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SOME RESULTS ON TWO-SIDED LIL BEHAVIOR

BY UWE EINMAHL 1 AND DELI L I2

Vrije Universiteit Brussel and Lakehead University

Let {X,Xn;n ≥ 1} be a sequence of i.i.d. mean-zero random variables,
and letSn = ∑n

i=1 Xi,n ≥ 1. We establish necessary and sufficient con-
ditions for having with probability 1, 0< lim supn→∞ |Sn|/√nh(n) < ∞,

whereh is from a suitable subclass of the positive, nondecreasing slowly
varying functions. Specializing our result toh(n) = (log logn)p, where
p > 1 and toh(n) = (logn)r , r > 0, we obtain analogues of the Hartman–
Wintner LIL in the infinite variance case. Our proof is based on a general re-
sult dealing with LIL behavior of the normalized sums{Sn/cn;n ≥ 1}, where
cn is a sufficiently regular normalizing sequence.

1. Introduction. Let {X,Xn;n ≥ 1} be a sequence of real-valued inde-
pendent and identically distributed (i.i.d.) random variables, and letSn =∑n

i=1 Xi,n ≥ 1. DefineLx = loge max{e, x} andLLx = L(Lx) for x ∈ R. The
classical Hartman–Wintner law of the iterated logarithm (LIL) states that

lim sup
n→∞

±Sn/(2nLLn)1/2 = σ a.s.(1.1)

if and only if

EX = 0 and σ 2 = EX2 < ∞.(1.2)

Moreover, if (1.2) holds, then

C
({

Sn/
√

2nLLn;n ≥ 1
}) = [−σ,σ ] a.s.,(1.3)

whereC({xn;n ≥ 1}) stands for the cluster set (i.e., the set of limit points) of
the sequence{xn;n ≥ 1}. See [8] for the “if” part and [24] for the converse.
The conclusion (1.3) is due to Strassen [23]. Actually, in this fundamental paper,
Strassen [23] obtained a functional LIL as well as invariance principles which are
in many respects at the origin of the study of LIL in a vector-valued setting. For
very efficient and self-contained proofs of the Hartman–Wintner LIL which do not
use the Kolmogorov LIL [14] see, for example, [2] or [7].

It is natural then to ask whether one can find analogous results for variables
with infinite variance. This of course requires different normalizing sequences and
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1602 U. EINMAHL AND D. LI

also sometimes different centering sequences. In the case where{X,Xn;n ≥ 1}
is a sequence of symmetric real-valued i.i.d. random variables, Feller [6] (see
[10, 19] and [3] for some clarification) studied the problem of determining when
it is possible to find a positive regular monotone sequence{an;n ≥ 1} such that

lim sup
n→∞

|Sn|/an = 1 a.s.(1.4)

In this case, one speaks oftwo-sided LIL behavior.
Of course one can also address the correspondingone-sided LIL behavior

problem with centering{δn}, that is, when one has for a suitable (regular)
sequencebn

0< lim sup
n→∞

(Sn − δn)/bn < ∞ a.s.(1.5)

For some basic work in this direction refer to [11–13] in the finite expectation case
whereδn = nEX and for more general results see also [22].

Kuelbs and Zinn [17] showed that the techniques of Klass [11] are also
extremely useful for the LIL problem in Banach space, and this was further
elaborated by Kuelbs [16] and Einmahl [4]. The main purpose of the present paper
is to address some still open questions in connection with two-sided LIL behavior
for real-valued random variables with finite expectation.

To cite the relevant work in this direction let us first recall some definitions
of Klass [11]. As above, letX : � → R be a random variable and assume that
0< E|X| < ∞. Set

H(t) := EX2I {|X| ≤ t} and M(t) := E|X|I {|X| > t}, t ≥ 0.

Then it is easy to see that the functionG(t) := t2/(H(t) + tM(t)), t > 0, is
continuous and increasing with an inverse functionK(x), x > 0. Moreover, one
has for this functionK that asx ↗ ∞

K(x)/
√

x ↗ (EX2)1/2 ∈]0,∞](1.6)

and

K(x)/x ↘ 0.(1.7)

Setγn = √
2K(n/LLn)LLn, n ≥ 1. Klass [11, 12] established a one-sided LIL

result with respect to this sequence which also implies the following two-sided
LIL result if EX = 0:

lim sup
n→∞

|Sn|/γn = 1(1.8)

if and only if

∞∑
n=1

P{|X| ≥ γn} < ∞.(1.9)
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(Actually, Klass [11, 12] proved that the limiting constant is∈ [2−1/2,3·2−3/2] and
showed later in [13] that this is optimal in the one-sided case. For the calculation
of the limiting constant in the two-sided case, see [4] and also Section 3 of the
present paper.)

We thus see that if condition (1.9) is satisfied, one obtains an LIL result which
extends the classical Hartman–Wintner LIL. [Note that if 0< σ 2 = EX2 < ∞, we
have thatK(n/LLn)LLn ∼ σ

√
nLLn and condition (1.9) is trivially satisfied so

that the Hartman–Wintner LIL is a special case of (1.8).]
Moreover, Klass [11] (see his Theorem 4.1) has shown that ifEX = 0 and

cn ≥ √
9/8γn is a sequence so thatcn/n1/2 is increasing, one has

lim sup
n→∞

|Sn|/cn ≤ 1 a.s.(1.10)

if and only if
∞∑

n=1

P{|X| ≥ cn} < ∞.(1.11)

This implies for sequencescn satisfyingcn/γn → ∞
lim sup
n→∞

|Sn|/cn = 0 or∞ a.s.(1.12)

according as
∞∑

n=1

P{|X| ≥ cn} < ∞ or = ∞.(1.13)

We thus see that if one considers “big” sequences as above, one can only obtain
stability results, but no longer LIL behavior.

Here we shall investigate whether there are still LIL type results if condi-
tion (1.9) is not satisfied and, moreover, whether one can find “nicer” norming
sequences than{γn}. This sequence is very appealing in that it is defined in a
universal way depending on the distribution ofX only, but if one looks at con-
crete examples it can be quite difficult to determine{γn}. Another problem is that
in certain situations the sequenceγn can be too small. An example which was
discussed by Feller [6] and Pruitt [22] is a symmetric random variableX with
Lebesgue densityfX(x) = |x|−3, |x| ≥ 1. In this case it is easy to calculateγn, but
assumption (1.11) is not satisfied so that the LIL of Klass does not apply, nor do
the LIL results of Feller [6] and Pruitt [22]. It seems to be still an open problem
whether, in this particular case, there exists a “nice” normalizing sequencean so
that lim supn→∞ |Sn|/an = 1 a.s.

