t′1(3) = 2, t′1(2) = 1

FIG. 1. Two examples of stochastic trees.
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FIG. 2. The stochastic wood w0 in SW.

and

t′′1(1) = 1, t′′1(2) = 1∗, t′′1(3) = 2, t′′1(4) = 0.

The root is always presented as the lowest node. The number on the left of a
node in Figure 1 is the number of the node of the corresponding tree. The type
of the nodes in Figure 1 depends on the additional labeling of the nodes given
by t′′1. More precisely, we represent a node j ∈ nd(t1) by ⊗ if t′′1(j) = 0, by if
t′′1(j) = 1, by if t′′1(j) = 2, and finally by if t′′1(j) = 1∗. The right picture
in Figure 1 corresponds to the tree t2 = (t′2, t′′2) with nd(t2) = {1, . . . ,7} given by

t′2(7) = 4, t′2(6) = 4, t′2(5) = 1,

t′2(4) = 1, t′2(3) = 1, t′2(2) = 1

and

t′′2(1) = 0, t′′2(2) = 0, t′′2(3) = 2, t′′2(4) = 1,

t′′2(5) = 1∗, t′′2(6) = 1, t′′2(7) = 0.

We denote the set of all stochastic trees by ST and will also consider a tuple of
trees, that is, a wood. The set of S-woods (stochastic woods) is defined by

SW :=
∞⋃

n=1

(ST)n.

Of course, we have the embedding ST ⊂ SW. A simple example of an S-wood
which will be required later is w0 = (t1, t2, t3) with t1, t2 and t3 given by
l(t1) = l(t2) = l(t3) = 1 and t′′1(1) = 0, t′′2(1) = 1∗, t′′3(1) = 2. This is shown in
Figure 2 where the left tree corresponds to t1, the middle one to t2 and the right
tree corresponds to t3.

4.2. Construction of stochastic trees and woods. We define an operator on the
set SW, that will enable us to construct an appropriate stochastic wood step by
step. Let w = (t1, . . . , tn) with n ∈ N be a S-wood with ti = (t′i , t′′i ) ∈ ST for every
i ∈ {1,2, . . . , n}. Moreover, let i ∈ {1, . . . , n} and j ∈ {1, . . . , l(ti)} be given and
suppose that t′′i (j) = 1∗, in which case we call the pair (i, j) an active node of w.
We denote the set of all active nodes of w by acn(w).

Now, we introduce the trees tn+1 = (t′n+1, t′′n+1), tn+2 = (t′n+2, t′′n+2) and tn+3 =
(t′n+3, t′′n+3) in ST by nd(tn+m) = {1, . . . , l(ti ), l(ti) + 1} and

t′n+m(k) = t′i (k), k = 2, . . . , l(ti ),

t′′n+m(k) = t′′i (k), k = 1, . . . , l(ti),
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FIG. 3. The stochastic wood w1 in SW.

t′n+m

(
l(ti ) + 1

) = j, t′′n+m

(
l(ti ) + 1

) =
{

1∗, m = 2,
(m − 1), else,

for m = 1,2,3. Finally, we consider the S-tree t̃(i,j) = (t̃′, t̃′′) given by t̃′ = t′i , but
with t̃′′(k) = t′′i (k) for k �= j and t̃′′(j) = 1. Then, we define

E(i,j)w = E(i,j)(t1, . . . , tn) := (
t1, . . . , ti−1, t̃(i,j), ti+1, . . . , tn+3

)
and consider the set of all woods that can be constructed by iteratively applying
the E(i,j) operations, that is, we define

SW′ := {w0} ∪
⎧⎨
⎩w ∈ SW

∣∣∣∣∣∣
∃n ∈ N, i1, j1, . . . , in, jn ∈ N :
∀l = 1, . . . , n : (il, jl) ∈ acn

(
E(il−1,jl−1) · · ·E(i1,j1)w0

)
,

w = E(in,jn) · · ·E(i1,j1)w0

⎫⎬
⎭

for the w0 introduced above. To illustrate these definitions, we present some ex-
amples using the initial stochastic wood w0 given in Figure 2. We present these
examples here in a brief way, and, later in Section 5.1, we describe more detailed
the main advantages of the particular examples considered here. First, the active
nodes of w0 are acn(w0) = {(2,1)}, since the first node in the second tree in w0
is the only node of type 1∗. Hence, E(2,1)w0 is well defined and the resulting sto-
chastic wood w1 = E(2,1)w0, which has six trees, is presented in Figure 3. Writing
w1 = (t1, . . . , t6), the left tree in Figure 3 corresponds to t1, the second tree in
Figure 3 corresponds to t2, and so on. Moreover, we have

acn(w1) = {(4,1), (5,1), (5,2), (6,1)}(12)

for the active nodes of w1, so w2 = E(4,1)w1 is also well defined. It is presented
in Figure 4. In Figure 5, we present the stochastic wood w3 = E(6,1)w2, which is

FIG. 4. The stochastic wood w2 in SW.
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FIG. 5. The stochastic wood w3 in SW.

well defined since

acn(w2) = {(5,1), (5,2), (6,1), (7,1), (8,1), (8,3), (9,1)}.(13)

For the S-wood w3, we have

acn(w3) =
{

(5,1), (5,2), (7,1), (8,1), (8,3), (9,1),

(10,1), (11,1), (11,3), (12,1)

}
.(14)

Since (7,1) ∈ acn(w3), the stochastic wood w4 = E(7,1)w3 is well defined and
presented in Figure 6. For the active nodes, we obtain

acn(w4) =
{

(5,1), (5,2), (8,1), (8,3), (9,1), (10,1), (11,1),

(11,3), (12,1), (13,1), (14,1), (14,4), (15,1)

}
.(15)

Finally, we present the stochastic wood w5 = E(12,1)E(10,1)E(9,1)w4 with

acn(w5) =
⎧⎨
⎩

(5,1), (5,2), (8,1), (8,3), (11,1), (11,3), (13,1), (14,1),

(14,4), (15,1), (16,1), (17,1), (17,4), (18,1), (19,1),

(20,1), (20,4), (21,1), (22,1), (23,1), (23,4), (24,1)

⎫⎬
⎭(16)

FIG. 6. The stochastic wood w4 in SW.
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FIG. 7. The stochastic wood w5 in SW.

in Figure 7. By definition, the S-woods w0,w1, . . . ,w5 are in SW′, but the sto-
chastic wood given in Figure 1 is not in SW′.

4.3. Subtrees. Let t = (t′, t′′) be a given S-tree with l(t) ≥ 2. For two nodes
k, l ∈ nd(t) with k ≤ l, we say that l is a grandchild of k if there exists a sequence
k1 = k < k2 < · · · < kn = l of nodes with n ∈ N such that t′(kv+1) = kv for every
v ∈ {1, . . . , n − 1}. Suppose now that j1, . . . , jn ∈ nd(t) with n ∈ N and j1 < · · · <
jn are the nodes of t such that t′(ji) = 1 for every i = 1, . . . , n. Moreover, for a
given i ∈ {1, . . . , n} suppose that ji,1, ji,2, . . . , ji,li ∈ nd(t) with ji = ji,1 < ji,2 <

· · · < ji,li ≤ l(t) and li ∈ N are the grandchildren of ji . Then, we define a tree
ti = (t′i , t′′i ) ∈ ST with l(ti ) := li and

ji,t′i (k) = t′(ji,k), t′′i (k) = t′′(ji,k)

for all k ∈ {2, . . . , li} and t′′i (1) = t′′(ji). We call the trees t1, . . . , tn ∈ ST defined
in this way the subtrees of t. For example, the subtrees of the right tree in Figure 1
are presented in Figure 8.



TAYLOR EXPANSIONS FOR SPDE’S 545

FIG. 8. Subtrees of the right tree in Figure 1.

