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A STRONG LAW OF LARGE NUMBERS FOR CAPACITIES!

By FABIO MACCHERONI AND MASSIMO MARINACCI

Universita Bocconi and Universita di Torino

We consider a totally monotone capacity on a Polish space and a
sequence of bounded p.i.i.d. random variables. We show that, on a full
set, any cluster point of empirical averages lies between the lower and the
upper Choquet integrals of the random variables, provided either the random
variables or the capacity are continuous.

1. Introduction. In this paper we prove a strong law of large numbers for
totally monotone capacities. Specifically, given a totally monotone capacity
defined on the Boret-algebra$ of a Polish spac&z, and a sequenceX,},>1
of bounded, pairwise independent and identically distributed random variables, we
show that

<{weQ /dev<llm|nf 1X;(@)

n
n X
§IimsupZ’ = (w) / dev}>_1

provided theX,s are continuous or simple, oris continuous. In this way we
extend earlier results of Marinacci [13].

Under different names, totally monotone capacities have been widely studied
in both pure and applied mathematics. They have been introduced by Choquet [4]
motivated by some problems in potential theory, and in his wake many works have
studied them in both potential theory and probability theory (see, e.g., [6] and [8]).

In mathematical statistics and in mathematical economics, totally monotone ca-
pacities have been used to represent subjective prior beliefs when the information
on which such beliefs are based is not good enough to represent them by a standard
additive probability (see, e.g., [7, 11, 15, 20] and [19]).

Our result shows that even in a nonadditive setting, the limit behavior of
empirical averages has some noteworthy properties. In particular, we show that
eventually empirical averages lie, with probability one, between the lower and
upper Choguet integrals associated with the given capacity. This extends to the
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nonadditive setting the classic Kolmogorov limit law, to which our result reduces
whenv is additive since in this case lower and upper Choquet integrals coincide.

In a subjective probability perspective, our result says that, while in the additive
case a Bayesian decision maker believes that the empirical averages of a sequence
of p.i.i.d. random variables tend to a given number, here he just believes that the
limit behavior of the empirical averages is confined in a given interval. This reflects
a possible lack of confidence in his probability assessments. This interpretation
of nonadditive limit laws and its relevance in mathematical economics has been
recently discussed at length in [9], to which we refer the interested reader for
details and references.

2. Preliminaries. Let Q be a Polish space an@ its Borel o-algebra.
A random variable(r.v.) is a (Borel) measurable functiaki: 2 — R. A totally
monotone capacitgn B is a set function : 8 — [0, 1] such that:

(c.1) v(@)=0andv(2) =1,

(c.2) v(A) < v(B) for all Borel setsA C B,

(c.3) v(By) | v(B) for all sequences of Borel seB;, | B,

(c.4) v(Gy) 1 v(G) for all sequences of open se¥s 1 G,

©5) v(Uj1B) = Yosscq.., o (=D, B)) for every collection
B1, ..., B, of Borel sets.

A set functionv : 8 — [0, 1] such that:

(c.6) v(B,) 1 v(R2) for all sequences of Borel sel;, 1 €2,

is calledcontinuousA continuous set function: 8 — [0, 1] is a totally monotone

capacity if and only if (c.1), (c.2) and (c.5) hold (see [18] and [14], Theorem 10).
Let v be a totally monotone capacity aB. As in the additive case, we say that

the elements of a sequen¥, },>1 of r.v.s arepairwise independemith respect

to v if, for eachn, m > 1 and for all open subsets,, G,, of R,

v({Xn € G, Xy € Gp}) =v({ Xy € GuHv({Xim € G}

we say that they ar@lentically distributedif, for eachn, m > 1 and each open
subseiG of R,

v(X, € G)=v(X, €G).
The Choquet integrabf a bounded r.vX with respect to a totally monotone
capacityv is defined by

400 0
/dez/o v({X>t})dt+/ (X > 1)) — 1]dt.

The integrals on the right-hand side are Riemann integrals and they are well
defined sincev({X > ¢}) is a monotone function im. The Choquet integral is
positively homogeneous, monotone and translation invariant [i(& 4 ¢) dv =
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[ Xdv+cif cis constant]. It reduces to the standard integral whisnan additive
probability measure.

In general,/ X dv < — [ —X dv. Equality holds for all r.v.s if and only i is
additive. The integraly’ X dv and — [ —X dv are sometimes callebwer and
upper Choquet integraJsespectively.