We first address the following modified form of the LIL behavior problem.

PROBLEM 1. Given a sequence,an = √
nh(n), whereh is a slowly vary-

ing nondecreasing function, we ask: When do we have with probability 1,
0< lim supn→∞ |Sn|/an < ∞?
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One possibility would be to look for conditions implyingγn ≈ an, but as we are
dealing with almost sure convergence one has many more possibilities for finding
normalizing sequences than in the weak convergence case. Under an additional
assumption onh we will establish a necessary and sufficient condition for LIL
behavior with respect to the given sequencean. Using this result we can also find
a normalizing sequence of this type for the Feller–Pruitt example (see Section 5
below).

At first sight our result might look quite different from the Klass LIL, but it will
turn out that our conditions imply

0< lim inf
n→∞ an/γn < ∞(1.14)

which shows that we are in the range between the LIL result (1.8) and the stability
result (1.12). It is natural then to pose a second related question, namely

PROBLEM 2. Consider a nondecreasing sequencecn satisfying
0 < lim infn→∞ cn/γn < ∞. When do we have with probability 1,
0 < lim supn→∞ |Sn|/cn < ∞? If this is the case, what is the cluster set
C({Sn/cn;n ≥ 1})?

From Corollary 10 of [20] in combination with (3.5) below it follows that,
under a mild regularity assumption on the sequence{cn}, the above lim sup is
equal to a certain parameterα0. We shall additionally show that the corresponding
cluster setC({Sn/cn;n ≥ 1}) always coincides with the interval[−α0, α0] (see
Theorem 3 below). It is then clear that we have LIL behavior with respect to the
normalizing sequencecn if and only if 0< α0 < ∞. Thus, in principle, this solves
Problem 2. There is still a difficulty, namely, the determination of this parameter.
For that reason, we shall also show that under assumption (1.14) one can define this
parameter differently, which makes the calculation ofα0 feasible in many cases of
interest (see Theorem 4). This way we can immediately reobtain the two-sided
version of the Klass LIL (1.8) and we get a whole class of new LIL type results
as indicated in Problem 1. (For a survey of some other work on Problem 2 refer to
Sections 7.3 and 7.5 of [21].)

The plan of the paper is as follows. Our main results regarding Problem 1,
Theorems 1 and 2, and their corollaries as well as Theorems 3 and 4 are presented
in Section 2. In Section 3 we prove the two latter theorems and in Section 4 we
show how one can infer Theorems 1 and 2 from them. After giving a few examples
and some further comments in Section 5, we finally determine the desired “nice”
normalizing sequence for the Feller–Pruitt example.

2. Statement of main results. Before we can formulate our results, we need
some extra notation. LetH be the set of all continuous, nondecreasing functions
h : [0,∞[→]0,∞[ , which are slowly varying at infinity. By monotonicity the
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slow variation ofh is equivalent to limt→∞ h(et)/h(t) = 1. Very often one can
even show that limt→∞ h(tf (t))/h(t) = 1, wheref is an increasing function such
that limt→∞ f (t) = ∞. For instance, ifh(t) = LLt , t ≥ 0, this is the case for
f (t) = t. In the literature this is also called super-slow variation (refer to pages
186–188 in [1] for more information and background on this notion).

For our purposes the functionsfτ (t) := exp((Lt)τ ), 0 ≤ τ ≤ 1, will be most
important. Clearly if limt→∞ h(tf (t))/h(t) = 1 holds forf = fτ , whereτ > 0
this also holds forf = fτ ′ , 0 ≤ τ ′ ≤ τ. Thus, the bigger we can choose the
parameterτ , the slower is the variation of the given functionh. (Also note that
this condition withτ = 0 is equivalent with slow variation.)

Given 0≤ q < 1, letHq ⊂ H be the class of all functions so that

lim
t→∞h

(
tfτ (t)

)
/h(t) = 1, 0< τ < 1− q,

and setH1 = H . We considerq as a measure for how slow the variation is. So
functions inH0 are the “slowest” and it will turn out that this class is particularly
interesting for LIL type results (see Theorem 2 below). Examples for functions in
H0 areh(t) = (Lt)r , r ≥ 0, andh(t) = (LLt)p, p ≥ 0.

The following Theorem 1 gives LIL type results ifλ > 0 and stability results
if λ = 0 with respect to a large class of normalizing sequences, without assuming
thatEX2 < ∞.

THEOREM 1. Let X,X1,X2, . . . be i.i.d. random variables, and let Sn =∑n
i=1 Xi,n ≥ 1. Given a function h ∈ Hq where 0 ≤ q ≤ 1, set �(x) = √

xh(x)

and an = �(n), n ≥ 1. If there exists a constant 0 ≤ λ < ∞ such that

EX = 0, E�−1(|X|) < ∞, lim sup
x→∞

�−1(xLLx)

x2LLx
H(x) = λ2

2
,(2.1)

then we have

(1− q)1/2λ ≤ lim sup
n→∞

|Sn|/an ≤ λ a.s.(2.2)

Conversely, if q < 1, then the relation

lim sup
n→∞

|Sn|
an

< ∞ a.s.(2.3)

implies that (2.1)holds for some λ < ∞.
Moreover, the lim sup in (2.3) is positive if and only if (2.1) holds for some

λ > 0.

Note the lim sup in condition (2.1). If this is actually a limit or if the
corresponding lim inf is positive, one can show thatan ≈ γn and one could
obtain (2.3) from the Klass LIL (with less tight bounds on the limiting constant).
This is no longer possible if the lim inf is equal to 0, which clearly indicates
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that we can obtain LIL type results in many situations where the Klass LIL does
not apply. The reader will notice that we have taken advantage of this additional
possibility for proving such results when choosingan in the Feller–Pruitt example
(see Section 5).

For slowly varying functionsh ∈ H0 we obtain a complete analogue of the
Hartman–Wintner LIL.

