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ON HOEFFDING’S INEQUALITIES1
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In a celebrated work by Hoeffding [J. Amer. Statist. Assoc.58 (1963)
13–30], several inequalities for tail probabilities of sumsMn = X1 + · · · +
Xn of bounded independent random variablesXj were proved. These
inequalities had a considerable impact on the development of probability and
statistics, and remained unimproved until 1995 when Talagrand [Inst. Hautes
Études Sci. Publ. Math.81 (1995a) 73–205] inserted certain missing factors
in the bounds of two theorems. By similar factors, a third theorem was refined
by Pinelis [Progress in Probability43 (1998) 257–314] and refined (and
extended) by me. In this article, I introduce a new type of inequality. Namely,
I show thatP{Mn ≥ x} ≤ cP{Sn ≥ x}, wherec is an absolute constant and
Sn = ε1 + · · · + εn is a sum of independent identically distributed Bernoulli
random variables (a random variable is called Bernoulli if it assumes at
most two values). The inequality holds for thosex ∈ R where the survival
functionx �→ P{Sn ≥ x} has a jump down. For the remainingx the inequality
still holds provided that the function between the adjacent jump points is
interpolated linearly or log-linearly. If it is necessary, to estimateP{Sn ≥ x}
specialbounds can be used for binomial probabilities. The results extend to
martingales with bounded differences. It is apparent that Theorem 1.1 of this
article is the most important. The inequalities have applications to measure
concentration, leading to results of the type where, up to an absolute constant,
the measure concentration is dominated by the concentration in a simplest
appropriate model, such results will be considered elsewhere.

1. Introduction and results. To illustrate the flavor of the inequalities
provided below, let us start with the special case of a sumZn = Y1 + · · · + Yn

of bounded independent random variables such thatP{0 ≤ Yk ≤ 1} = 1 and
EXk = pk for all k. Then

P{Zn ≥ x} ≤ eP{ε1 + · · · + εn ≥ x}, e = 2.718. . . ,(1.1)

for integerx ∈ Z, whereε1, . . . , εn are independent identically distributed (i.i.d.)
Bernoulli random variables that assume values 0 and 1 such thatP{εk = 1} = p

with p = (p1+· · ·+pn)/n. The bound (1.1) is a very special case of Theorem 1.2.
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The following bound (1.2) is independent ofn and is much rougher than (1.1).
Furthermore, usually bounds of type (1.1) are more convenient in applications than
bounds of type (1.2). We have

P{Zn ≥ x} ≤ e3

2
P

{
η ≥ x

1− p

}
(1.2)

for x such thatx/(1− p) is an integer, whereη is a Poisson random variable with
parameterλ such that

λ = pn/(1− p), P{η = k} = λk exp{−λ}/k! for k = 0,1,2, . . . .

The Introduction is organized as follows. First formulations of the results,
namely, of Theorems 1.1–1.3 are provided. Then their relationships to Hoeffding’s
inequalities are discussed, references are provided and the methods are explained.
Theorem 1.1 seems to be the most important. It has nice applications to the
measure concentration; such applications will be addressed elsewhere.

Henceforth replace the independence assumption by a martingale type depen-
dence. Let

F0 = ∅ ⊂ F1 ⊂ · · · ⊂ Fn ⊂ F

be a family ofσ algebras of a measurable space(�,F ). LetMn = X1 + · · · + Xn

be a martingale with differencesXk = Mk − Mk−1. DefineM0 = 0.
The simplest thinkable nontrivial martingale is a sumSn = ε1 + · · · + εn of

n i.i.d. Bernoulli random variables. A random variable (or its distribution) is called
Bernoulli if it assumes at most two values with positive probability. Letσ > 0 and
b > 0. By ε = ε(σ 2, b) denote a Bernoulli random variable such that

Eε = 0, Eε2 = σ 2, P{ε = b} > 0.(1.3)

It is easy to check that

P{ε = −σ 2/b} = b2/(b2 + σ 2), P{ε = b} = σ 2/(b2 + σ 2).

Assuming (one-sided) boundedness of the differencesXk , in this article it is shown
that up to an absolute constant factor the tail probabilityP{Mn ≥ x} is dominated
by the probabilityP{Sn ≥ x}. The result can be interpreted by saying that the
behavior of tail probabilities of martingales is controlled in a very precise way
by the simplest possible stochastic experiment—a series of eventually asymmetric
coin tosses. This is not unexpected due to a common belief that Bernoulli random
variables are those that are the most stochastic. It is less unexpected that one can
provide a relatively simple proof of this fact.

For differencesXk of a martingaleMn, consider the following boundedness
condition: There exists a positive nonrandomb > 0 such that

P{Xk ≤ b} = 1 for k = 1, . . . , n.(1.4)



1652 V. BENTKUS

For the conditional variancess2
k = E(X2

k |Fk−1) of differencesXk of Mn,
consider the following boundedness condition: There exist nonrandomσ 2

k ≥ 0
such that

P{s2
k ≤ σ 2

k } = 1 for k = 1, . . . , n.(1.5)

THEOREM 1.1. Assume that the differencesXk of a martingaleMn satisfy the
conditions(1.4)and (1.5).Then, for all x ∈ R, we have

P{Mn ≥ x} ≤ e2

2
P

◦{Sn ≥ x}(1.6)

with e2/2 ≤ 3.7, where Sn is a sum ofn independent copies of a Bernoulli
random variableε = ε(σ 2, b) with σ 2 = (σ 2

1 + · · · + σ 2
n )/n (the meaning ofP◦

is explained below). The inequality(1.6)yields

P{Mn ≥ x} ≤ e2

2
P

◦
{
η ≥ λ + x

b

}
,(1.7)

whereη is a Poisson random variable with the parameterλ = (σ 2
1 + · · ·+ σ 2

n )/b2.

The bound (1.7) is much rougher compared with (1.6) because it has to cover
the casen = ∞, which supplies the heaviest tails. In general, tails of a sum of
independent eventually nonidentically distributed Bernoulli random variables can
have a complicated structure.

Let me explain the meaning ofP◦. Write B(x) = P{Sn ≥ x} for the survival
function of Sn. For x such thatB(x) = 1 or B(x) = 0 or when the functionB
has a positive jump down, understandP

◦ just as probability. LetB◦ be a log-
concave hull ofB, that is, a minimal function such thatB ≤ B◦ and the function
x �→ − logB◦(x) is a convex function. DefineP◦{Sn ≥ x} = B◦(x). It is easy to
see (cf. Lemma 4.1) that in the case of the binomial or Poisson survival functionB,
the functionB◦ is a log-linear interpolation ofB: if x < z < y andx andy are
adjacent points whereB has positive jumps down, then

B◦(z) = B1−λ(x)Bλ(y), if z = (1− λ)x + λy, 0 < λ < 1.(1.8)

Similarly I introduce the linear interpolationB	 of B by writing B	(x) = B(x),
for x such thatB(x) = 1 orB(x) = 0 or the functionB has a positive jump down,
and

B	(z) = (1− λ)B(x) + λB(y) for x, y, z, λ as in (1.8).

