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We prove that the convolution of a selfdecomposable distribution with
its background driving law is again selfdecomposable if and only if the
background driving law iss-selfdecomposable. We will refer to this as the
factorization propertyof a selfdecomposable distribution; letLf denote
the set of all these distributions. The algebraic structure and various
characterizations ofLf are studied. Some examples are discussed, the most
interesting one being given by the Lévy stochastic area integral. A nested

family of subclassesLf
n , n ≥ 0, (or a filtration) of the classLf is given.

Limit distribution theory and the study of infinitely divisible distributions
belong to the core of probability and mathematical statistics. Here we investigate
an unexpected relation between two classes of distributions,L andU, each of
which can be defined in terms of a collection of inequalities involving the Lévy
spectral measure and a semigroup of mappings. Indeed, the Lévy classL is defined
via linear transformations, while the classU involvesnonlinear transformations.
Yet these classes exhibit some similarities and relationships, such as the proper
inclusionL ⊂ U; see Jurek (1985).

In recent years classL distributions have found many applications, in particular,
through their BDLPs (background driving Lévy processes); compare, for example,
Barndorff-Nielsen and Shephard (2001) and the references there. Also there were
developed stochastic methods for finding the BDLPs of some selfdecomposable
distributions; see Jeanblanc, Pitman and Yor (2002). On the other hand, in Jacod,
Jakubowski and Mémin (2003), classU distributions appeared in the context of
an approximation of processes by their discretization.

In Section 1 we recall the definitions of the classL of selfdecomposable
distributions and the classU of s-selfdecomposable ones, followed by their
random integral representations. In Section 2 we introduce the new notion termed
the factorization propertyand the corresponding classLf . These are class
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L distributions whose convolutions with their background driving distributions are
again classL distribution. Elements of the classLf are characterized in terms
of their Fourier transforms (Corollary 1 and Theorem 3) and their Lévy spectral
measures (Corollary 2 and Theorem 2). Proposition 1 describes the topological
and algebraic structures of the classLf . Some explicit examples ofLf probability
distributions, which includes, among others, the Lévy stochastic area integral, are
given in Section 3.

Our main results are given in the generality of probability measures on a Banach
space, but they are new for distributions on the real line as well. Indeed, changing
the pairing between a Banach space and its dual to the scalar product in all our
proofs, one gets results in Euclidean spaces and Hilbert spaces. On the other
hand, if one deals with variables assuming values in function spaces (stochastic
processes), then Banach spaces provide the natural setting. For instance, Brownian
motion and Bessel processes, when restricted to finite time, can be viewed as
measures on Banach spaces of continuous functions. There is a vast literature
dealing with probability on Banach spaces [e.g., cf. Araujo-Gine (1980) or
Hoffmann-Jørgensen, Kuelbs and Marcus (1994) and the references in the articles
found there], and much of the work leading up to the results presented here was
carried out in this context. Finally, our proofs do not depend on the dimension of
the space on which the probability measures are defined. Thus, the generality of
Banach spaces seems to be the natural one. This paper continues the investigations
of Jurek (1985).

1. Introduction and notation. Let E denote a real separable Banach space,
E′ its conjugate space,〈·, ·〉 the usual pairing betweenE andE′, and‖ ·‖ the norm
on E. Theσ -field of all Borel subsets ofE is denoted byB, while B0 denotes
Borel subsets ofE \ {0}. By P (E) we denote the (topological) semigroup of
all Borel probability measures onE, with convolution “∗” and the topology of
weak convergence “⇒.” As in Jurek (1985), we denote the closed subsemigroup
of infinitely divisible measures inP (E) by ID(E).

EachID distributionµ is uniquely determined by a triple: a shift vectora ∈ E,
a Gaussian covariance operatorR and a Lévy spectral measureM ; we will write
µ = [a,R,M]. These are the parameters in the Lévy–Khintchine representation of
the characteristic function̂µ, namelyµ ∈ ID iff µ̂(y) = exp(�(y)), where

�(y) = i〈y, a〉 − 1/2〈Ry,y〉
+

∫
E\{0}

[
ei〈y,x〉 − 1− i〈y, x〉1‖x‖≤1(x)

]
M(dx), y ∈ E′;

� is called theLévy exponentof µ̂ [cf. Araujo and Giné (1980), Section 3.6].
On the Banach spaceE we define two families of transformsTr and Ur ,

for r > 0, as follows:

Trx = rx and Urx = max(0,‖x‖ − r)
x

‖x‖ , Ur(0) = 0.
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The Tr ’s are linear mappings; theUr ’s are nonlinear and are calledshrinking
operationsor s-operationsfor short.

