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A GENERALIZATION OF THE LINDEBERG PRINCIPLE1

BY SOURAV CHATTERJEE

University of California, Berkeley

We generalize Lindeberg’s proof of the central limit theorem to an in-
variance principle for arbitrary smooth functions of independent and weakly
dependent random variables. The result is applied to get a similar theorem
for smooth functions of exchangeable random variables. This theorem allows
us to identify, for the first time, the limiting spectral distributions of Wigner
matrices with exchangeable entries.

1. Introduction and results. J. W. Lindeberg’s elegant proof of the central
limit theorem [12], despite being in the shadow of Fourier analytic methods for a
long time, is now well known. It was revived by Trotter [20] and has since been
successfully used to derive CLT’s in infinite-dimensional spaces, where the Fourier
analytic methods are not so useful.

While the original Lindeberg method and its extensions compare the distribu-
tions of convolutions in great generality (the history of which is irrelevant to our
discussion, so we refer to [15] for details), it soon becomes clear that the same
principle works not only for sums, but for more general smooth functions as well.
Comparison of f (X1, . . . ,Xn) and f (Y1, . . . , Yn) for polynomial f has been ex-
amined by Rotar [16] and Mossel, O’Donnell and Oleszkiewicz [13], and for gen-
eral smooth f with bounded derivatives by Chatterjee [5]. In [5], it is shown how
to apply the method to establish universality in physical models, including the
Sherrington–Kirkpatrick model of spin glasses. It was recently observed by Toufic
Suidan [18] that the results in [5] can be used to give an immediate proof of the
universality of last passage percolation in thin rectangles (originally a result of [3]
and [4]). Developed independently, the Mossel, O’Donnell and Oleszkiewicz pa-
per [13] is another repository of very striking modern applications of this very old
idea.

A closer examination of Lindeberg’s method reveals that there is a direct gen-
eralization by which the independence of the coordinates can be dispensed with.
The argument, which may be possible to guess once the theorem has been stated,
will be given in Section 2.
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THEOREM 1.1. Suppose X and Y are random vectors in R
n with Y having

independent components. For 1 ≤ i ≤ n, let

Ai := E
∣∣E(Xi |X1, . . . ,Xi−1) − E(Yi)

∣∣,
Bi := E

∣∣E(X2
i |X1, . . . ,Xi−1) − E(Y 2

i )
∣∣.

Let M3 be a bound on maxi (E|Xi |3 + E|Yi |3). Suppose f : Rn → R is a thrice
continuously differentiable function, and for r = 1,2,3, let Lr(f ) be a finite con-
stant such that |∂r

i f (x)| ≤ Lr(f ) for each i and x, where ∂r
i denotes the r-fold

derivative in the ith coordinate. Then

|Ef (X) − Ef (Y)| ≤
n∑

i=1

(
AiL1(f ) + 1

2BiL2(f )
) + 1

6nL3(f )M3.

Let us now say a bit about the condition of boundedness of third derivatives.
The implications of this condition have been inspected in detail in the context of
convolutions by Zolotarev (see, e.g., [23]) and other authors. Zolotarev defines
the ζ3-metric on the space of distributions as follows: ζ3(F,G) = supf | ∫ f dF −∫

f dG|, where the sup is taken over all f with third derivative bounded by 1. The
ζ3 metric has not been so popular in practice because of the difficulty in connecting
this metric with the common notions of distance between measures.

However, instead of taking supremum over a class of f ’s, we consider only
individual functions of interest. For instance, in the random matrix scenario, our f

will be the Stieltjes transform of a matrix at a fixed z ∈ C\R, which is a nice C∞
function of the original matrix. In the paper [5], the author considered the partition
function of a disordered physical system (the Sherrington–Kirkpatrick model of
spin glasses), which again turns out to be a C∞ function of the disorder matrix,
and has nicely bounded derivatives.

The condition of boundedness of the derivatives can be dropped (as demon-
strated in [16] and [13]) by careful examination of the remainder term; but our
focus is different: We are more concerned with ways to extend the method to the
case of weakly dependent variables (as in Theorem 1.1 above), and more specifi-
cally, to exchangeable random variables, as below.