We haveB ≤ B◦ ≤ B	.
For differencesXk of a martingaleMn, consider the boundedness condition

P{−pk ≤ Xk ≤ 1− pk} = 1 for k = 1, . . . , n,(1.9)

wherepk are nonrandom (it is clear that 0≤ pk ≤ 1).
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THEOREM 1.2. Assume that the differencesXk of a martingaleMn satisfy the
condition(1.9).Then, for x ∈ R, we have

P{Mn ≥ x} ≤ eP
◦{Sn ≥ x}(1.10)

with e ≤ 2.72, whereSn = ε1 + · · · + εn is a sum ofn independent copies of a
Bernoulli random variable

ε = ε(p − p2,1− p) with p = (p1 + · · · + pn)/n.

Furthermore, we have

P{Mn ≥ x} ≤ e3

2
P

◦
{
η ≥ λ + x

1− p

}
(1.11)

with e3/2 ≤ 10.1, whereη is a Poisson random variable withλ = pn/(1− p).

It is easy to check that the Bernoulli random variableε from Theorem 1.2
satisfies

P{ε = −p} = 1− p, P{ε = 1− p} = p.

By an application of (1.10) to−Mn, one can derive bounds forP{Mn ≤ x}.
For differencesXk of a martingaleMn, consider the following boundedness

conditions: There exist nonrandombk ≥ 0 such that, fork = 1, . . . , n,

P{Xk ≤ bk} = 1(1.12)

and

P{|Xk| ≤ bk} = 1.(1.13)

Write

ak = max{bk, σk}, a2 = (a2
1 + · · · + a2

n)/n,(1.14)

whereσk are from the condition (1.5).

THEOREM 1.3. Assume that the differencesXk of a martingaleMn satisfy
the condition(1.5) and the one-sided boundedness condition(1.12).Then, for all
x ∈ R, we have

P{Mn ≥ x} ≤ 2e3

9
P

◦{Sn ≥ x}(1.15)

with 2e3/9 ≤ 4.47, whereSn is a sum ofn independent copies of a symmetric
Bernoulli random variableε = ε(a2, a) with a2 defined by(1.14).The inequal-
ity (1.15)implies

P{Mn ≥ x} ≤ 2e3

9

(
1− �

(
x

a

))
,(1.16)

where� is the standard normal distribution function.
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The symmetric Bernoulli random variable from Theorem 1.3 satisfiesP{ε =
±a} = 1

2.
The following corollary is less general compared to Theorem 1.3.

COROLLARY 1.4. Assume that the differencesXk of a martingaleMn satisfy
the symmetric boundedness condition(1.13). Then, for all x ∈ R, the bounds
(1.15)and(1.16)of Theorem1.3hold, replacinga2 with (b2

1 + · · · + b2
n)/n.

Theorems 1.1–1.3 show that the martingale type dependence does not influence
the bounds for tail probabilities much compared to the independent, the i.i.d. and
even the i.i.d. Bernoulli cases.

Most probably, the values of constants in Theorems 1.1–1.3 are not optimal; the
preferred intention herein was to simplify the proofs as far as possible. A more
powerful method that can improve constants and the structure of the bounds was
used by Bentkus (2001). A bound from Bentkus (2001) applies to the special case
of Theorem 1.2 whenpk = 1/2, and is precise for integerx (a bound which is
precise for allx is in preparation). A consequence is that constants in the bounds
(1.6), (1.10) and (1.15) of Theorems 1.1–1.3 cannot be smaller than 2, and these
constants, sayc, have to satisfy

2 ≤ c ≤ 3.7, 2≤ c ≤ 2.72, 2 ≤ c ≤ 4.47,

respectively, which means that space for improvement is restricted. In the case
of Theorem 1.1, the multiplicative factor of losses in (1.6) is at most 1.85. In
contrast to the martingale dependence, finding precise values of these constants
in the independent and i.i.d. cases is considered a very difficult mathematical
problem. For a givenn, let cn be the best possible constant in Theorem 1.1. An
impression that the sequencecn is increasing asn → ∞ and that limn→∞ cn = 2
is supported by the fact thatc1 = 1.555884. Another supporting heuristic argument
comes from the analysis of constants in the Berry–Esseen bounds in casesn = 1
andn = ∞ in Bentkus and Kirsha (1989) and Bentkus (1994), where a similar
picture was observed.

One cannot replaceP◦{Sn ≥ x} in Theorems 1.1–1.3 withP{Sn ≥ x}. This taboo
clearly follows from the results (approach) of Bentkus (2001). A truly simple proof
is provided in Section 4 as Lemma 4.8.

Let us compare Hoeffding’s (1963) inequalities with bounds of Theorems
1.1–1.3. By Theorem 1 in Hoeffding (1963), under the conditions and notation
of Theorem 1.2, we have

P{Mn ≥ x} ≤ Hn(p + x/n;p),(1.17)

where, for 0≤ p ≤ 1,

H(a;p) =
(

1− p

1− a

)1−a(
p

a

)a

for p < a ≤ 1(1.18)
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and

H(a;p) = 1 for a ≤ p; H(a;p) = 0 for a > 1.

Among all inequalities that have a product form, Hoeffding’s bounds are the best
possible; see Lemma 4.7. Naturally, the product structure in our bounds is lost.

Hoeffding’s inequalities remained unimproved until 1995 when Talagrand
(1995a, b) inserted certain missing factors. Assuming independence and under
the conditions of Theorem 1.2, Talagrand’s bound is as follows: There exists an
absolute constantc > 0 such that

P{Mn ≥ x} ≤
(

cδ

δ + x
+ c

δ

)
Hn

(
p + x

n
;p

)
for c ≤ x ≤ δ2

c
,(1.19)

where δ2 = np(1 − p). The right-hand side of (1.19) is simplified up to an
absolute factor. This is a nonessential loss because Talagrand’s bound depends
on an inexplicit absolute constant.

I have a feeling that more or less explicit analytical functions do not truly follow
the behavior ofP{Mn ≥ x} correctly.

The loss in Theorem 1.2 is at most the factore/2 ≤ 1.36. Up to an absolute
constant, Theorem 1.2 (and Theorems 1.1 and 1.3 as well) says that the tail
probability is maximized in the case of the simplest possible stochastic model,
namely, in the case of a series of eventually asymmetric Bernoulli trials. To
estimateP{Sn ≥ x} one can usespecialbounds for the binomial probabilities [see,
e.g., Shorack and Wellner (1986)], and in the view of Theorems 1.1–1.3, these
special bounds are not so special at all.

