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SOME RESULTS ON TWO-SIDED LIL BEHAVIOR

BY UWE EINMAHL ! AND DELI L12
Vrije Universiteit Brussel and Lakehead University

Let {X, X,,; n > 1} be a sequence of i.i.d. mean-zero random variables,
and letS, = Z;?:l X;,n > 1. We establish necessary and sufficient con-
ditions for having with probability 1, G< limsup,_, o, |Sz|/+/nh(n) < oo,
whereh is from a suitable subclass of the positive, nondecreasing slowly
varying functions. Specializing our result to(n) = (loglogn)”, where
p > 1 and toh(n) = (logn)", r > 0, we obtain analogues of the Hartman—
Wintner LIL in the infinite variance case. Our proof is based on a general re-
sult dealing with LIL behavior of the normalized sut$, /c,; n > 1}, where
cp is a sufficiently regular normalizing sequence.

1. Introduction. Let {X, X,;n > 1} be a sequence of real-valued inde-
pendent and identically distributed (i.i.d.) random variables, andSlet=
Y"1 Xi,n> 1. DefineLx =log, maxe, x} and LLx = L(Lx) for x € R. The
classical Hartman—-Wintner law of the iterated logarithm (LIL) states that

(1.1) limsup£S,/2nLLn)Y? =0  as.
n—o0

if and only if

(1.2) EX=0 and ¢°=EX? < 0.

Moreover, if (1.2) holds, then

(1.3) C({Sn/v2nLLn;n > 1}) =[-0,0] a.s,

where C({x,; n > 1}) stands for the cluster set (i.e., the set of limit points) of
the sequencéx,;n > 1}. See [8] for the “if” part and [24] for the converse.
The conclusion (1.3) is due to Strassen [23]. Actually, in this fundamental paper,
Strassen [23] obtained a functional LIL as well as invariance principles which are
in many respects at the origin of the study of LIL in a vector-valued setting. For
very efficient and self-contained proofs of the Hartman—Wintner LIL which do not
use the Kolmogorov LIL [14] see, for example, [2] or [7].

It is natural then to ask whether one can find analogous results for variables
with infinite variance. This of course requires different normalizing sequences and
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1602 U. EINMAHL AND D. LI

also sometimes different centering sequences. In the case WXekg,; n > 1}
is a sequence of symmetric real-valued i.i.d. random variables, Feller [6] (see
[10, 19] and [3] for some clarification) studied the problem of determining when
it is possible to find a positive regular monotone sequdgagen > 1} such that
(1.4) limsup|S,|/a, =1 a.s.

n—o0
In this case, one speakstafo-sided LIL behavior.

Of course one can also address the correspondiggsided LIL behavior
problem with centering{s,}, that is, when one has for a suitable (regular)
sequence,

(1.5) 0 < limsup(S, — 8,)/b, < o0 a.s.

n—o0
For some basic work in this direction refer to [11-13] in the finite expectation case
wheres,, = nEX and for more general results see also [22].

Kuelbs and Zinn [17] showed that the techniques of Klass [11] are also
extremely useful for the LIL problem in Banach space, and this was further
elaborated by Kuelbs [16] and Einmahl [4]. The main purpose of the present paper
is to address some still open questions in connection with two-sided LIL behavior
for real-valued random variables with finite expectation.

To cite the relevant work in this direction let us first recall some definitions
of Klass [11]. As above, leX : @2 — R be a random variable and assume that
0 < E|X]| < 00. Set

Ht):=EX2I{|X| <t} and M@t):=E|X|I{|X|>t}, t>0.

Then it is easy to see that the functi@i() := r2/(H(t) + tM(t)), t > 0, is
continuous and increasing with an inverse functiotr), x > 0. Moreover, one
has for this functiork that asx 7 oo

(1.6) K(x)/v/x /7 (EX?Y? €10, 0]
and
(1.7) K(x)/x 0.

Sety, = v2K(n/LLn)LLn, n > 1. Klass [11, 12] established a one-sided LIL
result with respect to this sequence which also implies the following two-sided
LIL resultif EX =0:

(1.8) limsup|S,|/yn =1
n—oo
if and only if
o0
(1.9) Y PUX| = ya) < 0.

n=1
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(Actually, Klass [11, 12] proved that the limiting constan&ig2—1/2, 3.2-%/2] and
showed later in [13] that this is optimal in the one-sided case. For the calculation
of the limiting constant in the two-sided case, see [4] and also Section 3 of the
present paper.)

We thus see that if condition (1.9) is satisfied, one obtains an LIL result which
extends the classical Hartman—Wintner LIL. [Note that # 62 = EX? < oo, we
have thatk (n/LLn)LLn ~ o+/nLLn and condition (1.9) is trivially satisfied so
that the Hartman—Wintner LIL is a special case of (1.8).]

Moreover, Klass [11] (see his Theorem 4.1) has shown th&tXif= 0 and
cn > \/9/8y, is a sequence so that/n'/? is increasing, one has

(2.10) limsup|S,|/c, <1 a.s.
n—o0
if and only if
o0
(1.11) > P{IX| = ca) < 0.
n=1

This implies for sequences satisfyingc,,/y, — oo
(1.12) limsup|S,|/c, =0 oroco a.s.

n—oo

according as

o0
(1.13) Y P{IX|=cn) <00 O =00.

n=1
We thus see that if one considers “big” sequences as above, one can only obtain
stability results, but no longer LIL behavior.

