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ASSIGNMENT OF ENDOGENOUS RETROVIRUS INTEGRATION
SITES USING A MIXTURE MODEL

BY DAVID R. HUNTER, LE BAO AND MARY POSS
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Structural variation occurs in the genomes of individuals because of the
different positions occupied by repetitive genome elements like endogenous
retroviruses, or ERVs. The presence or absence of ERVs can be determined
by identifying the junction with the host genome using high-throughput se-
quence technology and a clustering algorithm. The resulting data give the
number of sequence reads assigned to each ERV-host junction sequence for
each sampled individual. Variability in the number of reads from an individ-
ual integration site makes it difficult to determine whether a site is present
for low read counts. We present a novel two-component mixture of negative
binomial distributions to model these counts and assign a probability that a
given ERV is present in a given individual. We explain how our approach is
superior to existing alternatives, including another form of two-component
mixture model and the much more common approach of selecting a thresh-
old count for declaring the presence of an ERV. We apply our method to a
data set of ERV integrations in mule deer (Odocoileus hemionus), a species
for which no genomic resources are available, and demonstrate that the dis-
covered patterns of shared integration sites contain information about animal
relatedness.

1. Introduction. Determining how genome sequences vary among individu-
als and populations is an important research area because genetic differences can
confer phenotypic differences. The most commonly reported variations in genome
sequence between two individuals are those that occur at the nucleotide level, for
example, single nucleotide polymorphisms (SNPs). These are typically identified
by comparing the nucleotide at each position of a query sequence to that of a ref-
erence genome. Individual genomes can also differ in the relative position and
number of homologous genome regions. For example, a genetic locus can be du-
plicated, deleted, inverted or moved to a new location in one genome compared
to another. These changes in the genome are called genome structural variations
(GSVs) and are more difficult to analyze than SNPs, particularly if a region is
present in the query but absent from the reference. Transposable elements (TEs)
are an important type of GSV that comprise over 50% of most eukaryote genomes
[Cordaux and Batzer (2009)]. TEs are capable of moving in the genome by sev-
eral mechanisms, including a copy-paste mechanism [Kazazian (2004)]. Although
many TEs are fixed in the genome of a species—that is, all individuals will have
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the TE at a specific location in the genome—others are present in some individuals
and absent in others, which results in polymorphism at the site of the TE insertion.

Because TEs have important phenotypic consequences on the host genome
[Böhne et al. (2008), Bourque (2009), Fedoroff (2012), Kapusta et al. (2013),
Kazazian (2004), Kokošar and Kordiš (2013), O’Donnell and Burns (2010)], it
is important to have robust methods to determine the location of a specific element
in genomes so as to know if the element is present or absent from an individ-
ual. These data can be obtained by molecular approaches that amplify the region
spanning the end of the TE and the adjacent genome region of the host; a product
is obtained only if the TE is present. Multiple methods have been developed to
detect different classes of TEs in the genomes of individuals via high throughput
sequencing [Iskow et al. (2010), O’Donnell and Burns (2010)], allowing investiga-
tors to identify the location of all TEs of a specific type in an individual genome.
Yet even in a well-annotated genome like the human genome, new mobile ele-
ments are sometimes discovered in poorly annotated regions [Contreras-Galindo
et al. (2013)]. For this reason, mapping the sequence reads representing the sites
of element integration to a reference genome is insufficient even in well-annotated
genomes. Furthermore, in many species, no genome exists or, if it does, the com-
pleteness is much less than for humans. Indeed, in the case that we consider here,
no genome exists for any member of the cervidae.

Bao et al. (2014) reported recently on a method to detect an endogenous retro-
virus (ERV), which is a type of TE derived from an infectious retrovirus, in the
genome of the Cervid mule deer (Odocoileus hemionus), a species that lacks a
reference genome. Each Cervid endogenous retrovirus (CrERV) is present at a
unique position in the genome [Elleder et al. (2012), Wittekindt et al. (2010)]—
which we refer to as an “insertion site” throughout this article—and because the
infections giving rise to the CrERVs are relatively recent, the prevalence of in-
dividual CrERVs can vary from a single animal to a majority of the population.
Animals that share an insertion site must be related because once acquired, ERVs
are inherited along family lineages like any host gene. Thus, animals with simi-
lar profiles of CrERV insertion sites in their genomes share an ancestral lineage
and have the potential to display similar phenotypic effects of CrERV compared
to animals without CrERVs at those sites. In order to investigate the consequences
of CrERV integration on the mule deer host, Malhotra et al. (2016) developed a
de novo clustering approach that groups all insertion sites that occupy the same
genomic region from different animals. Each cluster of sequences may be repre-
sented by a single consensus sequence that in turn represents the site in the host
genome where the virus has integrated. The resulting data are an m × n matrix X,
where the (i, j) element Xij gives the count of sequences (the read count) from
animal j that are assigned to CrERV-host junction i, which will henceforth be
referred to as insertion site i. Here, m and n are the total numbers of sites and
animals, respectively.
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FIG. 1. Schematic diagram showing the steps used to generate the junction fragment libraries
and some of the sources of error leading to variation in read count data. Gray lines indicate host
genomic DNA, and the black diamond represents the site of a mobile element insertion—in our case,
a retrovirus. The right-hand box gives some of the reasons that read counts vary among animals
and replicates. Additional potential sources of error include unequal mixing, barcode contamination
[Faircloth and Glenn (2012)] and sequencing error, which can affect clustering.