Let us move on to Hoeffding’s Theorem 3. To simplify notation (and without
loss of generality) we assume that the numberb in Theorem 1.1 satisfiesb = 1.
Assuming independence and under the conditions and notation of Theorem 1.1,
Hoeffding proved that

P{Mn ≥ x} ≤ Hn

(
σ 2 + x/n

1+ σ 2 ; σ 2

1+ σ 2

)
.(1.20)

The simplest Hoeffding bound (1.17) is implied by (1.20) by using rescaling and
choosing the maximal possible varianceσ 2 = p − p2 for distributions supported
by the interval[−p,1− p]. Assuming, in addition, that|Xk| ≤ B, Talagrand
(1995b) improved (1.20): There exists an absolute constantc > 0 such that

P{Mn ≥ x} ≤
(

cσ
√

n

σ
√

n + x
+ cB

σ
√

n

)
Hn

(
σ 2 + x/n

1+ σ 2
; σ 2

1+ σ 2

)
(1.21)

for 0 ≤ x ≤ nσ 2/(cB). Talagrand noticed that it is unclear how to improve (1.20)
without assumptions like|Xk| ≤ B. The inequality (1.21) nicely improves (1.20)
when the variance is not too small, that is, in cases of Gaussian type behavior. To
see this better, assume for simplicity thatB = 1. Then, in the case ofσ 2 = 1, the
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factor in (1.21) is on the order of∼ √
n/x, in the range

√
n � x � n. However,

for degeneratingσ 2 → 0 (i.e., when the behavior is of Poisson type), the range
starts to shrink. To be definite, takeσ 2 = 1/n. Then the factor is∼ 1 andx has
to satisfyx � 1. Notice that in such cases Theorem 1.1 still provides nice upper
bounds in the whole rangex ≤ n of interest.

Theorem 1.3 extends and refines Hoeffding’s Theorem 2. The bound (1.16)
with a somewhat worse constant is contained in Bentkus (2003). Using another
approach, in Bentkus (2004) a bound similar to (1.16) was proved under the
asymmetric boundedness condition

P{dk − ak ≤ Xk ≤ dk + ak} = 1,(1.22)

wheredk = dk(X1, . . . ,Xk−1) are arbitraryFk−1-measurable random variables.
This bound applies to the measure concentration. It is unclear whether one
can extend and refine Hoeffding’s Theorem 2 under the condition (1.22) using
the methods of this article. Pinelis (1998) proved (1.16) under the symmetric
boundedness condition (1.13). Earlier [see Pinelis (1999), Theorem 5], the
bound (1.15) under the symmetric boundedness condition of Corollary 1.4 was
established by Pinelis, assuming independence, for integerx such thatx ∈ n + 2Z

and|x| ≤ n.
Hoeffding’s Theorem 2 had a considerable impact on research related to the

measure concentration phenomena. For an introduction to the topic, see Gromov
and Milman (1983), Alon and Milman (1984), Milman (1985, 1988), Milman and
Schechtman (1986), McDiarmid (1989), Talagrand (1995a) and Ledoux (1999).

For statistical applications, optimal bounds for finite (i.e., fixed)n are of
interest [see Bentkus and van Zuijlen (2003)]. In this sense, the results herein
are not optimal and hopefully can be improved by extending the methods of
Bentkus (2001, 2004, b). However, the extensions involve considerable technical
difficulties.

The history of inequalities for tail probabilities is a very rich classical topic
[see, e.g., books Petrov (1975) and Shorack and Wellner (1986)]. The names
Chernoff, Bennett, Prokhorov and Hoeffding come to mind. Forx ≥ constant, the
bounds above refine all the classical bounds. Indeed, one can estimate the binomial
probabilityP{Sn ≥ x} using these bounds.

On methods. Hoeffding (1963) applied the Chebyshev inequality to replace
an indicator function of an interval with an exponential function, which can be
interpreted as a kind of Fourier–Laplace transform. The further Hoeffding proof is
precise; hence such a method cannot be used to improve the bounds. Talagrand
(1995b) started with the Esscher transform, which is related to exponential
functions. The proof in the articles by Pinelis [following Eaton (1970, 1974)] starts
similarly to that of Hoeffding, but he used the functionsx �→ max{0; (x − t)p}
instead of exponentials, with somet ∈ R and p ∈ Z. In this article, we start in
the same way. A nice and short argument in the proof of Theorem 1.2, which
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allows derivation of the inequality (3.9) from the bound (3.5), is extracted from an
article by Pinelis (1999); see Lemma 4.2 below. The argument reduces the proof of
Theorem 1.2 to the verification of inequalities (3.2) and (3.3). The scheme of the
proof of Theorems 1.1 and 1.3 is similar, replacing (3.2) and (3.3) by appropriate
counterparts. It seems that methods used here do not allow improvement of the
constants and the structure of the bounds. In the aforementioned articles the
methods rely on induction onn. Potentially such induction based methods can
provide optimal bounds and it seems as well that they are more robust against
generalizations.

2. Some supplements, improvements and extensions. In this section I
provide some well-known upper bounds for Poisson and normal survival functions,
a bit more complicated versions of bounds of Theorems 1.1–1.3 and precise
bounds in the casen = 1.

A standard rather rough upper bound for a Poisson survival function is

P{η ≥ λ + x} ≤ exp{x − (x + λ) log(1+ x/λ)} for x ≥ 0.

For larger x, an impression about Poisson tails can provide the following
inequalities [see Proposition 3 in Paulauskas (2002)]: There exist absolute positive
constantsc1 andc2 such that

c1g(x) ≤ P{η ≥ λ + x} ≤ c2g(x) for x ≥ max{λ − 1, 1},
where

g(x) = (λ + x)−1/2(1+ x/λ){λ+x}−1 exp{x − (x + λ) log(1+ x/λ)}
and where{λ + x} is the fractional part ofλ + x.

A commonly used upper bound for the standard normal tail is

1− �(x) ≤ ϕ(x)/x, ϕ(x) = (2π)−1/2 exp{−x2/2}, x > 0.

Let us pass to the extensions of Theorems 1.1–1.3. The extensions are more
convenient in applications because they do not require checking of log-concavity.
Hence, one can manipulate the bounds, for example, by applying limit theorems,
and check log-concavity at the final stage of the application. I provide as well a
direct generalization and extension of Hoeffding’s Theorem 3 to martingales. This
extension can be useful in cases where checking log-concavity is not available
or in cases when very precise bounds are not needed. It is interesting to notice
that in contrast to the much more subtle and powerful Theorem 3, there exist
lots of extensions, improvements and generalizations of Hoeffding’s Theorem 2.
Probably the reason is that Theorem 2 is simpler than Theorem 3, because instead
of variances, it involves only rather rough size parameters.

For differencesXk of a martingaleMn, consider the following boundedness
condition: There exist positive nonrandombk > 0 andσk > 0 such that

P{Xk ≤ bk} = 1, P{s2
k ≤ σ 2

k } = 1(2.1)
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for k = 1, . . . , n, wheres2
k = E(X2

k |Fk−1) are the conditional variances ofXk .
Introduce independent Bernoulli random variablesθk = θk(σ

2
k , bk) such that

Eθk = 0, Eθ2
k = σ 2

k , P{θk = bk} > 0(2.2)

[cf. the definition (1.3) of the Bernoulli random variableε = ε(σ, b)]. Write

Tn = θ1 + · · · + θn.(2.3)

THEOREM 2.1. Assume that the differencesXk of a martingaleMn sat-
isfy (2.1).Then, for h > 0, we have

P{Mn ≥ x} ≤ exp{−hx}E exp{hTn}(2.4)

for all x ∈ R. If all bk are equal, bk = b, then

P{Mn ≥ x} ≤ inf
h>0

exp{−hx}E exp{hSn} = Hn

(
σ 2 + bx/n

b2 + σ 2 ; σ 2

b2 + σ 2

)
.(2.5)

Here Sn is a sum ofn independent copies of a Bernoulli random variableε =
ε(σ 2, b) with the varianceσ 2 = (σ 2

1 + · · · + σ 2
n )/n and the functionH is given

by (1.18).

