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LINEARIZATION COEFFICIENTS FOR ORTHOGONAL
POLYNOMIALS USING STOCHASTIC PROCESSES1

BY MICHAEL ANSHELEVICH

University of California, Riverside

Given a basis for a polynomial ring, the coefficients in the expansion
of a product of some of its elements in terms of this basis are called
linearization coefficients. These coefficients have combinatorial significance
for many classical families of orthogonal polynomials. Starting with a
stochastic process and using the stochastic measures machinery introduced by
Rota and Wallstrom, we calculate and give an interpretation of linearization
coefficients for a number of polynomial families. The processes involved may
have independent, freely independent orq-independent increments. The use
of noncommutative stochastic processes extends the range of applications
significantly, allowing us to treat Hermite, Charlier, Chebyshev, free Charlier
and Rogers and continuous bigq-Hermite polynomials.

We also show that theq-Poisson process is a Markov process.

1. Introduction. Let {Pn} be a family of polynomials orthogonal with respect
to a measureµ on the real line. One standard combinatorial question is to calculate
the moments of the measure,mn = 〈xn〉, where we denote by〈·〉 the integral
(expectation) with respect toµ. For many classical families of polynomials these
moments are positive integers or, more generally, polynomials in parameters with
positive integer coefficients. These coefficients beg a combinatorial interpretation,
and there exists a large body of work to this effect.

A more general question one can ask is to calculate the linearization coefficients.
That is, for(n1, n2, . . . , nk), we are interested in the expectations〈Pn1Pn2 . . . Pnk

〉.
The name stems from the fact that these are the coefficients in the expansion of
products of this type in the basis{Pn}, that is, expansions as sums of orthogonal
polynomials. Again, many of these coefficients are positive integers, and so they
“count something.”

A combinatorial approach to this problem is to construct explicit bijections
between structures counted by the linearization coefficients and structures of
known cardinality; see, for example, [10]. In this paper we take a different route,
and consider a probabilistic interpretation of certain coefficients. The connection
to combinatorics is provided by the fact that the moments of a measure are
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sums, over all set partitions, of products of cumulants of that measure. We will
see that certain linearization coefficients can by described in a similar way. The
machinery we use is that of stochastic measures, first introduced by Rota and
Wallstrom in [12]. In a number of previous papers we extended this machinery
from the usual to the noncommutative stochastic processes. This extends the
number of polynomial families that we can handle, and so we not only obtain a
nice interpretation of known results, but some new results as well. In particular,
we show that the linearization coefficients for the continuous bigq-Hermite
polynomials ([11], 3.18) are based on the number of the inhomogeneous set
partitions, with an extra statistic counting the number of “restricted crossings” of
such partitions.

To be more specific, for each family of polynomials in this paper and the related
family of measures of orthogonality, we introduce a, possibly noncommutative,
stochastic process{X(t)}. Then for this process, we introduce a further family
{ψk(t)} of other stochastic processes, which we call full stochastic measures.
These objects are orthogonal, and have clean linearization formulas. On the rare
occasions when these objects are polynomials in the original processX, these
formulas translate into the linearization formulas for polynomials.

Another property, which always holds for the full stochastic measures and
which in these cases is shared by the orthogonal polynomials, is the martingale
property. The Markov property for theq-Brownian motion was shown in [6] using
the Gaussian properties of the process. Using the above fact for the stochastic
measures, we show that theq-Poisson process is also a Markov process.

The paper is organized as follows. In Section 2 we describe general combi-
natorial properties of combinatorial stochastic measures. Section 3 is based on
the results of [12] about processes with independent increments, and gives the
linearization coefficients for the Hermite and Charlier polynomials. Section 4 is
based on the results of [1, 3] about processes with freely independent increments,
and gives the linearization coefficients for the Chebyshev polynomials of the 2nd
kind and the free Charlier polynomials. Section 5 is based on the results of [2]
aboutq-Lévy processes, and gives the linearization coefficients for the continuous
and continuous bigq-Hermite polynomials. It also requires some new results about
theq-Poisson process. The proofs of these results are contained in the Appendix,
which also contains the proof of the Markov property for theq-Poisson process.

2. Combinatorial stochastic measures. Let (A,E[·]) be a noncommutative
probability space. That is,A is a finite von Neumann algebra, and E[·] is a faithful
normal tracial state on it. The commutative case is included in this setting when
A = L∞(�,P ) for � a measure space,P a probability measure, and E[·] the
expectation with respect toP . Let {X(t)} be an operator-valued stochastic process
whose increments are stationary with respect to the state E[·] and independent
in a certain sense; see Sections 3–5 for examples of such conditions. Denote
by P (n) the collection of all set partitions of a set ofn elements. For a set partition
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π = {B1,B2, . . . ,Bl}, temporarily denote byc(i) the index of the classBc(i) to
which i belongs. Then the stochastic measure corresponding to the partitionπ is

Stπ(t) =
∫

[0, t)l

all si ’s distinct

dX
(
sc(1)

)
dX

(
sc(2)

) · · ·dX
(
sc(n)

)
.

In particular, denote by�n = St̂1 the higher diagonal measures of the process
defined by

�n(t) =
∫
[0,t)

(dX(s))n,

and byψn = St̂0, the full stochastic measures defined by

ψn(t) =
∫

[0, t)n

all si ’s distinct

dX(s1) dX(s2) · · ·dX(sn).

Here the integrals are defined by approximation, as follows.

DEFINITION 2.1. Let I = {Ii}Ni=1 be a subdivision of the interval[0, t)

into disjoint half-open intervalsIi = [ai, ai+1), 0 = a1 < a2 < · · · < aN <

aN+1 = t . Denote byδ(I) = maxi |Ii |. Let π ∈ P (n) and {X(s)} be a (possibly
noncommutative) stochastic process. Define

[N]nπ = {�u ∈ {1,2, . . . ,N}n :u(i) = u(j) ⇔ i
π∼ j

}
and

Stπ(t;I) = ∑
�u∈[N]nπ

n∏
i=1

(
X

(
au(i)+1

) − X
(
au(i)

))
.

