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LAW OF THE ITERATED LOGARITHM
FOR STATIONARY PROCESSES1

BY OU ZHAO AND MICHAEL WOODROOFE

University of Michigan

There has been recent interest in the conditional central limit question
for (strictly) stationary, ergodic processes . . . ,X−1,X0,X1, . . . whose par-
tial sums Sn = X1 + · · · + Xn are of the form Sn = Mn + Rn, where Mn is a
square integrable martingale with stationary increments and Rn is a remain-
der term for which E(R2

n) = o(n). Here we explore the law of the iterated
logarithm (LIL) for the same class of processes. Letting ‖ · ‖ denote the norm
in L2(P ), a sufficient condition for the partial sums of a stationary process
to have the form Sn = Mn + Rn is that n−3/2‖E(Sn|X0,X−1, . . .)‖ be sum-
mable. A sufficient condition for the LIL is only slightly stronger, requiring
n−3/2 log3/2(n)‖E(Sn|X0,X−1, . . .)‖ to be summable. As a by-product of
our main result, we obtain an improved statement of the conditional central
limit theorem. Invariance principles are obtained as well.

1. Introduction. Let . . . ,X−1,X0,X1, . . . denote a centered, square inte-
grable, (strictly) stationary and ergodic process, defined on a probability space
(�,A,P ), with partial sums denoted by Sn = X1 + · · · + Xn. The main question
addressed is the law of the iterated logarithm: under what conditions is

lim sup
n→∞

Sn√
2n log2(n)

= σ w.p. 1(1)

for some 0 ≤ σ < ∞, where log2(n) = log(log(n)). Of course, (1) holds if the Xi

are independent, by the classic work of Hartman and Wintner [6], and more
generally—for example, [7, 15, 17]. Here we employ an approach which has been
used recently in the study of the central limit question for stationary processes—
martingale approximations.

As in Maxwell and Woodroofe [11], it is convenient to suppose that Xk is of the
form Xk = g(Wk), where . . . ,W−1,W0,W1, . . . is a stationary, ergodic Markov
chain. The state space, transition function and (common) marginal distribution are
denoted by W ,Q and π ; thus, π(B) = P [Xn ∈ B], and

Qf (w) = E[f (Wn+1)|Wn = w]
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for a.e. w ∈ W , measurable B ⊆ W and f ∈ L1(π). The iterates of Q are denoted
by Qk . It is also convenient to suppose that the probability space � is endowed
with an ergodic, measure-preserving transformation θ for which Wk ◦ θ = Wk+1
for all k. Neither convenience entails any loss of generality, since we may let the
probability space be R

Z, Xk be the coordinate functions, Wk = (. . . ,Xk−1,Xk),
and θ be the shift transformation. Some other choices of Wk are considered in the
examples.

Let ‖ · ‖ denote the norm in L2(P ), Fk = σ(. . . ,Wk−1,Wk), and recall the main
result of [11]; if

∞∑
n=1

n−3/2‖E(Sn|F0)‖ < ∞,(2)

then

σ 2 := lim
n→∞

1

n
E(S2

n)(3)

exists and is finite, and

Sn = Mn + Rn,(4)

where Mn is a square integrable martingale with stationary, ergodic increments,
and ‖Rn‖ = o(

√
n). It is shown in [11] that if (2) holds, then the conditional dis-

tributions of Sn/
√

n, given F0, converge in probability to the normal distribution
with mean 0 and variance σ 2 (see their Corollary 1). It can also be shown that (2)
is best possible through Peligrad and Utev [13].

To state the main result of the paper, let � be a positive, nondecreasing and
slowly varying (at ∞) function and let

�∗(n) =
n∑

j=1

1

j�(j)
.

THEOREM 1. If � is a positive, slowly varying, nondecreasing function and

∞∑
n=1

n−3/2
√

�(n) log(n)‖E(Sn|F0)‖ < ∞,(5)

then

lim
n→∞

Rn√
n�∗(n)

= 0 w.p. 1.