We provide proofs in Section 3. A number of upper bounds for the functionH

are provided in Hoeffding (1963).
Let x+ = max{0, x} andxs+ = (x+)s .

THEOREM 2.2. Write f (x) = (x − t)s+, wheres ≥ 2, and assume that the
differencesXk of a martingaleMn satisfy(2.1).Then, for all t < x andx ∈ R, we
have

P{Mn ≥ x} ≤ Ef (Tn)/(x − t)s(2.6)

and

P{Mn ≥ x} ≤ ess−s�(s + 1)P◦{Tn ≥ x},(2.7)

wherex �→ P
◦{Tn ≥ x} is a log-concave hull of the survival functionx �→ P{Tn ≥

x} and� is the gamma function.

In the next proposition we provide precise bounds forn = 1 under the conditions
of Theorems 1.1–1.3.

PROPOSITION 2.3 (Casen = 1). Assume that a random variable satisfies
EX = 0. Leta < 0 < b andσ > 0.

(i) Let B(x) = supP{X ≥ x}, wheresupis taken over all random variablesX
such thatP{a ≤ X ≤ b} = 1. ThenB(x) = p with p = −a/(x − a) for 0 ≤ x ≤ b.
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(ii) WriteB(x) = supP{X ≥ x}, wheresupis taken over allX such that

P{X ≤ b} = 1 and EX2 ≤ σ 2.

ThenB(x) = p with p = σ 2/(x2 + σ 2) for 0 ≤ x ≤ b.

In both cases(i) and (ii) we haveB(x) = 1 for x ≤ 0 andB(x) = 0 for x > b.

3. Proofs. Write x+ = max{0, x} andxs+ = (x+)s . Let us start with the proof
of Theorem 1.2 because it is simpler compared to the proof of Theorem 1.1.

PROOF OFTHEOREM 1.2. Let us prove first the bound (1.10). In the proof we
assume that−pn < x ≤ n − pn because for other values ofx the inequality (1.10)
reduces either to 1≤ e or to 0≤ 0, which is obvious.

Write f (z) = (z − t)+, wheret ∈ R is a parameter to be chosen later. Notice
that I{u ≥ x} ≤ f (u)/(x − t) for t < x, whereI{A} is the indicator function of
eventA. Using the Chebyshev inequality, we have

P{Mn ≥ x} ≤ Ef (Mn)/(x − t) for t < x.(3.1)

Applying Lemma 4.3, we have

Ef (Mn) ≤ Ef (Tn),(3.2)

whereTn = ξ1 + · · · + ξn is a sum of independent Bernoulli random variablesξk

such that

P{ξk = −pk} = 1− pk and P{ξk = 1− pk} = pk.

We are going to replace the eventually non-i.i.d. Bernoulli random variablesξk

with the i.i.d. Bernoulli random variables from the condition of the theorem. Iff is
a convex function, then

Ef (Tn) ≤ Ef (ε1 + · · · + εn) = Ef (Sn),(3.3)

with Sn from the condition of the theorem. Hoeffding [(1956), Theorem 3]
proved (3.3) for strictly convexf and Gleser [(1975), Corollary 2.1] extended (3.3)
to convexf . One can easily check (3.3) using the Schur concavity; see the proof
of Lemma 4.5 for a definition of Schur concave functions.

In the specific case off (x) = (x − t)+ we have

Ef (Sn) = −
∫ ∞
t

(z − t) dP{Sn ≥ z} =
∫ ∞
t

P{Sn ≥ z}dz.(3.4)

Combining (3.1)–(3.4), we obtain

P{Mn ≥ x} ≤ inf
t<x

1

x − t

∫ ∞
t

P{Sn ≥ z}dz.(3.5)

To estimate the right-hand side of (3.5), we can apply Lemma 4.2 with

α = −pn, β = n − pn, s = 1 and B(z) = P{Sn ≥ z}.
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We getP{Mn ≥ x} ≤ eP
◦{Sn ≥ z}, which concludes the proof of (1.10).

Let us prove prove (1.11). The sumSn is a sum ofn independent copies of
a Bernoulli random variableε = ε(p − p2,1 − p). Applying the bound (1.7) of
Theorem 1.1, we obtain

P{Sn ≥ z} ≤ e2

2
P

◦
{
η ≥ λ + z

1− p

}
,(3.6)

where η is a Poisson random variable withλ = pn/(1 − p). Combining
inequalities (3.5) and (3.6), we have

P{Mn ≥ x} ≤ e2

2
inf
t<x

1

x − t

∫ ∞
t

P
◦
{
η ≥ λ + z

1− p

}
dz,(3.7)

and an application of Lemma 4.2 yields (1.11).�

PROOF OFTHEOREM 2.1. Let us prove the bound (2.4). Using the Chebyshev
inequality, we have

P{Mn ≥ x} ≤ exp{−hx}E exp{hMn} for h > 0.

By Lemma 4.4, we haveE exp{hMn} ≤ E exp{hTn}, which concludes the proof
of (2.4).

Let us prove (2.5). The inequality

exp{−hx}E exp{hTn} ≤ exp{−hx}E exp{hSn}
is proved in Hoeffding [(1963), (4.22) in the proof of Theorem 3]. The equality in
(2.5) is just the definition of the Hoeffding function; see Hoeffding (1963).�

PROOF OFTHEOREM 2.2. Let us prove (2.6). Writef (z) = (z − t)s+. Using
the Chebyshev inequality, we haveP {Mn ≥ x} ≤ Ef (Mn)/(x − t)s for t < x.
By Lemma 4.4, we can estimateEf (Mn) ≤ Ef (Tn), and (2.6) follows. The
bound (2.7) is implied by Lemma 4.2.�

PROOF OF THEOREM 1.1. Let us prove (1.6). Without loss of generality
(rescaling if necessary), we can assume that the numberb from the condition (1.4)
satisfiesb = 1. In the proof we assume that−nσ 2 < x ≤ n, because for−nσ 2 < x

or x > n the inequality (1.6) reduces to obvious 1≤ e2/2 or 0≤ 0, respectively.
Write f (z) = (z − t)2+, wheret ∈ R is a parameter to be chosen later. Using the

Chebyshev inequality, we have

P{Mn ≥ x} ≤ Ef (Mn)/(x − t)2 for t < x.(3.8)

By Lemma 4.4, we can replaceMn with a sum of Bernoulli random variables,
that is,

Ef (Mn) ≤ Ef (Tn),(3.9)
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where Tn = θ1 + · · · + θn is a sum of independent eventually nonidentically
distributed Bernoulli random variablesθk = θ(σ 2

k ,1) [cf. (2.2)].
By Lemma 4.5, we can replace the non-i.i.d. with the i.i.d. Bernoulli random

variables,

Ef (Tn) ≤ Ef (ε1 + · · · + εn) = Ef (Sn),(3.10)

where Sn = ε1 + · · · + εn is a sum of i.i.d. Bernoulli random variablesεk =
εk(σ

2,1).
In the specific case off (x) = (x − t)2+, we have

Ef (Sn) = −
∫ ∞
t

(z − t)2 dP{Sn ≥ z} = 2
∫ ∞
t

(z − t)P{Sn ≥ z}dz.(3.11)

Combining (3.8)–(3.11), we obtain

P{Mn ≥ x} ≤ inf
t<x

2

(x − t)2

∫ ∞
t

(z − t)P{Sn ≥ z}dz.(3.12)

To estimate the right-hand side of (3.12), we can apply Lemma 4.2 with

α = −nσ 2, β = n, s = 2 and B(z) = P{Sn ≥ z}.
We getP{Mn ≥ x} ≤ (e2/2)P◦{Sn ≥ z}, proving (1.6).