In Jurek (1985) the classL(E) of selfdecomposablemeasures was introduced
as thoseµ = [a,R,M] ∈ ID(E) such that

M ≥ TcM for 0 < c < 1.

As pointed out there (Corollary 3.3), this condition is equivalent to the traditional
definition:

µ ∈ L(E) iff ∀ (0< c < 1) ∃ (
µc ∈ P (E)

)
µ = Tcµ ∗ µc.(1)

It follows easily thatL(E) is a closed convolution topological semigroup ofP (E).
The importance of the classL(E) arises from the fact that it extends the classical
and much-studied class ofthe stable distributions.

One important example of a selfdecomposable measure is Wiener measureW
on the Banach spaceCR([0,1]). ThatW is selfdecomposable follows immediately
from the fact that its finite-dimensional projections are Gaussian measures, hence,
selfdecomposable.

Similarly, a measureµ = [a,R,M] is calleds-selfdecomposableonE, and we
will write ν ∈ U(E), if

M ≥ UrM for 0 < r < ∞.

As shown in Jurek (1985) [cf. Jurek (1981)],

ν ∈ U(E) iff ∀ (0< c < 1) ∃ (
νc ∈ P (E)

)
ν = Tcν

∗c ∗ νc(2)

[the convolution power is well defined asν is in ID(E)]. In particular, we infer
thatU(E) is also a closed convolution topological semigroup. In fact, we have the
inclusions

L(E) ⊂ U(E) ⊂ ID(E) ⊂ P (E).

Relations between the semigroupsL(E) andU(E) and their characterizations
were studied in Jurek (1985), and this paper is our main reference for this work,
including the terminology and basic notation.

Let

ID log(E) =
{
µ ∈ ID(E) :

∫
E

log(1+ ‖x‖)µ(dx) < ∞
}
,

and recall that the mappingI : ID log(E) → L(E) given by

I(ρ) = L

(∫
(0,∞)

e−s dYρ(s)

)
,(3)

is an algebraic isomorphism between the convolution semigroupsID log and L;
compare Jurek (1985), Theorem 3.6. AboveYρ(·) denotes a Lévy process, that is,
anE-valued process with stationary and independent increments, with trajectories
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in the Skorohod space of cadlag functions, and such thatYρ(0) = 0 a.s. and
L(Yρ(1)) = ρ.

If a classL distribution is given by (3) then we refer toYρ as thebackground
driving Lévy process(BDLP) [cf. Jurek (1996)]. The measureρ in (3) will be
called thebackground driving probability distribution(BDPD) and the r.v.Yρ(1) is
thebackground driving random variable(BDRV).

Similarly, for s-selfdecomposable distributions we define a mapping
J : ID(E) → U(E) given by

J(ρ) = L

(∫
(0,1)

s dYρ(s)

)
,(4)

which is an isomorphism between the topological semigroupsID(E) andU(E);
compare Jurek (1985), Theorem 2.6. In (4)Yρ(·) is an arbitrary Lévy process.

Let µ̂(y) = ∫
E ei〈y,x〉µ(dx), y ∈ E′, be the characteristic function(Fourier

transform) of a measureµ. Then random integrals like (3) or (4) have characteristic
functions of the form(

L

(∫
(a,b]

h(t) dYρ(t)

))̂
(y) = exp

∫
(a,b]

log ρ̂
(
h(t)y

)
dt,(5)

whenh is a deterministic function andYρ(·) a Lévy process; see Lemma 1.1 in
Jurek (1985).

2. A new factorization property of class L distributions. ClassL distrib-
utions decompose by themselves as is evident from the convolution equation (1).
However, recently it has been noted that in some classical formulae classL distri-
butions appear convoluted with their background driving probability distributions
(BDPDs); for instance, the Lévy stochastic area integral is one such example; com-
pare Jurek (2001). The following is our main result that describes the cases when a
selfdecomposable distribution can be factored as another classL distribution and
its corresponding BDPD.