THEOREM 2. Assume that h ∈ H0 and let � and {an} be as in Theorem 1. For
any constant 0≤ λ < ∞ we have:

lim sup
n→∞

±Sn/an = λ a.s.(2.4)

and

C({Sn/an;n ≥ 1}) = [−λ,λ] a.s.(2.5)

if and only if condition (2.1)holds.

We shall illustrate Theorem 2 by considering the following two special cases:

Case 1. Takeh(x) = 2(LLx)p wherep ≥ 1. Then it is easy to check that

lim
x→∞

�−1(x)

x2/(2(LLx)p)
= 1.

It follows that

lim
x→∞

�−1(xLLx)/(x2LLx)

1/(2(LLx)p−1)
= 1.

Case 2. Chooseh(x) = 2(Lx)r wherer > 0. One easily sees that

lim
x→∞

�−1(x)

x2/(Lx)r
= 2−(r+1)

and

lim
x→∞

�−1(xLLx)/(x2LLx)

LLx/(Lx)r
= 2−(r+1).

Thus Theorem 2 implies the following two results.

COROLLARY 1. Let p ≥ 1. For any constant 0≤ λ < ∞ we have:

lim sup
n→∞

±Sn√
2n(LLn)p

= λ a.s.

if and only if

EX = 0, EX2/(LL|X|)p < ∞, lim sup
x→∞

(LLx)1−pH(x) = λ2.(2.6)
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REMARK 1. If p = 1, then condition (2.6) is equivalent to

EX = 0 and EX2 = λ2.

We see that the classical Hartman–Wintner LIL is a special case of Corollary 1.

COROLLARY 2. Let r > 0. For any constant 0≤ λ < ∞ we have:

lim sup
n→∞

±Sn√
2n(Ln)r

= λ a.s.

if and only if

EX = 0, EX2/(L|X|)r < ∞, lim sup
x→∞

LLx

(Lx)r
H(x) = 2rλ2.(2.7)

For a further corollary to Theorem 1 (where 0< q < 1) refer to Section 5.
If condition (2.1) in Theorem 1 is satisfied withλ = 0 we obtain the following
stability result.

COROLLARY 3. Let h ∈ H and let � and {an} be as in Theorem 1. If

EX = 0, E�−1(|X|) < ∞, lim
x→∞

�−1(xLLx)

x2LLx
H(x) = 0,(2.8)

then

lim
n→∞Sn/an = 0 a.s.(2.9)

Moreover, if h ∈ Hq for some q < 1, then condition (2.8) is necessary and
sufficient for (2.9) to hold.

REMARK 2. We note that after some work (2.9) also follows from (1.12) (see
Remark 5 in Section 4). The necessity of condition (2.8) is a new result as far as
we know.

We first look at Problem 2 for sequencescn satisfying the following two
conditions:

cn/
√

n ↗ ∞(2.10)

and

∀ ε > 0 ∃mε ≥ 1 :cn/cm ≤ (1+ ε)(n/m), mε ≤ m < n.(2.11)

Note that condition (2.11) is satisfied ifcn/n is nonincreasing (e.g., ifcn = γn)
or if cn = c(n), wherec : [0,∞) → [0,∞) is regularly varying at infinity with
exponentγ < 1. (This includes all the sequences{an} considered in Problem 1.)
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THEOREM 3. Let X,X1,X2, . . . be i.i.d. mean-zero random variables. As-
sume that

∞∑
n=1

P{|X| ≥ cn} < ∞,(2.12)

where cn is a sequence of positive real numbers satisfying conditions
(2.10)and (2.11).Set

α0 = sup

{
α ≥ 0 :

∞∑
n=1

n−1 exp
(
− α2c2

n

2nσ 2
n

)
= ∞

}
,

where σ 2
n = H(δcn) and δ > 0.

Then we have with probability 1,

C({Sn/cn;n ≥ 1}) = [−α0, α0](2.13)

and

lim sup
n→∞

|Sn|/cn = α0.(2.14)

REMARK 3. As mentioned above, (2.14) also follows from Corollary 10
of [20], where the parameterα0 has been defined slightly differently. It is easy
to see that our definition is consistent with his definition. Also note thatα0 can be
infinite. [Choose, e.g.,cn = n1/2(LLn)1/4.]

THEOREM 4. Let X and cn be as in Theorem 3. Further assume that
a := lim infn→∞ cn/γn > 0. Then we can choose σ 2

n in the definition of α0 equal
to H(dn), where dn ≤ cn can be any sequence satisfying

log(cn/dn)/LLn → 0 as n → ∞.(2.15)

Moreover, we have in this case α0 ≤ 1/a < ∞.

REMARK 4. Note that Theorem 4 also gives the upper bound part of the LIL
result (1.8) ( just setcn = γn). In general, this result will be very helpful for finding
upper bounds forα0 as it allows us to replaceδcn by a “small”dn. If one wants to
find a lower bound forα0 one normally should choosedn = cn, and Theorem 3 will
be sufficient. So it is not too surprising that the lower bound part of (1.8) already
follows from Theorem 3 (see end of Section 3).

3. Proofs of Theorems 3 and 4. Throughout the whole section we as-
sume that{cn} is a sequence of positive real numbers satisfying conditions
(2.10) and (2.11). Moreover,X,X1,X2, . . . will always be a sequence of i.i.d.
mean-zero random variables satisfying

∞∑
n=1

P{|X| ≥ cn} < ∞.
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In the first lemma we collect some more or less known facts which we need for the
proof of Theorem 3.

LEMMA 1. We have
∞∑

n=1

E|X|3I {|X| ≤ cn}/c3
n < ∞,(3.1)

∞∑
n=1

P{|X| > εcn} < ∞ ∀ ε > 0,(3.2)

H(cn) = EX2I {|X| ≤ cn} = o(c2
n/n) as n → ∞,(3.3)

M(cn) = E|X|I {|X| > cn} = o(cn/n) as n → ∞,(3.4)

E|Sn| = o(cn) as n → ∞.(3.5)

PROOF. For the first fact refer, for instance, to Lemma 1 of [3]. We only need
to prove (3.2) ifε < 1. In this case it directly follows from (3.1) via the inequality

P{εcn ≤ |X| < cn} ≤ ε−3
E|X|3I {|X| ≤ cn}/c3

n.