It remains to prove (1.7). Introduce the martingaleKn+m = Y1 + · · · + Yn+m

with the differences

Yk = Xk, for k = 1, . . . , n and
(3.13)

Yk = 0, for k = n + 1, . . . , n + m.

To the martingaleKn+m we can apply the bound (1.6) of Theorem 1.1. We get

P{Mn ≥ x} = P{Kn+m ≥ x} ≤ e2

2
P

◦{Sn+m ≥ x},(3.14)

whereSn+m is a sum ofn + m independent copies of a Bernoulli random variable

ε = ε(σ 2, b) with σ 2 = (σ 2
1 + · · · + σ 2

n )/(n + m) = b2λ/(n + m).

Centering and rescaling, we get

P{Sn+m ≥ x} = P
{
Zn+m ≥ (λ + x/b)/

(
1+ λ/(n + m)

)}
,(3.15)

whereZn+m is a sum ofn + m independent copies of a Bernoulli random variable,
sayξ , such that

P{ξ = 0} = q with q = 1− p and p = P{ξ = 1} = λ/(n + m + λ).

To the sumZn+m we can apply the Poisson limit theorem becausep(n + m) → λ

asm → ∞. We get

lim
m→∞ P

{
Zn+m ≥ (λ + x/b)/

(
1+ λ/(n + m)

)} = P{η ≥ λ + x/b}.(3.16)
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Combining (3.14)–(3.16), we conclude the proof of (1.7).�

PROOF OF THEOREM 1.3. Let us prove (1.15). Writef (z) = (z − t)3+.
Similar to (3.1) and (3.8), we have

P{Mn ≥ x} ≤ Ef (Mn)/(x − t)3 for t < x.(3.17)

Let Tn = θ1 + · · · + θn be a sum of independent Bernoulli random variables
such thatP{θk = −ak} = P{θk = ak} = 1/2. An application of Lemma 4.6 yields
Ef (Mn) ≤ Ef (Tn). The inequality

Ef (Tn) ≤ Ef (ε1 + · · · + εn) = Ef (Sn),(3.18)

whereSn = ε1+· · ·+εn is a sum ofn independent copies of a symmetric Bernoulli
random variableε = ε(a2, a) as established in Eaton (1970, 1974) and Pinelis
(1994).

Using f (x) = (x − t)3, integrating by parts and combining (3.17) and (3.18),
we have

P{Mn ≥ x} ≤ inf
t<x

3

(x − t)3

∫ ∞
t

(z − t)2
P{Sn ≥ z}dz.

Now an application of Lemma 4.2 implies (1.15).
It remains to prove (1.16). Introduce the martingaleKn+m = Y1 + · · · + Yn+m

with the differences defined by (3.13). To the martingaleKn+m we can apply the
bound (1.15) of Theorem 1.3. We get

P{Mn ≥ x} = P{Kn+m ≥ x} ≤ 2e3

9
P

◦
{
(n + m)−1/2Sn+m ≥ x

a

}
,(3.19)

where Sn+m is a sum ofn + m independent copies of a symmetric Bernoulli
random variable, sayε, such thatP{ε = −1} = P{ε = 1} = 1/2. We conclude the
proof of (1.16) by passing to the limit in (3.19) asm → ∞ and using the central
limit theorem. �

PROOF OFCOROLLARY 1.4. The boundedness condition (1.13) guarantees
that the conditional variancess2

k are bounded from above byb2
k . Hence,ak = bk

and we can apply (1.15) and (1.16) witha2 = b2
1 + · · · + b2

n. �

PROOF OF PROPOSITION 2.3. It suffices to prove (i) and (ii) only for
0 < x ≤ b. Indeed, forx > b we have obviouslyB(x) = 0. Forx ≤ 0, the upper
boundB(x) ≤ 1 is obvious; the lower boundB(x) ≥ 1 follows by considering the
random variableX = 0.

(i) For 0≤ x ≤ b, the linear functionu(t) = (1− p)t + p satisfiesI{t ≥ x} ≤
u(t) for all t from the interval[a, b]. Therefore, we have

P{X ≥ x} ≤ Eu(X) = p and B(x) ≤ p.(3.20)

The lower boundB(x) ≥ p is realized by a Bernoulli random variable, sayX = ε,
such thatP{ε = a} = 1− p andP{ε = b} = p.
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(ii) For 0 < x ≤ b and t ≤ b, the quadratic functionu(t) = (1 − p)2x2(t +
σ 2/x)2 satisfies the inequalityI{t ≥ x} ≤ u(t). Similar to (3.20) it follows that
B(x) ≤ p. The lower boundB(x) ≥ p is realized by a Bernoulli random variable,
sayX = ε, such thatP{ε = −σ 2/b} = 1− p andP{ε = b} = p. �

4. Auxiliary results. A function f :A → [0,∞) defined on a subsetA ⊂ R

is called log-concave if the functionx �→ − logf (x) is convex. Whereasf can
assume the value 0, the function− logf can assume the value∞. Call a random
variableX discrete if there exists a countable setA such that

P{X ∈ A} = 1 and P{X = x} > 0 for all x ∈ A.

A survival functionx �→ P{X ≥ x} is called discrete ifX is discrete. A binomial
survival functionx �→ P{Sn ≥ x} is discrete and is not log-concave as a function
defined onR. However, it is log-concave as a function defined on the setA of
points at which it has positive jumps down (see Lemma 4.1). Therefore, a discrete
survival function is called log-concave if it is log-concave as a function defined
on the setA (hopefully this terminology will not lead to misunderstanding). For
a function f :R → [0,∞), introduce its log-concave hullf ◦ :R → [0,∞) as
a minimal log-concave function such thatf ≤ f ◦. Any survival function has a
unique log-concave hull which is again a log-concave survival function.

For a random variableX, which assumes integer values, the probability mass
function is defined aspn = P{X = n} for n ∈ Z. In the literature, distributions
with log-concave densities and probability mass functions are refered to as
strong unimodal in the sense of Ibragimov [cf. Keilson and Gerber (1971) and
Ibragimov (1956)]. We are interested in log-concave survival functions, which
have a weaker requirement compared to the strong unimodality. The next lemma
is just a reexposition of some facts from Keilson and Gerber (1971) and Pinelis
(1998, 1999).

LEMMA 4.1. (i) Let n �→ pn andn �→ qn be log-concave functions such that
pn, qn ≥ 0. Then the convolution

(p ∗ q)n =
∞∑

k=−∞
pn−kqk

is a log-concave function.
(ii) Letn �→ pn be a log-concave function such thatpn ≥ 0. Then the function

n �→ tn with tn = ∑
k≥n pk is a log-concave function.