COROLLARY 1. If (5) holds with �(n) = 1 ∨ log(n), then (1) holds.
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PROOF. In this case �∗(n) ∼ log2(n), so that Rn/
√

n log2(n) → 0 as n → ∞,
and

lim sup
n→∞

Sn√
2n log2(n)

= lim sup
n→∞

Mn√
2n log2(n)

both w.p. 1. The corollary now follows from the law of the iterated logarithm of
martingales; for example, Stout [17]. �

The next corollary strengthens the conclusion of [11] from convergence in prob-
ability to convergence w.p. 1, under a slightly stronger hypothesis. Kipnis and
Varadhan [8] call this an important question in a closely related context (see their
Remark 1.7). Let Fn denote a regular conditional distribution function for Sn/

√
n

given F0, so that

Fn(ω; z) = P

[
Sn√
n

≤ z
∣∣∣F0

]
(ω)

for ω ∈ � and −∞ < z < ∞; and let �σ denote the normal distribution with mean
0 and variance σ 2.

COROLLARY 2. If (5) holds with some � for which 1/[n�(n)] is summable,
then Fn(ω; ·) converges weakly to �σ for a.e. ω.

PROOF. Let Gn be a regular conditional distribution for Mn/
√

n given F0.
Then Gn(ω; ·) converges weakly to �σ for a.e. ω, essentially by the martingale
central limit theorem, applied conditionally given F0. See [11] for the details.
Moreover, P [limn→∞ Rn/

√
n = 0|F0] = 1 w.p. 1, since P [limn→∞ Rn/

√
n =

0] = 1, by Theorem 1. The corollary follows easily. �

A major contribution of this paper is to obtain a simple, general sufficient con-
dition (5) for the LIL. Our results differ from those of Arcones [1], for example,
by not requiring normality, and those of Rio [15] by not requiring strong mixing.
In [10], Lai and Stout have a quite general result for strongly dependent variables.
Their results require a condition on the moment-generating function of the delayed
partial sums and only cover the upper half of LIL. Yokoyama [18] also uses mar-
tingale approximation in a similar setting to ours. His results require a martingale
approximation, as in (4), and bounds on higher moments of the remainder term.

The rest of the paper is organized as follows. The proof of Theorem 1 is outlined
in Section 2, with supporting details in Sections 3 and 4. Invariance principles are
considered in Section 5, and examples in Section 6.
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2. Outline of the proof. In this section, we give an outline of the proof for
the main result. Let

hε =
∞∑

k=1

Qk−1g

(1 + ε)k
(6)

and Hε(w0,w1) = hε(w1) − Qhε(w0). Thus Hε ∈ L2(π1), where π1 denotes
the joint distribution of W0 and W1. In [11] it is shown that if (2) holds, then
H := limε↓0 Hε exists in L2(π1) and that (4) holds with Mn = H(W0,W1)+· · ·+
H(Wn−1,Wn). Letting ξk = g(Wk) − H(Wk−1,Wk) leaves

Rn =
n∑

k=1

ξk =
n∑

k=1

ξ0 ◦ θk(7)

in (4).
For appropriately chosen βk ∼ c/

√
k3�(k) [see (12), below], the series

B(z) =
∞∑

k=1

βkz
k(8)

converges for all complex |z| ≤ 1, is analytic in |z| < 1, B(1) = 1, and |1−B(z)| >
0 for z = 1. Letting T be the operator on L2(P ) defined by T η = η ◦ θ , it is also
true that B(T ) converges in the operator norm. Thus,

B(T )η =
∞∑

k=1

βkT
kη =

∞∑
k=1

βkη ◦ θk.(9)

With this notation, there are two main steps to the proof. It is first shown that
in (7), ξ0 ∈ [I − B(T )]L2(P ), the range of I − B(T ), so that ξ0 = η0 − B(T )η0
for some η0 ∈ L2(P ). It is then shown that for any ξ ∈ [I − B(T )]L2(P ),

lim
n→∞

1√
n�∗(n)

n∑
k=1

T kξ = 0 w.p. 1.