THEOREM 1. A selfdecomposable probability distributionµ = I(ν) convo-
luted with its background driving lawν is selfdecomposable if and only ifν is
s-selfdecomposable. More explicitly, for ν andρ in ID log we have

I(ν) ∗ ν = I(ρ) iff ν = J(ρ).(6)

PROOF. Sufficiency. Supposeµ is selfdecomposable and its background
driving law ν is s-selfdecomposable. That is,µ = I(ν) for some unique
ν ∈ ID log andν = J(ρ). Hence,ρ ∈ ID log(E), by formula (4.1) in Jurek (1985).
Consequently, we have

ν ∗ I(ν) = J(ρ) ∗ I(J(ρ)) = J
(
ρ ∗ I(ρ)

) = I(ρ) ∈ L,
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where the last equality follows from Corollary 4.6 in Jurek (1985). Also, we
have used the fact that the mappingsI and J commute [cf. Theorem 3.6 and
Corollary 4.2. in Jurek (1985)]. The sufficiency is proved.

Necessity.Suppose that a selfdecomposableµ = I(ν) is such thatν ∗ I(ν) is
again selfdecomposable. Then there is a uniqueρ ∈ ID log such that

ν ∗ I(ν) = I(ρ).

Applying the mappingJ to both sides and employing Corollary 4.6 in Jurek (1985)
and the commutativity, we conclude

I(ν) = J
(
ν ∗ I(ν)

) = J(I(ρ)) = I(J(ρ)).

SinceI is one-to-one,ν = J(ρ), which completes the proof of necessity.�

We will say that a selfdecomposable probability distributionµ has the
factorization property(we will write µ ∈ Lf ) if its convolution with its BDPD
gives another selfdecomposable distribution, that is,

µ ∈ Lf iff µ = I(ν) for ν ∈ ID log and µ ∗ ν ∈ L.(7)

Before describing the algebraic structure of the classLf , let us recall that
by definitionclassL1 distributionsare those selfdecomposable distributions for
which the cofactorsµc in (1) are inL(E). Equivalently, these are distributions of
random integrals (3), whereρ is a distribution from the classL. This class was
first introduced for real-valued r.v.’s in Urbanik (1973) as the first of a decreasing
sequenceLn (n = 0,1,2, . . . ) of subclasses of the classL and later studied by
Kumar and Schreiber (1978) and in the vector-valued case in Kumar and Schreiber
(1979), Sato (1980), Nguyen (1986) and Jurek (1983a, b). In fact, Jurek (1983a)
contains the most general setting, where in (1) the operatorsTa may be chosen
from any one-parameter group of operators.

PROPOSITION 1. The classLf of selfdecomposable distributions with the
factorization property is a closed convolution subsemigroup ofL. Moreover:

(i) For a > 0, Taµ ∈ Lf iff µ ∈ Lf .
(ii) A probability measureµ ∈ Lf iff there exists a(unique) probability

measureν ∈ ID log such that

µ = I(J(ν)) = J(I(ν)) that is, Lf = I
(
J(ID log)

) = J(L).(8)

(iii) L1 ⊂ Lf , whereL1 consists of those classL distributions whose BDLP
are in classL.

PROOF. The semigroup structure and properties (i) and (ii) follow from
formula (6), Theorem 1 and properties of the mappingsI andJ. To prove that
Lf is closed, letµn ∈ Lf and letµn ⇒ µ. Thenµ = I(ν) ∈ L by (3), andµn =
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I(νn) ⇒ I(ν) = µ. From Jurek and Rosinski (1988) we conclude thatνn ⇒ ν and∫
E log(1 + ‖x‖)νn(dx) → ∫

E log(1 + ‖x‖)ν(dx). Consequently,µ ∗ ν ∈ L and,
therefore,µ ∈ Lf , which proves thatLf is closed.