(iii) Bernoulli random variables have log-concave probability mass functions.
Binomial survival functions are log-concave(as discrete ones).

(iv) Let Bk be a sequence of log-concave survival functions which have
probability mass functions supported byZ. Then the pointwise limitlimk→∞ Bk

is a log-concave function.
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(v) Poisson survival functions are log-concave(as discrete ones).
(vi) Binomial and Poisson survival functionsB satisfyB ≤ B◦ ≤ B	. In both

casesB◦ is just a log-linear interpolation ofB.

In general, it is not true that a sum of two independent discrete random variables
with log-concave survival functions has a log-concave discrete survival function.
Indeed, letε, ε1, ε2 be i.i.d. Bernoulli random variables such that

P{ε = 0} = q and P{ε = 1} = p with p + q = 1.

Then the discrete survival functionB(x) = P{ε1 + aε2 ≥ x} is not log-concave
provided that the numbersa > 0 andp > 0 are sufficiently small. Indeed, assume
that the functionB is log-concave. The random variableε1 + aε2 assumes values
0 < a < 1 < 1+ a. The log-concavity ofB yields B(0)1−aB(1)a ≤ B(a), which
is equivalent topa ≤ 2p − p2. Passing to the limit asa ↓ 0, we have 1≤ 2p − p2,
which is impossible ifp > 0 is sufficiently small. A similar consideration shows
that survival functions of discrete infinite divisible random variables are not
necessarily log-concave: for example, the survival function ofη + aξ , where
η and ξ are Poisson random variables with parametersλ > 0 andγ > 0 is not
log-concave provided thata > 0 andγ > 0 are sufficiently small (just consider the
values of the survival function at points 0, a and 2a).

PROOF OFLEMMA 4.1. (i) Write

δ = (p ∗ q)2
n − (p ∗ q)n−1(p ∗ q)n+1.

We have to prove thatδ ≥ 0. It is easy to check that 2δ = ∑∞
k,r=−∞ αβ with

α = pkpr − pk+1pr−1 and β = qn−kqn−r − qn−k−1qn−r+1.

If k ≥ r , thenα ≥ 0 andβ ≥ 0, because both functionsn �→ pn andn �→ qn are
log-concave. Ifk < r , thenα ≤ 0 andβ ≤ 0, which concludes the proof ofδ ≥ 0.

(ii) Notice that tn = (p ∗ q)n, whereqn = I{n ≤ 0} is log-concave function,
and apply (i).

(iii) It is clear that Bernoulli probability mass functions are log-concave.
Hence, by applying (i), binomial probability mass functions are log-concave.
Therefore, (ii) guarantees that binomial survival functions are log-concave.

(iv) Obvious.
(v) A Poisson survival function is a limit of a sequence of Bernoulli survival

functions. Therefore we can apply (iii) and (iv).
(vi) The inequalityB ≤ B◦ is obvious. The inequalityB◦ ≤ B	 is equivalent

to the elementary inequality

a1−λbλ ≤ a + b for a ≥ b ≥ 0 and 0≤ λ ≤ 1.

To see thatB◦ is a log-linear interpolation ofB, it suffices to compare the graphs
of − logB and− logB◦. �
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In the case of a log-concaveB, the next lemma was proved by Pinelis (1999).
Actually, the work by Pinelis contains more general results. In the special case
s = 1, the result was established by Bretagnolle (1980) and by Kemperman [see
Shorack and Wellner (1986), Chapter 25, Lemma 1].

LEMMA 4.2. Let s > 0. Let B be a survival function with a log-concave
hull B◦. Let

α = sup{y :B◦(y) = 1} and β = inf{y :B◦(y) = 0}.
Then, for x such thatα < x ≤ β, we have

inf
t<x

(x − t)−s
∫ ∞
t

s(z − t)s−1B(z) dz ≤ ess−s�(s + 1)B◦(x),(4.1)

where�(s) = ∫ ∞
0 τ s−1 exp{−τ }dτ .

PROOF. Because it is short, the proof is provided. The functionz �→
− logB

◦(z) is a convex function. It is clear that this function is strictly positive and
strictly increasing in the interval(α,β]. Hence, for eachx ∈ (α,β], there exists a
linear function, sayy(z) = a + bz, with some positiveb > 0, such that

y(x) = − logB
◦(x) and − logB

◦(z) ≥ y(z) for all z ∈ R.

The numbersa = a(x,B) andb = b(x,B) can depend onx andB. In particular,
we have

B
◦(x) = exp{−a − bx}, B

◦(z) ≤ exp{−a − bz} for all z ∈ R.(4.2)

UsingB ≤ B◦ and (4.2), we have∫ ∞
t

s(z − t)s−1B(z) dz ≤ exp{−a}
∫ ∞
t

s(z − t)s−1 exp{−bz}dz

= �(s + 1)b−s exp{−a − bt}(4.3)

= �(s + 1)b−s exp{b(x − t)}B◦(x).

Using (4.3) and choosingt such thatb(x − t) = s, we obtain (4.1). �

It seems that the next lemma has to be a well-known fact [a useful related
reference is Karlin and Studden (1966)]. We writeξ = ξ(a, b) for a Bernoulli
random variable such that

P{ξ = a} = b/(b − a) and P{ξ = b} = −a/(b − a).(4.4)

LEMMA 4.3. (i) Let f :R → R be a convex function. Assume that a random
variableX satisfies

EX = 0, P{a ≤ X ≤ b} = 1, a ≤ 0 ≤ b.

ThenEf (X) ≤ Ef (ξ), whereξ is a Bernoulli random variable satisfying(4.4).
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(ii) Let a functionf :Rn → R be a convex function of each of variables
x1, . . . , xn when the remainingn − 1 variables are kept fixed. Assume that the
differencesXk of a martingaleMn = X1 + · · · + Xn satisfy

P{ak ≤ Xk ≤ bk} = 1,

where numbersak ≤ 0 ≤ bk are nonrandom for allk. Let ξk = ξk(ak, bk) be
independent Bernoulli random variables. Then we have

Ef (X1, . . . ,Xn) ≤ Ef (ξ1, . . . , ξn).(4.5)

PROOF. (i) We have to prove thatEf (X) ≤ Ef (ξ). Let u : [a, b] → R be a
linear function. ThenEu(X) = Eu(ξ) becauseEX = Eξ = 0. Chooseu such that
u(a) = f (a) and u(b) = f (b). Thenf ≤ u becausef is convex. Futhermore,
Eu(ξ) = Ef (ξ) becauseP{ξ ∈ {a, b}} = 1. HenceEf (X) ≤ Eu(X) = Eu(ξ) =
Ef (ξ), which concludes the proof in the case (i).

(ii) We use induction inn. In the casen = 1, the result was proved in (i). Let
n > 1 and let (4.5) hold for 1, . . . , n − 1. Notice that for givenX1, the sequence

Z0 = 0, Z1 = X2, . . . ,Zn−1 = X2 + · · · + Xn(4.6)

is a martingale sequence with differences that satisfy

P{ak+1 ≤ Zk − Zk−1 ≤ bk+1} = 1 for k = 1, . . . , n − 1.(4.7)

Conditioning onX1 and applying the induction assumption twice (forn−1 and 1),
we have

Ef (X1, . . . ,Xn) = E
(
f (X1, . . . ,Xn)|X1

)
≤ E

(
f (X1, ξ2, . . . , ξn)|X1

)
= E

(
f (X1, ξ2, . . . , ξn)|ξ2, . . . , ξn

)
≤ E

(
f (ξ1, ξ2, . . . , ξn)|ξ2, . . . , ξn

)
= Ef (ξ1, . . . , ξn),

which completes the proof of (4.5) forn > 1. �

LEMMA 4.4. Letf be one of the functions

f (x) = (x − t)2+, t ∈ R;
f (x) = (x − t)s+, s > 2;
f (x) = exp{hx}, h > 0.