To prove (3.3) we first note that
∑∞

n=1 P{|X| ≥ cn} < ∞ is equivalent to∑∞
j=1 jpj < ∞, wherepj = P{cj−1 < |X| ≤ cj }, j ≥ 1 (with c0 = 0).
Then we readily obtain for anyj0 ≥ 1 andn ≥ j0 + 1,

nH(cn)/c
2
n = nH

(
cj0

)
/c2

n + n

n∑
j=j0+1

{H(cj ) − H(cj−1)}/c2
n

≤ nH
(
cj0

)
/c2

n +
n∑

j=j0+1

pjn(cj /cn)
2

≤ nH
(
cj0

)
/c2

n +
∞∑

j=j0+1

jpj .

Choosingj0 so large that
∑∞

j=j0+1 jpj < ε, we see that

lim sup
n→∞

nH(cn)/c
2
n ≤ ε, ε > 0,

which proves (3.3).
To see (3.4) simply note that on account of (2.11) there exists a constantK ≥ 1

so that

nE|X|I {|X| > cn}/cn ≤ n

∞∑
j=n+1

cjpj/cn ≤ K

∞∑
j=n+1

jpj ,
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which goes to zero asn → ∞.

If X has a symmetric distribution we have

E|Sn| ≤ (
nH(cn)

)1/2 + nE|X|I {|X| > cn},
and fact (3.5) follows in this case by combining the two previous facts. Using
a standard symmetrization argument, we obtain (3.5) for nonsymmetric random
variables as well. �

We now determine the cluster setC({Sn/cn;n ≥ 1}) =: A, where we use
Theorem 3 of [9]. (It is easily seen thatcn satisfies the conditions of this result.)

SinceSn/cn
P→ 0 [see (3.5)], it follows from Kesten’s result (see also [15]) that

x ∈ C({Sn/cn;n ≥ 1}) ⇐⇒
∞∑

n=1

1

n
P{|Sn/cn − x| < ε} = ∞

(3.6) ∀ ε > 0.

Using this equivalence, one can further prove

LEMMA 2. We have

x ∈ A ⇐⇒
∞∑

n=1

1

n
P{|Sn,n/cn − x| < ε} = ∞ ∀ ε > 0,(3.7)

where Sn,n = ∑n
i=1{Xn,i − EXn,i},Xn,i = XiI {|Xi | ≤ dn} and dn = δcn, with

δ > 0.

PROOF. In view of (3.6) it is enough to show that
∞∑

n=1

n−1
P{|Sn − Sn,n| ≥ εcn} < ∞ ∀ ε > 0.(3.8)

Recalling (3.2) and (3.4), we have asn → ∞,∣∣∣∣∣
n∑

i=1

EXn,i

∣∣∣∣∣ ≤ nE|X|I {|X| > δcn} = o(cn)

and we can infer that for largen

P{|Sn − Sn,n| ≥ εcn} ≤ P

{
Sn �=

n∑
i=1

Xn,i

}

which is less than or equal to

nP{|X| > δcn}
and we readily obtain (3.7) from (3.2).�

From (3.5) we obtain that 0∈ A and we can focus on the nonzero elements ofA.
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LEMMA 3. Let x �= 0. Then we have

x ∈ A ⇐⇒
∞∑

n=1

1

n
P

{∣∣σn

√
nZ/cn − x

∣∣ < ε
} = ∞ ∀ ε > 0,(3.9)

where Z is a standard normal variable and σ 2
n = H(δcn), with δ > 0.

PROOF. Using a well-known nonuniform Berry–Esseen type inequality (see,
e.g., Theorem 5.17 on page 168 in [21]), it follows that for 0< ε < |x|/2,∣∣P{|Sn,n/cn − x| < ε} − P

{∣∣σ̃n

√
nZ/cn − x

∣∣ < ε
}∣∣

≤ 16C|x|−3nE|Xn,1 − EXn,1|3/c3
n ≤ 128C|x|−3nE|X|3I {|X| ≤ cn}/c3

n,

where in the last step we have used thecr -inequality.C is an absolute constant and
σ̃ 2

n = Var(Xn,1). Recalling (3.1) we see thatx ∈ A is equivalent to
∞∑

n=1

1

n
P

{∣∣σ̃n

√
nZ/cn − x

∣∣ < ε
} = ∞ ∀ ε > 0.(3.10)

Let δ2
n = σ 2

n − σ̃ 2
n = (EXn,1)

2. By the dominated convergence theorem we have
δn → 0 asn → ∞ and recalling thatσ 2

n ↗ EX2 > 0 we see that

σ 2
n /σ̃ 2

n → 1 asn → ∞,(3.11)

from which we readily obtain that the series condition in (3.7) is equivalent to (3.9)
and the lemma has been proven.�

Using the trivial inequalityP{Z > t + s} ≤ P{Z > t}/2, s > 1/t , t > 0, we can
further simplify the lemma about clustering as follows.

LEMMA 4. We have,

x ∈ A ⇐⇒
∞∑

n=1

1

n
exp

(
−(|x| − ε)2+c2

n

2nσ 2
n

)
= ∞ ∀ ε > 0,(3.12)

where σ 2
n is defined as in Lemma 3.

PROOF. If x = 0, the equivalence is trivial. Ifx > 0, we have in view of
Lemma 3 thatx ∈ A is equivalent to

∞∑
n=1

1

n
P

{
x − ε < σn

√
nZ/cn < x + ε

} = ∞ ∀ ε > 0.(3.13)

This trivially implies that
∞∑

n=1

1

n
P

{
x − ε < σn

√
nZ/cn

} = ∞ ∀ ε > 0,(3.14)
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which in turn by standard estimates of the tail probabilities of the normal
distribution is equivalent to the series condition in (3.12). It remains to show
that (3.14) implies (3.13). To that end we note that ifε < x/2,

P
{
σn

√
nZ/cn > x + ε

} = P

{
Z >

(x − ε)cn√
nσn

+ 2εcn√
nσn

}
≤ 1

2
P

{
Z >

(x − ε)cn√
nσn

}
,

provided that

2εcn/
(√

nσn

) ≥ √
nσn/{(x − ε)cn}.

