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A STRONG LAW OF LARGE NUMBERS FOR CAPACITIES1

BY FABIO MACCHERONI AND MASSIMO MARINACCI

Università Bocconi and Università di Torino

We consider a totally monotone capacity on a Polish space and a
sequence of bounded p.i.i.d. random variables. We show that, on a full
set, any cluster point of empirical averages lies between the lower and the
upper Choquet integrals of the random variables, provided either the random
variables or the capacity are continuous.

1. Introduction. In this paper we prove a strong law of large numbers for
totally monotone capacities. Specifically, given a totally monotone capacityν

defined on the Borelσ -algebraB of a Polish space�, and a sequence{Xn}n≥1
of bounded, pairwise independent and identically distributed random variables, we
show that

ν

({
ω ∈ � :

∫
X1 dν ≤ lim inf

n

∑n
j=1 Xj(ω)

n

≤ lim sup
n

∑n
j=1 Xj(ω)

n
≤ −

∫
−X1 dν

})
= 1,

provided theXns are continuous or simple, orν is continuous. In this way we
extend earlier results of Marinacci [13].

Under different names, totally monotone capacities have been widely studied
in both pure and applied mathematics. They have been introduced by Choquet [4]
motivated by some problems in potential theory, and in his wake many works have
studied them in both potential theory and probability theory (see, e.g., [6] and [8]).

In mathematical statistics and in mathematical economics, totally monotone ca-
pacities have been used to represent subjective prior beliefs when the information
on which such beliefs are based is not good enough to represent them by a standard
additive probability (see, e.g., [7, 11, 15, 20] and [19]).

Our result shows that even in a nonadditive setting, the limit behavior of
empirical averages has some noteworthy properties. In particular, we show that
eventually empirical averages lie, with probability one, between the lower and
upper Choquet integrals associated with the given capacity. This extends to the
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nonadditive setting the classic Kolmogorov limit law, to which our result reduces
whenν is additive since in this case lower and upper Choquet integrals coincide.

In a subjective probability perspective, our result says that, while in the additive
case a Bayesian decision maker believes that the empirical averages of a sequence
of p.i.i.d. random variables tend to a given number, here he just believes that the
limit behavior of the empirical averages is confined in a given interval. This reflects
a possible lack of confidence in his probability assessments. This interpretation
of nonadditive limit laws and its relevance in mathematical economics has been
recently discussed at length in [9], to which we refer the interested reader for
details and references.

2. Preliminaries. Let � be a Polish space andB its Borel σ -algebra.
A random variable(r.v.) is a (Borel) measurable functionX :� → R. A totally
monotone capacityonB is a set functionν :B → [0,1] such that:

(c.1) ν(∅) = 0 andν(�) = 1,
(c.2) ν(A) ≤ ν(B) for all Borel setsA ⊆ B,
(c.3) ν(Bn) ↓ ν(B) for all sequences of Borel setsBn ↓ B,
(c.4) ν(Gn) ↑ ν(G) for all sequences of open setsGn ↑ G,
(c.5) ν(

⋃n
j=1 Bj) ≥ ∑

∅ �=J⊆{1,...,n}(−1)|J |+1ν(
⋂

j∈J Bj ) for every collection
B1, . . . ,Bn of Borel sets.

A set functionν :B → [0,1] such that:
(c.6) ν(Bn) ↑ ν(�) for all sequences of Borel setsBn ↑ �,

is calledcontinuous. A continuous set functionν :B → [0,1] is a totally monotone
capacity if and only if (c.1), (c.2) and (c.5) hold (see [18] and [14], Theorem 10).

Let ν be a totally monotone capacity onB. As in the additive case, we say that
the elements of a sequence{Xn}n≥1 of r.v.s arepairwise independentwith respect
to ν if, for eachn,m ≥ 1 and for all open subsetsGn,Gm of R,

ν({Xn ∈ Gn,Xm ∈ Gm}) = ν({Xn ∈ Gn})ν({Xm ∈ Gm});
we say that they areidentically distributedif, for eachn,m ≥ 1 and each open
subsetG of R,

ν(Xn ∈ G) = ν(Xm ∈ G).