(i) Assume that a random variableX satisfies

P{X ≤ b} = 1, EX2 ≤ σ 2.

ThenEf (X) ≤ Ef (θ), where a Bernoulli random variableθ satisfiesθ = θ(σ 2, b)

[see the definition(2.2)of θ ].



TAIL PROBABILITIES 1667

(ii) Assume that a martingaleMn satisfies condition(2.1),that is, thatXk ≤ bk

and s2
k ≤ σ 2

k with probability 1, wheres2
k are the conditional variances of the

differencesXk . Let Tn = θ1 + · · · + θn be a sum of independent Bernoulli random
variablesθk = θk(σ

2
k , bk). Then we haveEf (Mn) ≤ Ef (Tn).

PROOF. It suffices to prove the lemma withf (x) = (x − t)2+, t ∈ R. Indeed,
both functionsg(x) = (x − t)s+ andg(x) = exp{hx} with s > 2 andh > 0 allow
the integral representation

g(x) = 1
2

∫
R

g′′′(u)(x − u)2+ du, g′′′ ≥ 0.(4.8)

Therefore, the inequalityE(Mn − u)2+ ≤ E(Tn − u)2+ for all u ∈ R clearly implies
Eg(Mn) ≤ Eg(Tn).

Henceforth letf (x) = (x − t)2+.

(i) Let us prove thatEf (X) ≤ Ef (θ). The r.v.X satisfiesP{X ≤ b} = 1. We
consider the following cases separately:

(a) t ≤ −σ 2/b;
(b) −σ 2/b < t < b;
(c) t ≥ b.

Case(a). Using

(x − t)2+ ≤ (x − t)2 and EX = 0, EX2 ≤ σ 2,

we have

Ef (X) ≤ E(X − t)2 ≤ σ 2 + t2 = E(θ − t)2 = E(θ − t)2+ = Ef (θ).

Case(b). Notice that

(x − t)2+ ≤ c(x + σ 2/b)2, for x ≤ b, wherec = b2(b − t)2/(b2 + σ 2)2.

Using this inequality andEX = 0, EX2 ≤ σ 2, we obtain

Ef (X) ≤ cE(X + σ 2)2 ≤ c(σ 2 + σ 4/b2) = E(θ − t)2+ = Ef (θ).

Case(c). Now we haveEf (X) = Ef (θ) = 0 and there is nothing to prove.
The proof of (i) is completed.
(ii) Using induction inn, we shall show that (i) yields (ii). Forn = 1, the

asertion (ii) is equivalent to (i). Assume that (ii) hold for 1, . . . , n − 1. Let us
prove (ii) for n. Notice that for givenX1, the sequence

Z0 = 0, Z1 = X2, . . . ,Zn−1 = X2 + · · · + Xn

is a martingale sequence with differences satisfying

P{Zk − Zk−1 ≤ bk+1} = 1, E
(
(Zk − Zk−1)

2|Z1, . . . ,Zk−1
) ≤ σ 2

k+1
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for k = 1, . . . , n − 1. Conditioning onX1 and applying the induction assumption
twice (forn − 1 and 1), we have

Ef (Mn) = E
(
f (X1 + · · · + Xn)|X1

)
≤ E

(
f (X1 + θ2 + · · · + θn)|X1

)
= E

(
f (X1 + θ2 + · · · + θn)|θ2, . . . , θn

)
≤ E

(
f (θ1 + θ2 + · · · + θn)|θ2, . . . , θn

) = Ef (Tn),

which completes the proof of (ii) and of the lemma.�

LEMMA 4.5. Let

x1, . . . , xn ≥ 0, a = (x1 + · · · + xn)/n.(4.9)

Let Tn = θ1 + · · · + θn be a sum of independent(eventually non-i.i.d.) Bernoulli
random variablesθk = θk(xk,1). LetSn = ε1 +· · ·+ εn be a sum ofn independent
copies of a Bernoulli random variableε = ε(a,1). Letf (x) = (x − t)2+. Then, for
anyt ∈ R, we have

Ef (Tn) ≤ Ef (Sn).(4.10)

PROOF. Write

qk = P{θk = −xk} = 1/(1+ xk), pk = P{θk = 1} = xk/(1+ xk)(4.11)

and notice thatP{ε = −a} = 1/(1+ a) andP{ε = 1} = a/(1+ a).
We use well known properties of Schur convex functions [see Marshall

and Olkin (1979)]. Recall that a vectorx = (x1, . . . , xn) ∈ R
n majorizesy =

(y1, . . . , yn) ∈ R
n (we use the notationx ≥∗ y) if

xn : n + · · · + xk : n ≥ yn : n + · · · + yk : n for all k = 1, . . . , n,

wherexn : n ≥ · · · ≥ x1 :n is a decreasing rearragement of the sequencex1, . . . , xn.
Notice thatx ≥∗ y(x) for any x ∈ R

d , where the vectory(x) = (a, . . . , a) has
equal coordinates such thata = (x1 + · · · + xn)/n.

A real valued functiong defined on an open subsetC ⊂ R
d is called Schur

concave ifx ≥∗ y implies g(x) ≤ g(y). Assuming thatg has continuous partial
derivatives such that

∂jg − ∂ig ≥ 0, whenxi > xj ,(4.12)

where∂j = ∂/∂xj , a result of Schur [see Schur (1923) and Ostrowski (1952)] says
that g is Schur concave in cases when the setC is a symetric open convex set
andg is a symmetric function of its arguments. Notice that the result of Schur
still holds if the setC instead of the symmetry assumption satisfies: there exists a
z = (b, . . . , b) ∈ R

d such that the setC − z is symmetric. Indeed, the majorization
and (4.12) are preserved by a shift transformation of this kind.
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Write g(x) = g(x1, . . . , xn) = Ef (Tn). Due to the result of Schur, to prove the
inequality (4.10) it suffices to check that the functiong is a Schur concave function
Notice, that asC we can choose a sufficiently large open cube which, for a givena,
contains the set

{x ∈ R
d :x1 + · · · + xn = an, x1, . . . , xn ≥ 0}.

Because the cube is open, we have to allowxk to assume negative values. We
assume thatxk ≥ −1/3. Now the probabilities defined by (4.11) can be negative,
and in such cases we understandEw(θk) asEw(θk) = w(−xk)qk + w(1)pk .