Here we shall investigate whether there are still LIL type results if condi-
tion (1.9) is not satisfied and, moreover, whether one can find “nicer” norming
sequences thafy,}. This sequence is very appealing in that it is defined in a
universal way depending on the distribution Xfonly, but if one looks at con-
crete examples it can be quite difficult to determipg}. Another problem is that
in certain situations the sequengg can be too small. An example which was
discussed by Feller [6] and Pruitt [22] is a symmetric random variabheith
Lebesgue densityy (x) = |x| 3, |x| > 1. In this case it is easy to calculatg, but
assumption (1.11) is not satisfied so that the LIL of Klass does not apply, nor do
the LIL results of Feller [6] and Pruitt [22]. It seems to be still an open problem
whether, in this particular case, there exists a “nice” normalizing sequsnse
that limsup_, ., [S:|/a, =1 a.s.

We first address the following modified form of the LIL behavior problem.

PROBLEM 1. Given a sequencey, = /nh(n), whereh is a slowly vary-
ing nondecreasing function, we ask: When do we have with probability 1,
0<limsup,_, o |Sul/an < 00?
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One possibility would be to look for conditions implying ~ a,,, but as we are
dealing with almost sure convergence one has many more possibilities for finding
normalizing sequences than in the weak convergence case. Under an additional
assumption ork we will establish a necessary and sufficient condition for LIL
behavior with respect to the given sequengeUsing this result we can also find
a normalizing sequence of this type for the Feller—Pruitt example (see Section 5
below).

At first sight our result might look quite different from the Klass LIL, but it will
turn out that our conditions imply

(1.14) 0< Iinnliorlf an/Vn < 00

which shows that we are in the range between the LIL result (1.8) and the stability
result (1.12). It is natural then to pose a second related question, namely

PROBLEM 2. Consider a nondecreasing sequeneg satisfying
0 < liminf,cn/vn < oo. When do we have with probability 1,
0 < limsup,_, o ISxl/cn < 00? If this is the case, what is the cluster set
C{Sn/cn;n=1})?

From Corollary 10 of [20] in combination with (3.5) below it follows that,
under a mild regularity assumption on the sequefige, the above limsup is
equal to a certain parameteg. We shall additionally show that the corresponding
cluster setC({S, /c,; n > 1}) always coincides with the interv@lag, o] (see
Theorem 3 below). It is then clear that we have LIL behavior with respect to the
normalizing sequencs, if and only if 0 < «g < co. Thus, in principle, this solves
Problem 2. There is still a difficulty, namely, the determination of this parameter.
For that reason, we shall also show that under assumption (1.14) one can define this
parameter differently, which makes the calculatiomgfeasible in many cases of
interest (see Theorem 4). This way we can immediately reobtain the two-sided
version of the Klass LIL (1.8) and we get a whole class of new LIL type results
as indicated in Problem 1. (For a survey of some other work on Problem 2 refer to
Sections 7.3 and 7.5 of [21].)

The plan of the paper is as follows. Our main results regarding Problem 1,
Theorems 1 and 2, and their corollaries as well as Theorems 3 and 4 are presented
in Section 2. In Section 3 we prove the two latter theorems and in Section 4 we
show how one can infer Theorems 1 and 2 from them. After giving a few examples
and some further comments in Section 5, we finally determine the desired “nice”
normalizing sequence for the Feller—Pruitt example.

2. Statement of main results. Before we can formulate our results, we need
some extra notation. Le¥ be the set of all continuous, nondecreasing functions
h:[0, oo[ — 10, o[, which are slowly varying at infinity. By monotonicity the
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slow variation of# is equivalent to lim., » h(et)/h(t) = 1. Very often one can
even show that lim, o 2(¢f (¢))/ h(t) = 1, wheref is an increasing function such
that lim,_, o f () = oco. For instance, ifa(t) = LLt, t > 0, this is the case for

f (@) =t. In the literature this is also called super-slow variation (refer to pages
186-188 in [1] for more information and background on this notion).

For our purposes the functions (z) := exp((L1)"), 0 < t < 1, will be most
important. Clearly if lim_ 2(¢f(¢))/ k() =1 holds for f = f;, wherer > 0
this also holds forf = f;, 0 < t’ < 1. Thus, the bigger we can choose the
parameterr, the slower is the variation of the given functiéan (Also note that
this condition witht = 0 is equivalent with slow variation.)

Given 0< g < 1, let#, C # be the class of all functions so that

tin;oh(tfr(t))/h(t)zl, O<t<1l-—g¢q,

and set#, = F#. We considely as a measure for how slow the variation is. So
functions in#ty are the “slowest” and it will turn out that this class is particularly
interesting for LIL type results (see Theorem 2 below). Examples for functions in
Ho areh(t) = (Lt)",r >0, andh(t) = (LLt)?, p > 0.

The following Theorem 1 gives LIL type resultsif> 0 and stability results
if A = 0 with respect to a large class of normalizing sequences, without assuming
thatEX? < oo.

THEOREM 1. Let X, X1, Xo,... be i.i.d. random variables, and let S, =
> i—1Xi,n>1.Given afunction h € #, where 0 < ¢ < 1, set ¥ (x) = +/xh(x)
and a, = ¥ (n), n > 1. If there exists a constant 0 < A < oo such that

v(xLL 22
(2.1) Ex =0, Ew—1(X]) < oo, lim supMH(x) =—,
X—>00 x2 Lx 2
then we have
(2.2) (1—¢)Y%x <limsup|S,|/a, <)  as.
n—oo

Conversdly, if ¢ < 1, then therelation

. S
(2.3) Ilmsup| nl oo as

n—oo dp

impliesthat (2.1) holds for some A < co.
Moreover, the limsup in (2.3) is positive if and only if (2.1) holds for some
A > 0.