Finally, define

Stπ(t) = lim
δ(I)→0

Stπ(t;I)

if the limit exists.

The existence of the limits has been proven under various conditions, see
Sections 3–5 for the more precise description. For the purposes of this section
we will assume that the limits exist and consider purely combinatorial facts. The
most pertinent of these corresponds to linearization or, in the context of stochastic
integration, to the Itô formula. Setn = ∑k

j=1 nj . Denote by

πn1,n2,...,nk
∈ P (n)

the partition whose classes are intervals of consecutive integers of lengths
n1, n2, . . . , nk. Denote

P (n1, n2, . . . , nk) = {
π ∈ P (n) :π ∧ πn1,n2,...,nk

= 0̂
}
,
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the partitionsinhomogeneous with respect toπn1,n2,...,nk
, that is, the collection of

all partitions which do not put together elements of thek distinguished subsets in
the same class. For example,

P (2,2) = {{(1)(2)(3)(4)}, {(1,3)(2)(4)}, {(1,4)(2)(3)},
{(1)(2,3)(4)}, {(1)(2,4)(3)}, {(1,3)(2,4)}, {(1,4)(2,3)}}.

Then

k∏
j=1

ψnj
(t) = ∑

π∈P (n1,n2,...,nk)

Stπ(t).(1)

For a fixed subdivisionI, the statement

k∏
j=1

ψnj
(t;I) = ∑

π∈P (n1,n2,...,nk)

Stπ(t;I)

is purely combinatorial; see [12], Theorem 4, or [1], Proposition 4, for its proof.
The fact that the relation (1) also holds in the limit will again be treated in each of
the subsequent sections separately.

DenoteRπ(t) = E[Stπ(t)] andRn(t) = E[�n(t)]. HereRn is thenth general-
ized cumulant of the process; for a process with independent increments it is the
usual cumulant. Then

E

[
k∏

j=1

ψnj
(t)

]
= ∑

π∈P (n1,n2,...,nk)

Rπ(t).(2)

For a centered process,R1 = 0. In all examples we will consider, this will imply
thatRπ = 0 if π contains a singleton class (a class consisting of one element). One
consequence of this fact is that

E[ψn(t)ψk(t)] = 0(3)

for n 
= k. That is, full stochastic measures of different orders are orthogonal. Thus,
in general, we may consider the stochastic measures as analogs of orthogonal
polynomials, and in this case formula (2) describes their linearization coefficients.
The purpose of this paper is to describe examples when stochastic measures are,
in fact, polynomials in the original process. Ifψn(t) = Pn(X(t)), equation (3)
says that the polynomials{Pn} are orthogonal with respect to the distributionµt

of X(t) (which is a probability measure onR). So their linearization coefficients
are precisely

〈
Pn1Pn2 . . . Pnk

〉 = E

[
k∏

j=1

Pnj
(X(t))

]
= E

[
k∏

j=1

ψnj
(t)

]
.
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Moreover, in all examples belowX(t) has infinite spectrum (takes on infinitely
many values). So if Stπ(t) is also a polynomial inX(t), equation (1) implies the
equality of the corresponding polynomials.

Another property which holds for some orthogonal polynomials, but which
always holds for stochastic measures, is the martingale property.

PROPOSITION2.2. For t > 0, let At be the von Neumann algebra generated
by the set {X(s) : s < t}. Assume the following:

(a) There exist consistent conditional expectations {Et [·]} from A onto each At

preserving the expectation E[·].
(b) The process {X(t)} is centered, that is, E[X(t)] = 0 for all t .
(c) The increments of the process are singleton independent. That is, given a

collection of intervals [sj , tj ) ⊂ R+, j = 1,2, . . . , k such that for some i,

[si, ti) ∩
(⋃

j 
=i

[sj , tj )
)

= ∅,

then E[(X(t1) − X(s1)) . . . (X(ti) − X(si)) . . . (X(tk) − X(sk))] = 0.
(d) The limit defining ψn(t;X) exists in the L2-norm with respect to E[·].
Then the process ψn(t;X) is a martingale with respect to the filtration {At }.

That is, for all s < t ,

Es[ψ(t;X)] = ψ(s;X).

See the Appendix for the proof.

3. Processes with independent increments. Let {X(t)} be a process with
stationary independent increments, and, thus, a Lévy process. Then by the results
of [12], the integrals defining stochastic measures exist as limits in probability.
Moreover, it is not hard to show that in this case forπ = {B1,B2, . . . ,Bl},

Stπ(t) = ψ
(
t;�|B1|,�|B2|, . . . ,�|Bl |

)
.(4)

Here we are using a slightly more general definition of a stochastic measure where
different factors in its defining integral may come from different processes:

ψ
(
t; (

X(1),X(2), . . . ,X(k))) =
∫

[0, t)k

all si ’s distinct

dX(1)(s1) dX(2)(s2) · · ·dX(k)(sk).

See [3] for details. Throughout the paper we will consider stochastic processes for
which the diagonal measures are affine functions in the original processX. Two
types of processes that have this property are generalized Brownian motions and
generalized Poisson processes.
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A stochastic measure is multiplicative if E[Stπ(t)] = ∏
B∈π E[�|B|(t)]. Both

stochastic measures in this section are multiplicative. For a multiplicative measure

Rπ(t) = ∏
B∈π

R|B|(t),(5)

and the sum on the right-hand side of (2) is equal to∑
π∈P (n1,n2,...,nk)

∏
B∈π

R|B|(t).

In this case, (1) follows from [12], Theorem 4.

NOTATION 3.1. Denote byP1,2(n) partitions whose classes consist only
of one or two elements, otherwise known as “matchings,” and byP2(n), the
collection of all pair partitions, otherwise known as “perfect matchings.” Denote
by s(π) the number of singleton (one-element) classes ofπ , and bys2(π), the
number of two-element classes.