4.4. Order of a tree. Later stochastic woods in SW′ will represent Taylor ex-
pansions and Taylor approximations of the solution process U of the SPDE (1).
Additionally, we will estimate the approximation orders of these Taylor approxi-
mations. To this end, we introduce the order of a stochastic tree and of a stochas-
tic wood, which is motivated by Lemma 4 below. More precisely, let ord : ST →
[0,∞) be given by

ord(t) := l(t) + (γ − 1)|{j ∈ nd(t)|t′′(j) = 0}|
+ (δ − 1)|{j ∈ nd(t)|t′′(j) = 2}|

for every S-tree t = (t′, t′′) ∈ ST. For example, the order of the left tree in Figure 1
is 2 + γ + δ and the order of the right tree in Figure 1 is 3 + 3γ + δ (since the right
tree has three nodes of type 0, three nodes of type 1, respectively, 1∗, and one node
of type 2).

In addition, we say that a tree t = (t′, t′′) in ST is active if there is a j ∈ nd(t)
such that t′′(j) = 1∗. In that sense a S-tree is active if it has an active node. More-
over, we define the order of an S-wood w = (t1, . . . , tn) ∈ SW with n ∈ N as

ord(w) := min{ord(ti ),1 ≤ i ≤ n|ti is active}.
To illustrate this definition, we calculate the order of some stochastic woods. First
of all, the stochastic wood in Figure 2 has order 1, since only the middle tree in
Figure 2 is active. More precisely, the node (2,1) of the S-wood w0 is an active
node and therefore the second tree is active. The second tree in Figure 2 has order 1
(since it only consists of one node of type 1∗). Hence, the S-wood w0 has order 1.
Since the last three trees are active in the stochastic wood w1 in Figure 3 [see (12)
for the active nodes of w1], we obtain that the stochastic wood in Figure 3 has
order 1 + min(γ, δ). The last three trees in the S-wood w1 have order 1 + γ , 2 and
1 + δ, respectively. As a third example, we consider the S-wood w2 in Figure 4.
The active nodes of w2 are presented in (13). Hence, the last five S-trees are active.
They have the orders 2, 1+δ, 1+2γ , 2+γ and 1+γ +δ. The minimum of the five
real numbers is 1 + min(2γ, δ). Therefore, the order of the S-wood w2 in Figure 4
is 1+min(2γ, δ). A similar calculation shows that the order of the stochastic wood
w3 in Figure 5 is 1 + 2 min(γ, δ) and that the order of the stochastic wood w4 in
Figure 6 is 1 + min(3γ, γ + δ,2δ). Finally, we obtain that the stochastic wood w5
in Figure 7 is of order 1 + 3 min(γ, δ, 1

3).
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4.5. Trees and stochastic processes. To identify each tree in ST with a pre-
dictable stochastic process in P , we define two functions 
 : ST → P and
� : ST → P , recursively. For a given S-tree t = (t′, t′′) ∈ ST, we define 
(t) :=
I 0

t′′(1) when t′′(1) ∈ {0,2} or l(t) = 1 and, when l(t) ≥ 2 and t′′(1) ∈ {1,1∗}, we
define


(t) := In
t′′(1)[
(t1), . . . ,
(tn)],

where t1, . . . , tn ∈ ST with n ∈ N are the subtrees of t. In addition, for an arbi-
trary t ∈ ST, we define �(t) := 0 if t is an active tree and �(t) = 
(t) otherwise.
Finally, for a S-wood w = (t1, . . . , tn) with n ∈ N we define 
(w) and �(w) by


(w) = 
(t1) + · · · + 
(tn), �(w) = �(t1) + · · · + �(tn).

As an example, we have


(w0) = I 0
0 + I 0

1∗ + I 0
2 and �(w0) = I 0

0 + I 0
2(17)

for the elementary stochastic wood w0 (see Figure 2). Hence, we obtain


(w0) = �U(18)

from (5) and (17). Since (2,1) is an active node of w0, we obtain


(w1) = I 0
0 + I 0

1 + I 0
2 + I 1

1∗[I 0
0 ] + I 1

1∗[I 0
1∗] + I 1

1∗[I 0
2 ](19)

and

�(w1) = I 0
0 + I 0

1 + I 0
2(20)

for the S-wood w1 = E(2,1)w0 presented in Figure 3. Moreover, in view of (6)
and (7), we have


(w) = 

(
E(i,j)w

)
(21)

for every active node (i, j) ∈ acn(w) and every stochastic wood w ∈ SW′.
Hence, we obtain


(w1) = 

(
E(2,1)w0

) = 
(w0)

due to the equation above and the definition of w1. Hence, we obtain 
(w1) =
�U, which can also be seen from (19), since the right-hand side of (19) is nothing
other than (8). We also note that the right-hand side of (20) is just the exponential
Euler approximation in (9), so we obtain

�U = 
(w1) ≈ �(w1).

With the above notation and definitions we are now able to present the main result
of this article, which is a representation formula for the solution of the SPDE (1)
via Taylor expansions and an estimate of the remainder terms occurring in the
Taylor expansions.
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THEOREM 1. Let Assumptions 1–4 be fulfilled and let w ∈ SW′ be an arbi-
trary stochastic wood. Then, for each p ∈ [1,∞), there is a constant Cp > 0 such
that

Ut = Ut0 + 
(w)(t),
(22) (

E[|Ut − Ut0 − �(w)(t)|p])1/p ≤ Cp · (t − t0)
ord(w)

holds for every t ∈ [t0, T ], where Ut , t ∈ [0, T ], is the solution of the SPDE (1).
Here the constant Cp > 0 is independent of t and t0 but depends on p as well as
w, T and the coefficients of the SPDE (1).

The representation of the solution here is a direct consequence of (18) and (21).
The proof for the estimate in (22) will be given in Section 7. Here, 
(w) = �U is
the increment of the solution of the SPDE (1), while �(w) is the Taylor approx-
imation of the increment of the solution and 
(w) − �(w) is its remainder for
every arbitrary w ∈ SW′. Since there are woods in SW′ with arbitrarily high or-
ders, Taylor expansions of arbitrarily high order can be constructed by successively
applying the operator E(i,j) to the initial S-wood w0. Finally, the approximation
result of Theorem 1 can also be written as

Ut = Ut0 + �(w) + O
(
(�t)ord(w))

for every stochastic wood w ∈ SW′. Here, we also remark that Assumptions 1–
4 can be weakened. In particular, instead of Assumption 3, one can assume that
the nonlinearity F :V → V is only i-times Fréchet differentiable with i ∈ N suffi-
ciently high and that the derivatives of F satisfy only local estimates, where V ⊂ H

is a continuously embedded Banach space. Nevertheless, it is usual to present Tay-
lor expansions for stochastic differential equations under such restrictive assump-
tions here (see [29]) and then after considering a particular numerical scheme one
reduces these assumptions by pathwise localization techniques (see [11, 26] for
SDEs and [22] for SPDEs).

5. Examples. We present some examples here to illustrate the Taylor expan-
sions introduced above.

5.1. Abstract examples of the Taylor expansions. We begin with some abstract
examples of the Taylor expansions.

5.1.1. Taylor expansion of order 1. The first Taylor expansion of the solution
is given by the initial stochastic wood w0 (see Figure 2), that is, we have 
(w0) =
�U approximated by �(w0) with order ord(w0). Precisely, we have

�(w0)(t) = (eA�t − I )Ut0 +
∫ t

t0

eA(t−s)B dWs
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and


(w0)(t) = (eA�t − I )Ut0 +
∫ t

t0

eA(t−s)F (Us) ds +
∫ t

t0

eA(t−s)B dWs

for every t ∈ [t0, T ] due to (17). Since ord(w0) = 1 (see Section 4.4), we finally
obtain

Ut = eA�tUt0 +
∫ t

t0

eA(t−s)B dWs + O(�t)

for the Taylor expansion corresponding to the S-wood w0.