The broad brush strokes follow Derriennic and Lin [4], but with complications.
Formally, the solution to the equation ξ0 = η0 − B(T )η0 is η0 = A(T )ξ0, where

A(z) = 1

1 − B(z)
=

∞∑
k=0

αkz
k,(10)

but there are technicalities in attaching a meaning to A(T )ξ0.

3. The first step.

The size of Rn. The first item of business is to estimate the size of ‖Rn‖. Here
and below, the symbol ‖ · ‖ is used more generally to denote the norm in an L2
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space, which may vary from one usage to the next.

LEMMA 1. Let δj = 2−j . If (5) holds, then

∞∑
j=1

j

√
�(2j )

√
δj‖hδj

‖ < ∞,

where (now) ‖ · ‖ denotes the norm in L2(π).

PROOF. Let Vng = g + Qg + · · · + Qn−1g, so that Vng(w) = E[Sn|W1 = w]
and ‖Vng‖ ≤ 2‖X0‖ + ‖E(Sn|F0)‖. Then, rearranging terms in (6),

‖hδj
‖ ≤ δj

∞∑
n=1

‖Vng‖
(1 + δj )n

and

∞∑
j=1

j

√
�(2j )

√
δj‖hδj

‖ ≤
∞∑

n=1

[ ∞∑
j=1

j
√

�(2j )δ3
j

(1 + δj )n

]
‖Vng‖.

Comparing the inner sum to an integral for any fixed integer n ≥ 0, then

∞∑
j=1

j
√

�(2j )δ3
j

(1 + δj )n
≤ log2(e)

∫ 1

0

√
t�(2/t) log(2/t)

(1 + (1/2)t)n
dt.

By a change of variables and the dominated convergence theorem, using Potter’s
bound (cf. [3], page 25) to supply a dominating function, the integral on the right-
hand side of the last inequality is just

1√
n3

∫ n

0

√
t�

(
2n

t

)
log

(
2n

t

)(
1 + t

2n

)−n

dt ∼
√

�(n) log(n)√
n3

∫ ∞
0

√
te−(1/2)t dt,

from which the lemma follows. �

PROPOSITION 1. If (5) holds, then

lim
n→∞

√
�(n)

‖Rn‖√
n

= 0 and
∞∑

n=1

√
�(n)

n3 ‖Rn‖ < ∞.(11)

PROOF. Let Hε(w0,w1) = hε(w1) − Qhε(w0), and Mn(ε) = Hε(W0,W1) +
· · · + Hε(Wn−1,Wn). Then, it is shown in [11] that Sn = Mn(ε) + Rn(ε) for each
ε > 0 with Rn(ε) = εSn(hε)+Qhε(W0)−Qhε(Wn) and Sn(hε) = hε(W1)+· · ·+
hε(Wn). So,

Rn = Mn(ε) − Mn + εSn(hε) + Qhε(W0) − Qhε(Wn)
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and

‖Rn‖ ≤ ‖Mn(ε) − Mn‖ + (nε + 2)‖hε‖ ≤ √
n‖Hε − H‖ + (nε + 2)‖hε‖.

Now let εn = 2−kn , where 2kn−1 ≤ n < 2kn . Then 1/(2n) ≤ εn = δkn ≤ 1/n, and
‖Hδj+1 − Hδj

‖ ≤ 4
√

δj‖hδj
‖, by Lemma 2 of [11],

‖Rn‖ ≤ √
n

∞∑
j=kn

‖Hδj+1 − Hδj
‖ + 3‖hδkn

‖ ≤ 10
√

n

∞∑
j=kn

√
δj‖hδj

‖.