3.1. Hermite. If {X(t)} is the Brownian motion, then by the strong law of large
numbers�2(t) = t , �m(t) = 0 for m > 2. Moreover, it follows from the Kailath–
Segall formula (see [12], Theorem 2) thatψm(t) = Hm(X(t), t). HereHm(x, t)

are the Hermite polynomials, defined by the recursion relations

xHm(x, t) = Hm+1(x, t) + mtHm−1(x, t).

It follows from (4) that forπ ∈ P1,2,

Stπ(t) = t s2(π)Hs(π)

(
X(t), t

)
and they are 0 otherwise. Therefore, (1) gives

k∏
j=1

Hnj
(x, t) = ∑

π∈P1,2(n1,n2,...,nk)

t s2(π)Hs(π)(x, t).

In particular, 〈
k∏

j=1

Hnj
(x, t)

〉
= tn/2|P2(n1, n2, . . . , nk)|.

This formula is well known and surely quite old. Since〈Hm(x, t)2〉 = m!tm,

k∏
j=1

Hnj
(x, t) =

n∑
m=0

1

m! t
(n−m)/2|P2(n1, n2, . . . , nk,m)|Hm(x, t).
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3.2. Centered Charlier. If {X(t)} is the centered Poisson process, then
from [12], Proposition 7,�m(t) = X(t) + t for m ≥ 2. Moreover,ψm(t) =
Cm(X(t), t). HereCm(x, t) are the centered Charlier polynomials, defined by the
recursion relations

xCm(x, t) = Cm+1(x, t) + mCm(x, t) + tmCm−1(x, t).

It follows from (4) that

Stπ =
|π |−s(π)∑

l=0

( |π | − s(π)

l

)
t lC|π |−l

(
X(t), t

)
.

Therefore,

k∏
j=1

Cnj
(x, t) = ∑

π∈P (n1,n2,...,nk)

|π |−s(π)∑
l=0

( |π | − s(π)

l

)
t lC|π |−l(x, t).

In particular, 〈
k∏

j=1

Cnj
(x, t)

〉
= ∑

π∈P (n1,n2,...,nk)

s(π)=0

t |π |.

This formula appears in [15] and a number of later sources. Since〈Cm(x, t)2〉 =
m!tm,

k∏
j=1

Cnj
(x, t) =

n∑
m=0

1

m!
∑

π∈P (n1,n2,...,nk,m)

s(π)=0

t |π |−mCm(x, t).

Note that the noncentered polynomials, here and in the subsequent sections, will
have exactly the same linearization coefficients.

4. Processes with freely independent increments. The notion of free
independence was introduced by Voiculescu [14] in the context of operator
algebras.X,Y ∈ A are freely independent if, whenever

E[f1(X)] = E[g1(Y )] = · · · = E[fn(X)] = E[gn(Y )] = 0

andg0(Y ), fn+1(X) each are either centered or scalar, then

E[g0(Y )f1(X)g1(Y ) . . . fn(X)gn(Y )fn+1(X)] = 0.

This property is easily seen to be incompatible with, but is parallel to, the usual
independence. Free probability is by now quite a rich theory which is based on
this notion; see [14] for an overview. In particular, there is a well-developed theory
of free cumulants, free infinitely divisible distributions and limit theorems, and
processes with freely independent increments.
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FIG. 1. A noncrossing partition of 10 elements with 3 inner and 3 outer classes.

In this section, let{X(t)} be a process with stationary freely independent
increments, and, thus, a free Lévy process. It was shown in [1, 3] that in this
case the integrals defining stochastic measures exist as limits in the operator norm,
as long as the operators{X(t)} are bounded. Moreover, it was shown in [1] that
Stπ = 0 unlessπ is a noncrossing partition. Here a partitionπ is noncrossing if

there are noi < j < k < l with i
π∼ k, j

π∼ l, i
π
∼ j .

In this case, (1) follows from [1], Proposition 4. For the analog of the
formula (4), we need a new notion. For a noncrossing partition, we distinguish
the classes that are inner, or covered by other classes, and outer. See Figure 1 for
an example.

PROPOSITION 4.1. Let π be a noncrossing partition with outer classes
B1, . . . ,Bo(π) and inner classes C1, . . . ,Ci(π). Then

Stπ(t) =
i(π)∏
i=1

R|Ci |(t) · ψ(
�|B1|(t),�|B2|(t), . . . ,�|Bo(π)|(t)

)
.

PROOF. This is a particular case of the main theorem of [3].�

NOTATION 4.2. Denote byNC(n) the lattice of noncrossing partitions, and
by NC1,2(n), NC2(n), NC(n1, . . . , nk), and so on, the corresponding subsets
of NC(n). Denote bysi(π) the number of inner singletons ofπ . Denote by
o(π) andi(π) the number of outer and, respectively, inner classes ofπ .

Free stochastic measures are not multiplicative in general. However, (5) does
hold for π ∈ NC(n). So for a free stochastic measure, the general linearization
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coefficients are

E

[
k∏

j=1

ψnj
(t)

]
= ∑

π∈NC(n1,n2,...,nk)

Rπ(t) = ∑
π∈NC(n1,n2,...,nk)

∏
B∈π

R|B|(t).

4.1. Chebyshev. There is a free version of the central limit theorem, with in-
dependent variables replaced by freely independent ones. The limit distribution in
this theorem is the semicircular distribution. A process (consisting of noncommut-
ing operators){X(t)} with stationary freely independent increments all of which
have (scaled) semicircular distributions is the free Brownian motion.

If {X(t)} is the free Brownian motion, then from [1],�2(t) = t , �m(t) = 0 for
m > 2. Moreover, by [1], Corollary 8,ψm(t) = Um(X(t), t). HereUm(x, t) are the
Chebyshev polynomials of the second kind, defined by the recursion relations

xUm(x, t) = Um+1(x, t) + tUm−1(x, t).