5.1.2. Taylor expansion of order 1 + min(γ, δ). In order to derive a higher or-
der Taylor expansion, we expand the stochastic wood w0. To this end, we consider
the Taylor expansion given by the S-wood w1 = E(2,1)w0 (see Figure 3). Here,

(w1) and �(w1) are presented in (19) and (20). Since ord(w1) = 1 + min(γ, δ)

(see Section 4.4), we obtain

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs + O
(
(�t)(1+min(γ,δ)))

for the Taylor expansion corresponding to the S-wood w1. This example corre-
sponds to the exponential Euler scheme introduced in [24], which was already
discussed in Section 3.2 [see (11)].

5.1.3. Taylor expansion of order 1 + min(2γ, δ). For a higher order Tay-
lor expansion, we now have several possibilities to further expand the stochastic
wood w1. For instance, we could consider the Taylor expansion given by the sto-
chastic wood E(5,1)E(5,2)w1 [see (12) for the active nodes of w1]. Since our main
goal is always to obtain higher order approximations with the least possible terms
and since the fifth tree of w1 [given by the nodes (5,1) and (5,2)] is of order 2
(see Section 4.4 for details), we concentrate on expanding the lower order trees
of w1. Finally, since oftentimes γ ≤ δ in examples (see Section 5.4 and also Sec-
tion 5.5), we consider the stochastic wood w2 = E(4,1)w1 (see Figure 4). It is of
order 1 + min(2γ, δ) (see Section 4.4) and the corresponding Taylor approxima-
tion �(w2) of 
(w2) = �U is given by �(w2) = I 0

0 + I 0
1 + I 0

2 + I 1
1 [I 0

0 ]. This
yields

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs

+
∫ t

t0

eA(t−s)F ′(Ut0)(e
A�s − I )Ut0 ds + O

(
(�t)(1+min(2γ,δ)))

for the Taylor expansion corresponding to the S-wood w2.
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5.1.4. Taylor expansion of order 1 + 2 min(γ, δ). In examples, we oftentimes
have γ = 1

4 − ε, δ = 1
4 for an arbitrarily small ε ∈ (0, 1

4) (space–time white noise,
see Section 5.4) or γ = 1

2 − ε, δ = 1
2 for an arbitrarily small ε ∈ (0, 1

2) (trace-class
noise). In these cases, the sixth stochastic tree in w2 turns out to be the active tree
of the lowest order. Therefore, we consider the stochastic wood w3 = E(6,1)w2
(see Figure 5) here. It has order 1 + 2 min(γ, δ) (see Section 4.4) and we have

�(w3) = I 0
0 + I 0

1 + I 0
2 + I 1

1 [I 0
0 ] + I 1

1 [I 0
2 ],

which implies

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs

+
∫ t

t0

eA(t−s)F ′(Ut0)(e
A�s − I )Ut0 ds

+
∫ t

t0

eA(t−s)F ′(Ut0)

∫ s

t0

eA(s−r)B dWr ds + O
(
(�t)1+2 min(γ,δ)).

This example corresponds to the Taylor expansion introduced in the beginning in
Section 3.3.

5.1.5. Taylor expansion of order 1 + min(3γ, γ + δ,2δ). Since we often have
γ ≤ ρ and γ < 1

2 in the examples below, the seventh stochastic tree in w3 has the
lowest order in these examples. Therefore, we consider the Taylor approximation
corresponding to the S-wood w4 = E(7,1)w3 (see Figure 6), which is given by

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs

+
∫ t

t0

eA(t−s)F ′(Ut0)(e
A�s − I )Ut0 ds

+ 1

2

∫ t

t0

eA(t−s)F ′′(Ut0)
(
(eA�s − I )Ut0, (e

A�s − I )Ut0

)
ds

+
∫ t

t0

eA(t−s)F ′(Ut0)

∫ s

t0

eA(s−r)B dWr ds

+ O
(
(�t)(1+min(3γ,γ+δ,2δ))).

It is of order 1 + min(3γ, γ + δ,2δ), which can be seen in Section 4.4.

5.1.6. Taylor expansion of order 1+3 min(γ, δ, 1
3). In the case γ < 1

2 , the 9th,
10th and 12th stochastic tree in w4 all have lower or equal orders than the fifth sto-
chastic tree in w4. Therefore, we consider the S-wood w5 = E(12,1)E(10,1)E(9,1)w4
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(see Figure 7) with the Taylor approximation

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs

+
∫ t

t0

eA(t−s)F ′(Ut0)(e
A�s − I )Ut0 ds

+ 1

2

∫ t

t0

eA(t−s)F ′′(Ut0)
(
(eA�s − I )Ut0, (e

A�s − I )Ut0

)
ds

+
∫ t

t0

eA(t−s)F ′′(Ut0)

(
(eA�s − I )Ut0,

∫ s

t0

eA(s−r)B dWr

)
ds

+ 1

2

∫ t

t0

eA(t−s)F ′′(Ut0)

(∫ s

t0

eA(s−r)B dWr,

∫ s

t0

eA(s−r)B dWr

)
ds

+
∫ t

t0

eA(t−s)F ′(Ut0)

∫ s

t0

eA(s−r)B dWr ds + O
(
(�t)(1+3 min(γ,δ,1/3))).

REMARK 1. Not all Taylor expansions for general finite-dimensional SODEs
in [29] are used in practice due to cost and difficulty of computing the higher
iterated integrals in the expansions. For SODEs with additive noise, however, the
Wagner–Platen scheme is often used since the iterated integrals appearing in it are
linear functionals of the Brownian motion process, thus Gaussian distributed and
hence easy to simulate. A similar situation holds for the above Taylor expansions
of SPDEs. In particular, the conditional distribution [with respect to F ′(Ut0)] of
the expression ∫ t

t0

eA(t−s)F ′(Ut0)

∫ s

t0

eA(s−r)B dWr ds

for t ∈ [t0, T ] in Section 5.1.4 is Gaussian distributed and, in principle, easy to
simulate (see also Section 6).

5.2. Taylor expansions for finite-dimensional SODEs. Of course, the abstract
setting for stochastic partial differential equations of evolutionary type in Section 2
in particular covers the case of finite-dimensional SODEs with additive noise. The
main purpose of the Taylor expansions in this article is to overcome the need of an
Itô formula in the infinite-dimensional setting. In contrast, in the finite-dimensional
case, Itô’s formula is available and the whole machinery developed here is not
needed. Nevertheless, we apply in this subsection the Taylor expansions intro-
duced above to stochastic ordinary differential equations with additive noise to
compare them with the well-known stochastic Taylor expansions for SODEs in
the monograph [29]. These considerations are not so relevant in the view of appli-
cations, since the finite-dimensional case is well studied in the literature (see, e.g.,
[35] and the above named monograph), but more for a theoretical understanding of
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the new Taylor expansions introduced here. More precisely, only in this subsection
let H = R

d with d ∈ N be the d-dimensional R-Hilbert space of real d-tuples with
the scalar product