Exchangeable random variables. Let us now present a surprisingly nontriv-
ial application of the basic tool developed in the previous section. Suppose X is
a vector with exchangeable components. Certainly, we cannot expect to replace
the components of X by independent Gaussians as we did in Theorem 1.1. For
instance, all the components may be equal to the same random variable, in which
case there is no hope of replacing these variables by something generic. However,
not all is lost; our next theorem shows that the following “summarization” of X
can still be carried through:
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Suppose X is a vector with exchangeable components, having finite fourth mo-
ments. Let

µ̂ := 1

n

n∑
i=1

Xi and σ̂ 2 := 1

n

n∑
i=1

(Xi − µ̂)2.(1)

Let Z be a standard Gaussian vector in R
n, independent of X. Let Z̄ := 1

n

∑n
i=1 Zi

and

Yi := µ̂ + σ̂ (Zi − Z̄), i = 1, . . . , n.(2)

Then, for sufficiently well-behaved f (to be described below), we have Ef (X) ≈
Ef (Y). That is, X can be “replaced” by the modified vector Y for evaluation under
suitably smooth f . Note that in the process, we summarized the random vector X
into the couple (µ̂, σ̂ ). The precise statement is as follows:

THEOREM 1.2. Suppose X is a random vector with exchangeable compo-
nents, and µ̂, σ̂ and Y are defined as in (1) and (2). Let f : Rn → R be a thrice
continuously differentiable function, and for r = 1,2,3, let L′

r (f ) be a uniform
bound on all r th partial derivatives of f , including mixed partials. For each p, let
mp = E|X1 − µ̂|p . Then we have the bound

|Ef (X) − Ef (Y)| ≤ 9.5m
1/2
4 L′

2(f )n1/2 + 13m3L
′
3(f )n.

We postpone the (somewhat long) proof of this theorem until Section 3, giving
only a brief sketch at this point. The first step is to show that there is no loss of
generality in assuming that µ̂ ≡ 0 and σ̂ ≡ 1. Having assumed that, if we define

Ri = Xi + 1

n − i + 1

i−1∑
j=1

Xj,

then it is a straightforward exercise (which we will work out, nevertheless) that
E(Ri |Fi−1) = 0, where Fi−1 is the sigma-algebra generated by X1, . . . ,Xi−1. The
next step is to prove

E(R2
i |Fi−1) = 1 + O

(
(n − i + 1)−1/2)

,

which is computationally slightly harder. Having established these approxima-
tions, we can now replace Ri’s by independent Gaussian variables V1, . . . , Vn,
using Theorem 1.1. However, the inverse transform, which takes R to X, does
not take V to Y or anything resembling Y, but to something that is close to Y in
distribution. This will be formalized using Gaussian interpolation techniques.

Before moving on to applications, let us quickly mention without detailed justi-
fication that Theorem 1.2 has no apparent connection with de Finetti’s theorem [6]
or its finite version due to Diaconis and Freedman [8].
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An application: Wigner’s law for exchangeable random variables. Let us be-
gin with a very quick introduction to some necessary material from random matrix
theory.

Spectral measures. The empirical spectral distribution (ESD) of an N × N

square matrix A is the probability distribution 1
N

∑N
i=1 δλi

, where λ1, . . . , λN are
the eigenvalues of A repeated by multiplicities, and δx denotes the point mass
at x. The weak limit of a sequence of ESDs is called the limiting spectral dis-
tribution (LSD) of the corresponding sequence of matrices. The existence and
identification of LSDs for various kinds of random matrices is one of the main
goals of random matrix theory. For a Hermitian matrix, the ESD is supported
on the real line and hence has a corresponding cumulative distribution function.
We will denote the c.d.f. for the ESD of a Hermitian matrix A by FA. Explicitly,
FA(x) = 1

N
#{i :λi ≤ x}.

Wigner matrices. A standard Gaussian Wigner matrix of order N is a matrix
of the form AN = (N−1/2Xij )1≤i,j≤N , where (Xij )1≤i≤j≤N is a collection of i.i.d.
standard Gaussian random variables, and Xij = Xji for i > j . Wigner [21] showed
that the LSD for a sequence of standard Gaussian Wigner matrices (with order
N → ∞) is the semicircle law, which has density (2π)−1

√
4 − x2 in the interval

[−2,2].
It was later shown that the distribution of the entries does not play a significant

role; convergence to the semicircle law holds under more general conditions (cf. [1,
2, 10]). The weakest known condition was given by Pastur [14]. It is claimed that
the condition was shown to be necessary by Girko [9]. Although most conditions
require independence of the entries on and above the diagonal, there have been
some advances (e.g., [7, 17]) allowing certain kinds of dependence. However, none
of these cover the case of exchangeable entries.