These read count data contain information about whether an individual carries
specific integration sites. However, read counts may contain both false positives
and false negatives: A small number of sequences may be attributed to an animal
not carrying a particular insertion site due to either measurement errors in the high-
throughput methods or misassignment in the clustering process; and no sequences
may be captured for an animal actually carrying a particular site when there are
insufficient sequences. Some of the sources of error leading to highly variable read
counts for an integration site are shown in Figure 1, which also gives an overview
of the data pipeline. That figure illustrates that the DNA (red lines) is fragmented,
fragments are selected for size compatibility with the sequencing platform (typi-
cally 300–500 bp), and small DNA oligonucleotides (linkers, in green) are ligated
to the ends. The fragments containing the mobile element are enriched by poly-
merase chain reaction or PCR, employing a primer specific to the 3′ portion of the
retrovirus and one in the linker, which yields a product containing the sequence of
the host-retroviral junction. The linkers are engineered so that the primer cannot
bind until the virus-specific primer has first generated a strand of DNA; thus, if
the virus is not present, there is no amplification of the fragment. Individual li-
braries from different samples are mixed together in equal molar amounts after
being tagged by library-specific DNA “barcode” sequences, and all libraries are
sequenced together.

The problem of accuracy of low read counts is well known for high-throughput
sequence data, as can be seen in the report by Baillie et al. (2011) and the sub-
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sequent reanalyses of the data by Evrony et al. (2012) and Evrony et al. (2016)
that documented many false positives associated with inclusion of low read count
data. It is therefore challenging to determine the true status of insertion site i in
animal j when read counts are low. One approach is to set a threshold, and assume
that a site is carried by an animal whenever the corresponding read count is above
the threshold. This ad hoc practice has serious drawbacks, as discussed in Bao
et al. (2014): Essentially, it ignores differences in the genomic integration sites,
some of which are more readily sequenced than others; quality of the DNA; lab-
oratory error; and sequence quality, which varies between sequencing runs. Any
of these factors can cause wide variation in total read number per animal and per
integration site. Although Bao et al. (2014) move beyond the naive thresholding
approach by proposing a mixture model, the mixture used in that article of a Pois-
son component and a truncated geometric component has several drawbacks. The
present article presents a much-improved mixture model that attempts to account
for these sources of variability. We then describe the reasons for modeling choices
and discuss the results of fitting this model to the read count data.

We have made the following materials available as a supplementary .zip file
[Hunter, Bao and Poss (2017)]: The original (unabridged) dataset of read counts
obtained by the clustering algorithm, along with the abridged version used for
the analyses in this article; the code, written for the R computing environment
[R Core Team (2016)], that reproduces all of the analyses, tables and figures in
this article; and the additional datasets used for the plotting the latitude/longitude
coordinates of the animals as well as the wet-bench data obtained using PCR for
ground-truthing a subset of the classification results obtained by various models.

2. A mixture model approach. Count data are sometimes modeled using a
Poisson distribution or, if more flexibility is required, a negative binomial distribu-
tion. When in addition some of the counts are zeros created by a separate random
mechanism, we may introduce a point mass at zero; the resulting “zero-inflated”
count models are in fact simplistic mixture models. For our data, zero-inflation is
not sufficient because even nonzero counts Xij may occur when insertion site i

is absent from animal j . Instead, we must account for counts both when site i is
present and when it is absent. The counts that are observed in each of these two
cases will be modeled as one component of our two-component mixture model.
Our goal in developing this model is to respect model parsimony as well as the
experimental realities of the sequencing processes used to obtain the data. This
section explains our modeling choices and, in particular, why we have avoided the
mixture of Poisson and truncated geometric distributions originally used by Bao
et al. (2014), which appears to be the only previous mixture-model-based treatment
in the literature of this type of count data.

2.1. Improving the mixture model. Let us first consider the situation in which
animal j carries insertion site i, which we call the “present” case because site i
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is truly present, as opposed to the “absent” case where it is not. The first model
that springs to mind for count data is something based on the Poisson distribution;
indeed, this is the approach used by Bao et al. (2014). However, we have found
strong evidence of over-dispersion—that is, evidence that the standard deviation
of these present counts is larger than the square root of their mean—even when we
use a model with a large number of parameters to account for the heterogeneities
across animals and insertion sites. This over-dispersion is depicted in Figure 2,
which compares the best-fitting Poisson and negative binomial models in terms of
their Pearson residuals, which are the observed counts minus the estimated counts
divided by the square roots of the estimated variances. On the other hand, the
negative binomial family appears adequate for this modeling task.