〈v,w〉 = v1 · w1 + · · · + vd · wd

for every v = (v1, . . . , vd) ∈ H and every w = (w1, . . . ,wd) ∈ H . Let also U =
R

m with m ∈ N and suppose that (Wt)t∈[0,T ] is a standard m-dimensional Brown-
ian motion. Furthermore, we suppose that the eigenfunctions and the eigenvalues
of the linear operator −A in Assumption 1 are given by e1 = (1,0, . . . ,0) ∈ H ,
e2 = (0,1,0, . . . ,0) ∈ H, . . . , em = (0, . . . ,0,1) ∈ H and λ1 = λ2 = · · · = λd = 0
with I = {1, . . . , d}. So, in this case A is of course a boring bounded linear opera-
tor with D(A) = H = R

d and Av = 0 for every v ∈ D(A). Furthermore, note that
D((κ − A)r) = H = R

d for every r ∈ R with an arbitrary κ > 0. The bounded lin-
ear mapping B : Rm → R

d is then a d × m-matrix. Due to Assumption 2, the drift
term F : Rd → R

d is then a smooth function with globally bounded derivatives as
it is assumed in [29]. The initial value x0 :� → R

d is then simply a F0/B(Rd)-
measurable mapping, which satisfies E|x0|p < ∞ for every p ∈ [1,∞). So, the
SPDE (1) is in that case in fact a SODE and is given by

dUt = F(Ut) dt + B dWt, U0 = u0,(23)

for t ∈ [0, T ]. Now, we apply the abstract Taylor expansions introduced above to
that simple example. Therefore, note that the parameters in Assumption 3 are given
by γ = 1 − ε and δ = 1

2 for every arbitrarily small ε ∈ (0,1). First of all, we have

Ut = Ut0 + B · (Wt − Wt0) + O(�t)

(see Section 5.1.1). Thus, this Taylor approximation corresponds in the case of
finite-dimensional SODEs to the Taylor approximation for SODEs with the multi-
index set

A = {v, (1), (2), . . . , (m)}
in Theorem 5.5.1 in [29]. Here, we only mention the multi-index set, which
uniquely determines the stochastic Taylor expansion in [29] and refer to the above
named monograph for a detailed description of the stochastic Taylor expansions
for SODEs there.

The exponential Euler approximation in Section 5.1.2 yields

Ut = Ut0 + F(Ut0) · (t − t0) + B · (Wt − Wt0) + O((�t)3/2).(24)

This is nothing else than the corresponding one-step approximation of the classical
Euler–Maruyama scheme (see Section 10.2 in [29]) and is in the setting of [29]
given by the multi-index set

A = {v, (0), (1), (2), . . . , (m)}



552 A. JENTZEN AND P. KLOEDEN

in Theorem 5.5.1 there. In that sense, the name of the exponential Euler scheme is
indeed justified. While in this article, the Taylor approximation (24) is obtained via
an expansion of the I i

j -operators (see Lemma 1 and Section 3.1), in [29] the sto-
chastic Taylor approximation (24) is achieved by applying Itô’s formula to the inte-
grand F(Ut) in the SODE (23). Finally, the Taylor approximation in Section 5.1.4
reduces to

Ut = Ut0 + F(Ut0) · (t − t0) + B · (Wt − Wt0)

+ F ′(Ut0) · B ·
(∫ t

t0

∫ s

t0

dWr ds

)
+ O((�t)2).

The approximation above is nothing else than the one-step approximation of the
stochastic Taylor approximation given by the multi-index set

A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v, (0), (1), (2), . . . , (m),

(1,0), (2,0), . . . , (m,0),

(1,1), (2,1), . . . , (m,1),
...

(1,m), (2,1), . . . , (m,m)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

in Theorem 5.5.1 in [29]. In [29], it is obtained via again applying Itô’s formula.
To sum up, although the method for deriving Taylor expansions in this article

(I i
j -operators) is different to the method in [29] (Itô’s formula), the resulting Taylor

approximations above coincide.

5.3. Simultaneous diagonalizable case. We illustrate Assumption 3 with the
case where A and B are simultaneous diagonalizable (see, for example, Sec-
tion 5.5.1 in [6]). This assumption is commonly considered in the literature for
approximations of SPDEs (see, e.g., Section 2 in [33] or see also [24, 32, 34]).
Suppose that U = H and that B :H → H is given by

Bv = ∑
i∈I

bi〈ei, v〉ei ∀v ∈ H,

where bi , i ∈ I , is a bounded family of real numbers and ei , i ∈ I , is the family of
eigenfunctions of the operator A (see Assumption 1). Concerning Assumption 3,
note that ∫ T

0
|(κ − A)γ eAsB|2HS ds

= ∑
i∈I

(κ + λi)
2γ b2

i

(∫ T

0
e−2λis ds

)

≤ ∑
i∈I

(κ + λi)
2γ b2

i

(∫ T

0
e−2λise−2κs ds

)
e2κT
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= ∑
i∈I

(κ + λi)
2γ b2

i

(∫ T

0
e−2(κ+λi)s ds

)
e2κT

= e2κT

2

(∑
i∈I

b2
i (κ + λi)

(2γ−1)(1 − e−2(λi+κ)T ))

≤ e2κT

2

(∑
i∈I

b2
i (κ + λi)

(2γ−1)

)

for a given γ > 0, so ∫ T

0
|(κ − A)γ eAsB|2HS < ∞

follows from ∑
i∈I

b2
i (κ + λi)

(2γ−1) < ∞(25)

for a given γ > 0. In this case, we also have∫ t

0
|eAsB|2HS ds ≤ Ct2δ(26)

for every t ∈ [0,1] with δ := min(γ, 1
2) and a constant C > 0.

5.4. Space–time white noise. This example will be a special case of the pre-
vious one. Let H = L2((0,1),R) be the space of equivalence classes of square
integrable measurable functions from the interval (0,1) to R with the scalar prod-
uct and the norm

〈u, v〉 =
∫ 1

0
u(x)v(x) dx, |u| =

√∫ 1

0
|u(x)|2 dx, u, v ∈ H.

Let U = H and let B = I :H → H be the identity operator. In addition, assume
that α : (0,1) → R is a bounded measurable function and that the operator F :H →
H is given by

F(v)(x) := (Fv)(x) := α(x) · v(x), x ∈ (0,1),

for all v ∈ H , which clearly satisfies Assumption 2. Also note that

F ′(v)w = F(w) and F (i)(v)(w1, . . . ,wi) = 0

for all v,w,w1, . . . ,wi ∈ H and all i ∈ {2,3, . . .}. Furthermore, let A = ∂2

∂x2 :
D(A) ⊂ H → H be the Laplace operator with Dirichlet boundary condition, that
is,

Au =
∞∑

n=1

−λn〈en, u〉en, u ∈ H,
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where

λn = π2n2, en(x) = √
2 sin(nπx), x ∈ (0,1),

for each n ∈ I := N. Of course, the en, n ∈ N, form an orthonormal basis of H

(Assumption 1). Additionally, we choose κ = 0.
Let t0 = 0 and T = 1. In view of (25), Assumption 3 requires γ = 1

4 − ε for
every arbitrarily small ε > 0. However, instead of (26), we obtain here the stronger
result δ = 1

4 , since

|eAs |HS ≤ C

(
1

s

)1/4

for every s ∈ (0,1] and a constant C > 0 (see Remark 2 in [32]). Finally, let u0 ∈ H

be an arbitrary (deterministic) function in H , which satisfies Assumption 4. The
SPDE (1) is then given by

dUt(x) =
[

∂2

∂x2 Ut(x) + α(x)Ut (x)

]
dt + dWt, Ut (0) = Ut(1) = 0,

with U0(x) = u0(x) for x ∈ (0,1) and t ∈ [0,1]. After considering Assumptions
1–4 for this example, we now present the Taylor approximations in this case. Here,
ε ∈ (0, 1

4) is always an arbitrarily small real number in (0, 1
4).

5.4.1. Taylor expansion of order 1. For an approximation of Ut of order one
for small t > 0, we obtain

Ut = eAtu0 +
∫ t

0
eA(t−s) dWs + O(�t)

(see Section 5.1.1).

5.4.2. Taylor expansion of order 5
4 − ε. Here, we have

Ut = eAtu0 + A−1(eAt − I )Fu0 +
∫ t

0
eA(t−s) dWs + O

(
(�t)(5/4−ε))

for an approximation of order 5
4 − ε (see Section 5.1.2).