Since kn ≤ j implies n < 2j , and so
∑
kn≤j

√
�(n)

n
≤

√
�(2j )

∑
n<2j

1

n
≤ 2j

√
�(2j ),

then we derive
∞∑

n=1

√
�(n)

n3 ‖Rn‖ ≤ 10
∞∑

j=1

[ ∑
kn≤j

√
�(n)

n

]√
δj‖hδj

‖

≤ 20
∞∑

j=1

√
�(2j )j

√
δj‖hδj

‖,

which is finite by the previous lemma. Thus, the series in (11) converges. That√
�(n)‖Rn‖/√n → 0 then follows from the subadditivity of ‖Rn‖; ‖Rm+n‖ ≤

‖Rm‖ + ‖Rn‖. Since ‖Rn‖ ≤ ‖Rk‖ + ‖Rn−k‖ for all k = 1, . . . , n − 1, therefore,√
�(n)

n
‖Rn‖ ≤ 6

√
�(n)

n3

∑
(1/4)n≤k≤(3/4)n

‖Rk‖ ≤ 6
∑

(1/4)n≤k≤(3/4)n

√
�(k)

k3 ‖Rk‖

for all sufficiently large n, and this approaches 0 as already shown. �

The size of αn. Let

βk = c

k

∞∑
n=k

1√
n3�(n)

(12)

where c is chosen so that β1 + β2 + · · · = 1. Then, B(z) = ∑∞
k=1 βkz

k converges
for all |z| ≤ 1 in (8) and RB(z) < 1 for all z = 1, so that A(z) is well defined in
(10) for all |z| ≤ 1, except z = 1. Observe that A(z)[1 − B(z)] = 1 and, therefore,

αn =
n∑

k=1

βkαn−k(13)

for n ≥ 1 and α0 = 1. Let

b(t) = B(eit ) =
∞∑

k=1

βke
ikt(14)

for −π < t ≤ π .
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PROPOSITION 2. b is twice differentiable on −π < t = 0 < π , |1 − b(t)| ∼
κ0

√|t |/√�(1/|t |), and

|b′(t)| ∼ 2c
√

π√|t |�(1/|t |) , |b′′(t)| ∼ κ2√
|t |3�(1/|t |)

(15)

as t → 0, where κ0 = 0 and κ2 are constants (identified) in the proof.

PROOF. Clearly (14) is absolutely convergent, b is continuous and b(0) = 1.
By Theorem 2.6 of Zygmund ([19], page 4), the formal expression for the deriva-
tive

b′(t) = i

∞∑
k=1

[ ∞∑
n=k

c√
n3�(n)

]
eikt(16)

converges uniformly on ε ≤ |t | ≤ π for any ε > 0, and therefore, is the derivative
of b. By Theorem 4.3.2 of [3], page 207,

|b′(t)| ∼ 2c
√

π√|t |�(1/|t |)
as t → 0. So, |1 − b(t)| ∼ 4c

√
π |t |/√�(1/|t |). Reversing the order of summa-

tion in (16) (which can be justified by truncating the outer sum at K and letting
K → ∞) gives us

b′(t) = i

∞∑
n=1

[
n∑

k=1

eikt

]
c√

n3�(n)
= eit

1 − eit

∞∑
n=1

(1 − eint )
ic√

n3�(n)
= f (t)g(t),

where f (t) = eit /(1 − eit ) is continuously differentiable on −π < t = 0 < π ,
and g is continuous. As above,

g′(t) =
∞∑

n=1

eint c√
n�(n)

converges uniformly on ε ≤ |t | ≤ π and

|g′(t)| ∼ c
√

π
1√|t |�(1/|t |)

as t → 0. Hence, b is twice continuously differentiable on −π < t = 0 < π ,
and the second relationship in (15) follows from b′′(t) = f ′(t)g(t) + f (t)g′(t) =
f (t)g′(t) + [ib′(t)/(1 − eit )] and symmetry. �

In (10), A(z) is defined for all |z| ≤ 1, except z = 1. Let a(t) = A(eit ) for
−π < t = 0 < π ; then one can derive the following properties.
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COROLLARY 3. a is twice differentiable on 0 < |t | < π , and

|a′(t)| ∼ 1

8c
√

π

√
�(1/|t |)√

|t |3
and |a′′(t)| = O

(√
�(1/|t |)√

|t |5
)

as t → 0.