Note the limsup in condition (2.1). If this is actually a limit or if the
corresponding liminf is positive, one can show that~ y, and one could
obtain (2.3) from the Klass LIL (with less tight bounds on the limiting constant).
This is no longer possible if the liminf is equal tg hich clearly indicates
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that we can obtain LIL type results in many situations where the Klass LIL does
not apply. The reader will notice that we have taken advantage of this additional
possibility for proving such results when choosingin the Feller—Pruitt example
(see Section 5).

For slowly varying functions: € #o we obtain a complete analogue of the
Hartman—Wintner LIL.

THEOREM2. Assumethat i € #gandlet ¥ and {a, } beasin Theorem 1. For
any constant 0 < 1 < oo we have:

(2.4) limsup+sS, /a, = A a.s.
and
(2.5) C{Sn/an;n>1}) =[—A,A] a.s.

if and only if condition (2.1) holds.
We shall illustrate Theorem 2 by considering the following two special cases:

Casel. Takeh(x) =2(LLx)? wherep > 1. Thenitis easy to check that
lim Z\pi =1
x—00 x2/(2(LLx)P)
It follows that
WL Lx)/(ePLLY)
x=oe 1/LLx)p~YH) T

Case2. Chooséi(x) =2(Lx)" wherer > 0. One easily sees that
im0 _ et
=00 x2/(Lx)’
and
i W—L(xLLx)/(x2LLx)
X—00 LLx/(Lx)"
Thus Theorem 2 implies the following two results.

= 2—(r+1) .

COROLLARY 1. Let p > 1.For any constant 0 < A < oo we have;

+8,
Imsup——— =21 as.
n—>oop«/2n(LLn)p

if and only if

(2.6) EX =0, EX?/(LL|X|)P < oo, limsup(LLx)Y "7 H(x) = A°.

X—>00
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REMARK 1. If p =1, then condition (2.6) is equivalent to
EX=0 and EX?=212

We see that the classical Hartman—Wintner LIL is a special case of Corollary 1.

COROLLARY 2. Letr > 0.For any constant 0 < A < oo we have:

. Sy
imsup———==2A1 a.s.
n—)oop«/ZI’l(Ln)r
if and only if
2 r . LLx 7 g 2
(2.7) EX =0, EX?/(L|X|)" < oo, limsup H(x)=2")%
x—oo (Lx)"

For a further corollary to Theorem 1 (where<Qg < 1) refer to Section 5.
If condition (2.1) in Theorem 1 is satisfied with= 0 we obtain the following
stability result.

COROLLARY 3. Leth e ¢ andlet ¥ and {a,} be asin Theorem 1. If

v lxLLy)
2.8) EX =0, Ev—1(x , lim ——— """ H(x)=0,
(2.8) (X)) <0 M —T (x)
then
(2.9) nl|_>moo Sn/an =0 as.

Moreover, if h € J#, for some ¢ < 1, then condition (2.8) is necessary and
sufficient for (2.9)to hold.

REMARK 2. We note that after some work (2.9) also follows from (1.12) (see
Remark 5 in Section 4). The necessity of condition (2.8) is a new result as far as
we know.

We first look at Problem 2 for sequences satisfying the following two
conditions:

(2.10) cn/N/n /oo
and
(2.11) Ve>03aAmy>1:c,/cm < (L+e)(n/m), me <m <n.

Note that condition (2.11) is satisfieddf,/n is nonincreasing (e.g., if, = y,,)
or if ¢, = c(n), wherec:[0, c0) — [0, 00) is regularly varying at infinity with
exponenty < 1. (This includes all the sequencies } considered in Problem 1.)
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THEOREM 3. Let X, X1, X2, ... bei.i.d. mean-zero random variables. As-
sume that

(2.12) > P{IX| = e} < 00,
n=1

where ¢, is a sequence of positive real numbers satisfying conditions
(2.10)and (2.11). et

x 022
=supja >0: texpl ——5 ) =00y,
o0 pia_ Zn p( ZnGn) oo}

n=1

where o2 = H(8¢,) and § > 0.
Then we have with probability 1,

(213) C{Sn/cn;n > 1}) = [—wo, ao]

and

(2.14) limsup|S,|/c, = ag.
n—od

REMARK 3. As mentioned above, (2.14) also follows from Corollary 10
of [20], where the parametery has been defined slightly differently. It is easy
to see that our definition is consistent with his definition. Also notedbatan be
infinite. [Choose, e.g¢, = nY2(LLn)Y/4]

THEOREM 4. Let X and ¢, be as in Theorem 3. Further assume that
a :=liminf,_, o ¢, /¥, > 0. Then we can choose an in the definition of «g equal
to H(d,), where d, < ¢, can be any sequence satisfying

(2.15) log(c,/dy)/LLn — 0 asn — 0.

Moreover, we havein thiscase ag < 1/a < oo.

REMARK 4. Note that Theorem 4 also gives the upper bound part of the LIL
result (1.8) (just set, = y,,). In general, this result will be very helpful for finding
upper bounds fowg as it allows us to replacée, by a “small”d,. If one wants to
find a lower bound fowg one normally should choogk = ¢,,, and Theorem 3 will
be sufficient. So it is not too surprising that the lower bound part of (1.8) already
follows from Theorem 3 (see end of Section 3).