Since eachµ ∈ L1 has its BDPDν ∈ L and L1 ⊂ L, (iii) follows from the
semigroup property ofL. �

Theorem 1 can be expressed in terms of characteristic functions. Namely:

COROLLARY 1. In order that

exp
(∫ ∞

0
log ν̂(e−sy) ds

)
· ν̂(y) = exp

∫ ∞
0

log ρ̂(e−sy) ds, y ∈ E′,(9)

for someν andρ in ID log, it is necessary and sufficient that

ν̂(y) = exp
∫ 1

0
log ρ̂(sy) ds.(10)

The above follows from (5) and (6). For details see Jurek (1985), Theorems
2.9 and 3.10.

COROLLARY 2. In order to have the equality∫
(0,∞)

N(esA)ds + N(A) =
∫
(0,∞)

G(esA)ds for all A ∈ B0,

for some Lévy spectral measures N and G with finite logarithmic moments on sets
{x :‖x‖ > c}, it is necessary and sufficient that

N(A) =
∫
(0,1)

G(t−1A)dt for all A ∈ B0.(11)

This is easily obtained from (7), (9) and (10). For more details see Jurek (1985),
formulae (2.9) and (3.4).

One may also characterize the factorization property purely in terms of Lévy
spectral measures and functions, as shift and Gaussian parts do not contribute any
restrictions. For that purpose let us recall that by theLévy spectral functionof
µ = [a,R,M] we mean the function

LM(D, r) := −M
({x ∈ E :‖x‖ > r andx/‖x‖ ∈ D}),(12)

whereD is a Borel subset of unit sphereS = {x ∈ E :‖x‖ = 1} andr > 0. Note
thatLM uniquely determinesM .

THEOREM 2. In order that µ = [a,R,M] have the factorization property,
that is, µ ∈ Lf , it is necessary and sufficient that there exist a unique Lévy spectral
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measureG with finite logarithmic moments on all sets of form{x :‖x‖ > c}, c > 0,
such that

M(A) =
∫ ∞

0

∫ 1

0
G(ets−1A)ds dt for all A ∈ B0.(13)

Equivalently, for all Borel subsetsD of the unit sphere inE, dLM(D, ·)/dr exists
and

r �→ r
dLM(D, r)

dr
(14)

is a convex, nonincreasing function on(0,∞).

PROOF. If µ ∈ Lf , then sinceM(A) = ∫ ∞
0 N(esA)ds and N has the

form (11), we infer equality (13). From (13) we get

LM(D, r) =
∫ ∞
r

∫ ∞
u

LG(D,w)

w2
dwdu =

∫ ∞
r

w − r

w2
LG(D,w)dw(15)

and, consequently,

d

dr

(
r
dLM(D, r)

dr

)
= −

∫ ∞
r

dLG(D,w)

w
,(16)

at points of continuity ofLG(D, ·). Hence, the existence of the first derivative and
the properties of the function (14) follow.

Conversely, if the function (14) is nonincreasing and convex, then first of all, the
Lévy spectral measureM corresponds to a classL probability measure, sayµ, by
Jurek (1985), Theorem 3.2(b). Furthermore,µ is of the form (3), where the BDRV
Yρ(1) has finite logarithmic moment, and its Lévy spectral measureG satisfies

M(A) =
∫ ∞

0
G(esA)ds, A ∈ B0.

Hence, in terms of the corresponding Lévy spectral functions, the convexity
assumption implies that

LG(D, r) = −r
dLM(D, r)

dr
= −

∫ ∞
r

q(D, s) ds,

for a uniquely determined, nonincreasing, right-continuous functionq(D, ·).
In other words,dLG(D, r)/dr = q(D, r) exists almost everywhere and is
nonincreasing inr . By Theorem 2.2(b) in Jurek (1985), we infer thatG

corresponds to a classU probability measure, meaning that the distribution of
Yρ(1) in (3) is in U. By Theorem 1 we conclude thatµ has the factorization
property, which completes the proof.�

As an immediate consequence of (14) we have the following.
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COROLLARY 3. If a Lévy spectral functionLM(D, r) is twice differentiable
in r , thenµ = [a,R,M] ∈ Lf if and only if the functionsr �→ r2d2LM(D, r)/dr2

are nondecreasing and right continuous on(0,∞).

Finally, we describe distributions in the classLf in terms of their characteristic
functions.