For a detailed exposition of the key results about the spectra of Wigner matrices
and other results in the study of the spectral behavior of large random matrices,
see [2] or [11].

Here we consider the question of identifying the limiting spectral distributions
for Wigner matrices with exchangeable entries. The following theorem gives a
precise answer under minimal assumptions.

THEOREM 1.3. Suppose that for each N we have a random matrix AN =
(N−1/2XN

ij )1≤i,j≤N , where the collection (XN
ij )1≤i≤j≤N is exchangeable and

XN
ij = XN

ji for i > j . Let

µ̂N := 2

N(N + 1)

∑
i≤j≤N

XN
ij and σ̂ 2

N := 2

N(N + 1)

∑
i≤j≤N

(XN
ij − µ̂N)2.
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Assume that σ̂N > 0 a.s. for all N and supN≥1 E|(XN
11 − µ̂N)/σ̂N |4 < ∞. Then the

empirical spectral distribution of σ̂−1
N AN converges weakly to the semicircle law

in probability.

We will derive the above result from a quantitative bound (Lemma 4.1) on the
difference between Stieltjes transforms (to be discussed in Section 4). The proof
will show that it is actually enough to assume the weaker condition that E|(XN

11 −
µ̂N)/σ̂N |4 = o(N2/3) as N → ∞. It will also be evident that the argument can be
adapted to more complicated exchangeability assumptions than the most basic one
assumed above.

2. Proof of Theorem 1.1. Throughout the remainder of this article, we will
use the notation ∂if instead of the more familiar ∂f

∂xi
. Similarly, we will write

∂i∂jf instead of ∂2f
∂xi∂xj

and so on.
Now let us begin with the proof. Without loss of generality, we can assume that

X and Y are defined on the same probability space and are independent. For each
i, 0 ≤ i ≤ n, let

Zi = (X1, . . . ,Xi, Yi+1, . . . , Yn) and Z0
i = (X1, . . . ,Xi−1,0, Yi+1, . . . , Yn).

Then clearly

Ef (X) − Ef (Y) =
n∑

i=1

(
Ef (Zi ) − Ef (Zi−1)

)
.

Now, by third-order Taylor approximation,∣∣∣∣f (Zi ) − f (Z0
i ) − Xi ∂if (Z0

i ) − X2
i

2
∂2
i f (Z0

i )

∣∣∣∣ ≤ |Xi |3L3(f )

6
and similarly,∣∣∣∣f (Zi−1) − f (Z0

i ) − Yi ∂if (Z0
i ) − Y 2

i

2
∂2
i f (Z0

i )

∣∣∣∣ ≤ |Yi |3L3(f )

6
.

Now, since the Yi ’s are independent, we have

E
(
(Xi − Yi) ∂if (Z0

i )
) = E

((
E(Xi |X1, . . . ,Xi−1) − E(Yi)

)
∂if (Z0

i )
)
.

Similarly, we also have

E
(
(X2

i − Y 2
i ) ∂2

i f (Z0
i )

) = E
((

E(X2
i |X1, . . . ,Xi−1) − E(Y 2

i )
)
∂2
i f (Z0

i )
)
.

Thus, for any i,

|Ef (Zi ) − E(Zi−1)| ≤ 1
6L3(f )(E|Xi |3 + E|Yi |3)
+ ∣∣E(

(Xi − Yi) ∂if (Z0
i )

)∣∣ + 1
2

∣∣E(
(X2

i − Y 2
i )∂2

i f (Z0
i )

)∣∣
≤ 1

6L3(f )M3 + AiL1(f ) + 1
2BiL2(f ).

This completes the proof.
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3. Proof of Theorem 1.2. First, note that X = Y on the event {σ̂ = 0}. Thus,
if P{σ̂ = 0} = 1, there is nothing to prove. If P{σ̂ = 0} < 1, we can condition on
the event {σ̂ > 0} and consequently assume, without loss of generality, that σ̂ > 0
almost surely, because the conditioning retains the exchangeability of the Xi’s.
Thus, let us assume that P{σ̂ > 0} = 1.