3. Proofs of Theorems 3 and 4. Throughout the whole section we as-
sume that{c,} is a sequence of positive real numbers satisfying conditions
(2.10) and (2.11). MoreovelX, X1, X», ... will always be a sequence of i.i.d.
mean-zero random variables satisfying

00
S P(IX| = e} < oo
n=1
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In the first lemma we collect some more or less known facts which we need for the
proof of Theorem 3.

LEmMMA 1. Wehave

(3.1) S EIXPI{|X] < cn}/cd < o0,
n=1
(3.2) ZP{|X|>8C,,}<OO Ve >0,
n=1
(3.3) H(cy) =EX2I{|X| <cy}=o0(c?/n)  asn— oo,
(3.4) M(c,)) =E|X|I{|X| > ¢y} =0(c,/n) asn — 0o,
(3.5) E[Sq| = o(cn) asn — oo.

PROOF For the first fact refer, for instance, to Lemma 1 of [3]. We only need
to prove (3.2) ife < 1. In this case it directly follows from (3.1) via the inequality

Plec, < |X| < cn) < e SEIXPI{X] <cn)/c.

To prove (33) we first note thaty ;2 P{|X| > ¢,} < oo is equivalent to
>.321Jpj <oo, wherep; =P{c;j_1 < |X| <¢;}, j = 1 (withco=0).
Then we readily obtain for anjp > 1 andn > jo + 1,

nH(cy)/c2=nH(cjp)/c2+n > {H(cj) — H(cj—D}/c?
J=jo+1

n
<nH(cj)/ci+ Y. pjn(cj/en)?
Jj=Jjo+1

o0
= ”H(Cjo)/czg + Z Jpj-
J=jo+1

Choosingjg so large tha[j?‘;jOH jpj <&, we see that
limsupnH (c,)/c? <, e>0,
n—o0

which proves (3.3).
To see (3.4) simply note that on account of (2.11) there exists a constarit
so that

o0 o0
nEIX|I{IX]>cal/cn<n Y. cipi/ea <K Y. jpj.
j=n+1 j=n+1
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which goes to zero as— oo.
If X has a symmetric distribution we have

E|S,| < (nH(ca))Y? + nEIX|I{]X| > cu},

and fact (3.5) follows in this case by combining the two previous facts. Using
a standard symmetrization argument, we obtain (3.5) for nonsymmetric random
variables as well. [

We now determine the cluster sét({S,/c,;n > 1}) =: A, where we use
Theorem 3 of [9]. (It is easily seen that satisfies the conditions of this result.)

Sinces,,/c, Lo [see (3.5)], it follows from Kesten’s result (see also [15]) that

xeC({Sp/cnsnz=1) <= Z%P{|SH/Cn_x|<3}:OO

3.6 n=1
(3.6) Ve >0.

Using this equivalence, one can further prove
LEMMA 2. Wehave

o0
1
B7) xeA &= Y “P{Suafcn—xl<e}=00 V&>0,
n
n=1
where Sn,n = Z?:l{Xn,i - EXn,i}, Xn,i = Xil{|Xi| =< dn} and dn = 5Cn, with
§>0.

PROOF In view of (3.6) it is enough to show that

o0

(3.8) Y TIPSy — Spal = ecn} <00 Ve>0.
n=1

Recalling (3.2) and (3.4), we have as> oo,

n
> EXyi

i=1
and we can infer that for large

< nE|X|I{|X]| > 8c,} = o(cn)

n
]P){|Sn - Sn,n| = gcn} =< P{Sn 75 ZXn,i}

i=1
which is less than or equal to

nlP{|X| > écy,}
and we readily obtain (3.7) from (3.2)J

From (3.5) we obtain that & A and we can focus on the nonzero elements .of
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LEMMA 3. Letx;éO.Thenwehave
(B9 xed Z llonw/nZjcy —x| <e}l=00  Ve>0,
n= 1
where Z is a standard normal variable and onz = H(8¢;), with§ > 0.

PrRooOF Using a well-known nonuniform Berry—Esseen type inequality (see,
e.g., Theorem 5.17 on page 168 in [21]), it follows that for © < |x|/2,

|P{|Sn.n/cn — x| < &} —P{|Guv/RZ Jcn — x| < &}
< 16C|x| 3nE|X, 1 — EX,.113/c3 < 128C|x| nE|X PI{|X| < ¢}/,

where in the last step we have used ¢hénequality.C is an absolute constant and
&2 =Var(X, 1). Recalling (3.1) we see thate A is equivalent to

(3.10) Z {l6av/nZ)ch —x| <€} =00  Ve>0.

Let 82 cr - cr = (EX,.1)%. By the dominated convergence theorem we have
Sy — "0 asn — oo and recalling that> 7 EX? > 0 we see that

(3.11) 02621  asn— oo,

from which we readily obtain that the series condition in (3.7) is equivalent to (3.9)
and the lemma has been proveil

Using the trivial inequality®{Z >t + s} <PP{Z > t}/2,s > 1/t,t > 0, we can
further simplify the lemma about clustering as follows.

LEMMA 4. Wehave,
3.12) xecA — Loxp( - =950 _ 0 veso,
2n 2
i o

where o/ is defined asin Lemma 3.