Relation (3.3) impliesσ 2
n = H(δcn) = o(c2

n/n) and it follows that the above
condition is satisfied for largen. We thus have in this case,

2P
{
x − ε <

√
nσnZ/cn < x + ε

} ≥ P
{
x − ε <

√
nσnZ/cn

}
.

It is now evident that (3.14) implies (3.13) and the proof of the lemma is complete
if x ≥ 0. If x < 0, the lemma follows by symmetry.�

We are now ready to prove (2.13). By monotonicity of the exponential function
and the definition ofα0 we have

∞∑
n=1

n−1 exp
(
− α2c2

n

2nσ 2
n

){= ∞, if α < α0,

< ∞, if α > α0.

Therefore ifα0 = ∞, it trivially follows from Lemma 4 thatA ⊃ R, which of
course implies thatA = [−∞,∞].

Assume now that 0< α0 < ∞. If |x| ≤ α0 and consequently(|x| − ε)+ < α0,
∀ ε > 0, we see that the series in Lemma 4 diverge for anyε > 0 so that
[−α0, α0] ⊂ A.

Likewise, it follows that these series converge if|x| > α0 ≥ 0 and ε is
sufficiently small. Thus such points are outsideA which implies thatA =
[−α0, α0] and the first part of Theorem 3 has been proven.

If α0 = ∞, then (2.13) immediately implies (2.14), but ifα0 is finite the lim sup
in (2.14) still could be infinite. For that reason we have to add an extra argument to
rule this out. Of course, we could apply Corollary 10 of [20], but since we already
know the cluster set we do not need a precise upper bound for the lim sup. Once
we know that the lim sup is finite it follows from (2.13) that it must be equal toα0.
Here is a simple direct argument establishing this missing part of (2.14).

PROOF OF(2.14). We assume thatα0 < ∞. Choosingδ = 1, it follows that
there exists anα > α0 such that

∞∑
n=1

n−1 exp
(−α2c2

n/(2nσ 2
n )

)
< ∞,(3.15)

whereσ 2
n = H(cn).
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Setnk = 2k , k ≥ 1. Then (3.15) immediately implies that

∞∑
n=1

n−1 exp
(−α2c2

n/(2nσ 2
n )

) ≥
∞∑

k=1

nk+1−1∑
n=nk

n−1 exp
(−α2c2

n/(2nσ 2
n )

)

≥
∞∑

k=1

log(2)exp
(−α2c2

nk+1
/
(
2nkσ

2
nk

))
.

Recalling (2.11) which implies that for some constantK ≥ 1, cnk+1/cnk−1 ≤ 4K,

we find that
∞∑

k=2

exp
(−8K2α2c2

nk−1
/
(
nkσ

2
nk

))
< ∞.(3.16)

We next employ Theorem 3 on page 74 in [3]. Assuming that the underlying
probability space is rich enough and using (3.3), we can define a sequence of
independent normal mean-zero random variablesYn, n ≥ 1, where Var(Yn) =:
σ̃ 2

n = Var(XI {|X| ≤ cn}) so that we have for the sumsTn = ∑n
i=1 Yi , n ≥ 1, with

probability 1,

(Sn − Tn)/cn → 0 asn → ∞.(3.17)

It is thus sufficient to prove that with probability 1,

lim sup
n→∞

|Tn|/cn ≤ 4Kα.(3.18)

By the Borel–Cantelli lemma this follows once we have shown that
∞∑

k=1

P

{
max

1≤m≤nk+1
|Tm| ≥ 4Kαcnk

}
< ∞.(3.19)

But using a standard maximal inequality for normal random variables along with
the fact that̃σ 2

m ≤ H(cnk+1) = σ 2
nk+1

,1≤ m ≤ nk+1, we find that

P

{
max

1≤m≤nk+1
|Tm| ≥ 4Kαcnk

}
≤ 2exp

(−8K2α2c2
nk

/
(
nk+1σ

2
nk+1

))
,(3.20)

which in view of (3.16) implies (3.19). This completes the proof of (2.14).�

PROOF OFTHEOREM 4. Let 0< dn ≤ cn, σ 2
n,1 := H(dn) and define

α1 = sup

{
α ≥ 0 :

∞∑
n=1

n−1 exp
(
− α2c2

n

2nσ 2
n,1

)
= ∞

}
.

As we have

exp
(
− α2c2

n

2nσ 2
n,1

)
≤ exp

(
− α2c2

n

2nσ 2
n

)
,
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it is trivial thatα1 ≤ α0.

We now consider normalizing sequencescn satisfying a := lim infn→∞ cn/

γn > 0 and we choosedn ≤ cn so that condition (2.15) is satisfied or, equivalently,
dn = cn/(Ln)εn, whereεn → 0. Let further
n = σ 2

n − σ 2
n,1. In order to show that

α0 = α1 it is enough to prove that

∞∑
n=1

n−1 exp
(
− εc2

n

n
n

)
< ∞ ∀ ε > 0.(3.21)

To see that, choose aδ > 0, and observe that

exp
(
− α2c2

n

2nσ 2
n

)
≤ exp

(
− α2c2

n

2n(1+ δ)σ 2
n,1

)
+ exp

(
− α2c2

n

2n(1+ δ−1)
n

)
.

From (3.21) it is then obvious thatα0 ≤ √
1+ δα1. Since we can chooseδ

arbitrarily small, we see thatα1 = α0.
To prove thatα0 ≤ 1/a, we setdn = cn/(2aLLn) and use the fact that for largen

σ 2
n,1 ≤ H(K(n/LLn)) ≤ K2(n/LLn)LLn/n. Replacingσ 2

n,1 in the definition of
α1 by this upper bound, we readily obtain thatα0 = α1 ≤ 1/a and Theorem 4 has
been proven subject to the verification of (3.21).�

PROOF OF(3.21). We use the same idea as in the proof of (2.14) of [5]. Recall
that we have by definition of theK-function

H(K(x)) = EX2I {|X| ≤ K(x)} ≤ K2(x)/x, x > 0,(3.22)

and

M(K(x)) = E|X|I {|X| ≥ K(x)} ≤ K(x)/x, x > 0.(3.23)

To estimate
n = EX2I {dn < |X| ≤ cn} we observe that by (3.22) and Cauchy–
Schwarz,


n ≤ EX2I {|X| ≤ K(n/LLn)} + EX2I {|X| > K(n/LLn), |X| ≤ cn}
≤ K2(n/LLn)LLn/n

+ (
E|X|I {|X| > K(n/LLn)})1/2(

E|X|3I {|X| ≤ cn})1/2
.