For i = 1, . . . , n let X̃i = (Xi − µ̂)/σ̂ . Then
∑n

i=1 X̃i = 0 and
∑n

i=1 X̃2
i = n

(we will be using these identities numerous times, often without mention). Let
Z̃i = Zi − Z̄, where Z̄ = 1

n

∑n
i=1 Zi .

In the following, we will use E0 and P0 to denote the expectation and proba-
bility conditional on the pair (µ̂, σ̂ ). Observe that X̃ is a vector with exchangeable
components under P0 for all values of (µ̂, σ̂ ).

Now assume that (µ̂, σ̂ ) is given and fixed. Let

f0(x1, . . . , xn) := f (µ̂ + σ̂ x1, . . . , µ̂ + σ̂ xn).

Then f (X) = f0(X̃) and f (Y) = f0(Z̃). Note that L′
r (f0) = L′

r (f )σ̂ r , where
L′

r (g) denotes a uniform bound on the r th order derivatives of a function g, in-
cluding mixed partials.

First, we need to do a list of computations. For 0 ≤ i ≤ n, let Fi be the sigma-
algebra generated by {X̃1, . . . , X̃i} and (µ̂, σ̂ ). Since the X̃j ’s are exchangeable
given (µ̂, σ̂ ), we have E0(X̃k|Fi−1) = E0(X̃l|Fi−1) for every k, l > i − 1, and
hence

E0(X̃i |Fi−1) = E0

(
1

n − i + 1

n∑
j=i

X̃j

∣∣∣∣Fi−1

)
.

Now, since
∑n

j=1 X̃j = 0,

1

n − i + 1

n∑
j=i

X̃j = − 1

n − i + 1

i−1∑
j=1

X̃j ,

which is Fi−1-measurable. Thus,

E0(X̃i |Fi−1) = − 1

n − i + 1

i−1∑
j=1

X̃j = 1

n − i + 1

n∑
j=i

X̃j .(3)

From the above identity and exchangeability, it follows that

E0(E0(X̃i |Fi−1)
2) = 1

(n − i + 1)2 [(n − i + 1)E0(X̃
2
1)

+ (n − i + 1)(n − i)E0(X̃1X̃2)].
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Now clearly E0(X̃
2
1) = E0(

1
n

∑n
i=1 X̃2

i ) = 1 and

E0(X̃1X̃2) = 1

n(n − 1)

∑
i 
=j

E0(X̃iX̃j )

= − 1

n(n − 1)

n∑
i=1

E0(X̃
2
i ) = − 1

n − 1
.

(The second equality holds because
∑n

j=1 X̃j = 0.) Combining, we get

E0(E0(X̃i |Fi−1)
2) = (i − 1)

(n − i + 1)(n − 1)
.(4)

Again, by a similar argument as before (using the identity
∑n

i=1 X̃2
i = n), we have

E0(X̃
2
i |Fi−1) = 1

n − i + 1

n∑
j=i

X̃2
j .

It follows that

Var0(E0(X̃
2
i |Fi−1)) = 1

(n − i + 1)2 [(n − i + 1)Var0(X̃
2
1)

+ (n − i + 1)(n − i)Cov0(X̃
2
1, X̃

2
2)].

Now, Var0(X̃
2
1) ≤ E0(X̃

4
1), and

Cov0(X̃
2
1, X̃

2
2) = 1

n(n − 1)

∑
i 
=j

E0(X̃
2
i X̃

2
j ) − E0(X̃

2
1)E0(X̃

2
2)

= 1

n(n − 1)

n∑
i=1

E0
(
X̃2

i (n − X̃2
i )

) − 1

= 1 − E0(X̃
4
1)

n − 1
≤ 0, since E0(X̃

4
1) ≥ (E0(X̃

2
1))

2 = 1.

Combining, we get

Var0(E0(X̃
2
i |Fi−1)) ≤ E0(X̃

4
1)

n − i + 1
.(5)

Now let G be the matrix whose (i, j)th element is

gij =



1/(n − i + 1), if i > j ,
1, if i = j ,
0, if i < j .
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Let R = GX̃. Then Ri is Fi-measurable, and from (3), we see that

E0(Ri |Fi−1) = 0.(6)

Next, note that

E0(R
2
i |Fi−1) = E0

(
(X̃i − E0(X̃i |Fi−1))

2|Fi−1
)

= E0(X̃
2
i |Fi−1) − (E0(X̃i |Fi−1))

2.