THEOREM 3. (a) A functiong :E′ → C is the characteristic function of a
classLf distribution if and only if there exists a uniqueν ∈ ID log such that

g(y) = exp
[∫ 1

0

∫ w

0

log ν̂(uy)

w2 dudw

]
= I(ν)̂ (y)

J(ν)̂ (y)
, y ∈ E′.(17)

(b) �(·) is the Lévy exponent of a classLf distribution if and only if for each
y ∈ E′, the functionR � t �→ �(ty) ∈ C is twice differentiable and

�(y) =
[
2

d

dt
�(ty) + d2

dt2�(ty)

]∣∣∣∣
t=1

is the Lévy exponent of a distribution from IDlog.

PROOF. (a) If µ ∈ Lf then by (8), (3)–(5), changing variables and the order
of integration gives

logµ̂(y) =
∫ ∞

0
log

(
J(ν)̂

)
(e−sy) ds =

∫ ∞
0

∫ 1

0
log ν̂(e−s ty) dt ds

=
∫ ∞

0

∫ e−s

0
log ν̂(uy)es duds =

∫ 1

0

∫ w

0

log ν̂(uy)

w2 dudw.

The other equality follows from Theorem 1 and formula (9).
Conversely, ifν ∈ ID log then the random integralI(ν) exists and consequently

µ = J(I(ν)) is defined as well. So the calculation above applies to show that its
characteristic function is of the form (17), which completes proof of part (a).

For part (b) note that ifµ and ν are related as above, with respective Lévy
exponents� and�, then by (a)

ry(t) = �(ty) =
∫ 1

0

∫ w

0

�(tuy)

w2 dudw

(18)

=
∫ 1

0

∫ tw

0

�(vy)

tw2 dv dw =
∫ t

0

∫ s

0

�(vy)

s2 dv ds.

Hencery is twice differentiable, and the formula for� follows.
On the other hand, sincersy(t) = ry(st), we haver ′

sy(t) = sr ′
y(st) andr ′′

sy(t) =
s2r ′′

y (t). If � and� are related as in (b), then

�(sy) = 2r ′
sy(1) + r ′′

sy(1) = 2sr ′
y(s) + s2r ′′

y (s) = d

ds

[
s2 d

ds
�(sy)

]
.
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Since�(0) = 0, two integrations give (18), so by (a) the proof is complete.�

As was already mentioned above, Urbanik (1973) introduced a family of
decreasing classes ofn times selfdecomposable distributions

ID ⊃ L0 ⊃ L1 ⊃ · · · ⊃ Ln ⊃ Ln+1 ⊃ · · · ⊃ L∞ =
∞⋂

n=1

Ln ⊃ S,(19)

via some limiting procedures, whereL0 ≡ L is the class of all selfdecomposable
distributions andS denotes the class of all stable distributions (in the above
inclusions we suppressed the dependence of classesLn on the Banach spaceE).
Also note that the classL1 of distributions in Proposition 1 is exactly the classL1
in the sequence (19).

Recall thatµ is n times selfdecomposable if and only if it admits the integral
representation (3) withρ being (n − 1) times selfdecomposable. For other
equivalent approaches see Kumar and Schreiber (1979), Sato (1980), Nguyen
(1986) or Jurek (1983a, b). Let us define classesL

f
n of measures with theclassLn

factorization propertyas follows:

Lf
n = {µ ∈ Ln :µ ∗ I−1(µ) ∈ Ln}, n = 0,1,2, . . . ,(20)

where the isomorphismI is given by (3) andI−1(µ) is the BDPD [the probability
distribution of the BDRVY (1)] for µ. In other words,µ from Ln is in L

f
n if when

it is convolved with its BDPD one obtains another distribution from the classLn.
For the purpose of the next results let us recall that

µ ∈ Ln iff µ = I(ρ) for a uniqueρ ∈ Ln−1 ∩ ID log, Ln = I(Ln−1 ∩ ID log),

and

µ ∈ Ln iff µ = L

(∫ ∞
0

e−s dYν

(
sn+1

(n + 1)!
))

= In+1(ν)

for a uniqueν ∈ ID logn+1

[cf. Jurek (1983b)].

PROPOSITION2. For n = 0,1,2, . . . , we have the following:

(i) The classesLf
n are closed convolution semigroups also closed under the

dilationsTa, a > 0.
(ii) Ln+1 ⊂ L

f
n ⊂ Ln ( proper inclusions).