To help explain how the plots in Figure 2 were created, we first introduce both
the Poisson and negative binomial models for the “present” mixture component. In
the Poisson case, “present” counts Xij are assumed to be distributed independently
as Poisson(aibj ) for parameters a1, . . . , am and b1, . . . , bn. Thus, the probability
mass function for x = 0,1,2, . . . is

(2.1) P(Xij = x) = exp{−aibj }(aibj )
xij

xij ! ,

and E(Xij ) = Var(Xij ) = aibj . In the negative binomial plots, the assumption is
that the Xij are distributed independently as negative binomial random variables
with parameters rj and αi for 1 ≤ i ≤ m and 1 ≤ j ≤ n. This gives

(2.2) P(Xij = x) = fij (x; r, α)
def=

(
x + rj − 1

x

)
α

rj
i (1 − αi)

x,

a mass function with mean E(Xij ) = rj (1 − αi)/αi and variance Var(Xij ) =
rj (1 − αi)/α

2
i .

The plots in the left column of Figure 2 are obtained by fitting the counts Xij

using a slightly improved version of the model used by Bao et al. (2014), namely,
a two-component mixture model where one component (“present”) is the Poisson
distribution of equation (2.1) and the other component (“absent”) is a truncated
geometric distribution. In addition to maximum likelihood estimates of the ai and
bj parameters, the fitting procedure yields estimates of the conditional probabili-
ties of inclusion in the “present” component for each Xij observation. In creating
the plots, we consider only those Xij with estimated probabilities greater than 0.5
in constructing the plots, which is a simplistic way to focus on the fit of only
the “present” (Poisson) component. The Pearson residuals are calculated for these
Xij by subtracting the corresponding estimated mean âi b̂j and dividing by the
estimated standard deviation (âi b̂j )

1/2. Whenever an animal is replicated in the
dataset—that is, whenever there exist two labels j ′ �= j for the same animal—
we constrain the model so that the estimates of the “present” probability must be
equal. This is different from the model used by Bao et al. (2014), which treated
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FIG. 2. The top two panels show the kernel density estimates of the Pearson residuals (solid lines)
and their theoretical densities (dashed lines) for all counts with probability at least 0.5 of being from
the “present” mixture component according to the mixture model. The lower panels are Q–Q plots
of the observed vs. theoretical Pearson residuals.

replicates as independent samples for the purposes of estimation. Finally, the theo-
retical distribution that forms the basis of comparison for the plots is obtained via
simulation from the distribution determined by the fitted parameters. The plots in
the right column of Figure 2 are obtained in the same way, except that the mixture
model uses the negative binomial distribution of equation (2.2) for the “present”
component and another negative binomial distribution for the “absent” component.
Further discussion about our choice for the “absent” component is provided below.

Based on Figure 2, the data clearly suggest discarding the Poisson model in
favor of the negative binomial model for the “present” mixture component of the
model. Interestingly, this choice is not merely in favor of the model with more
parameters, as is often the case when a negative binomial distribution fits better
than a Poisson distribution; here, each model has the same number of parameters.
In equation (2.2), we interpret αi as an insertion site-specific parameter where 1 −
αi approximates the enrichment of site i, and rj as an animal-specific parameter.
Thus, the mean and variance are both directly proportional to the animal-specific
rj parameter and they are decreasing functions of the site-specific αi parameter.

In the “absent” case where animal j does not carry insertion site i, in principle
we may choose an entirely different class of distributions to model the observed
counts. We reject the class of Poisson distributions immediately because we need
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FIG. 3. The two mass functions whose logarithms are shown here are a negative binomial with
parameters r = 10 and α = 1/2 (solid line) and a geometric with parameter p = 1/4 (dashed line).
The means of the distributions are 10 and 3, respectively, even though the geometric has a larger
mass function for large values.

a distribution with a variance substantially larger than its mean. The geometric dis-
tribution is an interesting potential alternative and has the advantage of simplicity
since, like the Poisson, it only requires a single parameter. However, we reject the
geometric for a different reason: The geometric mass function decays more slowly
for large values than that of a negative binomial, even if the mean of the former
is smaller than the mean of the latter, as illustrated in Figure 3. Thus, outlying
large counts could be classified as coming from the absent component, which is
nonsensical. Bao et al. (2014) sidestepped this issue by truncating the geometric
distribution of counts from the absent component. However, we wish to avoid the
problematic question of how to choose a truncation point.

Due to the considerations above, we reject both the Poisson and geometric mod-
els for counts from the absent mixture component in favor of a more flexible neg-
ative binomial model, and posit that whenever animal j does not carry insertion
site i, the mass function for the count Xij is given by

(2.3) gij (x; r,p)
def=

(
x + rj − 1

x

)
p

rj
k(j)(1 − pk(j))

x, x = 0,1,2, . . . ,

where k(j) is the batch in which animal j was sequenced, rj is the same animal-
specific parameter as in equation (2.2), and the expected false-positive count for
the k(j) batch is a decreasing function of pk(j); As explained earlier, this expected
count is rj (1 − pk(j))/pk(j).