The Choquet integralof a bounded r.v.X with respect to a totally monotone
capacityν is defined by∫

X dν ≡
∫ +∞

0
ν({X > t}) dt +

∫ 0

−∞
[ν({X > t}) − 1]dt.

The integrals on the right-hand side are Riemann integrals and they are well
defined sinceν({X > t}) is a monotone function int . The Choquet integral is
positively homogeneous, monotone and translation invariant [i.e.,

∫
(X + c) dν =
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∫
Xdν + c if c is constant]. It reduces to the standard integral whenν is an additive

probability measure.
In general,

∫
X dν ≤ −∫ −X dν. Equality holds for all r.v.s if and only ifν is

additive. The integrals
∫

X dν and −∫ −X dν are sometimes calledlower and
upper Choquet integrals, respectively.

3. The law of large numbers. We can now state our main result.

THEOREM 1. Let ν be a totally monotone capacity onB, and {Xn}n≥1 a
sequence of bounded, pairwise independent and identically distributed random
variables. Then

ν

({
ω ∈ � :

∫
X1 dν ≤ lim inf

n

∑n
j=1 Xj(ω)

n

≤ lim sup
n

∑n
j=1 Xj(ω)

n
≤ −

∫
−X1 dν

})
= 1,

provided at least one the following two conditions holds:

(i) ν is continuous;
(ii) the random variablesXn are either continuous or simple.

A few remarks are in order. First, asν(B) = 1 andA ⊆ Bc imply ν(A) = 0,
under the assumptions of Theorem 1 we also have

ν

({
ω ∈ � : lim inf

n

∑n
j=1 Xj(ω)

n
<

∫
X1 dν

})
= 0

and

ν

({
ω ∈ � : lim sup

n

∑n
j=1 Xj(ω)

n
> −

∫
−X1 dν

})
= 0.

In other words, with zero probability empirical averages will eventually lie outside
the interval[∫ X1 dν,−∫ −X1 dν].

Second, whenν is additive we have
∫

X1 dν = −∫ −X1 dν, and so in this case
our result reduces to a standard Kolmogorov limit law

ν

({
ω ∈ � : lim

n

∑n
j=1 Xj(ω)

n
=

∫
X1 dν

})
= 1.

On the other hand, whenν is not additive in some cases it may happen (see [13])
that

ν

({
ω ∈ � : lim inf

n

∑n
j=1 Xj(ω)

n
< lim sup

n

∑n
j=1 Xj(ω)

n

})
= 1.

Finally, as anticipated, the closest existing theorem is due to [13]. Our result
is more general since [13] assumes that� is compact,ν is continuous, the
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r.v.s Xn are continuous, independent and that they satisfy some further technical
conditions. Moreover, the proof we provide is different and much simpler. In fact,
here we develop a technique that relies on the relations between totally monotone
capacities and correspondences, thus making it possible to use existing laws of
large numbers for correspondences. This approach might be useful in establishing
further generalizations of limit laws to the framework of capacities. This will be
the object of future research, along with the possibility of weakening some of the
continuity conditions assumed in Theorem 1.

4. Proof and related material. Denote byK� (resp.G�) the class of all
nonempty compact subsets (resp. open subsets) of�; for the sake of completeness,
write B� instead ofB. If d is a Polish metric on�, thenK� is a Polish space
when endowed with the Hausdorff metric

dH (K,L) ≡ max
(

max
k∈K

min
l∈L

d(k, l),max
l∈L

min
k∈K

d(l, k)

)
.

The Borel σ -algebra onK� is also generated by the class{K ∈ K� :K ⊆
G}G∈G� .

4.1. Measurable correspondences and totally monotone capacities.Let
(I,C, λ) be a nonatomic and complete probability space. A (compact valued) cor-
respondenceF : I ⇒ � is a map with domainI and whose values are nonempty
compact subsets of�. For anyA ⊆ �, we put

F−1(A) ≡ {s ∈ I :F(s) ⊆ A}.
A correspondenceF : I ⇒ � is measurableif F−1(G) ∈ C for everyG ∈ G�. As
well known (see, e.g., [12]), the following facts are equivalent:

• F is measurable;
• F−1(B) ∈ C for everyB ∈ B�;
• F is measurable as a functionF : I → K�.