PROOF. This follows directly from (10) and Proposition 2. �

PROPOSITION 3. Let αn be the coefficients of A(z); then 0 < αn ≤ 1 for all
n ≥ 0 and

αn − αn+1 = O

(√
�(n)√
n3

)

as n → ∞.

PROOF. The first assertion follows easily from (13) and induction. By Propo-
sition 2, a is absolutely integrable, so that 2παn = ∫ π

−π e−inta(t) dt , and then

αn − αn+1 = 1

2π

∫ π

−π
e−inta∗(t) dt,

where a∗(t) = [1 − e−it ]a(t). Both a′∗(s) and sa′′∗(s) are integrable over (−π,π ].
Hence, integration by parts (twice) is justified and yields

αn − αn+1 = 1

2πin

∫ π

−π
e−inta′∗(t) dt = 1

2πn2

∫ π

−π
[1 − e−int ]a′′∗(t) dt.

By Corollary 3, there is a C for which |a′′∗(t)| ≤ C

√
�(1/|t |)/|t |3 for all 0 < |t | ≤ π .

So

|αn − αn+1| = 1

2πn3

∣∣∣∣
∫ πn

−πn
[1 − e−it ]a′′∗

(
t

n

)
dt

∣∣∣∣
≤ C

2πn3

∫ πn

−πn
|1 − e−it |

√
n3

|t |3 �

(
n

|t |
)

dt

∼ C

2π

√
�(n)

n3

∫ ∞
−∞

|1 − e−it | dt√
|t |3

,

using Potter’s theorem again and monotonicity of �. This establishes the proposi-
tion. �
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Existence of η0. We need the following fact which is easily deduced from
Lemma 1.3 of Krengel ([9], page 4): Let L2

0(P ) be the set of η ∈ L2(P ) with
mean 0; if θ is ergodic, then [I −T ]L2

0(P ) is dense in L2
0(P ). Recall the definition

of ξ0 in (7) and the expression for B(T ) in (9); observe that ξ0 ∈ L2
0(P ); and let

AN(T ) = ∑N
n=0 αnT

n and Un = T + · · · + T n.

PROPOSITION 4. If (5) is satisfied, then η0 = limN→∞ AN(T )ξ0 exists in
L2(P ), and ξ0 = [I − B(T )]η0.

PROOF. From (7), we have Unξ0 = Rn. Then, summing by parts,

AN(T )ξ0 = ξ0 + αNRN +
N−1∑
n=1

(αn − αn+1)Rn.

In view of Propositions 1 and 3 and Karamata’s theorem, the sum converges
in L2(P ) and αNRN → 0.

For the second assertion, let ηN = AN(T )ξ0. Then, rearranging terms and using
(13),

B(T )ηN =
∞∑

k=1

βk

N∑
j=0

αjT
j+kξ0

=
N∑

m=1

αmT mξ0 +
∞∑

m=N+1

[
N∑

j=0

αjβm−j

]
T mξ0

= ηN − ξ0 + CN(T )ξ0

where CN(T ) := I −[I −B(T )]AN(T ). So, it suffices to show that ‖CN(T )ξ0‖ →
0. For this, first observe that, replacing T by z in the definition of CN(T ),
1 − CN(z) = [1 − B(z)]AN(z). Then CN(1) = 1 and the coefficients of CN(z)

are all positive, so that ‖CN(T )‖op ≤ 1, where ‖ · ‖op stands for operator norm. So,
it suffices to show that ‖CN(T )ξ‖ → 0 for all ξ ∈ [I − T ]L2

0(P ), a dense subset
of L2

0(P ). This is easy: for if ξ = ψ − T ψ , then

CN(T )ξ =
N∑

j=0

αj

[
βN+1−jT

N+1ψ +
∞∑

m=N+1

(βm+1−j − βm−j )Tmψ

]

and

‖CN(T )ξ‖ ≤ 2‖ψ‖
N∑

j=0

αjβN+1−j → 0

as N → ∞ by (13) and Proposition 3. �
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4. The second step. Some preparation is necessary for the second step. First,
for any η ∈ L2(P ), η∗ := supn≥1 Un|η|/n ∈ L2(P ) by the dominated ergodic the-
orem (see, e.g., Krengel [9], page 52). We will also use the following fact:

E
(√

(η2)∗
) ≤ 2‖η‖,(17)

whose proof is essentially an application of the maximal ergodic theorem ([14],
Corollary 2.2) to (η2)∗.