Both negative binomial distributions, in equation (2.2) and equation (2.3), can
be interpreted as a sum of rj independent geometric distributions. This is a delib-
erate modeling choice that reflects the fact that the quality and quantity of each an-
imal’s sample may vary, and this variation will affect counts from both the present
class and the absent class in the same way.
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The insertion site-specific effect is most relevant in the present case, as reflected
by the fact that we allow counts from the present component to depend on the
parameter αi , where i denotes the site number. In the absent case, counts may
be considered to be “background noise,” and therefore likely to depend on the
particular batch but not the insertion site in question; for this reason, we allow the
count distribution for the absent class to depend on pk(j), where k(j) denotes the
batch number of animal j .

We occasionally obtain distinct sets of counts from the same animal when sam-
ples from the same animal are run in different batches. In such a case, our model
treats these counts as though they come from different animals, conditional on the
mixture component from which the counts Xij come; that is, each set of counts
receives its own index j , and so the rj parameters may be different. This is im-
portant since different sets of counts come from distinct batches, and these of-
ten have dramatically different count profiles. In fact, allowing for this flexibility,
which is enhanced by indexing the absent count distributions by pk(j), means that
our model can easily accommodate new data as they are created in separate se-
quencing runs or on separate sequencing platforms. Accommodating new data is
scientifically important since our data are continually updated as new animals are
sequenced; sequencing technology advances rapidly, and it is not always feasible
or cost-effective to rerun previously sequenced animals using newer technology.
Thus, our method allows for seamless data integration by preventing us from hav-
ing to discard useful data simply because technology changes or our set of sampled
animals expands.

On the other hand, it is important that our model can account for cases in which
multiple sets of counts come from the same animal in our dataset. This is done
by placing appropriate constraints on the mixing probabilities πij , where πij rep-
resents the a priori probability that animal j carries insertion site i. Thus, we in-
troduce the constraint πij = πij ′ for any j �= j ′ for which j and j ′ index the sets
of counts from two different runs on the same animal. Once we introduce the πij

probabilities, the full likelihood of our mixture model becomes

(2.4) L(π, r,α,p) =
m∏

i=1

∏
j∈U

[
πij

∏
j ′∈Sj

fij ′(x; r, α)+(1−πij )
∏

j ′∈Sj

gij ′(x; r,p)

]
,

subject to the constraints explained above, where Sj = {j ′ : j and j ′ are the same
animal} and U is any set containing exactly one element from each Sj ; that is,
U is a set of indices for the unique animals. We experimented with three simple
parameterizations of the πij parameters: (1) πij = π for all i and j ; (2) πij = πi

for all j ; and (3) πij = πj for all i. It may be surprising that, say, parameterization
(1) is at all interesting; however, the question of whether animal j truly includes
insertion site i—which clearly depends on i—is different from the question of
whether the proportion of such inclusions depends on i. The latter is an empirical
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question that should be examined using the data. In Section 3.1, we find that option
(2) attains the best Akaike Information Criterion (AIC) score.

Since equations (2.2) and (2.3) represent the present and absent components,
respectively, it seems reasonable to conjecture that E(Xij ) will be greater in equa-
tion (2.2) than in equation (2.3). These two means are given by rj (1 − αi)/αi and
rj (1 − pk(j))/pk(j), respectively. Thus, since the rj parameter is common to the
two mass functions, the conjectured inequality may be guaranteed by enforcing
the constraints αi < pk for all i and k during the estimation procedure. Enforc-
ing such constraints in an algorithm, say, by always updating αi as the smaller
of the ECM algorithm estimate and the minimum current pk value, would not in
principle complicate the computations. However, such enforcement would poten-
tially destroy the ascent property of the algorithm mentioned in Section 2.2 and,
perhaps more importantly, it would raise the troubling question of how to inter-
pret final parameter estimates for which some αi = pk . If we instead choose to
enforce some positive gap g between the largest αi and the smallest pk , then we
are faced with the arbitrary choice of a value of g. We therefore opt not to enforce
such constraints, yet we find nevertheless that our unconstrained point estimates
satisfy αi < pk . The fact that we obtain these results without enforcing them is
an encouraging sign for the model fit. We discuss the actual estimated values in
Section 3.1.

2.2. Parameter estimation. Estimation of the model parameters is accom-
plished using maximum likelihood via a straightforward Expectation-Conditional
Maximization (ECM) algorithm [Meng and Rubin (1993)]. Essentially, an ECM
algorithm is merely an EM algorithm in which only one subset of the parame-
ters is updated at each iteration or sub-iteration. The goal is to maximize the log-
likelihood function of the parameters π , r , α and p. This goal is complicated by
the fact that we do not observe which data come from the first mixture compo-
nent and which come from the second. Typically, one approaches this problem by
defining indicator variables

Zij = I {animal i carries insertion site j};
these Zij are then considered missing, or unobserved, data, and an EM algorithm
aims to maximize the log-likelihood based on only the observed data by exploiting
the mathematically simpler form of the log-likelihood based on the full data in a
clever way, alternating between an E-step and an M-step.