When a measurable correspondenceF is regarded as a measurable function
F : I → K�, we denote byF−1 its standard inverse image, that is,

F−1(E) ≡ {s ∈ I :F(s) ∈ E} ∀E ⊆ K�,

and byσ(F ) theσ -algebra generated byF , that is,

σ(F ) ≡ {
F−1(D) :D ∈ BK�

}
.

In the sequel we will need the next lemma, whose standard proof is omitted.

LEMMA 2. LetF : I ⇒ � be a measurable correspondence. Then

σ(F ) = σ
({F−1(G) :G ∈ G�})

and{F−1(G) :G ∈ G�} is aπ -class containingI .
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A measurable functionf : I → � induces aprobability distributionPf on B�

defined by

Pf (B) ≡ λ
(
f −1(B)

) ∀B ∈ B�.

In a similar way, a measurable correspondenceF : I ⇒ � induces alower
distributionνF onB� defined by

νF (B) ≡ λ
(
F−1(B)

) ∀B ∈ B�.

The next result, which links totally monotone capacities and lower distributions, is
essentially due to Choquet [4] (see also [15, 16] and [3]).

LEMMA 3. A set functionν :B� → [0,1] is a totally monotone capacity if
and only if there exists a measurable correspondenceF : I ⇒ � such thatν = νF .

A measurable selectionof a correspondenceF : I ⇒ � is a measurable
function f : I → � such thatf (s) ∈ F(s) for almost all s ∈ I . The set of all
measurable selections ofF is denoted by SelF . The Aumann integral(see [2])
of a correspondenceF : I ⇒ R with respect toλ is defined by∫

F dλ ≡
{∫

f dλ :f ∈ SelF andf integrable
}
.

If X :� → R is continuous or simple, andF is a correspondence, then
(X ◦ F)(s) ≡ X(F(s)) is a correspondence [i.e.,X(F(s)) ∈ KR for all s ∈ I ].
Moreover, since

(X ◦ F)−1(A) = F−1
(
X−1(A)

) ∀A ⊆ R,

X ◦ F is measurable providedX andF are measurable.

LEMMA 4. Let F : I ⇒ � be a measurable correspondence, andX :� → R

be either bounded and continuous or simple and measurable. Then,∫
(X ◦ F)dλ =

[∫
X dνF ,−

∫
−X dνF

]
.

This is an immediate consequence of [3], Theorem 4.1.

4.2. Proof of Theorem1. Suppose first that (ii) holds. By Lemma 3, there
exists a measurable correspondenceF : I ⇒ � such thatν = νF .

Next we show that the measurable correspondences{Xn ◦ F }n≥1 are pairwise
independent and identically distributed when regarded as measurable functions
Xn ◦ F : I → KR.
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Let n,m ≥ 1 andGn,Gm ∈ GR, then

λ
(
(Xn ◦ F)−1(Gn) ∩ (Xm ◦ F)−1(Gm)

)
= λ

(
F−1

(
X−1

n (Gn)
) ∩ F−1

(
X−1

m (Gm)
))

= λ
(
F−1

(
X−1

n (Gn) ∩ X−1
m (Gm)

))
= ν

(
X−1

n (Gn) ∩ X−1
m (Gm)

)
= ν

(
X−1

n (Gn)
)
ν
(
X−1

m (Gm)
)

= λ
(
F−1

(
X−1

n (Gn)
))

λ
(
F−1

(
X−1

m (Gm)
))

= λ
(
(Xn ◦ F)−1(Gn)

)
λ
(
(Xm ◦ F)−1(Gm)

)
.

This proves pairwise independence, since for allj = n,m, {(Xj ◦ F)−1(G)}G∈GR

is aπ -class containingI and generating theσ -algebraσ(Xj ◦ F) (see Lemma 2).
Moreover, for eachn,m ≥ 1, and each open subsetG ∈ GR,

λ
(
(Xn ◦ F)−1({K ∈ KR :K ⊆ G}))

= λ
({

Xn ◦ F ∈ {K ∈ KR :K ⊆ G}})
= λ

(
(Xn ◦ F)−1(G)

)
= λ

(
F−1

(
X−1

n (G)
))

= ν
(
X−1

n (G)
)

= ν
(
X−1

m (G)
)

= λ
(
(Xm ◦ F)−1({K ∈ KR :K ⊆ G})).