It follows from Proposition 4.1 that forπ ∈ NC1,2(n) andsi(π) = 0,

Stπ(t) = t s2(π)Us(π)

(
X(t), t

)
and they are 0 otherwise. Therefore, by (1),

k∏
j=1

Unj
(x, t) = ∑

π∈NC1,2(n1,n2,...,nk)

si(π)=0

t s2(π)Us(π)(x, t).

In particular, 〈
k∏

j=1

Unj
(x, t)

〉
= tn/2|NC2(n1, n2, . . . , nk)|.

This formula has essentially appeared in [8], in a slightly different guise (they
count the number of Dyck paths). Since〈Um(x, t)2〉 = tm,

k∏
j=1

Unj
(x, t) =

n∑
m=0

t (n−m)/2|NC2(n1, n2, . . . , nk,m)|Um(x, t).

4.2. Centered free Charlier. The distribution of the sum onn freely indepen-
dent Bernoulli((1− t

n
)δ0 + t

n
δ1) variables converges, asn → ∞, to a distribution

which is naturally called the free Poisson distribution with parametert . It is also
known as the Marchenko–Pastur (or, fort = 1, Wishart) distribution. A process
with stationary freely independent increments such that the increments have free
Poisson distributions is the free Poisson process.
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If {X(t)} is the centered free Poisson process, then by [1], Corollary 4,�m(t) =
X(t) + t for m ≥ 2. By [1], Corollary 10,ψm(t) = C0,m(X(t), t). HereC0,m(x, t)

are the centered free Charlier polynomials, defined by the recursion relations

xC0,0(x, t) = C0,1(x, t),

xC0,m(x, t) = C0,m+1(x, t) + C0,m(x, t) + tC0,m−1(x, t)

for m > 0. They are, of course, orthogonal with respect to the free Poisson
distribution.

It follows from Proposition 4.1 that forπ ∈ NC(n) andsi(π) = 0,

Stπ = t i(π)
o(π)−s(π)+si(π)∑

l=0

(
o(π) − s(π) + si(π)

l

)
t lC0,o(π)−l

(
X(t), t

)

and they are 0 otherwise. Therefore, by (1),

k∏
j=1

C0,nj
(x, t)

= ∑
π∈NC(n1,n2,...,nk),

si(π)=0

o(π)−s(π)+si(π)∑
l=0

(
o(π) − s(π) + si(π)

l

)

× t i(π)+lC0,o(π)−l(x, t).

In particular, 〈
k∏

j=1

C0,nj
(x, t)

〉
= ∑

π∈NC(n1,n2,...,nk)

s(π)=0

t |π |.

Since〈C0,m(x, t)2〉 = tm,

k∏
j=1

C0,nj
(x, t) =

n∑
m=0

∑
π∈NC(n1,n2,...,nk,m)

s(π)=0

t |π |−mC0,m(x, t).

5. Processes on a q-deformed full Fock space.

5.1. q-Fock space. Consider the Hilbert spaceL2(R+, dx). Let

Falg
(
L2(R+)

) =
∞⊕

k=0

L2(R+, dx)⊗k =
∞⊕

k=0

L2(Rk+, dx⊗k)
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be its algebraic Fock space. Here the 0th component is spanned by the vacuum
vector�. Then〈·, ·〉0 defined by

〈f1 ⊗ · · · ⊗ fk, g1 ⊗ · · · ⊗ gn〉0 = δkn〈f1, g1〉 . . . 〈fk, gk〉
is an inner product on the algebraic Fock space, where〈·, ·〉 is the standard inner
product onL2(R+, dx). Define the operatorPq by

Pq(f1 ⊗ · · · ⊗ fn) = ∑
σ∈Sym(n)

qi(σ )fσ(1) ⊗ · · · ⊗ fσ(n),

where Sym(n) is the permutation group andi(σ ) is the number of inversions ofσ .
According to [7], this operator is strictly positive for−1< q < 1. Denote〈·, ·〉q =
〈·,Pq ·〉0. Then this is also an inner product, and we denote byFq(L

2(R+)) the
completion ofFalg(L

2(R+)) with respect to the corresponding norm, and call it
theq-deformed full Fock space.

For f ∈ L2(R+) ∩ L∞(R+), define creation, annihilation and preservation
operators on theq-Fock spaceFq(L2(R+)) by

a∗(f )(�) = f,

a∗(f )(g1 ⊗ · · · ⊗ gn) = f ⊗ g1 ⊗ · · · ⊗ gn,

a(f )(�) = 0,

a(f )(g) = 〈f,g〉�,

a(f )(g1 ⊗ · · · ⊗ gn) =
n∑

k=1

qk−1〈f,gk〉g1 ⊗ · · · ⊗ ĝk ⊗ · · · ⊗ gn,

p(f )(�) = 0,

p(f )(g1 ⊗ · · · ⊗ gn) =
n∑

k=1

qk−1fgk ⊗ g1 ⊗ · · · ⊗ ĝk ⊗ · · · ⊗ gn,

where ĝk means “omitkth term.” For f real-valued,p(f ) is self-adjoint, and
a(f ) anda∗(f ) are adjoints of each other.

The noncommutative stochastic process

X(t) = a∗(
1[0,t)

) + a
(
1[0,t)

)
is, by definition, theq-Brownian motion, and the process

X(t) = a∗(
1[0,t)

) + a
(
1[0,t)

) + p
(
1[0,t)

)
is the centeredq-Poisson process. LetA be the von Neumann algebra generated
by {X(t)}t∈[0,∞), and let E[·] be the vacuum vector state E[·] = 〈�, ·�〉. Then for
q = 0, these processes are the free Brownian motion and the centered free Poisson
process, while for the degenerate caseq = 1, they give the corresponding classical
processes.
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FIG. 2. A partition of 6 elements with 2 restricted crossings.