In the E-step, given the iteration-t parameter values π
(t)
ij , r

(t)
j , α

(t)
i and p

(t)
k(j), we

calculate the probability that animal i carries insertion site j :

(2.5) Z
(t)
ij = π

(t)
ij

∏
j ′∈Sj

f
(t)
ij ′ (x)

π
(t)
ij

∏
j ′∈Sj

f
(t)
ij ′ (x) + (1 − π

(t)
ij )

∏
j ′∈Sj

g
(t)
ij ′ (x)

.
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In the M-step (actually the CM-step), we update the parameters in four distinct
subsets, in each case holding the other parameters fixed at their most up-to-date
values. To wit, we first consider the α parameters. We find that the log-likelihood
involving αi is

∑
i,j

Z
(t)
ij

[
log

(
xij + r

(t)
j − 1

xij

)
+ r

(t)
j log(αi) + xij log(1 − αi)

]
,

which is maximized at

α
(t+1)
i =

∑
j Z

(t)
ij r

(t)
j∑

j Z
(t)
ij (xij + r

(t)
j )

.

The estimate of αi will be unstable if Zij is close to zero for all j , and so in
practice, we let

α
(t+1)
i =

∑
j Z

(t)
ij r

(t)
j + 0.05∑

j Z
(t)
ij (xij + r

(t)
j ) + 0.1

,

noting that the ascent property guaranteed by an ECM algorithm relies only on
the assurance that the complete-data log-likelihood increases its value at each it-
eration; if the corrected version of α(t+1) ever fails to produce such an increase, it
may be replaced by the exact version.

The log-likelihood that involves pk(j) is maximized at

p
(t+1)
k =

∑
j∈Ak

(1 − Z
(t)
ij )r

(t)
j∑

j∈Ak
(1 − Z

(t)
ij )(xij + r

(t)
j )

,

where Ak denotes the set of animals coming from the kth batch. The log-likelihood
that involves rj is maximized at

r
(t+1)
j = arg max

rj

{∑
i

log

(
xij + rj − 1

xij

)

+ rj
∑
i

[
Z

(t)
ij logα

(t+1)
i + (

1 − Z
(t)
ij

)
logp

(t+1)
k(j)

]}
,

which will be solved numerically. Finally, there are several different update formu-
las for the πij parameters, depending on which of the three models we are using.
We have

π(t+1) = 1

mn

m∑
i=1

n∑
j=1

Z
(t)
ij , π

(t+1)
i = 1

n

n∑
j=1

Z
(t)
ij , or π

(t+1)
j = 1

m

m∑
i=1

Z
(t)
ij ,

depending on whether we select model (1), (2) or (3), respectively.
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We initialize the ECM algorithm at Z
(0)
ij = max(1, xij /10) and r

(0)
j = 100, and

estimate parameters by iterating between the M-step and the E-Step described
above.

We stop iterating when the sum of the absolute changes of all Z
(t)
ij is less than

0.01; these values at convergence will be denoted by Ẑij ; they represent the prob-
abilities, conditional on the observed data, that animal j has insertion site i when
the parameter values are taken to be the maximum likelihood estimates. The m×n

matrix of all such probabilities will be denoted Ẑ.
Because EM-based algorithms can be sensitive to starting parameter values,

we also explore different starting values. Letting Z
(0)
ij = max(1, xij /c) where c =

2,3, . . . ,20, and letting r
(0)
j vary from 5 to 500, we find that all these combinations

of starting values converge to essentially the same solution.
After the algorithm has converged, the entries of the matrix Ẑ may be used as

estimates of the probabilistic assignment of insertion sites to animals, which may
in turn lead to insights into the relationships among animals. We revisit this topic
in Section 3.3.

3. Results. The 1722×77 matrix X containing the read count data is provided
in the supplementary materials [Hunter, Bao and Poss (2017)] in the file Read-
Count.csv. This dataset is an abridged version of the original dataset, which
is entitled UnabridgedReadCount.csv, that excludes any insertion sites that
do not have at least two samples containing more than five reads. The reason for
this choice is to focus on only rows that provide substantial evidence for related-
ness of two or more animals; however, our model can in principle easily handle
rows with low read counts. Of all the read counts in the abridged table, 82.6% are
zero and another 6.3% are between one and ten, inclusive. The mean of all nonzero
counts is 98.6.

3.1. Mixture model parameter estimates. Section 2.1 presents three models
for the πij parameters, and we use “an information theoretic criterion,” also known
as Akaike’s information criterion or AIC [Akaike (1974)], to select from among
them. The results are displayed in Table 1. While there is no consensus about which
of several possible model selection criteria based on penalized log-likelihood
scores should be used in the context of mixture models, in this case the differ-
ences among the three likelihoods are so large that the choice is clear regardless of
the criterion we use. Model (2) is selected as the best model regardless of whether
we consider retested samples from the same animal as independent samples or not.
This model assumes that the prevalence rates of insertion sites are heterogeneous,
and the following analysis focuses on the πij = πi setting.