3. Thelaw of large numbers. We can now state our main result.

THEOREM 1. Letv be a totally monotone capacity o8, and {X,},>1 a
sequence of boundggairwise independent and identically distributed random
variables Then

Z?:l Xj (w)

n
n X
flimsupZ’ 1 (a)) f dev}>

provided at least one the following two condltlons holds

v<{a) cQ :/dev < liminf

(i) viscontinuous
(i) the random variableX,, are either continuous or simple

A few remarks are in order. First, agB) = 1 andA C B¢ imply v(4A) =0
under the assumptions of Theorem 1 we also have

nooX.
v({a)e Q:liminf 2= X1 (@) _ /deUD —0
n n
and

v({weﬁ:limnsupzn 1% (w) / devD

In other words, with zero probability empirical averages will eventually lie outside
the intervall [ X1 dv, — [ —X1dv].

Second, whem is additive we havg X1dv = — [ —X1dv, and so in this case
our result reduces to a standard Kolmogorov limit law

nooX;
v({a)eQ:Iim M =/X1dv}> =1
n n

On the other hand, whenis not additive in some cases it may happen (see [13])

that
"1 Xj(w nX (w
v({a) e @:liminf =@ |imsupo()}) _
n n p; "

Finally, as anticipated, the closest existing theorem is due to [13]. Our result
is more general since [13] assumes tldatis compact,v is continuous, the
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r.v.s X, are continuous, independent and that they satisfy some further technical
conditions. Moreover, the proof we provide is different and much simpler. In fact,
here we develop a technique that relies on the relations between totally monotone
capacities and correspondences, thus making it possible to use existing laws of
large numbers for correspondences. This approach might be useful in establishing
further generalizations of limit laws to the framework of capacities. This will be
the object of future research, along with the possibility of weakening some of the
continuity conditions assumed in Theorem 1.

4. Proof and related material. Denote by.Kq (resp.4q) the class of all
nonempty compact subsets (resp. open subsefs)foi the sake of completeness,
write Bg, instead ofB. If d is a Polish metric o2, then K, is a Polish space
when endowed with the Hausdorff metric

ds (K, L) =max{ maxmindk, ), maxmind(, k) ).
s(K, L) X(keK leL (k. D), el kek ¢, )>

The Borel o-algebra onKq is also generated by the clagk € Kq:K C
GlGegq-

4.1. Measurable correspondences and totally monotone capacitlest.
(I, G, ») be a nonatomic and complete probability spacec@nfpact valuepicor-
respondencd : I = Q is a map with domairf and whose values are nonempty
compact subsets @t. For anyA C Q, we put

F_1(A)={sel:F(s) C A}.

A correspondencé : I = Q is measurablef F_1(G) € C for everyG € q. As
well known (see, e.g., [12]), the following facts are equivalent:

e F is measurable;
e F_1(B) € C foreveryB € Bg;
e F is measurable as a functidgn: I — Kq.

When a measurable corresponderftés regarded as a measurable function
F:1 — Xq, we denote by 1 its standard inverse image, that is,

Fl&)={sel:F(s)e8) VE&C Xaq,
and byo (F) theo-algebra generated by, that is,
o(F)={FY(D): D e Bx,).
In the sequel we will need the next lemma, whose standard proof is omitted.

LEMMA 2. LetF:I = Q be a measurable correspondenééen
o(F)=0({F-1(G):G € $a})
and{F_1(G):G € Gq} is ar-class containing .
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A measurable functiorf : I — €2 induces grobability distributionP; on Bq
defined by

Pr(B)=A(f"X(B)) VBeBq.

In a similar way, a measurable corresponderfcel = Q induces alower
distributionvy on B¢, defined by

UF(B)E)»(F_]_(B)) VB € 8Bq.

The next result, which links totally monotone capacities and lower distributions, is
essentially due to Choquet [4] (see also [15, 16] and [3]).

LEMMA 3. A set functiorw: Bo — [0, 1] is a totally monotone capacity if
and only if there exists a measurable correspondeficé = 2 such thaty = vp.

A measurable selectiomf a correspondencé :I = Q is a measurable
function f: I — Q such thatf(s) € F(s) for almost alls € I. The set of all
measurable selections &f is denoted by Sef. The Aumann integralsee [2])
of a correspondenck : I = R with respect to\ is defined by

/de = {/fdk:f € SelF and f integrabl%.

If X:Q — R is continuous or simple, and is a correspondence, then
(X o F)(s) = X(F(s)) is a correspondence [i.eX (F(s)) € KXr for all s € I].
Moreover, since

(XoF)_1(A)=F_1(X"}4)) VACR,
X o F is measurable provided and F are measurable.