PrRooF If x =0, the equivalence is trivial. Ik > 0, we have in view of
Lemma 3 thak € A is equivalent to

(3.13) Z ]P’x—8<oan/c,,<x—|—s}=oo Ve > 0.
n= 1

This trivially implies that

o
1
(3.14) Z—P{x—8<anﬁZ/cn}=oo Ve >0,
n
n=1
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which in turn by standard estimates of the tail probabilities of the normal
distribution is equivalent to the series condition in (3.12). It remains to show
that (3.14) implies (3.13). To that end we note that # x /2,
(x —&)cn 2ec, } 1 {
<=-PiZ
J/noy, +ﬁa,, -2 -

P{onﬁZ/Cn>x+8}:IP’{Z> w}

V/noy
provided that
chn/(\/ﬁo'n) = \/ﬁo'n/{(x —&)cn}

Relation (3.3) impliess?> = H(8¢,) = o(c?/n) and it follows that the above
condition is satisfied for large. We thus have in this case,

2P{x —e </noyZjcy <x+e} >Plx —e </nonZ/cy}.
It is now evident that (3.14) implies (3.13) and the proof of the lemma is complete
if x > 0. If x <0, the lemma follows by symmetry.[]

We are now ready to prove (2.13). By monotonicity of the exponential function
and the definition ofg we have

e a?c?\ (= oo, if @ < ap,
Zn ex _Zn 2
n=1 On

< 00, if @ > ap.

Therefore ifag = oo, it trivially follows from Lemma 4 thatA > R, which of
course implies thatt = [—o0, 00o].

Assume now that & ag < . If |x] < ag and consequentlyjx| — &)+ < ao,
Ve > 0, we see that the series in Lemma 4 diverge for any 0 so that
[—ag, ag] C A.

Likewise, it follows that these series convergeliff > ap > 0 and ¢ is
sufficiently small. Thus such points are outside which implies thatA =
[—ao, ap] and the first part of Theorem 3 has been proven.

If ag =00, then (2.13) immediately implies (2.14), bubif is finite the lim sup
in (2.14) still could be infinite. For that reason we have to add an extra argument to
rule this out. Of course, we could apply Corollary 10 of [20], but since we already
know the cluster set we do not need a precise upper bound for the limsup. Once
we know that the lim sup is finite it follows from (2.13) that it must be equaldo
Here is a simple direct argument establishing this missing part of (2.14).

PROOF OF(2.14). We assume thap < co. Choosings = 1, it follows that
there exists ar > ag such that

(3.15) dont exp(—a?c?/(2n02)) < oo,
n=1

wheres? = H(c,).
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Setn; = 2%, k > 1. Then (3.15) immediately implies that

00 oo nky1—1
Zn_lexp(—azcﬁ/(Znanz)) >3 > n~texp(—a?c?/(2nc?))
n=1 k=1 n=nj

[e.e]
> 3" log(2) exp(—a’cs, .,/ (21),)).
k=1

Recalling (2.11) which implies that for some consta&nt- 1, ¢, /cp,_, < 4K,
we find that

o0
(3.16) > eXp(—8K2a2c5kil/(nk0nZk)) < 00.

k=2
We next employ Theorem 3 on page 74 in [3]. Assuming that the underlying
probability space is rich enough and using (3.3), we can define a sequence of
independent normal mean-zero random varialiigsn > 1, where Va(Y,) =:
6”2 = Var(XI1{|X| < c,}) so that we have for the suni =" ; ¥;, n > 1, with
probability 1,

(3.17) Sy —Ty)/cn — 0 asn — oo.

It is thus sufficient to prove that with probability 1,

(3.18) limsup|T,|/ch < 4K .
n—0o0

By the Borel-Cantelli lemma this follows once we have shown that

1<m<np41

0
(3.19) ZP{ max |T,| > 4K(xcnk} < 00.
k=1

But using a standard maximal inequality for normal random variables along with

the fact tha6,2 < H(cn,,,) = crnzm, 1<m < nj41, we find that

(3.20) P{ max |7, Z4Kacnk} < 2exp(—8K%a’c}, /(nk1107,,)):

l<m=<npqq

which in view of (3.16) implies (3.19). This completes the proof of (2.14).

PROOF OFTHEOREM4. Let0<d, <c,, 07, := H(d,) and define

s a?c?
a1 =Ssu ozzO:Zn_leXp<— g>:oo .
1 2noy 4
n= n,

As we have




1614 U. EINMAHL AND D. LI

it is trivial that a1 < ag.

We now consider normalizing sequencgs satisfyinga := liminf,_ o ¢,/
v» > 0 and we choosé, < ¢, so that condition (2.15) is satisfied or, equivalently,
dy = cp/(Ln)*", whereg, — 0. Let furtherA, = 6,2 — 62 ;. In order to show that
ap = a1 it is enough to prove that

(3.21) Oonflex —
Sotene(

To see that, choosesa> 0, and observe that

ex ( 01205) <eX ( 05203 )+eX ( Olzc,% )
U 2002) =P\ 200 0002, O\ " i@ 5 04, )

From (3.21) it is then obvious thaty < +/1+ da1. Since we can choosé
arbitrarily small, we see that; = «g.

To prove thatyg < 1/a, we seld,, = ¢, /(2aL Ln) and use the fact that for large
02, < H(K(n/LLn)) < K?(n/LLn)LLn/n. Replacings?, in the definition of
a1 by this upper bound, we readily obtain that= «1 < 1/a and Theorem 4 has
been proven subject to the verification of (3.2101

2

”><oo Ve > 0.
nA,

EC

PrROOF OF(3.21). We use the same idea as in the proof of (2.14) of [5]. Recall
that we have by definition of th& -function

(3.22) H(K(x)) =EX?I{|X| < K(x)} < K%(x)/x, x>0,
and
(3.23) M(K(x))=E|X|I{|X|>Kx)} < K(x)/x, x> 0.
To estimateA,, = EX2I{d, < |X| < c,} we observe that by (3.22) and Cauchy—
Schwarz,
A, <EX?I{|X| < K(n/LLn)} +EX?I{|X| > K(n/LLn),|X| < c,}
<K2mn/LLn)LLn/n

+ (EIX|{|X| > K (n/LLn)}) "*(EIXPT{X] < ).