Our primary interest is in the matrix Ẑ, which is a 1722 × 77 matrix, and, in
addition to these values, there are 3524 parameter estimates. Estimates of the sam-
pling distributions of these parameters based on asymptotic normality are unlikely
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TABLE 1
Akaike’s information criterion (AIC) scores, given by −2 times the maximized log-likelihood plus

2d , where d is the number of model parameters

Treatment of replicates

Model Number of model parameters Independent samples Identical animals

(1) πij = π 1803 346,013 324,245
(2) πij = πi 3524 318,015 301,951
(3) πij = πj 1879 344,276 324,246

to be productive since the huge 3524 × 3524 covariance matrix will be impossible
to estimate given only 1722×77 data points, and even with sparsity constraints the
estimation would be difficult. A parametric bootstrap approach is possible whereby
we use the estimated parameters to repeatedly simulate new entire count datasets,
obtain sets of bootstrap parameter estimates for each one, and take the empirical
multivariate distribution of the bootstrap estimates to estimate the sampling distri-
butions of the original estimates. An interesting question of implementation arises
as to whether we should treat the Zij as parameters or data: The former idea sug-
gests that we should simulate site assignment indicator variables according to the
estimated Ẑij values, whereas the latter suggests that we should simulate site as-
signments using only the π̂i estimates. To give a sense of the possibilities, we have
included R code in the supplemental files [Hunter, Bao and Poss (2017)] that im-
plements the former idea—though the code may be easily modified to implement
the latter—and yields standard errors for the estimates p̂1 = 0.967, p̂2 = 0.939 and
p̂3 = 0.980 of 0.005, 0.014 and 0.001, respectively, based on 500 bootstrap sam-
ples. We may conclude, for instance, that our three experiments yield statistically
significantly different false positive rates 1 − pk . However, we do not undertake
here a thorough exploration of the use of the bootstrap in this context.

For the model that takes replicated animals into account, the estimates of the
1722 αi parameters range from 1.92 × 10−4 to 0.483, and the estimates of the
pk(j) parameters are 0.967, 0.939 and 0.980. We see therefore that αi < pk(j) in
each case, which is sensible as we noted in Section 2.1, even though we do not
enforce this constraint in the optimization algorithm. This result guarantees that
the expected read counts for the “present” case are always larger than those for the
“absent” case.

Figure 4 depicts some characteristics of the αi , rj and Zij estimates. The corre-
sponding results for the model treating the replicated animals as independent are
similar graphically, and so we omit them here. The top plots show a roughly log–
log relationship between total count and the corresponding αi or rj parameter. The
bottom left plot shows that the estimated Ẑij values are not a monotone function of
the read counts Xij , which demonstrates that the mixture model approach captures
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FIG. 4. Top row: Sums of row counts plotted against corresponding αi and rj parameter estimates.

Bottom left: Boxplots of Ẑij as a function of read count for counts up to 8. Bottom right: Histogram of

log10 Ẑij values for 0.01 ≤ Ẑ ≤ 0.99. We obtain 61% of Ẑij values less than 0.01 and 15% greater
than 0.99.

subtle individual heterogeneities among insertion sites and animals that a simplis-
tic threshold cannot. We see that some Ẑij values near zero correspond to counts
at least as large as those corresponding to some Ẑij values near one.

Also interesting is the effect on certain Ẑij values of the requirement that sam-
ples from the same animal must have the same estimated probabilities of inclusion
in the “present” mixture component. Because there is so much variability present
in the read counts, it is not uncommon to find wildly different counts for the same
animal at the same insertion site. As an example, let us consider animal 01 from
the dataset, which occurs in two different batches, labeled the S batch and the M
batch. Table 2 gives the ten largest read counts for this animal that are paired with
counts not greater than 2. When such cases arise in the model that considers repli-
cate information, we see that they are essentially classified with probability one as
“present”—that is, a single large count is sufficient for such a classification even
in the presence of a low count in a different batch. In other words, a single large
count appears sufficient to categorize an animal into the “present” component, and
when the same animal/site combination also yields small counts, the model can
adjust both by allowing for a large variance and because each sample has a unique



764 D. R. HUNTER, L. BAO AND M. POSS

TABLE 2
Probabilities of “present” for various models for 10 examples of extremely divergent counts for the

same animal/site combination, all taken from animal 01. Here, “NB” stands for the negative
binomial model of equations (2.2) and (2.3), whereas “PTG” stands for the Poisson–truncated

geometric model of Bao et al. (2014)

Independent
Observed Independent NB PTG

Counts Probabilities Probabilities
Replicate

Site
(Cluster)