By assumption there exists ann0 ≥ 1 so thatcn ≥ aK(n/LLn)LLn for n ≥ n0.
This implies in conjunction with (3.23),


n ≤ c2
n

a2n
[(LLn)−1 + (na3

E|X|3I {|X| ≤ cn}/c3
n)

1/2], n ≥ n0.(3.24)

SetN0 = {n ≥ n0 :na3
E|X|3I {|X| ≤ cn}/c3

n ≤ (LLn)−2}. Then we have


n ≤ 2c2
n/(a

2nLLn), n ∈ N0.(3.25)
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As dn = cn/(Ln)εn , whereεn → 0, we trivially have forn ≥ 1,


n ≤ E|X|3I {|X| ≤ cn}/dn = (Ln)εnE|X|3I {|X| ≤ cn}/cn.(3.26)

Employing the two bounds for
n and recalling (3.1) we obtain via the trivial
inequality exp(−x) ≤ 2x−1 exp(−x/2) that∑

n∈N0

n−1 exp{−εc2
n/(n
n)}

≤ 2ε−1
∞∑

n=1

(
n/c
2
n)(Ln)−εa2/4(3.27)

≤ 2ε−1
∞∑

n=1

E|X|3I {|X| ≤ cn}c−3
n (Ln)εn−εa2/4 < ∞.

If n ∈ N1 = {n ≥ n0 :n /∈ N0}, then
n ≤ 2c2
n{E|X|3I {|X| ≤ cn}/(anc3

n)}1/2, and
it follows from e−x ≤ 2/x2 that∑

n∈N1

n−1 exp{−εc2
n/(n
n)}

≤ ∑
n∈N1

n−1 exp
(−(ε/2)

√
a/n(E|X|3I {|X| ≤ cn}/c3

n)
−1/2)(3.28)

≤ 8a−1ε−2
∞∑

n=1

E|X|3I {|X| ≤ cn}/c3
n < ∞.

This shows that (3.21) holds.�

Note that in the above proof we only use property (2.10) so that this
relation holds for any sequencecn of positive real numbers such thatcn/

√
n is

nondecreasing. To conclude this section we show how the lower bound part of (1.8)
follows from Theorem 3. To that end, it is sufficient to prove:

LEMMA 5. If lim supn→∞ cn/γn ≤ b < ∞, we have lim supn→∞ |Sn|/cn ≥
1/b a.s.

PROOF. We apply Theorem 3 withδ = 1. Then we have for largen,

σ 2
n = H(cn) ≥ H

(
K(n/LLn)

) + K(n/LLn)E|X|I {K(n/LLn) < |X| ≤ cn}
which by definition of theK-function is equal to

K2(n/LLn)LLn/n − K(n/LLn)E|X|I {|X| > cn}.
Recalling (3.4) we see that lim infn→∞ nσ 2

n /{K2(n/LLn)LLn} ≥ 1 which in turn
implies thatα0 ≥ 1/b. �
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4. Proofs of Theorems 1 and 2. We first note that by regular variation of�−1

we have

lim sup
x→∞

�−1(xLLx)

x2LLx
H(x) = lim sup

n→∞
nLLn

a2
n

H(an/LLn).(4.1)

If one has a lower bound for the above lim sup one can infer that, along some
subsequence,σ 2

n = H(an) ≥ ch(n)/LLn for a positivec which will imply that the
series in the definition ofα0 diverge for small positiveα provided that the function
h is of very slow variation. This way we can prove thatα0 is positive. (See Part 3
of the proof.)

If one has an upper bound for the above lim sup, one can in principle use the
same approach to obtain an upper bound forα0. The problem here is that the above
condition is not at the “natural” truncation levelan. To overcome this difficulty,
we first show (see Part 1) that under the assumptions of Theorem 1 we have
lim infn→∞ an/γn > 0 so that we can apply Theorem 4 which allows us to choose
various truncation levels. Once this has been done, the upper bound (see Part 2) is
straightforward (since any upper bound on a lim sup holds eventually inn).

It is then clear that the cluster setA = C({Sn/an :n ≥ 1}) is a bounded
symmetric interval[−α0, α0], and we shall show that(1−q)1/2λ ≤ α0 ≤ λ, which
clearly implies (2.2). As a matter of fact we then obtain a slightly stronger result,
namely that under assumption (2.1) we have

(1− q)1/2λ ≤ − lim inf
n→∞ Sn/an = lim sup

n→∞
Sn/an ≤ λ a.s.

Then Theorem 2 (with the extra information about the cluster set) is obvious and
it is thus enough to prove Theorem 1.

Part 1. We need the following lemmas.

LEMMA 6. Let � be as in Theorem 1. Assume that for some λ ≥ 0,

lim sup
t→∞

�−1(tLLt)

t2LLt
H(t) ≤ λ2

2
.(4.2)

Then we also have

lim sup
t→∞

�−1(tLLt)

tLLt
M(t) ≤ C

(
1+ √

2
)
λ2,(4.3)

where C > 0 is a constant so that �−1(x)/�−1(y) ≤ C(x/y)3/2 for large x ≤ y.

PROOF. The existence of the constantC follows easily from the Karamata
representation of the slowly varying functiony → �−1(y)/y2. (See, e.g.,



TWO-SIDED LIL BEHAVIOR 1617

Theorem 1.3.1 in [1].) We thus can conclude that givenδ > 0, we have for large
enought

M(t) =
∞∑

j=1

E|X|I {2j−1t < |X| ≤ 2j t} ≤
∞∑

j=1

H(2j t)/(2j−1t)

≤ (λ2/2+ δ)

∞∑
j=1

LL(2j t)2j+1t/�−1(2j tLL(2j t)
)

= (λ2 + 2δ)tLLt/�−1(tLLt)

×
∞∑

j=1

2j (
LL(2j t)/LLt

)(
�−1(tLLt)/�−1(2j tLL(2j t)

))

≤ C(λ2 + 2δ)tLLt/�−1(tLLt)

∞∑
j=1

2j {LLt/(LL(2j t)}1/22−3j/2

≤ C(λ2 + 2δ)tLLt/�−1(tLLt)

∞∑
j=1

2−j/2

= C
(
1+ √

2
)
(λ2 + 2δ)tLLt/�−1(tLLt).