By assumption there exists ag > 1 so thatc, > aK (n/LLn)LLn for n > no.
This implies in conjunction with (3.23),

2

(3:24) Ay = - [(LLm) "+ ma®BIXPHIX S cal/ DL nzno.

SetNo = {n > no:na®E|X|3I{|X| < ¢,}/c3 < (LLn)~?}. Then we have

(3.25) A, < 2c5/(a2nLLn), n € No.
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As d, = c,/(Ln)®", wheres, — 0, we trivially have fom > 1,

(3.26) A, <EIXPHIX|<cp}/dy = Lm)"EIXPI{IX] < cu}/cn.

Employing the two bounds foA, and recalling (3.1) we obtain via the trivial
inequality exg—x) < 2x~Lexp(—x/2) that

Z nt eXp{—sc,%/(nAn)}

neNg

(3.27) < 26713 (An /D) (L))
n=1

o
<2 VSO RIXPIHIX] < eabey 3(Ln)r o4 < oo,
n=1
If ne Ny ={n>no:n ¢ No}, thenA, < 2¢2{E|X3I{|X| < c,}/(anc3)}¥?, and
it follows from e < 2/x? that

Y ntexpl—ec?/(nAy))

neNy

(3.28) < Y n7texp(—(e/2va/nEIX PH{IX| < cu}/c)Y?)

neN1

o0
<8a e 2> EIXPI{|X] < cp}/cd < o0.
n=1

This shows that (3.21) holds [

Note that in the above proof we only use property (2.10) so that this
relation holds for any sequeneg of positive real numbers such that/\/n is
nondecreasing. To conclude this section we show how the lower bound part of (1.8)
follows from Theorem 3. To that end, it is sufficient to prove:

LEMMA 5. If limsup,_, . cn/vn < b < 0o, we have limsup,_, o, [Sn|/cn >
1/b as.
PrROOFE We apply Theorem 3 with = 1. Then we have for large,
02=H(cy) > H(K(n/LLn)) + K (n/LLn)E|X|I{K (n/LLn) < |X| < c,}
which by definition of thek -function is equal to
K?(n/LLn)LLn/n — K (n/LL0)E|X|I{|X| > c,)}.

Recalling (3.4) we see that limipf, oo no2/{K?(n/LLn)LLn} > 1 which in turn
implies thateg > 1/b. O
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4. Proofsof Theoremsland2. We first note that by regular variation &1
we have
-1
(4.1) lim supwH(x) =lim sup@H(an/LLn).
X— 00 x<LLx n—o00 ay
If one has a lower bound for the above limsup one can infer that, along some
subsequence;? = H (a,) > ch(n)/LLn for a positivec which will imply that the
series in the definition afg diverge for small positiver provided that the function
h is of very slow variation. This way we can prove thatis positive. (See Part 3
of the proof.)

If one has an upper bound for the above limsup, one can in principle use the
same approach to obtain an upper boundpThe problem here is that the above
condition is not at the “natural” truncation leve}. To overcome this difficulty,
we first show (see Part 1) that under the assumptions of Theorem 1 we have
liminf,_ - a,/y, > 0 so that we can apply Theorem 4 which allows us to choose
various truncation levels. Once this has been done, the upper bound (see Part 2) is
straightforward (since any upper bound on a lim sup holds eventuadly in

It is then clear that the cluster set = C({S,/a,:n > 1}) is a bounded
symmetric interval—ao, ao], and we shall show th&l — ¢)¥2x < g < A, which
clearly implies (2.2). As a matter of fact we then obtain a slightly stronger result,
namely that under assumption (2.1) we have

A—g)Y%n < - liminf S, /a, = limsups, /a, <3 as.

n—oo

Then Theorem 2 (with the extra information about the cluster set) is obvious and
it is thus enough to prove Theorem 1.

Part 1. We need the following lemmas.

LEMMA 6. Let W beasin Theorem 1. Assume that for some A > 0,

UL¢LLr) 22

(4.2) limsup H@) < 5

t—00 t2LLt
Then we also have
. vl LLt
(4.3) lim sup#M(t) <C(1++2)22,

t—00 L

where C > Oisa constant so that W—1(x)/W~1(y) < C(x/y)¥2 for large x < y.

ProOF The existence of the constaét follows easily from the Karamata
representation of the slowly varying function — w~1(y)/y2. (See, e.g.,
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Theorem 1.3.1 in [1].) We thus can conclude that gi¥en 0, we have for large
enoughr

M@= Y EBIX|I2 Y <X <2t < 3 H@ /@)
j=1 =

< (A2/2+48) Y LL(Z )27+ /w1 (2/tLL(2'1))
j:l
= (A2 +28)tLLt /W~ (tLL)

x Y 2/ (LL(2/t)/LLt) (W~ (¢LLt)/ W~ 2/t LL(2'1)))
j=1

o0
<C(2+28)tLLt/ W (tLLt) Y 2/{LLt/(LL(2/1)}"/?273%/2
j=1

o0
< C(AZ+28)tLLt/ W (tLLt) ) 279/
j=1
=C(1+V2)A?+28)tLLt /Wt LL1).
Sinceé can be chosen arbitrarily small, we obtain assertion (4.3).