Batch
S

Batch
M

Batch
S

Batch
M

Batch
S

Batch
M

NB and PTG
Probabilities

Cluster107 0 498 0.20 1.00 0.00 1.00 1.00
Cluster436 0 84 0.08 1.00 0.00 1.00 1.00
Cluster315 2 72 0.99 1.00 0.00 1.00 1.00
Cluster296 44 0 1.00 0.04 1.00 0.00 1.00
Cluster591 0 42 0.01 1.00 0.00 1.00 1.00
Cluster403 42 1 1.00 0.05 1.00 0.00 1.00
Cluster166 41 1 1.00 0.75 1.00 0.00 1.00
Cluster62 0 37 0.53 1.00 0.00 1.00 1.00
Cluster199 2 35 1.00 1.00 0.00 1.00 1.00
Cluster1729 0 33 0.00 1.00 0.00 1.00 1.00

rj parameter even if it comes from an animal with more than one sample. On the
other hand, for the model that considers all samples as independent, a low count
can result in a small estimate of the “present” probability even though the presence
or absence of a given insertion site in a given animal should not change from batch
to batch.

3.2. Ground-truthing various models. It is possible to verify the presence or
absence of a particular insertion site in a particular animal by directly visualizing
the DNA fragment amplified at a particular integration site using PCR. In this way,
as in Bao et al. (2014), we have obtained the true status of 6 insertion sites in 32
unique animals, as summarized in the supplemental file PCRVerification-
Data.csv [Hunter, Bao and Poss (2017)]. Some of these animals occur in more
than one batch, and so we have a total of 45 samples to consider, comprising a
total of 6 × 45 = 270 probability assignments to the “present” mixture compo-
nent. Some of these probabilities will be constrained to be equal when we consider
models that take replications of animals into consideration.

As a measure of model performance, we report area under the receiver operating
characteristic curve, or AUC [Bradley (1997)], which in this case may be calcu-
lated as follows: First, we note that 47 of the 270 probability assignments corre-
spond to truly present integration sites, whereas the remaining 223 correspond to
absent sites. We examine all 47 × 233 pairs of discordant pairs, and calculate the
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TABLE 3
Area under curve and mean probabilities of false assignment for different models. P–TG refers to

the Poisson–truncated geometric model of Bao et al. (2014), whereas NB–NB is the negative
binomial–negative binomial model introduced in this article

Counts out of 47 × 233
Mean “False Mean “False

Model AUC Reversed Tied Correct Positives” Negatives”

Read counts only (model-free) 0.957 238 429 9814 N/A N/A
P–TG, independent samples 0.932 583 259 9639 0.031 0.148
P–TG, replicates recognized 0.951 371 294 9816 0.031 0.064
NB–NB, independent samples 0.963 258 259 9964 0.100 0.050
NB–NB, replicates recognized 0.975 118 294 10,069 0.092 0.030

proportion of these pairs in which the estimated probability for the truly present
site exceeds the estimated probability for the absent site. For purposes of this cal-
culation, cases in which the estimated probabilities are equal for a discordant pair
are counted as one-half. The results of this analysis are presented in Table 3. In
addition to four different statistical models, we also consider the read counts them-
selves, which may be subjected to the same AUC calculation. We may view this
model-free analysis an upper bound on the potential performance of any possible
thresholding procedure since such a procedure uses a fixed read count as the cutoff
between “absent” and “present.”

The fact that all four methods achieve AUC scores near 100% indicates the rela-
tive ease of assignment for the particular six integration sites considered. However,
despite the high scores, the striking differences in the performance of the meth-
ods is evident from the proportion of discordant pairs not correctly categorized,
obtained by subtracting AUC from one. By this measure, the Poisson–truncated
geometric model of Bao et al. (2014) makes roughly 2.7 times as many errors as
the model we propose in this article. In addition, the AUC scores indicate that
recognizing animal replicates is important, as errors are reduced by almost a third
by doing so. Finally, we make the interesting and important observation that the
model we propose in this article performs better on these test data than the read
count data themselves, which serve as a sort of benchmark for an idealized thresh-
olding method. In fact, no thresholding method could likely do this well, since
some discordant pairs that are scored as correct using the read counts are likely to
fall entirely above or below whatever read count threshold is chosen, which would
lower the number of correct pairs. At the same time, no discordant pair scored as
reversed or tied according to the read counts could possibly become correct using
a thresholding method, although it is true that some reversals could change to ties.

In addition to AUC, Table 3 reports the mean probabilities of incorrect assign-
ment for both the 47 present sites and the 233 absent sites. In other words, the
mean “false positive” probability is the mean value of Ẑij for the 233 absent sites,
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and the mean “false negative” probability is the mean value of 1 − Ẑij for the 47
present sites. We see that, by this measure, the Poisson–truncated geometric mod-
els of Bao et al. (2014) do a better job for these particular data in the case where the
sites are absent, but the reverse is true when the sites are present. Not surprisingly,
both models are better when replicates are considered, since this uses more of the
available information.