NOTATION 5.1. Letπ be a partition. Denote by rc(π) the number of restricted
crossings ofπ . Here a restricted crossing ofπ is a 4-tuplei < j < k < l such that
i

π∼ k, j
π∼ l, andk = min{r : r > i, r

π∼ i}, l = min{r : r > j, r
π∼ j}. See Figure 2

for an example. Also, define the singleton depth sd(π) of π to be the sum of depths,
d(i) = |{j |∃a, b ∈ Bj :a < i < b}|, over all the singletons(i) of π .

For−1 < q < 1, denote

[0]q = 0, [n]q =
n−1∑
j=0

qj = 1− qn

1− q
and [n]q ! =

n∏
j=1

[j ]q.

The stochastic measures for theq-Lévy processes are described in a forthcom-
ing paper [4]. However, the functionalsRπ are known to be well defined, and the
following analog of (5) holds.

PROPOSITION5.2 ([2], Theorem 3.8).

Rπ(t) = qrc(π)
∏
B∈π

R|B|(t).

Therefore, if (1) holds, the linearization coefficients are

E

[
k∏

j=1

ψnj
(t)

]
= ∑

π∈P (n1,n2,...,nk)

Rπ(t) = ∑
π∈P (n1,n2,...,nk)

qrc(π)
∏
B∈π

R|B|(t).

PROPOSITION5.3. If X(t) is the q-Brownian motion, then the limit defining
�k(t;X) exists in the L2-norm with respect to E[·], and equals �2(t) = t ,
�k(t) = 0 for k > 2. Similarly, if X(t) is the centered q-Poisson process, the
limit defining �k(t;X) exists in the L2-norm with respect to E[·], and equals
�k(t) = X(t) + t for k ≥ 2.

See the Appendix for the proof.
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5.2. q-Hermite. If {X(t)} is the q-Brownian motion, then ψm(t) =
Hq,m(X(t), t). Here the polynomialsHq,m(x, t) are a scaled version of the contin-
uous (Rogers)q-Hermite polynomials, defined by the recursion relations

xHq,m(x, t) = Hq,m+1(x, t) + t[m]qHq,m−1(x, t).

The measure of orthogonality of these polynomials, and so the distribution ofX(t),
is the most common version of theq-Gaussian measure; see [6] or (with a slightly
different normalization) [11], 3.26.

LEMMA 5.4 ([2], Proposition 6.12). For π ∈ P1,2,

Stπ = qrc(π)+sd(π)t s2(π)Hq,s(π)

(
X(t), t

)
and they are 0 otherwise. Here the limit in the definition of the stochastic measure
is in L∞−, that is, in Lp for any 1≤ p < ∞, with respect to E[·].

Therefore,

k∏
j=1

Hq,nj
(x, t) = ∑

π∈P1,2(n1,n2,...,nk)

qrc(π)+sd(π)t s2(π)Hq,s(π)(x, t).

In particular, 〈
k∏

j=1

Hq,nj
(x, t)

〉
= tn/2

∑
π∈P2(n1,n2,...,nk)

qrc(π).

This formula has appeared in [9]. Since〈Hq,m(x, t)2〉 = [m]q !tm,

k∏
j=1

Hq,nj
(x, t) =

n∑
m=0

1

[m]q ! t
(n−m)/2

∑
π∈P2(n1,n2,...,nk,m)

qrc(π)Hq,m(x, t).

5.3. Centered big q-Hermite. Let {X(t)} be the centeredq-Poisson process.

PROPOSITION 5.5. For the centered q-Poisson process, ψm(t) =
Cq,m(X(t), t). Here Cq,m are a scaled version of the centered continuous big
q-Hermite polynomials, which in our context are q-analogs of the Charlier poly-
nomials. They are defined by the recursion relations

xCq,m(x, t) = Cq,m+1(x, t) + [m]qCq,m(x, t) + t[m]qCq,m−1(x, t).

In particular, the stochastic measures ψm are well defined, with the limits taken in
the L2-norm with respect to E[·].
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See the Appendix for the proof. Also, see [13] for a detailed description of the
measure of orthogonality of these polynomials.

From Proposition 5.2, fors(π) = 0,

Rπ(t) = qrc(π)t |π |,(6)

and they are 0 otherwise.

PROOF OF(1). We start with the known combinatorial formula

k∏
j=1

ψnj
(t;I) = ∑

π∈P (n1,n2,...,nk)

Stπ(t;I).

By the results of [4], Stπ(t;I) converges to Stπ(t) in L2. By the previous
proposition, ψnj

(t;I) converges toψnj
(t) in L2. Thus, ψn1(t;I)ψn2(t;I)

converges toψn1(t)ψn2(t) in L1. On the other hand, it also converges to∑
π∈P (n1,n2)

Stπ(t) in L2. Therefore, the two latter expressions are equal, and
ψn1(t;I)ψn2(t;I) converges, in fact, inL2. By induction, we conclude that∏k

j=1 ψnj
(t;I) converges inL2 to

∑
π∈P (n1,n2,...,nk)

Stπ(t). �

We conclude that〈
k∏

j=1

Cq,nj
(x, t)

〉
= ∑

π∈P (n1,n2,...,nk)

s(π)=0

qrc(π)t |π |.

Since〈Cq,m(x, t)2〉 = [m]q !tm,

k∏
j=1

Cq,nj
(x, t) =

n∑
m=0

1

[m]q !
∑

π∈P (n1,n2,...,nk,m)

s(π)=0

qrc(π)t |π |−mC0,m(x, t).

5.4. Limiting relations. The results of the previous sections can be obtained
as the limits of the results of this one. For the continuous (Rogers)q-Hermite
polynomials, takingq = 1 gives the formulas for the Hermite polynomials,
while taking q = 0 gives the formulas for the Chebyshev polynomials. For the
continuous bigq-Hermite polynomials, takingq = 1 gives the formulas for
the Charlier polynomials, while takingq = 0 gives the formulas for the free
Charlier polynomials. Note that in the latter case we only recover the linearization
coefficients themselves, not the expressions for the products of polynomials as
sums over partitions.