LEMMA 7. Let W beasin Theorem 1. Then assumption (4.2) for some A >0
impliesthat liminf,_, o W(n)/K(n/LLn)LLn > 0.

ProOOF Recall thata, = ¥(n). From Lemma 6 and assumption (4.2) it
follows that there exists a positive const@itso that
(4.4) limsup(H (1) + tM 1)) ¥ (¢t LLt)/(tPLLt) < C'32 < o0
—00

which implies that for large enough

(4.5) G(ay/LLn)>cn/LLn

where 1> ¢ > 0, and, consequently,

(4.6) ap/LLn> K(cn/LLn) > cK(n/LLn)
and the lemma has been proveil

REMARK 5. By a refinement of the above argument (where one has to choose
the constant depending om. and show that goes to infinity as. goes to
zero) one can also prove thatif= 0 we have¥ (n)/K (n/LLn)LLn — oo as
n — oo. Using this observation, one can infer the sufficiency part of Corollary 3
from (1.10).
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Part 2 (the upper bound). In Section 2 we already have noted that the
sequencey, satisfies assumption (2.10) and (2.11). Using the trivial fact that
EW~1(|X]) < oo if and only if 2, P{|X| > a,} < oo, we see that Theorem 3
applies so that limsyp, ., |S.|/a, = ap a.s. It remains to be shown that

4.7) ag < A.

In view of Part 1 we can apply Theorem 4 and it is sufficient to prove that if
o2 = H(a,/LLn), we have

(4.8) Z nt exp(—azh(n)/(Zonz)) < 00 Yo > A.
n=1

On account of (4.1) and (2.1), it follows that 2 < (& — 8)2h(n)/ L Ln for largen,
wheres = (o« — 1) /2.

This in turn implies exp—a2h(n)/(262)) < (Ln)~", wheren = a/(a — 8) > 1.
This clearly proves (4.8) and consequently (4.7).

Part 3 (the lower bound and the converse to Theorem 1). We present our last
lemma from which we can infer both the lower bound in (2.2) and the converse
to (2.3).

LEMMA 8. Let X:Q2 — R be a random variable satisfying for some
0< A <oo,

-1
(4.9) lim supw

H(x) > \2/2.
X—>00 x¢LLx (X) - /

If h e #, where0 < ¢ < 1, we have
(4.10) limsup|S,l/a, > 1—g)¥?r  as
n—oo

PrROOF It is sufficient to prove the lemma under the additional assumption
(4.11) E¥1(X])<oco and EX=0.

To see that note that limspp . |S,|/a, < oo a.s. implies that limsyp, ., | X,/
a, < oo a.s. By Kolmogorov's 0-1 law and the Borel-Cantelli lemma it then
follows that

(4.12) Z]P’{IX|zan}<oo
n=1

which is equivalent t&EW —1(] X|) < co. So if this expectation is infinite, then by
contraposition the lim sup in (4.10) is infinite.
By the strong law of large numbers this is also the ca&xif£ 0.
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Finally, without loss of generality, we can assume that,/n  co. [Note that
Theorem 3 with,, = nY?(L Ln)*/3 trivially implies that limsup _, . |S,|/a, = oo
a.s. ifEX =0 and (4.12) is satisfied witl, = O (/n).]

Under the above assumptions Theorem 3 applies. We shall show that

a0 > (1— )%

It then follows that[—(1 — ¢)¥?x, (1 — ¢)¥?A] € A = C({S,/an; n > 1}). This
trivially implies (4.10). By definition otrg and monotonicity, it is enough to prove
that

4.13) > ntexp(—e®h(n)/(202) =00,  O<a<(l—q)"%,

wheres? = H(a,/LLn).
Recalling (4.1) we see that
(4.14) limsup{LLn/h(n)}o? > 1?/2.
n—>oo
Given anx as above, choose91’ < 1—g so thatw? = r’A2and set = v/ +35/2,

wheres§ =1 — g — 7’. Let f; be defined as in Section 2. On account of (4.14) and
the definition of#, we can find a subsequeneg , oo so that

22 h(my)
2
(4.15) O 2 > (1 k)LLmk
and
(4.16) h(mp) = (1= 1/k)h(my fr(my)), k> 1.

Combining the last two relations we readily obtain by monotonicity,;%)fn n that

A2 1\2h(n)
4.17 2> 2 (1= =
417) o> 2( k) S s n s me= ISl

which in turn implies that

2
(4.18) Z n- exp( h(n )) |Og<nk+1>(Ll’lk)_r//(1_l/k)2,
my

n=mj

As we have logf; (my) = (logmy)™ < logmy we get for largek

Iog(nk * )(Ln,r()_f//(l_l/k)2 > (Lmk)T(ZLmk)_(T,HM) > (Lmy)%%/2
mi

which goes to infinity. Recalling (4.18), we obtain (4.13) and the lemma has been
proven. [J
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Combining (4.7) and Lemma 8, we obtain (2.2). Moreover, in the proof of
Lemma 8 we have already shown that the assumptibfis®(|X|) < oo and

EX = 0 are necessary for (2.2) to hold.
-1
Furthermore, if limsup._, ., *—*LL0 H (x) = oo and if ¢ < 1 we can infer

from Lemma 8 (with arbitrarily large) that

limsup|S,|/a, = oc.

n— oo
This clearly shows that (2.1) for some< oo is necessary for (2.3) to hold.
Likewise, if limsup, , ., %Hu) = 0, we obtain by (4.7) (with = 0)
limsup,_, , |S:|/a, =0 a.s. and it is clear that this lim sup can only be positive if

condition (2.1) holds for some > 0.