This proves identical distribution since{K ∈ KR :K ⊆ G}G∈GR
is a π -class

containingKR and generatingBKR
.

Clearly, for eachn ≥ 1 and eachh ∈ SelXn ◦ F ,
∫

hdλ is finite (h is bounded);
moreover, by Lemma 4,

∫
Xn ◦ F dλ ∈ KR.

In sum,{Xn ◦ F }n≥1 are pairwise independent and identically distributed mea-
surable correspondences with

∫
Xn ◦ F dλ ∈ KR for all n ≥ 1. A generalization

due to [10] (see also [5] and [17]) of a result of Artstein and Vitale [1] guarantees
that

λ

({
s ∈ I :

1

n

n∑
j=1

Xj(F (s)) →
∫

X1 ◦ F dλ

})
= 1.

By Lemma 4, ∫
X1 ◦ F dλ=

[∫
X1 dν,−

∫
−X1 dν

]
.
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Let an(ω) =
∑n

j=1 Xj (ω)

n
and set

S1 ≡
{
s ∈ I :

1

n

n∑
j=1

Xj(F (s)) →
[∫

X1 dν,−
∫

−X1 dν

]}
,

S2 ≡
{
s ∈ I :

∫
X1 dν ≤ lim inf

n
an(ω)

≤ lim sup
n

an(ω) ≤ −
∫

−X1 dν ∀ω ∈ F(s)

}
,

�2 ≡
{
ω ∈ � :

∫
X1 dν ≤ lim inf

n
an(ω) ≤ lim sup

n
an(ω) ≤ −

∫
−X1 dν

}
.

We want to show thatν(�2) = 1. Notice that

ν(�2) = λ
({s ∈ I :F(s) ⊆ �2}) = λ(S2).

The next claim will be used to show thatS1 ⊆ S2.

CLAIM 1. Let {Kn} be a sequence inKR such thatKn → [α,β]. Then,

α ≤ lim inf
n

kn ≤ lim sup
n

kn ≤ β

for each sequence{kn} in R such thatkn ∈ Kn for all n ≥ 1.

PROOF. By definition of Hausdorff metric,Kn converges to[α,β] if and
only if max(maxtn∈Kn minr∈[α,β] |tn − r|,maxr∈[α,β] mintn∈Kn |r − tn|) → 0, in
particular

max
tn∈Kn

min
r∈[α,β] |tn − r| → 0.(1)

Let {knj
} be a subsequence of{kn} such thatknj

→ 	 ∈ [−∞,+∞]. If 	 /∈ [α,β],
then there existsε > 0 such that eventually|knj

− r| > ε for all r ∈ [α,β]. Hence,
we have eventually minr∈[α,β] |knj

− r| > ε, thus contradicting (1). �

If s ∈ S1, then 1
n

∑n
j=1 Xj(F (s)) → [∫ X1 dν,−∫ −X1 dν]. Hence, for allω ∈

F(s), we havean(ω) = 1
n

∑n
j=1 Xj(ω) ∈ 1

n

∑n
j=1 Xj(F (s)); by Claim 1,∫

X1 dν ≤ lim inf
n

an(ω) ≤ lim sup
n

an(ω) ≤ −
∫

−X1 dν.

Therefore,S1 ⊆ S2 and soν(�2) = λ(S2) ≥ λ(S1) = 1. This completes the proof
of the result when (ii) holds.

As to (i), denoting byτ the Polish topology on�, there exists a Polish topology
τ ∗ ⊇ τ on � such thatσ(τ ∗) = B�, and such that all theXns areτ ∗-continuous
(see, e.g., [21]). Sinceν is continuous, then it is a totally monotone capacity with
respect to the topologyτ ∗; we can thus assume that (ii) holds.
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