5.4.3. Taylor expansion of order 5
4 . In the next step, we obtain

Ut = eAtu0 + A−1(eAt − I )Fu0 +
∫ t

0
eA(t−s) dWs

+
(∫ t

0
eA(t−s)F (eAs − I ) ds

)
u0 + O((�t)5/4)

for an approximation of order 5
4 (see Section 5.1.3).
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5.4.4. Taylor expansion of order 3
2 − ε. Here, we have

Ut = eAtu0 + A−1(eAt − I )Fu0 +
∫ t

0
eA(t−s)F

(∫ s

0
eA(s−r) dWr

)
ds

+
(∫ t

0
eA(t−s)F (eAs − I ) ds

)
u0 +

∫ t

0
eA(t−s) dWs + O

(
(�t)(3/2−ε))

for an approximation of order 3
2 − ε (see Section 5.1.4).

5.4.5. Taylor expansion of order 7
4 − ε. Since F is linear here with F ′(v) ≡ F

and F ′′(v) ≡ 0 for all v ∈ H , the approximation above is even more of order 7
4 −ε,

that is,

Ut = eAtu0 + A−1(eAt − I )Fu0 +
∫ t

0
eA(t−s)F

(∫ s

0
eA(s−r) dWr

)
ds

+
(∫ t

0
eA(t−s)F (eAs − I ) ds

)
u0 +

∫ t

0
eA(t−s) dWs + O

(
(�t)(7/4−ε))

(see Section 5.1.6).

5.4.6. Taylor of order 2 − ε. We also consider the Taylor expansion given by
the stochastic wood

E(24,1)E(22,1)E(21,1)E(19,1)E(18,1)E(16,1)E(15,1)E(13,1)w5,

where w5 is presented in Figure 7. Since F is linear here, we see that the corre-
sponding Taylor approximation is the same as in the both examples above, so we
obtain

Ut = eAtu0 + A−1(eAt − I )Fu0 +
∫ t

0
eA(t−s)F

(∫ s

0
eA(s−r) dWr

)
ds

+
(∫ t

0
eA(t−s)F (eAs − I ) ds

)
u0 +

∫ t

0
eA(t−s) dWs + O

(
(�t)(2−ε)).

By further expansions, one can show that this approximation is in fact of order 2.

5.5. Trace class noise. In this subsection, we compute the smoothness para-
meters γ and δ in Assumption 3 for the case of trace class noise (see, e.g., Sec-
tions 4.1 and 5.4.1 in [6]). This assumption is also commonly considered in the
literature for approximations of SPDEs (see, e.g., [15, 33]). Precisely, we suppose
that B :U → H is a Hilbert–Schmidt operator, that is, |B|HS < ∞. Hence, we
obtain ∫ t

0
|eAsB|2HS ds ≤

∫ t

0
(|eAs |2 · |B|2HS) ds ≤ e2κ |B|2HSt
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and therefore √∫ t

0
|eAsB|2HS ds ≤ eκ |B|HS

√
t

for all t ∈ [0,1]. Moreover, we have∫ T

0
|(κ − A)reAsB|2HS ds ≤

∫ T

0
|(κ − A)reAs |2|B|2HS ds

=
(∫ T

0

∣∣(κ − A)re(A−κ)seκs
∣∣2 ds

)
|B|2HS

≤
(∫ T

0

∣∣(κ − A)re(A−κ)s
∣∣2 ds

)
e2κT |B|2HS

≤
(∫ T

0
s−2r ds

)
e2κT |B|2HS < ∞

for all r ∈ [0, 1
2). Hence, we obtain γ = 1

2 − ε and δ = 1
2 for every arbitrarily small

ε ∈ (0, 1
2) in this situation. Now, we present the Taylor expansions from Section 5.1

again in this special situation.

5.5.1. Taylor expansion of order 1. Here, we have

Ut = eA�tUt0 +
∫ t

t0

eA(t−s)B dWs + O(�t)

for a Taylor approximation of order 1 (see Section 5.1.1).

5.5.2. Taylor expansion of order 3
2 − ε. For a Taylor approximation of order

3
2 − ε (see Section 5.1.2), we obtain

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs + O
(
(�t)(3/2−ε)).

Here and below, ε ∈ (0, 1
2) is an arbitrarily small real number in (0, 1

2).

5.5.3. Taylor expansion of order 3
2 . The Taylor approximation in Section 5.1.3

reduces to

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs

+
∫ t

t0

eA(t−s)F ′(Ut0)(e
A�s − I )Ut0 ds + O((�t)3/2).
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5.5.4. Taylor expansion of order 2 − ε. Here, we obtain

Ut = eA�tUt0 +
(∫ �t

0
eAs ds

)
F(Ut0) +

∫ t

t0

eA(t−s)B dWs

+
∫ t

t0

eA(t−s)F ′(Ut0)(e
A�s − I )Ut0 ds

+
∫ t

t0

eA(t−s)F ′(Ut0)

∫ s

t0

eA(s−r)B dWr ds + O
(
(�t)(2−ε))

for a Taylor expansion of order 2 − ε. This example corresponds to the Taylor
expansion introduced in Section 5.1.4.

5.6. A special example of trace class noise. Let H = U = L2((0,1)3,R) be
the space of equivalence classes of square integrable measurable functions from
(0,1)3 to R and consider two distinct Hilbert bases ei , i ∈ I := N

3, and fi , i ∈ I ,
in H given by

ei(x1, x2, x3) = 23/2 sin(i1πx1) sin(i2πx2) sin(i3πx3)

and

fi(x1, x2, x3)

= c(i1−1)c(i2−1)c(i3−1) cos
(
(i1 − 1)πx1

)
cos

(
(i2 − 1)πx2

)
cos

(
(i3 − 1)πx3

)
for every i = (i1, i2, i3) ∈ I = N

3 and every x = (x1, x2, x3) ∈ (0,1)3, where
cn := √

2 for every n ∈ N and c0 = 1. Then, consider the Hilbert–Schmidt operator
B :U → H given by

Bu = ∑
i∈N3

〈fi, u〉
(i1 · i2 · i3)ei

for all u ∈ U = H . Moreover, let λi , i ∈ N
3, be a family of real numbers given

by λi = π2(i2
1 + i2

2 + i2
3) for all i = (i1, i2, i3) ∈ N

3. Finally, consider A = ( ∂2

∂x2
1

+
∂2

∂x2
2

+ ∂2

∂x2
3
) :D(A) ⊂ H → H (with Dirichlet boundary conditions) given by

Av = ∑
i∈N3

−λi〈ei, v〉ei

for all v ∈ D(A), where D(A) is given by

D(A) =
{
v ∈ H

∣∣∣∣ ∑
i∈N3

(i2
1 + i2

2 + i2
3)|〈ei, v〉|2

}
.

Then, the SPDE (1) reduces to

dUt(x) =
[(

∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

)
Ut(x) + F(Ut(x))

]
dt + √

QdWt(x)
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with U |∂(0,1)3 = 0 for x ∈ (0,1)3 and t ∈ [0, T ]. Assumptions 1–4 are fulfilled

with δ = 1
2 and γ = 1

2 − ε for every arbitrarily small ε ∈ (0, 1
2) (see Section 5.5).

The Taylor approximations in that situation are presented in Section 5.5.

6. Numerical schemes based on the Taylor expansions. In this section,
some numerical schemes based on the Taylor expansions in this article are pre-
sented. We refer to [21, 22, 24, 25] for estimations of the convergence orders of
these schemes and also for numerical simulations for these schemes.