Due to the symmetry ofg in its arguments, it suffices to check the condi-
tion (4.10) withj = 1 andi = 2. The inequality has to hold for allt ∈ R. Therefore,
conditioning onθ3, . . . , θn, it is easy to see that we can assume that

g(x) = Ef (θ1 + θ2).(4.13)

To simplify notation writex1 = α andx2 = β. Then

q1 = P{θ1 = −α} = 1/(1+ α), p1 = P{θ1 = 1} = α/(1+ α)

and

q2 = P{θ2 = −β} = 1/(1+ β), p2 = P{θ2 = 1} = β/(1+ β),

and we have to check that∂αg − ∂βg ≥ 0 assuming thatβ > α, where∂α = ∂/∂α.
For the functiong from (4.13) we have

g = f (−α − β)q1q2 + f (1− β)p1q2 + f (1− α)q1p2 + f (2)p1p2.(4.14)

We consider the following five cases separately:

(i) t ≤ −α − β;
(ii) −α − β ≤ t ≤ 1− β;
(iii) 1 − β ≤ t ≤ 1− α;
(iv) 1 − α ≤ t ≤ 2;
(v) t ≥ 2.

In the proof of (i)–(v) we writeI (t) = ∂αg − ∂βg. The functiont �→ I (t) is a
continuous function. We have to show thatI (t) ≥ 0.

Case(i). In this casef (x) = (x − t)2 on the support ofθ1 + θ2 and, therefore,

g = E(θ1 + θ2 − t)2 = α + β + t2(4.15)

and the inequalityI (t) ≥ 0 is just the equality 0= 0.
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Case(ii) . Now [cf. (4.14)]

g = (1− β − t)2p1q2 + (1− α − t)2q1p2 + (2− t)2p1p2.

Adding and subtracting(−α − β − t)2q1q2 and using (4.15), we have

g = α + β + t2 − (α + β + t)2q1q2.

Using∂αq1 = −q2
1 and∂βq1 = 0, it is easy to find that

I (t) = (α + β + t)2q2
1q2

2(β − α) ≥ 0,

which concludes the proof of case (ii).

Case(iii) . We have [cf. (4.14)]

g = (t + α − 1)2q1p2 + (t − 2)2p1p2.

Using∂αp1 = q2
1 and∂βp1 = 0, it is easy to see that

I (t) = 2(t + α − 1)q1p2 − (t + α − 1)2q2
1p2 + (t − 2)2q2

1p2
(4.16) − (t + α − 1)2q1q

2
2 − (t − 2)2p1q

2
2.

The functionI (t) = At2 + Bt + C is a quadratic function oft with someA, B

andC. It is clear from (4.16) thatA = −q1q
2
2 − p1q

2
2 = −q2

2. This means that
the functiont �→ I (t) : [1− β,1− α] → R is a concave function. Hence,I (t) ≥ 0
will follow if we check the inequality at the endpoints of the interval. However, the
inequalityI (1− β) ≥ 0 is already established in (ii). The inequalityI (1− α) ≥ 0
is proved in case (iv).

Case(iv). In this caseg = (t − 2)2p1p2 and

I (t) = (t − 2)2(q2
1p2 − p1q

2
2) = (t − 2)2q1q2(βq1 − αq2).

Hence, it suffices to check thatβq1 − αq2 ≥ 0, which is equivalent to(β −α)(1+
β + α) ≥ 0, which is obvious.

Case(v). Now g = 0 and there is nothing to prove. The proof of the lemma is
completed. �

LEMMA 4.6. Letf be one of the following functions:

f (x) = (x − t)2+, t ∈ R;
f (x) = (x − t)s+, s > 2;
f (x) = exp{hx}, h > 0.

(i) Assume that a random variableX satisfies

P{X ≤ b} = 1, EX2 ≤ σ 2.(4.17)

Then we haveEf (X) ≤ Ef (θ), whereθ is a symmetric Bernoulli random variable
θ = θ(a2, a) with a = max{σ,b}.
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(ii) Assume that a martingaleMn satisfies(2.1), that is, Xk ≤ bk and s2
k ≤ σ 2

k

with probability1,wheres2
k are the conditional variances of the differencesXk . Let

Tn = θ1 +· · ·+ θn be a sum of independent symmetric Bernoulli random variables
θk = θk(a

2
k , ak) with ak = max{σk, bk}. ThenEf (Mn) ≤ Ef (Tn).

PROOF. Similar to the proof of Lemma 4.4, it suffices to establish (i).
Assume first thatσ ≤ b. By (i) of Lemma 4.4, we haveEf (X) ≤ Ef (θ0), where

a Bernoulli random variableθ0 = θ0(σ
2, b). The conditionσ ≤ b implies

P{θ0 ≤ b} = 1, Eθ2
0 ≤ b2.(4.18)

In the view of (4.18) we can estimate the expectationEf (θ0) using (i) of
Lemma 4.4. We getEf (θ0) ≤ Ef (θ) with a symmetric Bernoulli random variable
θ = θ(a2, a) becausea = max{σ, b} = b, due to the assumptionσ ≤ b. Combining
the inequalities, we obtain the desiredEf (X) ≤ Ef (θ).

Assume now thatσ > b. A random variables which satisfies (4.17), satisfies as
well P{X ≤ σ } = 1 andEX2 ≤ σ 2, and we can again apply (i) of Lemma 4.4,
because nowa = max{σ, b} = σ . �

LEMMA 4.7. Assume that for a functionQ(a;σ 2) the bound

P{Mn ≥ an} ≤ Qn(a;σ 2)(4.19)

holds for alln and all sumsMn = ε1+· · ·+εn of i.i.d. Bernoulli random variables
εk = εk(σ

2,1) so that the conditions of Hoeffding’s Theorem3 are fulfilled. Then
we have

Q(a;σ 2) ≥ H(aq + p;p), wherep = σ 2/(1+ σ 2), q = 1− p.

PROOF. We haveP{εk = −σ 2} = q, P{εk = 1} = p and

P{Mn ≥ an} = P{θ1 + · · · + θn ≥ z} with z = aq + p andθk = qεk + p.

The random variablesθk are i.i.d. Bernoulli random variables such thatP{θk =
0} = q andP{θk = 1} = p. The inequality (4.19) implies

logQ(a;σ 2) ≥ 1

n
logP{θ1 + · · · + θnε ≥ z}.

Passing to the limit asn → ∞ and using a well-known result on large deviations
[see Bahadur (1971), Example 1.2], we get

logQ(a;σ 2) ≥ −f

with f = z log(z/p) + (1 − z) log((1 − z)/(1 − p)), for p < z < 1. Using the
explicit formula (1.18) forH , it is clear that exp{−f } = H(a;σ 2), which proves
Q ≥ H and the lemma. �



1672 V. BENTKUS

LEMMA 4.8. In Theorems1.1–1.3,P{Sn ≥ x} cannot replaceP◦{Sn ≥ x}.

PROOF. It suffices to prove the lemma in the casen = 1. LetX be a random
variable such thatP{X ≤ 1} = 1, EX = 0 andEX2 ≤ σ 2. Let ε = ε(σ 2,1) be a
Bernoulli random variable. To prove the lemma it suffices to check that

sup
L(X)

P{X ≥ 0}/P{ε ≥ 0} = ∞.(4.20)

Taking X = 0 we haveP{X ≥ 0} = 1. UsingP{ε ≥ 0} = σ 2/(1 + σ 2), we see
that (4.20) is implied by the obvious supσ2>0(1+ σ 2)/σ 2 = ∞. �
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