(iii) A probability measureµ ∈ L
f
n iff there exists a unique probability

measureν ∈ ID logn+1 = {ρ ∈ ID :
∫
E logn+1(1 + ‖x‖)ρ(dx) < ∞} such that

µ = In+1(J(ν)), whereI1 = I and In(·) = I(In−1(·)) (i.e., the mappingI is
composed with itselfn times). That is,

Lf
n = J(Ln) = I(L

f
n−1 ∩ ID log), n ≥ 0, whereL

f
−1 = J(ID log).(21)



SELFDECOMPOSABLE MEASURES 1365

PROOF. Part (i) follows the proof of Proposition 1 and definition (20). Part (ii),
for n = 0, is just Proposition 1(ii). Suppose the inclusions in (ii) hold for some
k ≥ 1. Then

I(Lk+1 ∩ ID log) ⊂ I(L
f
k ∩ ID log) ⊂ I(Lk ∩ ID log),

which means thatLk+2 ⊂ L
f
k+1 ⊂ Lk+1, and, therefore, (ii) is proved for allk.

Since the mappingsI andJ are one-to-one, to prove that the inclusions are
proper it suffices to notice thatL is a proper subset ofU. The latter is true because
in order for ans-selfdecoposableJ(ρ), ρ ∈ ID, to be selfdecomposable, that is,
equal toI(ν) for someν ∈ ID log, it is necessary and sufficient thatρ = I(ν) ∗ ν;
compare Jurek [(1985), Theorem 4.5].

For part (iii) we again use induction argument, Proposition 1 and the character-
ization of the classesLn quoted before Proposition 2.�

REMARK 1. From formula (21) in Proposition 2, we see that the sequence of
classesLf

n is obtained from the sequenceLn in (19) by applying the mappingJ
and then inserting it to the right. This produces the following sequence of
interlacing subclasses:

U ⊃ L0 ⊃ L
f
0 ⊃ L1 ⊃ L

f
1 ⊃ L2 ⊃ · · · ⊃ Ln ⊃ Lf

n ⊃ Ln+1 ⊃ · · · ⊃ L∞
(22)

=
∞⋂

n=1

Ln =
∞⋂

n=1

Lf
n ⊃ S.

For the last inclusion recall that stable distributions are inL and have stable laws
as their BDPD. In other words, the stable distributions are invariant under the
mappingI. In fact, the same is true forJ [cf. Jurek (1985), Theorems 3.9 and 2.8].

REMARK 2. Using Proposition 2(iii) inductively, one can obtain characteriza-
tions of the classesLf

n , n ≥ 1, similar to those obtained forLf
0 ≡ Lf in Corollar-

ies 3 and 4 or in Theorem 3. We leave these calculations for the interested reader.

3. Examples of distributions with the factorization property. In this last
section we provide some explicit examples both on arbitrary Banach space and on
the real line.

EXAMPLE A. 1. On any Banach space, as pointed out in Remark 1, all stable
measures have the factorization property. In fact, a stable measure has a stable
processes as its BDLP; compare also Jurek [(1985), Theorem 3.8].

2. On any Banach spaceE, for positive constantsα,β and vectorz on the unit
sphere inE, let

Kα,β,z(A) = α

∫ β

0

(
β

v
− 1

)
δvz(A)dv, A ∈ B0.
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Then the infinitely divisible measures[a,0,Kα,β,z], a ∈ E, have the factorization
property. This follows by applying Theorem 2 withG = cδx , for c > 0 and
0 �= x ∈ E; explicitly α = c/‖x‖, β = ‖x‖, z = x/‖x‖.

Because of Proposition 1, dilations, convolutionsand weak limits of the above,
probability measures possess the factorization property as well; also see Jurek
(1985), Theorem 2.10.

EXAMPLE B. For our examples on real line we need some auxiliary facts.
Recall that for anID distribution on the real line with Lévy spectral measureM ,

its Lévy spectral function, as defined above, is separately given on the positive and
negative half-lines as follows:

LM(x) =
{−M{s ∈ R|s > x}, for x > 0,

M{s ∈ R|s < x}, for x < 0.
(23)

Indeed, forx > 0 we setLM(x) = LM({1}, x), while for x < 0, setLM(x) =
−LM({−1},−x).