For numerical approximations of SPDEs, one has to discretize both the time
interval [0, T ] and the R-Hilbert space H . For the discretization of the space H ,
we use a spectral Galerkin approximation based on the eigenfunctions of the linear
operator A :D(A) ⊂ H → H . More precisely, let (IN)N∈N be a sequence of in-
creasing finite nonempty subsets of I , that is, ∅ �= IN ⊂ IM ⊂ I for all N,M ∈ N

with N ≤ M and let HN := span〈ei, i ∈ IN 〉 be the finite-dimensional span of
|IN |-eigenfunctions for N ∈ N. The bounded linear mappings PN :H → HN are
then given by PN(v) = ∑

i∈IN
〈ei, v〉ei for every v ∈ H and every N ∈ N.

6.1. The exponential Euler scheme. Based on the Taylor approximation in
Sections 3.2 and 5.1.2, we consider the family of random variables Y

N,M
k :� →

HN , k = 0,1, . . . ,M , N,M ∈ N, given by Y
N,M
0 = PN(u0) and

Y
N,M
k+1 = eAT/MY

N,M
k +

(∫ T/M

0
eAs ds

)
(PNF)(Y

N,M
k )

(27)

+ PN

(∫ (k+1)T /M

kT /M
eA((k+1)T /M−s)B dWs

)

for every k = 0,1, . . . ,M − 1 and every N,M ∈ N. This scheme is introduced and
analyzed in [24]. As already mentioned, it is called the exponential Euler scheme
there.

In the setting of deterministic PDEs, that is, in the case B = 0, this scheme
reduces to

Y
N,M
k+1 = eAT/MY

N,M
k +

(∫ T/M

0
eAs ds

)
(PNF)(Y

N,M
k )

for every k = 0,1, . . . ,M − 1 and every N,M ∈ N. This scheme and similar
schemes, usually referred as exponential integrators, have for deterministic PDEs
been intensively studied in the literature (see, e.g., [3–5, 16–19, 27, 30, 31, 36]).
Such schemes are easier to simulate than may seem on the first sight (see [4]). In
the stochastic setting, we refer to Sections 3 and 4 in [24] for a detailed descrip-
tion for the simulation of the scheme (27), in particular, for the generation of the
random variables used there.
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6.2. The Taylor scheme indicated by Section 5.1.3. In view of Section 5.1.3,
we obtain the Taylor scheme Y

N,M
k :� → HN , k = 0,1, . . . ,M , N,M ∈ N, given

by Y
N,M
0 = PN(u0) and

Y
N,M
k+1 = eAT/MY

N,M
k +

(∫ T/M

0
eAs ds

)
(PNF)(Y

N,M
k )

+
∫ (k+1)T /M

kT /M
eA((k+1)T /M−s)(PNF ′)(YN,M

k )

× (
(eA(s−kT /M) − I )Y

N,M
k

)
ds

+ PN

(∫ (k+1)T /M

kT /M
eA((k+1)T /M−s)B dWs

)

for every k = 0,1, . . . ,M − 1 and every N,M ∈ N.

6.3. The Taylor scheme indicated by Section 5.1.4. The Taylor approxima-
tion in Section 5.1.4 yields the Taylor scheme Y

N,M
k :� → HN , k = 0,1, . . . ,M ,

N,M ∈ N, given by Y
N,M
0 = PN(u0) and

Y
N,M
k+1 = eAT/MY

N,M
k +

(∫ T/M

0
eAs ds

)
(PNF)(Y

N,M
k )

+
∫ (k+1)T /M

kT /M
eA((k+1)T /M−s)(PNF ′)(YN,M

k )

× (
(eA(s−kT /M) − I )Y

N,M
k

)
ds

+
∫ (k+1)T /M

kT /M
eA((k+1)T /M−s)(PNF ′)(YN,M

k )

×
(
PN

(∫ s

kT /M
eA(s−u)B dWu

))
ds

+ PN

(∫ (k+1)T /M

kT /M
eA((k+1)T /M−s)B dWs

)

for every k = 0,1, . . . ,M − 1 and every N,M ∈ N.

6.4. A Runge–Kutta scheme for SPDEs. In principle, we can proceed with the
next Taylor approximations and obtain numerical schemes of higher order. These
schemes would however be of limited practical use due to cost and difficulty of
computing the higher iterated integrals as well as the higher order derivatives in
the Taylor approximations. Therefore, we follow a different approach and derive a
derivative free numerical scheme with simple integrals—a so called Runge–Kutta
scheme for SPDEs. We would like to mention that this way is the usual procedure
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for numerical schemes for differential equations: Taylor expansions and their cor-
responding Taylor schemes provide the underlying theory for deriving numerical
schemes, but are rarely implemented in practice. Instead of these Taylor schemes
other numerical schemes, which are easier to compute but still depend on the Tay-
lor expansions such as Runge–Kutta schemes or multi-step schemes (see, e.g., [8]
for details) are used.

To derive a Runge–Kutta scheme for SPDEs, we consider the Taylor approxi-
mation in Section 5.1.4 (see also the Taylor scheme above) from kT

M
to (k+1)T

M
and

obtain

U(k+1)h ≈ eAhUkh +
(∫ h

0
eAs ds

)
F(Ukh) +

∫ (k+1)h

kh
eA((k+1)h−s)B dWs

+
∫ (k+1)h

kh
eA((k+1)h−s)F ′(Ukh)

((
eA(s−kh) − I

)
Ukh

)
ds

+
∫ (k+1)h

kh
eA((k+1)h−s)F ′(Ukh)

(∫ s

kh
eA(s−r)B dWr

)
ds

and hence

U(k+1)h ≈ eAhUkh + heAhF (Ukh) +
∫ (k+1)h

kh
eA((k+1)h−s)B dWs

+ heAhF ′(Ukh)

(
1

h

∫ (k+1)h

kh

(
eA(s−kh) − I

)
Ukh ds

)

+ heAhF ′(Ukh)

(
1

h

∫ (k+1)h

kh

∫ s

kh
eA(s−r)B dWr ds

)

≈ eAhUkh + heAhF (Ukh) +
∫ (k+1)h

kh
eA((k+1)h−s)B dWs

+ heAhF ′(Ukh)

[
1

h

∫ (k+1)h

kh

(
eA(s−kh) − I

) ∫ kh

0
eA(kh−r)B dWr ds

]

+ heAhF ′(Ukh)

(
1

h

∫ (k+1)h

kh

∫ s

kh
eA(s−r)B dWr ds

)

with h := T
M

for k = 0,1, . . . ,M − 1 and M ∈ N. This yields

U(k+1)h ≈ eAhUkh + heAhF (Ukh + ZM
k ) +

∫ (k+1)h

kh
eA((k+1)h−s)B dWs

with the random variables

ZM
k = 1

h

∫ (k+1)h

kh

(
eA(s−kh) − I

) ∫ kh

0
eA(kh−r)B dWr ds

+ 1

h

∫ (k+1)h

kh

∫ s

kh
eA(s−r)B dWr ds
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for k = 0,1, . . . ,M − 1 and M ∈ N. The corresponding numerical scheme
Y

N,M
k :� → HN , k = 0,1, . . . ,M , N,M ∈ N, is then given by Y

N,M
0 = PN(u0)

and

Y
N,M
k+1 = eAT/MY

N,M
k + T

M
eAT/M(PNF)

(
Y

N,M
k + PN(ZM

k )
)

+ PN

(∫ (k+1)T /M

kT /M
eA((k+1)T /M−s)B dWs

)

for every k = 0,1, . . . ,M − 1 and every N,M ∈ N. This Runge–Kutta scheme for
SPDEs is introduced and analyzed in [21]. Under non-global Lipschitz coefficients
of the SPDE, it is analyzed in [22]. Note that the random variables occurring in the
scheme above are Gaussian distributed and therefore easy to simulate (see also
Remark 1 and [21, 22] for details). More precisely, in the case of one-dimensional
stochastic reaction diffusion equations with space–time white noise it is shown in
the articles cited above that this scheme converges with the overall order 1

4 —with
respect to the number of independent standard normal distributed random variables
and the number of arithmetical operations used to compute the scheme instead of
the overall order 1

6 of classical numerical schemes (see, for instance, [7, 12, 13,
42]) such as the linear implicit Euler scheme.