Finally, consider the process

X(t,α) = a∗(
1[0,t)

) + a
(
1[0,t)

) + αp
(
1[0,t)

)
.
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For this process,�m(t) = αm−1X(t) + αm−2t and Rm(t) = αm−2t for m ≥ 2.
Therefore, fors(π) = 0,

Rπ = qrc(π)t |π |αn−2|π |,
and they are 0 otherwise. Also, for this process,ψm(t) = Pq,m,α(X(t), t), where

xPq,m,α(x, t) = Pq,m+1,α(x, t) + α[m]qPq,m,α(x, t) + t[m]qPq,m−1,α(x, t).

We conclude that〈
k∏

j=1

Pq,nj ,α(x, t)

〉
= ∑

π∈P (n1,n2,...,nk)

s(π)=0

qrc(π)t |π |αn−2|π |.

For α = 1, this gives theq-Poisson process and the continuous bigq-Hermite
polynomials. On the other hand, forα = 0, this gives theq-Brownian motion and
the continuous (Rogers)q-Hermite polynomials. In the linearization formula, the
only partitions with a nonzero contribution are those withn = 2|π | and without
singletons, that is, pair partitions.

APPENDIX

q-Lévy processes. We briefly review the definition of more generalq-Lévy
processes and their stochastic measures; see [2] for more details. LetV be a Hilbert
space, and considerH = L2(R+, dx) ⊗ V . DefineFalg(H), Fq(H), E[·] and, for
ξ ∈ H , a(ξ) and a∗(ξ) as in the beginning of Section 5 forV = C. For T an
essentially self-adjoint operator onH , definep(T ) onFq(H) by

p(T )(�) = 0,

p(T )(ξ1 ⊗ · · · ⊗ ξn) =
n∑

k=1

qk−1(T ξk) ⊗ ξ1 ⊗ · · · ⊗ ξ̂k ⊗ · · · ⊗ ξn.

By [2], Proposition 2.2,p(T ) is an essentially self-adjoint operator.
Pick ξ ∈ V , T an operator onV andλ ∈ R. Assume that

T is essentially self-adjoint, the vectors{T kξ}∞k=0 belong

to its dense domain, span it, and are analytic forT .
(A.1)

Defineat (ξ) = a(1[0,t) ⊗ ξ), a∗
t (ξ) = a∗(1[0,t) ⊗ ξ), andpt(T ) = p(1[0,t) ⊗ T ).

Then the correspondingq-Lévy process is

pt(ξ, T ,λ) = a∗
t (ξ) + at (ξ) + pt(T ) + λt.

Let {X(t)} be such a process, letI be a subdivision of the interval[0, t), and let
{Xi} be the increments of this process corresponding to the subdivision intervals
of I, Xi = X(ai+1) − X(ai) for Ii = [ai, ai+1) ∈ I. Then

�k(t;X,I) = ∑
i

Xk
i
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and

ψk(t;X,I) = ∑
i1,i2,...,ik

distinct

Xi1 . . .Xik .

The stochastic measures�k(t;X) and ψk(t;X) are the limits of the above
quantities as the size of the subdivisionδ(I) tends to 0, if these limits exist.

Similarly, for ak-tuple of processes(X(1),X(2), . . . ,X(k)), we can define

�
(
t; (

X(1),X(2), . . . ,X(k)),I) = ∑
i

X
(1)
i X

(2)
i . . .X

(k)
i .

Such ak-tuple form a multipleq-Lévy process if they satisfy an extra compatibility
condition ([2], equation 1), similar to the one in (A.1).

LEMMA A.1 ([2], Proposition 3.6). Let {X(i)(t) = pt(ξi, Ti, λi)}ki=1 be a
multiple q-Lévy process. Then the q-cumulants

R
(
t; (

X(1),X(2), . . . ,X(k))) = lim
δ(I)→0

E
[
�

(
t; (

X(1),X(2), . . . ,X(k)),I)]
are well defined, and equal to

R
(
t; (

X(1),X(2), . . . ,X(k))) =




tλ1, if k = 1,

t

〈
ξ1,

k−1∏
j=2

Tjξk

〉
, if k ≥ 2.

PROPOSITION A.2. Let X(t) = pt(ξ, T ,λ) be a general one-dimensional
q-Lévy process. Then the limit defining �k(t;X) exists in the L2-norm with respect
to E[·], and equals

Y(t) = pt(T
k−1ξ, T k, 〈ξ, T k−2ξ〉).

PROOF. Condition (A.1) implies that anyk-tuple of processes whose compo-
nents areX andY is also compatible. It suffices to show that

lim
δ(I)→0

〈(
�k(t;X,I) − Y(t)

)2
�,�

〉 = 0.

First expand(∑
i

Xk
i − Y(t)

)2

= ∑
i

X2k
i + ∑

i 
=j

Xk
i X

k
j − ∑

i

YiX
k
i − ∑

i 
=j

YiX
k
j − ∑

i

Xk
i Yi − ∑

i 
=j

Xk
i Yj + Y 2

= �2k(t;X,I) + ∑
i 
=j

Xk
i X

k
j − �

(
t; (Y,X, . . . ,X),I

) − ∑
i 
=j

YiX
k
j

− �
(
t; (X, . . . ,X,Y ),I

) − ∑
i 
=j

Xk
i Yj + Y(t)2.
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From the pyramidal independence of the increments ([2], Lemma 3.3), it follows
that

E

[∑
i 
=j

Xk
i X

k
j

]
= ∑

i 
=j

E[Xk
i ]E[Xk

j ] = Rk(t;X,I)2 − ∑
i

E[Xk
i ]2.(A.2)

By combining Proposition 5.2 with Lemma A.1 and the moment-cumulant formula
([2], equation 3)

E[X(t)k] = ∑
π∈P (k)

Rπ(t),

it follows that E[X(t)k] = ∑
π∈P (k) t

|π |Rπ(1) = O(t). Since the increments of the
process are stationary, we also know that E[Xk

i ] = E[X(|Ii |)k]. Therefore,

lim
δ(I)→0

∑
i

E[Xk
i ]2 ≤ C lim

δ(I)→0

∑
i

|Ii |2 ≤ C lim
δ(I)→0

tδ(I) = 0.