The proof of Theorem 1 will be completed by proving:

THEOREM 2. If ξ ∈ [I − B(T )]L2(P ), then

lim
n→∞

Unξ√
n�∗(n)

= 0 w.p. 1.

PROOF. By assumption, there is an η ∈ L2(P ) for which ξ = η − B(T )η =∑∞
k=1 βk[η − T kη], and there is no loss of generality in supposing that η ∈ L2

0(P ).
Observe that |T kη|p = T k(|η|p) for any integer k ≥ 0 and real p > 0, and write

Unξ = Inη + IInη,

where

Inη =
n∑

k=1

βkUn[η − T kη]

and

IInη =
∞∑

k=n+1

βkUn[η − T kη].

If k > n, then |Un(η − T kη)| ≤ |Unη| + |UnT
kη| ≤ [η∗ + T kη∗]n. So,

|IInη| ≤ n

∞∑
k=n+1

βk[η∗ + T kη∗].

Here
∞∑

k=n+1

βkT
kη∗ ≤

∞∑
k=n+1

�βkUkη
∗ ≤

∞∑
k=n+1

k�βkη
∗∗,

where �βk = βk − βk+1 and η∗∗ = supk≥1 Ukη
∗/k. Observing that

∞∑
k=n+1

(βk + k�βk) = nβn+1 + 2
∞∑

k=n+1

βk,
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thus,

|IInη| ≤ n(η∗ ∨ η∗∗)
[ ∞∑

k=n+1

βk +
∞∑

k=n+1

k�βk

]
= (η∗ ∨ η∗∗) × O

(√
n

�(n)

)

and

lim
n→∞

IInη√
n�∗(n)

= 0 w.p. 1.(18)

Similarly, for k ≤ n, Unη − UnT
kη = Ukη − UkT

nη; then

Inη =
n∑

k=1

βkUkη −
n∑

k=1

βkUkT
nη.

Letting γj = ∑∞
k=j βk and recalling (12), we have

n∑
j=1

γ 2
j ∼ (4c)2

(
n∑

j=1

1

j�(j)

)
= (4c)2�∗(n)

and

|Inη| ≤
n∑

k=1

βk

k∑
j=1

[T j |η| + T j+n|η|] ≤
n∑

j=1

γj [T j |η| + T j+n|η|]

≤
√√√√ n∑

j=1

γ 2
j ×

√√√√√2 ×
2n∑

j=1

T jη2.

Using (17), there exists a constant C > 0, such that

E

(
sup
n

|Inη|√
n�∗(n)

)
≤ C‖η‖,

where C does not depend on η. Hence, to show

lim
n→∞

Inη√
n�∗(n)

= 0 w.p. 1(19)

for each η ∈ L2
0(P ), one only needs to consider η ∈ (I − T )L2

0(P ), a dense subset
in L2

0(P ), and this is easy. If η = φ − T φ for some φ ∈ L2
0(P ), then UkT

nη =
T n+1φ − T k+n+1φ for 1 ≤ k ≤ n, so that

|Inη| ≤
∣∣∣∣∣T

n∑
k=1

βk(φ − T kφ)

∣∣∣∣∣ +
∣∣∣∣∣T n+1

n∑
k=1

βk(φ − T kφ)

∣∣∣∣∣ ≤ T φ̃ + T n+1φ̃,

where

φ̃ =
∞∑

k=1

βk|φ − T kφ| ∈ L2(P ).
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Since φ̃ ∈ L2(P ), limn→∞ T n+1φ̃/
√

n = 0 w.p. 1 by an easy application of the
Borel–Cantelli Lemma and therefore, limn→∞ Inη/