7. Proofs.

7.1. Proofs of (6) and (7).

LEMMA 1. Let Assumptions 1–4 be fulfilled and let i ∈ N be given. Then, we
have

I 0
1∗ = I 0

1 + I 1
1∗[I 0

0 ] + I 1
1∗[I 0

1∗] + I 1
1∗[I 0

2 ]
and

I i
1∗[g1, . . . , gi] = I i

1[g1, . . . , gi] + I
(i+1)
1∗ [I 0

0 , g1, . . . , gi]
+ I

(i+1)
1∗ [I 0

1∗, g1, . . . , gi] + I
(i+1)
1∗ [I 0

2 , g1, . . . , gi]
for all g1, . . . , gi ∈ P .

PROOF. We begin with the first equation. Since we have

F(Us) = F(Ut0) +
∫ 1

0
F ′(Ut0 + r(Us − Ut0)

)
(Us − Ut0) dr

= F(Ut0) +
∫ 1

0
F ′(Ut0 + r�Us)(�Us) dr

= F(Ut0) +
∫ 1

0
F ′(Ut0 + r�Us)(I

0
0 (s)) dr

+
∫ 1

0
F ′(Ut0 + r�Us)(I

0
1∗(s)) dr +

∫ 1

0
F ′(Ut0 + r�Us)(I

0
2 (s)) dr
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for every s ∈ [t0, T ] due to the fundamental theorem of calculus and (5), we obtain

I 0
1∗(t) =

∫ t

t0

eA(t−s)F (Us) ds

=
∫ t

t0

eA(t−s)F (Ut0) ds +
∫ t

t0

eA(t−s)

(∫ 1

0
F ′(Ut0 + r�Us)(I

0
0 (s)) dr

)
ds

+
∫ t

t0

eA(t−s)

(∫ 1

0
F ′(Ut0 + r�Us)(I

0
1∗(s)) dr

)
ds

+
∫ t

t0

eA(t−s)

(∫ 1

0
F ′(Ut0 + r�Us)(I

0
2 (s)) dr

)
ds,

which implies

I 0
1∗(t) = I 0

1 (t) + I 1
1∗[I 0

0 ](t) + I 1
1∗[I 0

1∗](t) + I 1
1∗[I 0

2 ](t)
for all t ∈ [t0, T ]. Moreover, we have

∫ 1

0
F (i)(Ut0 + r�Us)(g1(s), . . . , gi(s))

(1 − r)(i−1)

(i − 1)! dr

=
[
−F (i)(Ut0 + r�Us)(g1(s), . . . , gi(s))

(1 − r)i

i!
]r=1

r=0

+
∫ 1

0
F (i+1)(Ut0 + r�Us)(�Us, g1(s), . . . , gi(s))

(1 − r)i

i! dr

= 1

i!F
(i)(Ut0)(g1(s), . . . , gi(s))

+
∫ 1

0
F (i+1)(Ut0 + r�Us)(�Us, g1(s), . . . , gi(s))

(1 − r)i

i! dr

for all s ∈ [t0, T ] and all g1, . . . , gi ∈ P due to integration by parts and therefore,
we also obtain the second equation. �

7.2. Proof of Theorem 1. For the proof of Theorem 1, we need the following
lemma.

LEMMA 2. Let X : [t0, T ] × � → [0,∞) be a predictable stochastic process.
Then, we obtain ∣∣∣∣

∫ t

t0

Xs ds

∣∣∣∣
Lr

≤
∫ t

t0

|Xs |Lr ds

for every t ∈ [t0, T ] and every r ∈ [1,∞), where both sides could be infinite.
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PROOF. First, we consider the case, where Xt ≤ C is bounded by a constant
C > 0 for all t ∈ [0, T ]. Here, we have

E

[(∫ t

t0

Xs ds

)r]
=

∫ t

t0

E

[(∫ t

t0

Xu du

)(r−1)

Xs

]
ds

≤
∫ t

t0

|Xs |Lr ds

(
E

[(∫ t

t0

Xu du

)r])((r−1)/r)

for every t ∈ [t0, T ] and every r ∈ [1,∞) due to Hölder’s inequality. Since

E

[(∫ t

t0

Xu du

)r]
< ∞

is finite for every t ∈ [t0, T ] and every r ∈ [1,∞) due to the boundedness of
X : [t0, T ] × � → [0,∞), we obtain the assertion. In the general case, we can ap-
proximation the stochastic process (Xt)t∈[0,T ] by bounded processes (XN

t )t∈[0,T ]
for N ∈ N given by

XN
t := min(N,Xt)

for all t ∈ [0, T ] and all N ∈ N. This shows the assertion. �

We also need the Burkholder–Davis–Gundy inequality in infinite dimensions
(see Lemma 7.7 in [6]).

LEMMA 3. Let X : [t0, T ] × � → HS(U,H) be a predictable stochastic
process with E

∫ T
t0

|Xs |2HS < ∞. Then, we obtain∣∣∣∣
∫ t

t0

Xs dWs

∣∣∣∣
Lp

≤ p

(∫ t

t0

||Xs |HS|2Lp ds

)1/2

for every t ∈ [t0, T ] and every p ∈ [1,∞), where both sides could be infinite.

In view of the definitions of the mappings 
 and � , Theorem 1 immediately
follows from the next lemma. For this, the subset ST′ ⊂ ST of stochastic trees
given by

ST′ :=
{
t = (t′, t′′) ∈ ST

∣∣∀k ∈ nd(t) :
((∃l ∈ nd(t) : t′(l) = k

)
�⇒ (

t′′(k) ∈ {1,1∗}))}
is used.

LEMMA 4. Let t = (t′, t′′) ∈ ST′ be an arbitrary stochastic tree in ST′. Then,
for each p ≥ 1, there exists a constant Cp > 0 such that

(E[|
(t)(t)|p])1/p ≤ Cp · (t − t0)
ord(t)

holds for all t ∈ [t0, T ], where Cp is independent of t and t0 but depends on p, t,
T and the SPDE (1).
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PROOF. Due to Jensen’s inequality, we can assume without loss of generality
that p ∈ [2,∞) holds. We will prove now the assertion by induction with respect
to the number of nodes l(t) ∈ N.

In the base case l(t) = 1, we have 
(t) = I 0
t′′(1) by definition. Hence, we obtain

|
(t)(t)|Lp = ∣∣I 0
t′′(1)(t)

∣∣
Lp = |I 0

0 (t)|Lp = |(eA�t − I )Ut0 |Lp

≤ |(κ − A)−γ (eA�t − I )| · |(κ − A)γ Ut0 |Lp

= ∣∣(κ − A)−γ (
e(A−κ)�t − e−κ�t )∣∣ · eκ�t · |(κ − A)γ Ut0 |Lp

≤ ∣∣(κ − A)−γ (
e(A−κ)�t − e−κ�t )∣∣ · eκT ·

(
sup

0≤s≤T

|(κ − A)γ Us |Lp

)

≤ Cp · ∣∣(κ − A)−γ (
e(A−κ)�t − e−κ�t )∣∣

and therefore

|
(t)(t)|Lp ≤ Cp · (∣∣(κ − A)−γ (
e(A−κ)�t − I

)∣∣ + |(κ − A)−γ (I − e−κ�t )|)
≤ Cp · (∣∣(κ − A)−γ (

e(A−κ)�t − I
)∣∣ + |(I − e−κ�t )|)