Using (4), (5), the triangle inequality and the fact that E0(X̃
2
i ) = 1, we get

E0
∣∣E0(R

2
i |Fi−1) − 1

∣∣ ≤ E0
∣∣E0(X̃

2
i |Fi−1) − 1

∣∣ + E0(E0(X̃i |Fi−1)
2)

≤
√

E0(X̃
4
1)

n − i + 1
+ (i − 1)

(n − i + 1)(n − 1)
(7)

≤ 2

√
E0(X̃

4
1)

n − i + 1
since E0(X̃

4
1) ≥ 1.

We will now temporarily use the notation ‖Ri‖0
3 for (E0|Ri |3)1/3, which is the

conditional L3 norm of Ri . By Minkowski’s inequality and exchangeability, we
have

‖Ri‖0
3 ≤ ‖X̃i‖0

3 + 1

n − i + 1

n∑
j=i

‖X̃j‖0
3 = 2‖X̃1‖0

3.

This bound can be rewritten as

E0|Ri |3 ≤ 8σ̂−3
E0|X1 − µ̂|3.(8)

Now define the function f1 : Rn → R as f1(x) := f0(G
−1x). Then f1(R) = f0(X̃).

Let gij denote the (i, j)th element of G−1. It is a simple exercise to verify that

gij =



−1/(n − j), if i > j ,
1, if i = j ,
0, if i < j .

Using the chain rule we see that for any j , r and x,

∂r
j f1(x) = ∑

1≤i1,...,ir≤n

(
∂i1∂i2 · · · ∂ir f0

)
(G−1x)gi1j gi2j · · ·girj .

Thus for any r ,

Lr(f1) ≤ L′
r (f0) max

1≤j≤n

(
n∑

i=1

|gij |
)r

= L′
r (f0)2

r = L′
r (f )σ̂ r2r ,(9)
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where Lr is defined as in the statement of Theorem 1.1. Now let V be a standard
Gaussian vector in R

n. Using the bounds from (6)–(9) in Theorem 1.1, we get

|E0f1(R) − E0f1(V)|

≤ 1

2
L2(f1)

n∑
i=1

E0
∣∣E0(R

2
i |Fi−1) − 1

∣∣ + 1

6
nL3(f1) max

1≤i≤n
(E0|Ri |3 + E|Vi |3)

≤ 4L′
2(f )σ̂ 2

n∑
i=1

√
E0(X̃

4
1)

n − i + 1
+ 8

6
nL′

3(f )σ̂ 3(8σ̂−3
E0|X1 − µ̂|3 + E|V1|3).

Now E|X̃1|4 = σ̂−4
E0|X1 − µ̂|4, and by comparing sums with integrals, we have∑n

i=1(n − i + 1)−1/2 ≤ 2
√

n. Thus,

|E0f1(R) − E0f1(V)|
≤ 8L′

2(f )

√
nE0|X1 − µ̂|4(10)

+ 4
3nL′

3(f )(8E0|X1 − µ̂|3 + σ̂ 3
E|V1|3).

Let U = G−1V. Explicitly,

Ui = Vi −
i−1∑
j=1

Vj

n − j
.

Now note that f1(V) = f0(U), f0(Z̃) = f (Y) and f1(R) = f0(X̃) = f (X). Com-
bining, we get

|E0f (X) − E0f (Y)| = |E0f1(R) − E0f0(Z̃)|
≤ |E0f1(R) − E0f1(V)|(11)

+ |E0f0(U) − E0f0(Z̃)|.
We already have a bound on |E0f1(R) − E0f1(V)| from (10). We will now com-
pute a bound on |E0f0(U) − E0f0(Z̃)|, where recall that Z̃i = Zi − Z̄, and Z is a
standard Gaussian vector. To do that, we first need to do some computations. Let
σ̃ij := Cov(Ui,Uj ). Then

σ̃ij =




−(n − j)−1 +
j−1∑
k=1

(n − k)−2, if i > j ,

1 +
j−1∑
k=1

(n − k)−2, if i = j ,

σ̃j i , if i < j .
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Now, for i > j , we can rewrite the first term in σ̃ij as a telescoping sum to get

σ̃ij = − 1

n − 1
−

j−1∑
k=1

(
1

n − k − 1
− 1

n − k

)
+

j−1∑
k=1

1

(n − k)2

= − 1

n − 1
−

j−1∑
k=1

1

(n − k)2(n − k − 1)
.