From O’Connor (1979) or Jurek (1985), Theorem 2.2(b) we have the following
description ofs-selfdecomposable distributions:

[a,σ 2,M] ∈ U(R)
(24)

iff LM(x) is convex on(−∞,0) and concave on(0,∞)

[this can also be deduced from the formula forN in Corollary 2, formula (11)].
For a classL distribution µ = [a,σ 2,M] on the real line, formula (14) in

Theorem 2 gives that

µ ∈ Lf

(25)
iff − x

(
dLM(x)/dx

)
is convex on(−∞,0) and concave on(0,∞).

Some examples of classLf distributions are provided by the following:

PROPOSITION 3. If η1, η2, . . . are i.i.d. Laplace variables(with density
1
2e−|x|) and

∑∞
1 a2

k < ∞, ak > 0, thenµ = L(
∑∞

1 akηk) is selfdecomposable and
its background driving distributionν is s-selfdecomposable. In other words, µ has
the factorization property.

PROOF. From Jurek (1996) we get thatµ ∈ L (because Laplace distributions
are selfdecomposable andL is a closed semigroup) and its Lévy spectral function

has a density of the form:x → ∑∞
k=1 exp(−a−1

k |x|)/|x|. Hence, it satisfies the
conditions in (25) and, therefore,µ ∈ Lf .
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1. Lévy’s stochastic area integrals.For Bt = (B1
t ,B2

t ), Brownian motion
onR2, the process

At =
∫ t

0
B1

s dB2
s − B2

s dB1
s , t > 0,

is calledLévy’s stochastic area integral. It is well known that for fixedu > 0, and
a = (

√
u,

√
u) ∈ R2, we have

χ(t) = E[eitAu |Bu = a] = tu

sinhtu
· exp{−(tucothtu − 1)}, t ∈ R(26)

[cf. Lévy (1951) or Yor (1992), page 19]. Hence, the characteristic functionχ is
equal to the product ofφ(t) = tu/sinhtu, which is selfdecomposable, andψ(t) =
exp[−(tucothtu − 1)], which is its background driving characteristic function;
compare Jurek [(2001), Example B]. However, from Jurek [(1996), Example 1],
we have thatφ is the characteristic function of the r.v.D1 = ∑∞

k=1 k−1ηk , where
theηk are as in Proposition 3. Thus, Proposition 3 gives thatψ is the characteristic
function of ans-selfdecomposable distribution. Consequently, by Theorem 1,χ is
also a selfdecomposable characteristic function.

Using Proposition 3 in Jurek (2001) [or the above relation (26)], we may find
the BDLP forχ(t).

2. Wenocur integrals.Let Bt , t ∈ [0,1], be Brownian motion andZ be an
independent standard normal random variable. Then from Wenocur (1986) or Yor
(1992), page 19, for a particular choice of parameters, we have that

E

[
exp

{
itZ

√∫ 1

0
(Bs ± 1)2 ds

}]
= (cosht)−1/2 · exp(−2−1t tanht).(27)

Thus, the distribution ofZ
√∫ 1

0 (Bs ± 1)2ds corresponds to the convolution of a
classL distribution with characteristic function(cosht)−1/2 [which, in fact, is the
characteristic function of a convolution square root of the law of the r.v.D2 =∑∞

k=1(2k − 1)−1ηk ; cf. Jurek (1996)] and its BDPD, with characteristic function
exp(−2−1t tanht), which is in the classU, by Proposition 3. Consequently, the
above product is also the characteristic function of a classL distribution.

[The fact that in (26) and (27) we have convolutions of selfdecomposable
distributions with their BDPDs was already observed in Jurek (2001).]

3. Gamma and related distributions.(a) Let γα,λ be thegamma distribution
with probability density λα

�(α)
xα−1e−λx1(0,∞)(x). It is easy to see that it is selfde-

composable [its Lévy spectral functionLM satisfies the equationdLM(x)/dx =
αe−λx/x for x > 0], and its BDRV is the compound Poisson r.v. Pois(αγ1,λ),
that is, its jumps are exponentially distributed. Thus, by (24), the BDRV is
s-selfdecomposable; in fact, it iss-stable. See Jurek [(1985), formula (4.3),
page 606].