3.3. Summarizing animal relationships. There are many potential methods to
analyze the probabilistic assignment of virus insertion sites—or, more generally,
TEs and alleles—to animals represented by the Ẑ matrix derived from our mixture
model and estimation procedure. Broadly speaking, a suite of population genet-
ics tools exists to utilize allele frequency data to estimate population parameters.
Several of these methods accommodate probabilistic assignments as well. As an
example, Bao et al. (2014) demonstrate a hierarchical clustering method that uses
such probabilistic assignments.

Here, we illustrate one type of analysis based on the information provided by the
Ẑ matrix to estimate how variation in CrERV integration sites is distributed among
the animals from the four sampled populations. By considering each column of this
matrix as a point in m-dimensional space, we may perform principal components
analysis (PCA) and visualize the first two principal components. In Figure 5, we
see a depiction of the result after the first two PC scores are rotated and scaled so as
to make their two-dimensional locations comparable with the geographic locations
where the animals were found.

The deer depicted separately from the others in the lower left quadrant of Fig-
ure 5 are the blacktail deer subspecies of mule deer that emerged about 20,000
years ago. The close association of Oregon and Montana mule deer to each other
and the more distant relationship of Wyoming animals is an unexpected finding,
given that previous studies have reported low population subdivision in mule deer
[Cullingham et al. (2011), Powell et al. (2013)].

FIG. 5. First two principal component scores (left) and geographic locations (right) of the deer. In
the legends, BT stands for blacktail and MT, OR and WY stand for Montana, Oregon and Wyoming.
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4. Discussion. The goal of our research was to determine which individuals
share a genomic feature, in this case a newly described endogenous retrovirus, at
a particular site in the genome. The data used to determine the presence of a poly-
morphic genome feature are often based on the number of reads assigned to it.
Read count data are heavily skewed toward small numbers, creating uncertainty
in the presence/absence status of any particular element. Our article demonstrates
the utility of using a mixture model to assign a probability that an insertion site
is present in a given individual. Because these retroviruses are inherited like any
host gene, animals that share more insertion sites are more closely related. Our
results show that animals from Wyoming can be distinguished from those from
the adjacent state of Montana based on the profile of shared virus integration sites.
This is a surprising finding because mule deer are migratory animals and can move
between these two geographic locations. In fact, based on these analyses, the Mon-
tana mule deer appear more closely related to those in Oregon. Studies using tradi-
tional approaches report that mule deer have little population structure throughout
this region [Cullingham et al. (2011), Latch et al. (2014), Powell et al. (2013)].

While we demonstrate the utility of using a mixture model for read count data
for an endogenous retrovirus, our methodology is applicable to any data meant
to determine the presence or absence of any polymorphic element—for instance,
a different class of mobile element such as a long interspersed nuclear element,
or LINE [Akagi et al. (2008), Burns and Boeke (2012), Evrony et al. (2012),
Richardson, Morell and Faulkner (2014)]. Indeed, these methods could apply be-
yond the biological realm to other situations in which data subjected to multiple
sources of variability include a large number of “zeros” that may not always be
recorded as zeros as in the present application; the vast literature on zero-inflated
models indicates that such applications could be myriad.

The primary statistical contributions of this article are twofold: First, it rein-
forces and provides additional evidence to support the argument made in Bao
et al. (2014) that a two-component mixture model for estimating probabilities
of binary outcomes being positive, given observed count data, is more flexible,
principled and accurate than the commonly used approach of dichotomizing re-
sults based on a count threshold. Second, it significantly advances the mixture
approach proposed by Bao et al. (2014) by carefully considering the statistical fea-
tures of these data. As one indication that the fitted model gives sensible results, we
find that in all cases, the best-fitting parameters imply that E(Xij |j contains i) >

E(Xij |j does not contain i) even though, as explained in Section 2.1, we do not
enforce this inequality using constraints.

Our approach has the additional feature that it allows seamless integration of
data from multiple batches. This is prudent because not all samples included in
an analysis are processed at the same time. Experimental realities such as different
“absent” count distributions for different batches and samples that are replicated in
more than one experiment can be automatically accounted for by the model. As a
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case in point, the read counts we analyze in this article are a superset of the counts
used by Bao et al. (2014).

In our dataset, the counts from multiple experiments all used the same Ion Tor-
rent sequencing platform; yet in principle the model we propose can incorporate
data from different platforms as well, which is important because sequencing tech-
nology advances rapidly and so techniques such as ours that do not necessitate
discarding “old” runs are both scientifically prudent and economical. Indeed, the
adoption of our method enables the experimenter to consider designing experi-
ments that include some replicated animals between experiments since this overlap
will serve to validate the results. This leads to further questions of how to design
such experiments optimally to achieve the best trade-off of statistical accuracy and
experimental cost, which could be considered in future work.

Acknowledgments. We are grateful to the Editor, Associate Editor and two
reviewers for numerous insightful comments that led to substantial improvements
of the manuscript.

SUPPLEMENTARY MATERIAL

Datasets and R code (DOI: 10.1214/16-AOAS1016SUPP; .zip). We provide
all data used in the article along with code written in R [R Core Team (2016)] that
can be used to duplicate all analyses and figures.
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