Thus, if we define

σij := Cov(Z̃i, Z̃j ) =
{−1/n, if i 
= j ,

(n − 1)/n, if i = j ,

then

∑
i,j

|σij − σ̃ij | =
n∑

i=1

|σii − σ̃ii | + 2
n∑

i=1

i−1∑
j=1

|σij − σ̃ij |

≤ 2 +
n∑

i=1

i−1∑
k=1

1

(n − k)2

(12)

+ 2
n∑

i=1

i−1∑
j=1

j−1∑
k=1

1

(n − k)2(n − k − 1)

= 2 +
n−1∑
k=1

1

n − k
+

n−2∑
k=1

1

n − k
= 3 + 2

n−1∑
k=2

1

k
.

We will use the well-known “Gaussian interpolation technique” for bounding
|E0f0(U) − E0f0(Z̃)|. This classical method for proving Slepian-type inequali-
ties has been used extensively in recent years by Talagrand [19] in his efforts to
obtain a rigorous version of the cavity method for spin glasses. For each t ∈ [0,1],
let Wt = √

1 − tU + √
tZ̃. Then

E0f0(Z̃) − E0f0(U)

= E0

[∫ 1

0

d

dt
f0(Wt ) dt

]
(13)

= E0

[∫ 1

0

n∑
i=1

(
Z̃i

2
√

t
− Ui

2
√

1 − t

)
∂if0(Wt ) dt

]
.

Now, if a random vector ξ = (ξ1, . . . , ξn) has a centered Gaussian distribution,
then it is not difficult to show using integration by parts that for any differentiable
function h with subexponential growth at infinity, and any i, the following identity
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holds:

E(ξih(ξ)) =
n∑

j=1

E(ξiξj )E(∂jh(ξ)).

Since we do not want to expand our list of references, let us refer to Appendix A.6
of Talagrand’s book [19] for a proof. Applying this result to our problem (after
noting that interchanging integrals is not an issue since everything is bounded), we
get

E0(Ui ∂if0(Wt )) = √
1 − t

n∑
j=1

σ̃ijE0(∂j ∂if0(Wt ))

and similarly,

E0(Z̃i ∂if0(Wt )) = √
t

n∑
j=1

σijE0(∂j ∂if0(Wt )).

Combining, we have

E0f0(Z̃) − E0f0(U) = 1
2

∫ 1

0

∑
1≤i,j≤n

E0[∂i ∂jf0(Wt )](σij − σ̃ij ) dt.

Using the bound from (12), we get

|E0f0(U) − E0f0(Z̃)| ≤ 1

2
L′

2(f0)

(
3 + 2

n−1∑
k=2

1

k

)
.(14)

Combining this with (10) and (14), we get

|Ef (X) − Ef (Y)|
≤ E|E0f (X) − E0f (Y)|
≤ 8L′

2(f )

√
nE|X1 − µ̂|4

+ 4

3
nL′

3(f )
(
8E|X1 − µ̂|3 + E(σ̂ 3)E|V1|3)

+ 1

2
L′

2(f )E(σ̂ 2)

(
3 + 2

n−1∑
k=2

1

k

)
.

To complete the proof, we apply Jensen’s inequality to get E(σ̂ r ) ≤ E|X1 − µ̂|r
for r ≥ 2 and use the crude bounds 3 + 2

∑n−1
k=2 k−1 ≤ 3

√
n and E|V1|3 ≤ 1.7 to

unify terms.
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4. Proof of Theorem 1.3. We will now prove Theorem 1.3 via an applica-
tion of Theorem 1.2, by using the Stieltjes transform of the spectral measure as a
smooth function of the matrix entries. The Stieltjes transform (or Cauchy trans-
form, or resolvent) of a cumulative probability distribution function F on R is
defined as

mF (z) :=
∫ ∞
−∞

1

x − z
dF (x) for every z ∈ C\R.(15)

Analogously, the Stieltjes transform of an N × N Hermitian matrix A at a number
z ∈ C\R is defined as

mA(z) := 1

N
Tr

(
(A − zI)−1)

,(16)

where I is the identity matrix of order N . Note that this is just the Stieltjes trans-
form of the empirical spectral distribution (ESD) of A. The ESDs of a sequence
{AN }∞N=1 of random Hermitian matrices converge weakly in probability to a dis-
tribution F if and only if

mAN
(z)

P−→ mF (z) for every z ∈ C\R.