Sinceδ can be chosen arbitrarily small, we obtain assertion (4.3).�

LEMMA 7. Let � be as in Theorem 1. Then assumption (4.2) for some λ ≥ 0
implies that lim infn→∞ �(n)/K(n/LLn)LLn > 0.

PROOF. Recall thatan = �(n). From Lemma 6 and assumption (4.2) it
follows that there exists a positive constantC′ so that

lim sup
t→∞

(
H(t) + tM(t)

)
�−1(tLLt)/(t2LLt) ≤ C′λ2 < ∞(4.4)

which implies that for large enoughn

G(an/LLn) ≥ cn/LLn(4.5)

where 1≥ c > 0, and, consequently,

an/LLn ≥ K(cn/LLn) ≥ cK(n/LLn)(4.6)

and the lemma has been proven.�

REMARK 5. By a refinement of the above argument (where one has to choose
the constantc depending onλ and show thatc goes to infinity asλ goes to
zero) one can also prove that ifλ = 0 we have�(n)/K(n/LLn)LLn → ∞ as
n → ∞. Using this observation, one can infer the sufficiency part of Corollary 3
from (1.10).
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Part 2 (the upper bound). In Section 2 we already have noted that the
sequencean satisfies assumption (2.10) and (2.11). Using the trivial fact that
E�−1(|X|) < ∞ if and only if

∑∞
n=1 P{|X| ≥ an} < ∞, we see that Theorem 3

applies so that lim supn→∞ |Sn|/an = α0 a.s. It remains to be shown that

α0 ≤ λ.(4.7)

In view of Part 1 we can apply Theorem 4 and it is sufficient to prove that if
σ 2

n = H(an/LLn), we have

∞∑
n=1

n−1 exp
(−α2h(n)/(2σ 2

n )
)
< ∞ ∀α > λ.(4.8)

On account of (4.1) and (2.1), it follows that 2σ 2
n ≤ (α − δ)2h(n)/LLn for largen,

whereδ = (α − λ)/2.

This in turn implies exp(−α2h(n)/(2σ 2
n )) ≤ (Ln)−η2

, whereη = α/(α − δ) > 1.
This clearly proves (4.8) and consequently (4.7).

Part 3 (the lower bound and the converse to Theorem 1). We present our last
lemma from which we can infer both the lower bound in (2.2) and the converse
to (2.3).

LEMMA 8. Let X :� → R be a random variable satisfying for some
0< λ < ∞,

lim sup
x→∞

�−1(xLLx)

x2LLx
H(x) ≥ λ2/2.(4.9)

If h ∈ Hq where 0 ≤ q < 1, we have

lim sup
n→∞

|Sn|/an ≥ (1− q)1/2λ a.s.(4.10)

PROOF. It is sufficient to prove the lemma under the additional assumption

E�−1(|X|) < ∞ and EX = 0.(4.11)

To see that note that lim supn→∞ |Sn|/an < ∞ a.s. implies that lim supn→∞ |Xn|/
an < ∞ a.s. By Kolmogorov’s 0–1 law and the Borel–Cantelli lemma it then
follows that

∞∑
n=1

P{|X| ≥ an} < ∞(4.12)

which is equivalent toE�−1(|X|) < ∞. So if this expectation is infinite, then by
contraposition the lim sup in (4.10) is infinite.

By the strong law of large numbers this is also the case ifEX �= 0.
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Finally, without loss of generality, we can assume thatan/
√

n ↗ ∞. [Note that
Theorem 3 withcn = n1/2(LLn)1/3 trivially implies that lim supn→∞ |Sn|/an = ∞
a.s. ifEX = 0 and (4.12) is satisfied withan = O(

√
n ).]

Under the above assumptions Theorem 3 applies. We shall show that

α0 ≥ (1− q)1/2λ.

It then follows that[−(1 − q)1/2λ, (1 − q)1/2λ] ⊂ A = C({Sn/an;n ≥ 1}). This
trivially implies (4.10). By definition ofα0 and monotonicity, it is enough to prove
that

∞∑
n=1

n−1 exp
(−α2h(n)/(2σ 2

n )
) = ∞, 0 < α < (1− q)1/2λ,(4.13)

whereσ 2
n = H(an/LLn).

Recalling (4.1) we see that

lim sup
n→∞

{LLn/h(n)}σ 2
n ≥ λ2/2.(4.14)

Given anα as above, choose 0< τ ′ < 1−q so thatα2 = τ ′λ2 and setτ = τ ′ +δ/2,

whereδ = 1− q − τ ′. Let fτ be defined as in Section 2. On account of (4.14) and
the definition ofHq we can find a subsequencemk ↗ ∞ so that

σ 2
mk

≥ λ2

2

(
1− 1

k

)
h(mk)

LLmk

(4.15)

and

h(mk) ≥ (1− 1/k)h
(
mkfτ (mk)

)
, k ≥ 1.(4.16)

Combining the last two relations we readily obtain by monotonicity ofσ 2
n in n that

σ 2
n ≥ λ2

2

(
1− 1

k

)2 h(n)

LLn
, mk ≤ n ≤ nk := [mkfτ (mk)],(4.17)

which in turn implies that

nk∑
n=mk

n−1 exp
(
−α2h(n)

2σ 2
n

)
≥ log

(
nk + 1

mk

)
(Lnk)

−τ ′/(1−1/k)2
.(4.18)

As we have logfτ (mk) = (logmk)
τ ≤ logmk we get for largek

log
(

nk + 1

mk

)
(Lnk)

−τ ′/(1−1/k)2 ≥ (Lmk)
τ (2Lmk)

−(τ ′+δ/4) ≥ (Lmk)
δ/4/2

which goes to infinity. Recalling (4.18), we obtain (4.13) and the lemma has been
proven. �
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Combining (4.7) and Lemma 8, we obtain (2.2). Moreover, in the proof of
Lemma 8 we have already shown that the assumptionsE�−1(|X|) < ∞ and
EX = 0 are necessary for (2.2) to hold.