√
n�∗(n) = 0 w.p. 1. The the-

orem now follows by combining (18) and (19). �

5. Invariance principles. Let C[0,1] be the space of all real-valued continu-
ous functions on [0,1], endowed with the metric

ρ(x, y) = sup
0≤t≤1

|x(t) − y(t)|,

where x, y ∈ C[0,1]. For any ν ≥ 0, let Kν denote the set of absolutely continuous
functions x ∈ C[0,1] such that x(0) = 0 and∫ 1

0
[x′(t)]2 dt ≤ ν2.

Set S0 = M0 = 0 and define sequences of random functions {θn(·)} and {ζn(·)}
respectively by

θn(t) = Sk + (nt − k)Xk+1√
2n log2(n)

,

ζn(t) = Mk + (nt − k)(Mk+1 − Mk)√
2n log2(n)

,

for k ≤ nt ≤ k + 1, k = 0,1, . . . , n − 1. Then θn, ζn ∈ C[0,1].

COROLLARY 4. If the hypothesis in Corollary 1 holds, then w.p. 1, {θn}n≥3
are relatively compact in C[0,1], and the set of limit points is Kσ .

PROOF. Under the hypothesis, (3) and (4) hold; then

ρ(θn, ζn) ≤ max
k≤n

|Rk|√
2n log2(n)

→ 0 w.p. 1,

which implies that θn and ζn have the same limit points; and the limit points of ζn

are known to be Kσ w.p. 1 (see, e.g., Heyde and Scott [7], Corollary 2). �

Let

Bn(t) = 1√
n
S�nt�

for 0 ≤ t < 1, Bn(1) = Bn(1−), where �·� denotes the integer part. Then Bn ∈
D[0,1], the space of càdlàg functions as described in Chapter 3 of Billings-
ley [2]. Let Fn denote a regular conditional distribution for Bn given F0, so that
Fn(ω;B) = P [Bn ∈ B|F0](ω) for Borel sets B ⊆ D[0,1]; and let �σ denote the
distribution of σB, where B is a standard Brownian motion. Let � denote the
Prokhorov metric on D[0,1] (cf. [2], page 238).
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COROLLARY 5. If the hypothesis in Corollary 2 holds, then

lim
n→∞�[Fn(ω; ·),�σ ] = 0 a.e. ω.(20)

PROOF. For Sn = Mn + Rn, let M∗
n(t) = M�nt�/

√
n, 0 ≤ t < 1 and M∗

n(1) =
M∗

n(1−). Let Gn denote a regular conditional distribution for the random element
M∗

n given F0. Then Gn(ω; ·) converges to �σ for a.e. ω (P ), by verifying Theo-
rem 2.5 of Durrett and Resnick [5] in view of the mean ergodic theorem. Under
the hypothesis of Corollary 2, max1≤k≤n |Rk|/√n → 0 w.p. 1, and therefore,

ρ(M∗
n,Bn) = sup

0≤t≤1
|M∗

n(t) − Bn(t)| → 0 w.p. 1.

Equation (20) follows. �

6. Examples. In this section, we illustrate our conditions by considering lin-
ear processes, additive functionals of a Bernoulli shift and ρ-mixing processes.

Linear processes. Let . . . , ε−1, ε0, ε1, . . . be an ergodic stationary martingale
difference sequence with common mean 0 and variance 1. Define a linear process

Xk =
∞∑

j=0

aj εk−j ,

where a0, a1, . . . is a square summable sequence, and observe that Xk is of the
form g(Wk) with Wk = (. . . , εk−1, εk).

PROPOSITION 5. Suppose an = O[1/(nL(n))], where L(·) is a positive, non-
decreasing, slowly varying function. If

∞∑
n=2

logα(n)

nL(n)
< ∞(21)

with α = 3/2, then (5) holds with �(n) = 1 ∨ log(n) and, thus the conclusions to
Corollaries 1 and 4. Furthermore, if (21) holds with some α > 3/2, then also the
conclusions to Corollaries 2 and 5 hold.