For the proof of this result and further details like Berry–Esseen-type error bounds,
we refer to [2], pages 639–640.

Now recall that if A(x) is a matrix-valued differentiable function of a scalar x,
and G(x) := (A(x) − zI)−1, where z ∈ C\R and I is the identity matrix, then

dG

dx
= −G

dA

dx
G.(17)

This standard result is obtained by differentiating both sides of the identity G(A−
zI) ≡ I . Differentiability follows from the fact that the elements of the inverse of
a matrix are all rational functions of the elements of the original matrix. Higher-
order derivatives may be computed by repeatedly applying the above formula.

The following lemma is the key to the proof of Theorem 1.3:

LEMMA 4.1. Suppose that for each N we have a random matrix ÃN =
(N−1/2X̃N

ij )1≤i,j≤N , where the collection (X̃N
ij )1≤i≤j≤N is exchangeable and

X̃N
ij = X̃N

ji for i > j . Suppose

2

N(N + 1)

∑
i≤j≤N

X̃N
ij = 0 and

2

N(N + 1)

∑
i≤j≤N

(X̃N
ij )2 = 1 a.s.

For each N , let (ZN
ij )1≤i≤j≤N be a collection of i.i.d. standard Gaussian random

variables and let YN
ij = ZN

ij − Z̄N , where Z̄N = 2
N(N+1)

∑
i≤j ZN

ij . Let YN
ij = YN

ji
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for i > j , and let BN = (N−1/2YN
ij )1≤i,j≤N . Then, for any z ∈ C\R, and any

g : R → R with bounded derivatives up to the third order, we have∣∣Eg
(
Rem

ÃN
(z)

) − Eg
(
RemBN

(z)
)∣∣

≤ C1N
−1(E|X̃N

12|4)1/2 + C2N
−1/2

E|X̃N
12|3,

where m is the Stieltjes transform as defined in (16) and C1 and C2 are constants
depending only on g and z. The quantity |Eg(Imm

ÃN
(z)) − Eg(ImmBN

(z))| also
admits the same upper bound.

To complete the proof of Theorem 1.3 using this lemma, we need the following
fact about spectral distributions of Hermitian matrices:

LEMMA 4.2 (Quoted from [2], Lemma 2.2). Let A and B be two N × N

Hermitian matrices, with empirical distribution functions FA and FB . Then

‖FA − FB‖∞ ≤ 1

N
rank(A − B).

This lemma is an easy consequence of the well-known interlacing inequalities
for eigenvalues of Hermitian matrices. Let us now complete the proof of Theorem
1.3 by combining Lemma 4.1 and Lemma 4.2.

PROOF OF THEOREM 1.3. Let X̃N
ij = (XN

ij − µ̂N)/σ̂N , and let ÃN =
(N−1/2X̃N

ij )1≤i,j≤N . Clearly, ÃN satisfies the hypotheses of Lemma 4.1. Thus,
we have ∣∣Eg

(
Rem

ÃN
(z)

) − Eg
(
RemBN

(z)
)∣∣

≤ C1N
−1(E|X̃N

12|4)1/2 + C2N
−1/2

E|X̃N
12|3.

The same bound holds for |Eg(Imm
ÃN

(z))−Eg(ImmBN
(z))| as well. The bound

converges to zero if E|X̃N
12|4 = o(N2/3), and thus under that condition, ÃN and

BN must have the same LSD. Finally, observe that by Lemma 4.2, the sequence
{σ̂−1

N AN } has the same LSD as {ÃN }, and FBN
converges weakly to the semicircle

distribution in probability. This completes the proof. �

PROOF OF LEMMA 4.1. To formalize things in a way that is suitable for our
purpose, consider the map A which “constructs” Wigner matrices of order N . Let
n = N(N + 1)/2 and write elements of R

n as x = (xij )1≤i≤j≤N . For any x ∈ R
n,

let A(x) be the matrix defined as

A(x)ij :=
{

N−1/2xij , if i ≤ j ,
N−1/2xji, if i > j .