Furthermore, if lim supx→∞ �−1(xLLx)

x2LLx
H(x) = ∞ and if q < 1 we can infer

from Lemma 8 (with arbitrarily largeλ) that

lim sup
n→∞

|Sn|/an = ∞.

This clearly shows that (2.1) for someλ < ∞ is necessary for (2.3) to hold.

Likewise, if lim supx→∞ �−1(xLLx)

x2LLx
H(x) = 0, we obtain by (4.7) (withλ = 0)

lim supn→∞ |Sn|/an = 0 a.s. and it is clear that this lim sup can only be positive if
condition (2.1) holds for someλ > 0.

5. Further examples. We first give a corollary to Theorem 1 whereh ∈ Hq

and 0< q < 1. We consider

hq(x) = exp{(Lx)q} and �q(x) = √
x exp{(Lx)q}.

It is easy to see thathq ∈ Hq. Write

Hq(x) = x2

exp{2q(Lx)q} .
One can check that

lim
x→∞

�q(Hq(x))

x
=

{1, if 0 < q < 1/2,

e−1/4, if q = 1/2.

We thus have

lim
x→∞

�−1
q (x)

Hq(x)
=

{1, if 0 < q < 1/2,

e1/2, if q = 1/2.

For 1/2 < q < 1, the precise asymptotic expansion of�−1
q (x) is a little bit

complicated and is left to the interested reader. Applying Theorem 1 to the case
where 0< q ≤ 1/2, we have the following result.

COROLLARY 4. Let 0 < q ≤ 1/2. If there exists a constant 0 ≤ λ < ∞ such
that

EX = 0, E

(
X2

exp(2q(L|X|)q)

)
< ∞(5.1)

and

lim sup
x→∞

LLx

exp(2q(Lx)q)
H(x) = λ2

2
if 0 < q < 1/2,

(5.2)

lim sup
x→∞

e1/2LLx

exp(
√

2Lx)
H(x) = λ2

2
if q = 1/2,
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then we have with probability 1,

(1− q)1/2λ ≤ lim sup
n→∞

|Sn|√
nexp((Ln)q)

≤ λ.

Here of course it would be interesting to know whether our bounds for the above
lim sup are sharp. In principle one can calculate the precise value of the lim sup via
Theorem 3 and it may depend on the distribution ofX. One might wonder whether
all values in the interval[(1 − q)1/2λ,λ] can occur or whether one can improve
the general lower bound we have found.

Let us take another look at Theorem 1. For a given sequence of i.i.d. mean-zero
random variables{X,Xn;n ≥ 1}, we may want to know if there exists a sequence
of positive real numbers{an;n ≥ 1} such that

0 < lim sup
n→∞

|Sn|
an

< ∞ a.s.(5.3)

holds and if it does, how to find it. To answer this question, we may try the
following method. Let againH(x) = E(X2I {|X| ≤ x}), x ≥ 0, and suppose there
exists a positive and nondecreasing slowly varying functionφ(x) such that

lim sup
x→∞

H(x)

φ(x)
= 1;(5.4)

we then take�(x) such that

�−1(xLLx)

x2LLx
φ(x) = 1.(5.5)

Thus,�(x) satisfies

�−1(x) ∼ x2

(LLx)φ(x/LLx)
asx → ∞,(5.6)

which is equivalent to

�(x) ∼ (
xφ

(
�(x)/LLx

)
LLx

)1/2 asx → ∞.(5.7)

If h(x) = φ(�(x)/LLx)LLx ∈ Hq, whereq < 1, then (5.3) holds withan =
�(n) if and only if

E

(
X2

φ(|X|/LL|X|)LL|X|
)

< ∞.(5.8)

Of course, ifH is already slowly varying at infinity, which implies thatX is in
the domain of attraction to the standard normal distribution, then this result holds
in general if we chooseH = φ without assuming thatq < 1. This follows, for
instance, from Theorem 1 of [16]. But even in this situation it can be very helpful
to work with a different (and larger) slowly varying functionφ. To demonstrate
this we shall look at an example which was also discussed by Feller [6] and Pruitt
([22], Example 9.4).
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EXAMPLE. Let {X,Xn;n ≥ 1} be a sequence of real-valued i.i.d. random
variables with the common symmetric probability density function

f (x) = 1

|x|3I {|x| ≥ 1}.

For this example, Pruitt ([22], page 44) pointed out that it would be possible to find
a normalizing sequence{an;n ≥ 1} such that

lim sup
n→∞

|Sn|
an

= 1 a.s.

Can the normalizing sequence{an;n ≥ 1} be explicitly given? Pruitt [22] did not
answer this question but mentioned that it would not be a very nice normalizing
sequence. Using our procedure above, we can find a normalizing sequence of the
form

√
nh(n) with h slowly varying which is not as unreasonable as one might

expect. In fact, for this example,H(x) = 2Lx, x ≥ 0. If φ1(x) = 2Lx, x ≥ 0 is
chosen to be theφ(x), then by (5.7),

�1(x) ∼ (xLxLLx)1/2 asx → ∞.

It is easy to check that (5.8) does not hold withφ1(x) = 2Lx which implies

lim sup
n→∞

|Sn|
(nLnLLn)1/2 = ∞ a.s.

However, we may chooseφ2(x) = 2Lx(1 + LLx sin2(LLLx)), x ≥ 0, to
be the φ(x). It is easily checked thatφ′

2(x) ≥ 0 so that this is a function
in H . After some calculation it also follows thatφ2 ∈ H0. We obviously
have lim supx→∞ H(x)/φ2(x) = 1. Moreover, using thatφ2(x/LLx) ∼ φ2(x) as
x → ∞, we infer from (5.7)

�2(x) ∼
(

x

2
φ2(x)LLx

)1/2

asx → ∞

and (5.8) holds withφ2(x) since

E

(
X2

φ2(|X|)LL|X|
)

= 2
∫ C

1

1

xφ2(x)LLx
dx + 2

∫ ∞
C

1

xφ2(x)LLx
dx

= 2
∫ C

1

1

xφ2(x)LLx
dx +

∫ ∞
1

1

1+ ey sin2 y
dy

< ∞,

whereC = eee
. Thus, by Theorem 2, we have

lim sup
n→∞

±Sn/

√
2nLnLLn

(
1+ LLnsin2(LLLn)

) = 1 a.s.
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