5. Further examples. We first give a corollary to Theorem 1 whetes #,
and O< ¢ < 1. We consider

hg(x) =exp{(Lx)?} and W,(x) =vxexp{(Lx)?}.

Itis easy to see thdt, € #,. Write
2

X
H =
1) = o2 (L))
One can check that
W, (Hy(x)) 1, if0<g<1/2,
X—00 X e / R Ifq=1/2.
We thus have
vt { 1, if0 <q<1/2,
x=oo Hy(x) — |eY?,  ifg=1/2.

For 1/2 < ¢ < 1, the precise asymptotic expansion \Dgl(x) is a little bit
complicated and is left to the interested reader. Applying Theorem 1 to the case
where O< g < 1/2, we have the following result.

COROLLARY 4. Let0< g <1/2.If there exists a constant 0 < 1 < oo such
that

XZ
(5.1) EX =0, E(—) <00
exp(24(L|X1))
and
LLx 2
l — . _H@x)=—  if0 1/2
MSUP expzi (L) V= 0= <12
(5.2)
i 2L Lx Hx) 2 fg—1/2
imsup———— =— ifg=1/2,
x—>oopeX[X«/2Lx) * 2 1
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then we have with probability 1,

. S
(1—g)¥?x <limsup [54]

n—oo «/nexXp((Ln)?) =4

Here of course it would be interesting to know whether our bounds for the above
lim sup are sharp. In principle one can calculate the precise value of the lim sup via
Theorem 3 and it may depend on the distributio’XofOne might wonder whether
all values in the interval(1 — ¢)1/24, 1] can occur or whether one can improve
the general lower bound we have found.

Let us take another look at Theorem 1. For a given sequence of i.i.d. mean-zero
random variable$X, X,; n > 1}, we may want to know if there exists a sequence
of positive real number&s,; n > 1} such that

(5.3) 0 < lim suplS"|

n—oo dp
holds and if it does, how to find it. To answer this question, we may try the
following method. Let agair (x) = E(X2I{|X| < x}), x > 0, and suppose there
exists a positive and nondecreasing slowly varying funcgiar) such that

<0 a.s.

H
(5.4) limsup o) =1
X—>00 )C)

we then takel (x) such that

v—1(xLLx)
(55) iy Y@=t
Thus, W (x) satisfies

2

(5.6) v ix) ~ asx — oo,

(LLx)¢p(x/LLx)

which is equivalent to
(5.7) W(x) ~ (x¢(¥(x)/LLx)LLx)

If h(x) =¢(W(x)/LLx)LLx € ¥#,, whereq < 1, then (5.3) holds withz, =
W (n) if and only if

X2
8) IE(<z><|X|/LL|X|>LL|X|> =

Of course, ifH is already slowly varying at infinity, which implies thatis in
the domain of attraction to the standard normal distribution, then this result holds
in general if we choosél = ¢ without assuming thag < 1. This follows, for
instance, from Theorem 1 of [16]. But even in this situation it can be very helpful
to work with a different (and larger) slowly varying functigh To demonstrate
this we shall look at an example which was also discussed by Feller [6] and Pruitt
([22], Example 9.4).

1/2
/ asx — o0.
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ExAamMPLE. Let {X, X,;n > 1} be a sequence of real-valued i.i.d. random
variables with the common symmetric probability density function

1
f) = —5I{lx| > 1).
x|

For this example, Pruitt ([22], page 44) pointed out that it would be possible to find
a normalizing sequende;,; n > 1} such that

. S
lim sup| nl _ 1 as.

n—oo dp

Can the normalizing sequenée,; n > 1} be explicitly given? Pruitt [22] did not
answer this question but mentioned that it would not be a very nice normalizing
sequence. Using our procedure above, we can find a normalizing sequence of the
form /nh(n) with & slowly varying which is not as unreasonable as one might
expect. In fact, for this examplé (x) = 2Lx, x > 0. If ¢1(x) =2Lx, x >0 is
chosen to be the (x), then by (5.7),

Wi(x) ~ (xLxLLx)Y?  asx — oo.

It is easy to check that (5.8) does not hold witi{x) = 2Lx which implies

. S
limsup [54]

——5 = a.s.
n—o00 (nLnLLn)l/z

However, we may choose,(x) = 2Lx(1 + LLxSiA(LLLx)), x > 0, to

be the ¢(x). It is easily checked thad,(x) > 0 so that this is a function
in . After some calculation it also follows thap, € #y. We obviously
have limsup_, ., H(x)/¢2(x) = 1. Moreover, using thapo(x/LLx) ~ ¢2(x) as

x — o0, we infer from (5.7)

N 1/2
Wo(x) ~ (Eqﬁz(x)LLx) asx — oo

and (5.8) holds withp,(x) since

X2 C 00 1
E(—):Z/ = axq2f ——ax
¢2(|X|)LL|X| 1 x¢o(x)LLx c x¢o(x)LLx

c 1 o0 1
:2/ 761)64-/ —d
1 x¢p2(x)LLx 1 14evsirfy Y
< 00,

whereC = ¢¢°. Thus, by Theorem 2, we have

limsup+S,/\/2nLnLLn(1+ LLnSi(LLL) =1  as.

n—oo
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