≤ Cp · (�t)γ + Cp · (�t) ≤ Cp · (�t)γ

for every t ∈ [t0, T ] in the case t′′(1) = 0. Here and below, Cp > 0 is a con-
stant, which changes from line to line but is independent of t and t0. Moreover,
by Lemma 2, we obtain

|
(t)(t)|Lp = ∣∣I 0
t′′(1)(t)

∣∣
Lp = |I 0

1∗(t)|Lp =
∣∣∣∣
∫ t

t0

eA(t−s)F (Us) ds

∣∣∣∣
Lp

≤
∫ t

t0

(∣∣eA(t−s)F (Us)
∣∣
Lp

)
ds ≤ Cp ·

(∫ t

t0

|F(Us)|Lp ds

)

≤ Cp ·
(∫ t

t0

(1 + |Us |Lp) ds

)
≤ Cp · (�t)

for every t ∈ [t0, T ] in the case t′′(1) = 1∗ and

|
(t)(t)|Lp = ∣∣I 0
t′′(1)(t)

∣∣
Lp = |I 0

1 (t)|Lp

=
∣∣∣∣
∫ t

t0

eA(t−s)F (Ut0) ds

∣∣∣∣
Lp

≤
∫ t

t0

(∣∣eA(t−s)F (Ut0)
∣∣
Lp

)
ds ≤ Cp ·

(∫ t

t0

|F(Ut0)|Lp ds

)

≤ Cp ·
(∫ t

t0

(1 + |Ut0 |Lp) ds

)
≤ Cp · (�t)
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for every t ∈ [t0, T ] in the case t′′(1) = 1. Finally, due to Lemma 3, we obtain

|
(t)(t)|Lp = ∣∣I 0
t′′(1)(t)

∣∣
Lp = |I 0

2 (t)|Lp =
∣∣∣∣
∫ t

t0

eA(t−s)B dWs

∣∣∣∣
Lp

≤ Cp ·
(∫ t

t0

∣∣∣∣eA(t−s)B
∣∣
HS

∣∣2
Lp ds

)1/2

≤ Cp ·
(∫ (�t)

0
|eAsB|2HS ds

)1/2

≤ Cp · (�t)δ

for every t ∈ [t0, T ] in the case t′′(1) = 2. This shows |
(t)(t)|Lp ≤ Cp · (�t)ord(t)

for every t ∈ [t0, T ] in the base case l(t) = 1.
Suppose now that l(t) ∈ {2,3, . . .}. Since t = (t′, t′′) ∈ ST′, we must have

t′′(1) ∈ {1,1∗}. Let t1, . . . , tn ∈ ST′ with n ∈ N be the subtrees of t. Note that
t1, . . . , tn are indeed in ST′. Then, by definition, we have


(t)(t) = In
t′′(1)[
(t1), . . . ,
(tn)](t)

for every t ∈ [t0, T ]. Therefore, by Lemma 2, we obtain

|
(t)(t)|Lp = ∣∣In
t′′(1)[
(t1), . . . ,
(tn)](t)

∣∣ = ∣∣In
1∗[
(t1), . . . ,
(tn)](t)

∣∣
Lp

=
∣∣∣∣
∫ t

t0

eA(t−s)

(∫ 1

0
F (n)(Ut0 + r�Us)

× (
(t1)(s), . . . ,
(tn)(s))
(1 − r)n−1

(n − 1)! dr

)
ds

∣∣∣∣
Lp

≤ Cp ·
∫ t

t0

∣∣∣∣
∫ 1

0
F (n)(Ut0 + r�Us)

× (
(t1)(s), . . . ,
(tn)(s))
(1 − r)n−1

(n − 1)! dr

∣∣∣∣
Lp

ds

≤ Cp ·
∫ t

t0

∫ 1

0

∣∣∣∣F (n)(Ut0 + r�Us)

× (
(t1)(s), . . . ,
(tn)(s))
(1 − r)n−1

(n − 1)!
∣∣∣∣
Lp

dr ds

≤ Cp ·
∫ t

t0

∫ 1

0

∣∣F (n)(Ut0 + r�Us)(
(t1)(s), . . . ,
(tn)(s))
∣∣
Lp dr ds

≤ Cp ·
∫ t

t0

∫ 1

0

∣∣|
(t1)(s)| · · · |
(tn)(s)|
∣∣
Lp dr ds



566 A. JENTZEN AND P. KLOEDEN

and hence

|
(t)(t)|Lp ≤ Cp ·
∫ t

t0

∣∣|
(t1)(s)| · · · |
(tn)(s)|
∣∣
Lp ds

≤ Cp ·
(∫ t

t0

|
(t1)(s)|Lpn · · · |
(tn)(s)|Lpn ds

)

≤ Cp ·
(∫ t

t0

(
(�s)ord(t1) · · · (�s)ord(tn))ds

)

≤ Cp · (�t)(1+ord(t1)+···+ord(tn)) = Cp · (�t)ord(t)

for every t ∈ [t0, T ] in the case t′′(1) = 1∗, since l(t1), . . . , l(tn) ≤ l(t) − 1 and we
can apply the induction hypothesis to the subtrees. A similar calculation shows the
result when t′′(1) = 1. �

7.3. Properties of the stochastic convolution.

LEMMA 5. Let Assumptions 1 and 3 be fulfilled. Then, there exists an adapted
stochastic process O :� → C([0, T ],H) with continuous sample paths, which is
a modification of the stochastic convolution

∫ t
0 eA(t−s)B dWs , t ∈ [0, T ], that is,

we have

P

[∫ t

0
eA(t−s)B dWs = Ot

]
= 1

for all t ∈ [0, T ].

PROOF. Let Z : [0, T ] × � → H be an arbitrary adapted stochastic process
with

Zt =
∫ t

0
eA(t−s)B dWs, P-a.s.,

for all t ∈ [0, T ]. Due to Assumption 3, such an adapted stochastic process exists.
Moreover, Z : [0, T ] × � → H is centered and square integrable with

E|Zt |2 =
∫ t

0

∣∣eA(t−s)B
∣∣2
HS ds =

∫ t

0
|eAsB|2HS ds

for all t ∈ [0, T ]. Let θ := min(δ, γ ), p ≥ 2 and 0 ≤ t1 ≤ t2 ≤ T be given. Then,
we have

Zt2 − Zt1 =
∫ t2

t1

eA(t2−s)B dWs

+
∫ t1

0

(
eA(t2−s) − eA(t1−s))B dWs, P-a.s.,
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and

|Zt2 − Zt1 |Lp ≤ p

(∫ t2

t1

∣∣∣∣eA(t2−s)B
∣∣
HS

∣∣2
Lp ds

)1/2

+ p

(∫ t1

0

∣∣∣∣(eA(t2−s) − eA(t1−s))B∣∣
HS

∣∣2
Lp ds

)1/2

= p

(∫ (t2−t1)

0
|eAsB|2HS ds

)1/2

+ p

(∫ t1

0

∣∣(eA(t2−t1) − I
)
eAsB

∣∣2
HS ds

)1/2

due to Lemma 3. Hence, due to Assumption 3, we obtain

|Zt2 − Zt1 |Lp ≤ C(t2 − t1)
δ

+ C
∣∣(κ − A)−γ (

eA(t2−t1) − I
)∣∣(∫ t1

0
|(κ − A)γ eAsB|2HS ds

)1/2

≤ C(t2 − t1)
δ + C(t2 − t1)

γ

(∫ T

0
|(κ − A)γ eAsB|2HS ds

)1/2

≤ C(t2 − t1)
δ + C(t2 − t1)

γ ≤ C(t2 − t1)
θ ,

where C > 0 is a constant changing from line to line. Since θ > 0 is greater than
zero and since p ≥ 2 was arbitrary, there exists a version of (Zt )t∈[0,T ] with con-
tinuous sample paths due to Kolmogorov’s theorem (see, e.g., Chapter 3 in [6]).
�
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