We conclude that the limit of the expression (A.2) isRk(t;X)2. Similarly,

lim
δ(I)→0

E

[∑
i 
=j

YiX
k
j

]
= lim

δ(I)→0
E

[∑
i 
=j

Xk
jYi

]
= E[Y(t)]Rk(t;X).

Therefore,

lim
δ(I)→0

〈(
�k(t;X,I) − Y(t)

)2
�,�

〉
= R2k(t;X) + Rk(t;X)2 − R

(
t; (Y,X, . . . ,X)

) − E[Y(t)]Rk(t;X)

− R
(
t; (X, . . . ,X,Y )

) − Rk(t;X)E[Y(t)] + E[Y(t)2]
= 〈ξ, T 2k−2ξ〉 + 〈ξ, T k−2ξ〉2 − 〈T k−1ξ, T k−1ξ〉 − 〈ξ, T k−2ξ〉〈ξ, T k−2ξ〉

− 〈ξ, T k−1T k−1ξ〉 − 〈ξ, T k−2ξ〉〈ξ, T k−2ξ〉
+ 〈T k−1ξ, T k−1ξ〉 + 〈ξ, T k−2ξ〉2

= 0. �

PROOF OF PROPOSITION 5.3. For theq-Brownian motion,T = 0, while
for the q-Poisson process,T = Id. So the result follows from the preceding
proposition. �

PROOF OFPROPOSITION5.5. It suffices to show that the stochastic measures
satisfy the same recursion relations as the orthogonal polynomialsCq,n. That is,
we will show that

lim
δ(I)→0

‖X(t)ψn(t;X,I) − ψn+1(t;X,I)

− [n]qψn(t;X,I) − t[n]qψn−1(t;X,I)‖2 = 0.

(A.3)
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Indeed, if that is the case, then

ψn+1(t;X,I) = X(t)ψn(t;X,I)+[n]qψn(t;X,I)+ t[n]qψn−1(t;X,I)+A(I),

with L2 − limδ(I)→0 A(I) = 0. By induction, the right-hand side converges inL2

to

X(t)ψn(t;X) + [n]qψn(t;X) + t[n]qψn−1(t;X)

[for the first term, we use an argument similar to the proof of (1)]. So the left-hand
side also converges inL2. Moreover, also by induction, the limit of the right-hand
side is

X(t)Cq,n(X(t)) + [n]qCq,n(X(t)) + t[n]qCq,n−1(X(t)) = Cq,n+1(X(t)).

We will omit X,I andt in the notation. Expanding the norm in (A.3), we get

E
[
(ψn+1 + [n]qψn + [n]qtψn−1 − Xψn)

× (ψn+1 + [n]qψn + [n]qtψn−1 − ψnX)
]

= E[ψn+1ψn+1] + [n]2qE[ψnψn]
+ [n]2qt2E[ψn−1ψn−1] + E[XψnψnX]
− E[ψn+1ψnX] − E[Xψnψn+1] − [n]qE[ψnψnX]
− [n]qE[Xψnψn] − [n]qtE[ψn−1ψnX] − [n]qtE[Xψnψn−1].

(A.4)

Combining the general linearization formula (2) and the specific form (6) of the
cumulants of theq-Poisson process,

E[ψnψn] = ∑
π∈P2(n,n)

qrc(π)tn.

It is easy to show by induction that∑
π∈P2(n,n)

qrc(π) = [n]q !.

This follows from the fact that 1 is connected byπ to exactly one element 2n − k,
their class crosses exactlyk−1 other classes, and

∑n
k=1 qk−1 = [n]q . We conclude

that

E[ψnψn] = [n]q !tn.
We similarly simplify the other expressions in the sum (A.4). We treat in detail the
most complicated term

E[XψnψnX] = tE[ψnψn] + [n]2qE[ψnψn] + (1+ q)[n]2qt2E[ψn−1ψn−1]
= [n]q !tn+1 + [n]2q[n]q !tn + (1+ q)[n]q[n]q !tn+1.
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Denote by∨ the join of set partitions. In the first three terms in the sum below,π is
a partition inP2(n,n) induced on the subset{2, . . . ,2n + 1} of {1, . . . ,2n + 2}.
In the last two terms,π is a partition inP2(n − 1, n − 1) induced on the subset
{2, . . . , 1̂+ k, . . . , ̂2n + 2− j, . . . ,2n + 1} of {1, . . . ,2n + 2}. Using (1),

ψ1ψnψnψ1

= ∑
π∈P2(n,n)

π�{2,...,2n+1}

Stπ∨{(1,2n+2),(2),... ,(2n+1)}

+ ∑
π∈P2(n,n)

π�{2,...,2n+1}

∑
k,j=1,...,n

k∼j modπ

Stπ∨{(1,1+k),(2n+2−j,2n+2),(2),... ,(2n+1)}

+ ∑
π∈P2(n,n)

π�{2,...,2n+1}

∑
k,j=1,...,n

k 
∼j modπ

Stπ∨{(1,1+k),(2n+2−j,2n+2),(2),... ,(2n+1)}

+
n∑

k,j=1

∑
π∈P (n−1,n−1)

π�{2,...,̂1+k,..., ̂2n+2−j,...,2n+1}

Stπ∨{(1,1+k),(2n+2−j,2n+2),(2),... ,(2n+1)}

+
n∑

k,j=1

∑
π∈P (n−1,n−1)

π�{2,...,̂1+k,..., ̂2n+2−j,...,2n+1}

Stπ∨{(1,2n+2−j),(1+k,2n+2),(2),... ,(2n+1)}

+ terms containing singletons.