PROOF. Letting sj,n = aj+1 + · · · + aj+n, straightforward calculations yield
that

‖E[Sn|F0]‖2 =
∞∑

j=0

s2
j,n.

If j ≥ 3, then

|sj,n| ≤ C

L(j)

∫ j+n

j

1

x
dx ≤ C

L(j)
log

(
1 + n

j

)
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for some constant C > 0, and therefore,

∞∑
j=3

s2
j,n ≤ C2

∫ ∞
2

1

L2(x)
log2

(
1 + n

x

)
dx

= nC2
∫ n/2

0

1

L2(n/t)

log2(1 + t)

t2 dt = O

[
n

L2(n)

]
,

where the last step follows from the dominated convergence theorem, using Pot-
ter’s bound to supply the dominating function, or by Fatou’s lemma. It is then eas-
ily verified that ‖E(Sn|F0)‖ = O[√n/L(n)], and the proposition is an immediate
consequence. �

REMARK 1. If L(n) ∼ logβ(n), then (21) requires β > 5/2. This is similar to,
but not strictly comparable with, the results of Yokoyama [18], who required finite
moments of order p > 2 and β ≥ 1 + (2/p).

Additive functionals of the Bernoulli shift. Now consider a Bernoulli process,
say

Wk =
∞∑

j=1

1

2j
εk−j+1,

where . . . , ε−1, ε0, ε1, . . . are i.i.d. random variables that take the values 0 and 1
with probability 1/2 each. Then W = [0,1], π is the uniform distribution, and

Qf (w) = 1

2

[
f

(
w

2

)
+ f

(
1 + w

2

)]

for f ∈ L1. Next, consider a stationary process of the form Xk = g(Wk), where g

is square integrable with respect to π and has mean 0. In this case, it is possible to
relate (5) to a weak regularity condition on g.

PROPOSITION 6. If

∫ 1

0

∫ 1

0

[g(x) − g(y)]2

|x − y| log5/2+δ

[
log

(
1

|x − y|
)]

dx dy < ∞(22)

for some δ > 0, then the conclusions to Corollaries 2 and 5 hold, and so also those
of Corollaries 1 and 4.

PROOF (Sketched). The proof involves showing that (22) implies (5), for
which �(n) can be chosen such that �∗(n) remains bounded. The details are similar
to the proof of Proposition 3 in [11], and will be omitted. �



LIL FOR STATIONARY PROCESSES 141

ρ-mixing processes. Our condition (5) can be checked when a mixing rate is
available for a ρ-mixing process; see [12], pages 4–5 for a definition.

COROLLARY 6. Let ρ(n) be the ρ-mixing coefficients of a centered, square
integrable, stationary process (Xk)k∈Z. If ρ(n) = O(logγ n) for some γ > 5/2, as
n → ∞, then (1) holds.

PROOF (Outline). Let Sn = X1 +· · ·+Xn and h(x) = (1∨ logx)3/2. By an ar-
gument similar to that in [12], page 15, one can easily show that, for some constant
C > 0,

∞∑
r=0

h(2r )‖E(S2r |F0)‖
2r/2 ≤ C

∞∑
j=0

h(2j )ρ(2j ) < ∞.

Since ‖E(Sn|F0)‖ is subadditive, it is then straightforward to argue as in
Lemma 2.7 of [13], that

∞∑
n=1

h(n)‖E(Sn|F0)‖
n3/2 < ∞.

Therefore, (1) holds by Corollary 1. �

REMARK 2. Shao [16] showed that LIL holds when ρ(n) = O(logγ n) for
some γ > 1, but through a completely different approach.

Acknowledgments. Thanks to a referee and an Associate Editor for their use-
ful suggestions, including the application to ρ-mixing sequences and the current
proof of Theorem 2 using (17). An earlier one had used Banach’s principle. Thanks
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