(b) Letρα be theBessel distributionsgiven by the probability density functions

fα(x) = exp(−α − x)(x/α)(α−1)/2Iα−1
(
2
√

αx
)
, x > 0, α > 0,



1368 A. M. IKSANOV, Z. J. JUREK AND B. M. SCHREIBER

where Iα−1(x) is the modified Bessel functionwith index α − 1. Thenρα =
γα,1 ∗ Pois(αγ1,1). [Iksanov and Jurek (2003) showed that the Bessel distribution
ρα is a shot-noise distribution.]

(c) Thorin’s distributions (the classT of generalized gamma distributions)
have the factorization property, as they are obtained from gammas, their trans-
lations and weak limits; compare Proposition 1 and case (a) above, or see Theo-
rem 3.1.1 in Bondesson (1992).

(d) Dufresne [(1998), page 295] studied distributional equations involving
symmetrized gamma r.v.’s. These are distributions whose probability density
functions are of a form

pα(x) = 2−α+1/2|x|α−1/2

π1/2�(α)
Kα−1/2(|x|), x ∈ R,

where theKβ are the MacDonald functions. Since gamma r.v.’s are inL,
convergent series of symmetrized gamma r.v.’s provide distributions with the
factorization property. �

REMARK 3. Recall that a d.f.F on R is unimodal with mode at0 iff
F(x) − xF ′(x) is a d.f., or equivalently, iffF(x) = ∫ 1

0 H(x/t) dt for some d.f.H .
Moreover,H may be chosen to be equal toF(x)−xF ′(x) a.e. Note that the above
relation is the same as (10) (on the level of Lévy exponents) or the conditions
described in Corollary 2 (on the level of Lévy spectral measures).

Acknowledgment. This work was completed while the second named author
was visiting Wayne State University.

REFERENCES

ARAUJO, A. and GINÉ, E. (1980).The Central Limit Theorem for Real and Banach Valued Random
Variables. Wiley, New York.

BARNDORFF-NIELSEN, O. and SHEPHARD, N. (2001). Modelling by Lévy processes for financial
econometrics. InLévy Processes: Theory and Applications(O. E. Barndorff-Nielsen,
T. Mikosch and S. Resnick, eds.) 283–318. Birkhäuser, Boston.

BONDESSON, L. (1992).Generalized Gamma Convolutions and Related Classes of Distributions
and Densities. Lecture Notes in Math.76. Springer, New York.

DUFRESNE, D. (1998). Algebraic properties of beta and gamma distributions, and applications.Adv.
in Appl. Math.20 285–299.

IKSANOV, A. M. and JUREK, Z. J. (2003). Shot noisedistributions and selfdecomposability.
Stochastic Anal. Appl.21 593–609.

JACOD, J., JAKUBOWSKI, A. and MÉMIN, J. (2003). On asymptotic errors in discretization of
processes.Ann. Probab.31 592–608.

JEANBLANC, M., PITMAN , J. and YOR, M. (2002). Self-similar processes with independent
increments associated with Lévy and Bessel processes.Stochastic Process. Appl.100
223–232.

JUREK, Z. J. (1981). Limit distributions for sums of shrunken random variables.Dissertationes
Math.185. PWN, Warszawa.



SELFDECOMPOSABLE MEASURES 1369

JUREK, Z. J. (1983a). Limit distributions and one-parameter groups of linear operators on Banach
spces.J. Multivariate Anal.13 578–604.

JUREK, Z. J. (1983b). The classesLm(Q) of probability measures on Banach spaces.Bull. Polish
Acad. Sci. Math.31 51–62.

JUREK, Z. J. (1985). Relations between thes-selfdecomposable and selfdecomposable measures.
Ann. Probab.13 592–608.

JUREK, Z. J. (1996). Series of independent exponential random variables. InProbability The-
ory and Mathematical Statistics(S. Watanabe, M. Fukushima, Yu. V. Prohorov and
A. N. Shiryaev, eds.) 174–182. World Scientific, Singapore.

JUREK, Z. J. (2001). Remarks on the selfdecomposabilityand new examples.Demonstratio Math.
34 241–250.
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