(18)
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Now let us fix z = u + √−1v ∈ C, with v 
= 0. Let G(x) := (A(x) − zI)−1, and
define h : R

n → R as

h(x) := N−1 Tr(G(x)).

For any α ∈ {(i, j)}1≤i≤j≤n, we will write ∂αh for ∂h/∂xα by our usual conven-
tion. From (17), it follows that for any α,

∂αh = −N−1 Tr(G(∂αA)G).(19)

Now note that for any α,β ∈ {(i, j)}1≤i≤j≤n, we have ∂β ∂αA ≡ 0. An easy com-
putation involving repeated applications of (17) to the above expression for ∂αh

gives, for any α,β, γ ∈ {(i, j)}1≤i≤j≤N ,

∂β ∂αh = N−1
∑

{β ′,α′}={β,α}
Tr(G(∂β ′A)G(∂α′A)G),(20)

∂γ ∂β ∂αh = −N−1
∑

{γ ′,β ′,α′}={γ,β,α}
Tr(G(∂γ ′A)G(∂β ′A)G(∂α′A)G).(21)

Note that the first sum runs over all permutations of (β,α), which amounts to only
two terms. Similarly, the second sum involves six terms.

To bound (19), first note that Tr(G(∂αA)G) = Tr((∂αA)G2). Since G2 has a
spectral decomposition and all its eigenvalues are bounded by |v|−2 in magnitude,
it follows in particular that the elements of G2 are also bounded by |v|−2. Now,
∂αA has at most two nonzero elements, which are equal to N−1/2. Hence,

|Tr(G(∂αA)G)| = |Tr((∂αA)G2)| ≤ 2|v|−2N−1/2.

To bound (20) and (21), we need to recall the properties of the Hilbert–Schmidt
norm for matrices. For an N × N complex matrix B = (bij )1≤i,j≤N , the Hilbert–
Schmidt norm of B is defined as ‖B‖ := (

∑
i,j |bij |2)1/2. Besides the usual prop-

erties of a matrix norm, it has the following additional features: (a) |Tr(BC)| ≤
‖B‖‖C‖, (b) if U is a unitary matrix, then for any C of the same order, ‖CU‖ =
‖UC‖ = ‖C‖, and (c) for a matrix B admitting a spectral decomposition (i.e.,
a normal matrix) with eigenvalues λ1, . . . , λN , and any other matrix C of the same
order, max{‖BC‖,‖CB‖} ≤ max1≤i≤N |λi | · ‖C‖. For a proof of these standard
facts one can look up, for example, [22], pages 55–58.

Clearly, G and the derivatives of A are all normal matrices. Moreover, the eigen-
values of G are bounded by |v|−1, where v = Im z. Thus, by the properties of the
Hilbert–Schmidt norm listed above, we have

|Tr(G(∂βA)G(∂αA)G)| ≤ ‖G(∂βA)‖‖G(∂αA)G‖
≤ |v|−3‖∂βA‖‖∂αA‖
≤ 2|v|−3N−1.
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Similarly,

|Tr(G(∂γ A)G(∂βA)G(∂αA)G)| ≤ ‖G(∂γ A)‖‖G(∂βA)G(∂αA)G‖
≤ ‖G(∂γ A)‖‖G(∂βA)G‖‖(∂αA)G‖
≤ |v|−4‖∂γ A‖‖∂βA‖‖∂αA‖
≤ 23/2|v|−4N−3/2.

Finally, note that since the matrix entries are all real, therefore ∂α(Reh) = Re ∂αh

and so on. Thus, if we let f = g ◦ (Reh), then substituting the bounds obtained
above in (19), (20) and (21), we get L′

2(f ) ≤ K1N
−2 and L′

3(f ) ≤ K2N
−5/2,

where K1 and K2 are constants depending only on g and z. By Theorem 1.2, it
now follows that

|Ef (X̃) − Ef (Y)| ≤ 9.5K1N
−1(E|X̃12|4)1/2 + 13K2N

−1/2
E|X̃12|3,

where Yij = Zij − Z̄, and Zij ’s are i.i.d. standard Gaussian random variables. This
completes the proof of the lemma. �
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