LEMMA 4. Let F:I = Q be a measurable correspondenead X : Q — R
be either bounded and continuous or simple and measurahken

/(XoF)dA: [fdeF,—/—deF]

This is an immediate consequence of [3], Theorem 4.1.

4.2. Proof of Theoreml. Suppose first that (ii) holds. By Lemma 3, there
exists a measurable correspondeficd = Q such that = vp.

Next we show that the measurable corresponde(kgs F},>1 are pairwise
independent and identically distributed when regarded as measurable functions
Xp,oF . I — KR.
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Letn,m > 1andG,, G, € 4r, then
M(Xn o F)_1(Gp) N (Xm0 F)-1(Gm))
MF-1(X, HGw) N F-1(X,H(Gm)))
(Fo1(X; G N X H(G)))
V(X HG) N X, HGw))
(X,
(F

A

v

THGO)W (X, (Gw))
MF_1 (X, M G))MF-1(X, (Gw)))
= )‘((Xn o F)—l(Gn)))\((Xm o F)—l(Gm))'

This proves pairwise independence, since forjadl n,m, {(X; o F)_1(G)}cegz
is ar-class containind and generating the-algebrao (X o F) (see Lemma 2).
Moreover, for eacl, m > 1, and each open subsgte 4,

AM(Xn0 F)TY({K € Kr: K € G)))
({XnoFe{K € Xr:K C G}})
(Xn 0 F)_1(G))

F_1(X, 1(G)))

=AM(Xmo F)"Y({K € Xr: K C G})).

This proves identical distribution sinceK € Kg:K C Glgegy IS a w-class
containingXr and generating , .

Clearly, for eacln > 1 and eaclt € SelX,, o F, [ hdA is finite (2 is bounded);
moreover, by Lemma 4} X,, o F d € KR.

In sum,{X, o F},>1 are pairwise independent and identically distributed mea-
surable correspondences wiftX, o Fdx € Kg for all n > 1. A generalization
due to [10] (see also [5] and [17]) of a result of Artstein and Vitale [1] guarantees
that

1 n
A({sel:;ZXj(F(s))e/‘XloFdAD =1

j=1

/XloFdA:[/dev,—f—dev].

By Lemma 4,
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Z;l':j_ Xj ()
n

Leta,(w) = and set

S1= {sel.;;XJ(F(s))e [/deu,—/—xldv”,

So = {s € I:/dev < Iimninf an(w)
<limsupa, (v) < —/—dev Yo e F(s)},
n

Qo = {weQ:ledvflimninfan(w)glimsupa,,(a)) 5—/—X1dv}.

We want to show that(22) = 1. Notice that
v(Q2) =A({s € 1 F(s) C Q2}) = A(S2).
The next claim will be used to show th&t C S».

CLAaM 1. Let{K,} be a sequence ifkr such thatk,, — [«, B8]. Then
o< Iimninf k, <limsupk, < B
n

for each sequenci, } in R such that, € K, forall n > 1.

PrOOF By definition of Hausdorff metricK, converges tde, 8] if and
only if max(max,ck, MiN [, g] ltn — 7|, MaX-¢[o, g1 MiN, ek, [F — t,]) = 0, in
particular
1 max min |t, — 0.

( ) t,eK, rela, Bl |n r|_>

Let {k,,} be a subsequence @,} such thak,;, — £ € [—o0, +00]. If £ ¢ [a, B],
then there exists > 0 such that eventuallit,,; — | > ¢ for all » € [, B]. Hence,
we have eventually mjge,g) lkn; —r| > €, thus contradicting (1). O

If 5 € Sy, then Y1 Xj(F(s)) = [f X1dv, — [ —X1dv]. Hence, for alk ¢
F(s), we have, (@) = 1 Y1_) Xj(w) € ¥ >"_; X j(F(s)); by Claim 1,

/dev§ Iimninfa,,(a)) <limsupa, (v) < —/—dev.

Therefore,S1 C So and sov(22) = A(S2) > A(S1) = 1. This completes the proof
of the result when (ii) holds.

As to (i), denoting byt the Polish topology o082, there exists a Polish topology
% D 7 on Q such thatr (z*) = Bg, and such that all th&,,s arer*-continuous
(see, e.g., [21]). Since is continuous, then it is a totally monotone capacity with
respect to the topology™*; we can thus assume that (ii) holds.
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