See Figure 3 for an illustration. Five types of partitions in it correspond to the five
terms in the expression above. The classes containing the first (i.e., “1”) and the last
(i.e., “2n + 2”) elements of the set are shown; the remaining classes consist of two
elements each and are inhomogeneous with respect to the partitionπn+1,n+1. The
dashed classes belong to the partitionπ . Note that in the third diagram, the dashed
lines may cross each other as shown in the diagram, in which case the crossing is
counted among the crossings ofπ . Alternatively, the dashed lines may not cross, in
which case one of them crosses a solid line, and this crossing is counted among the
extra ones in the sum below. In the first diagram, there are no crossings between
classes ofπ and the extra class. In the next three diagrams, the two extra classes
cover(k − 1) and(j − 1) points, respectively. Becauseπ is inhomogeneous, each
point covered by an extra class has to be connected to a point not covered by it,
hence, extra(k − 1) + (j − 1) crossings are introduced. In the last diagram, the
classes containing points{2, . . . , k} have to cross the extra class(1 + k,2n + 2),
and the classes containing points{2n + 3− j, . . . ,2n + 1} have to cross the extra
class(1,2n + 2 − j). In addition, the two extra classes also cross each other. So
extra(k − 1) + (j − 1) + 1 crossings are introduced.

Taking expectations, using the fact that the process is centered, and the specific
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FIG. 3. Five types of inhomogeneous partitions without singletons obtained from the product
ψ1ψnψnψ1.

form (6) of the cumulants, we obtain

E[ψ1ψnψnψ1]
= ∑

π∈P2(n,n)

qrc(π)t · tn

+ ∑
π∈P2(n,n)

( ∑
k,j=1,...,n

k∼j modπ

qk−1qj−1qrc(π)tn + ∑
k,j=1,...,n

k 
∼j modπ

qk−1qj−1qrc(π)tn

)

+
n∑

k,j=1

∑
π∈P2(n−1,n−1)

qk−1qj−1qrc(π)t2tn−1

+
n∑

k,j=1

∑
π∈P2(n−1,n−1)

q · qk−1qj−1qrc(π)t2tn−1

= [n]q !tn+1 + [n]2q[n]q !tn + [n]2q[n − 1]q !tn+1 + q[n]2q[n − 1]q !tn+1.

Similarly,

E[ψn+1ψnX] = E[Xψnψn+1] = E[ψn+1ψn+1] = [n + 1]q !tn+1,

E[ψnψnX] = E[Xψnψn] = [n]qE[ψnψn] = [n]q[n]q !tn
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and

E[ψn−1ψnX] = E[Xψnψn−1] = [n]qtE[ψn−1ψn−1] = [n]q !tn.
Substituting these relations into (A.4), we obtain

[n + 1]q !tn+1 + [n]2q[n]q !tn + [n]q[n]q !tn+1

+ [n]q !tn+1 + [n]2q[n]q !tn + (1+ q)[n]q[n]q !tn+1

− 2[n + 1]q !tn+1 − 2[n]2q[n]q !tn − 2[n]q[n]q !tn+1

= [n]q !tn+1 + q[n]q[n]q !tn+1 − [n + 1]q !tn+1

= (1+ q[n]q − [n + 1]q)[n]q !tn+1 = 0. �

PROOF OFPROPOSITION2.2. LetY ∈ As . Then

E[Yψn(t)] = lim
δ(I)→0

E[Yψn(t;I)].
Since the limit exists, we may restrictI to subdivisions containings as an endpoint
of one of the intervals. The above expression is a sum of terms of the form

E
[
YXv(1)Xv(2) . . .Xv(n)

]
.

If Iv(j) 
⊂ [0, s] for somej , the correspondingXv(j) is singleton independent from
the rest of the terms in the product. Since the process is also centered, the resulting
expectation is 0. As a result,

E[Yψn(t;I)] = E[Yψn(s;I)]
and so

E[Yψn(t)] = E[Yψn(s)].
Since this equality holds for an arbitraryY ∈ As , we conclude that the conditional
expectation ofψn(t) ontoAs is ψn(s). �

A transition operator for a Markov process is called Feller if it mapsC0(R) into
itself.

COROLLARY A.3. Let Cq,n be the scaled version of the continuous big
q-Hermite polynomials and {X(t)} be the centered q-Poisson process:

(a) Cq,n(X(t), t) is a martingale with respect to the filtration induced by the
process {X(t)}, for every n.

(b) Let

H(x, t, z) =
∞∏

k=0

1

1+ ztqk − (zqk/(1+ zqk))(1− q)x
.

Then H(X(t), t, z) is a martingale.
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(c) The process {X(t)} is a Markov process with a Feller kernel.

PROOF. Let pt be the orthogonal projection fromL2(R+, dx) onto the
subspaceL2([0, t), dx). It can be extended to an operator onFq(L2(R+)). The
conditional expectation ontoAs is obtained by compression:

Et [A] = ptApt .

The increments of aq-Lévy process are pyramidally, and so singleton, indepen-
dent. Thus, the first part of the corollary follows from Propositions 2.2 and 5.5.
It can also be obtained from the chaos decomposition property for theq-Poisson
process,

Cq,n

(
X(t), t

)
� = 1⊗n

[0,t).

The second part follows from the first one since

H(x, t, z) =
∞∑

n=0

1

[n]q !Cq,n(x, t)zn.

Note that the product definingH converges for allz since the sum
∞∑

k=0

(
ztqk − zqk

1+ zqk
(1− q)x

)

converges.
The third part follows from the observations that the polynomials{Cq,n} are,

for everyt , a basis for the polynomial ring, and polynomials are uniformly dense
in the space of continuous functions on the (compact) spectrum ofX(t). Since
the conditional expectation ontoAs is norm-continuous, this implies that for any
continuousf , it mapsf (Xt) into the C∗-algebra generated byX(s). The existence
of a Feller Markov kernel follows, see [5].�
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