
The Annals of Applied Statistics
2017, Vol. 11, No. 2, 481–503
DOI: 10.1214/16-AOAS960
© Institute of Mathematical Statistics, 2017

SPACE AND CIRCULAR TIME LOG GAUSSIAN COX PROCESSES
WITH APPLICATION TO CRIME EVENT DATA

BY SHINICHIRO SHIROTA1 AND ALAN E. GELFAND

Duke University

We view the locations and times of a collection of crime events as
a space–time point pattern. Then, with either a nonhomogeneous Poisson
process or with a more general Cox process, we need to specify a space–time
intensity. For the latter, we need a random intensity which we model as a real-
ization of a spatio-temporal log Gaussian process. Importantly, we view time
as circular not linear, necessitating valid separable and nonseparable covari-
ance functions over a bounded spatial region crossed with circular time. In
addition, crimes are classified by crime type. Furthermore, each crime event
is recorded by day of the year, which we convert to day of the week marks.

The contribution here is to develop models to accommodate such data.
Our specifications take the form of hierarchical models which we fit within a
Bayesian framework. In this regard, we consider model comparison between
the nonhomogeneous Poisson process and the log Gaussian Cox process. We
also compare separable vs. nonseparable covariance specifications.

Our motivating dataset is a collection of crime events for the city of San
Francisco during the year 2012. We have location, hour, day of the year, and
crime type for each event. We investigate models to enhance our understand-
ing of the set of incidences.

1. Introduction. The times of crime events can be viewed as circular data;
that is, working at the scale of a day, we can imagine event times as wrapped
around a circle of circumference 24 hours [which, without loss of generality, can
be rescaled to [0,2π)]. Furthermore, over a specified number of days, we can view
the set of event times, consisting of a random number of crimes, as a point pattern
on the circle. Suppose, additionally, that we attach to each crime event its spatial
location over a bounded domain. Then, for a bounded spatial region, we have a
space–time point pattern over this domain, again with time being circular.

The contribution here is to develop suitable models for such data, motivated by
a set of crime events for the city of San Francisco in 2012. The challenges we ad-
dress involve the following: (i) clustering in time—event times are not uniformly
distributed over the 24 hour circle; (ii) spatial structure—evidently, some parts
of the city have higher incidence of crime events than others; (iii) crime type—
characterization of point pattern varies with type of crime so that different models
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are needed for different crime types; (iv) incorporating covariate information—we
anticipate that introducing suitable constructed spatial and temporal covariates will
help to explain the observed point patterns; (v) the need for spatio-temporal ran-
dom effects—the constructed spatial and temporal covariates will not adequately
explain the space–time point patterns; (vi) the availability of marks—in addition
to a location and a time within the day, each event has an associated day of the
year which we convert to a day of the week. We propose a range of point pattern
models to address these issues; fortunately, our motivating dataset is rich enough
to investigate them.

We focus on the problem of building a log Gaussian Cox process (LGCP)
which includes, as a special case, a nonhomogeneous Poisson process (NHPP),
over space and circular time. We need to build a suitable intensity surface which is
driven by a realization of a log Gaussian process incorporating a valid covariance
function over space and time.

An initial model for a set of points in space and circular time is a nonhomoge-
neous Poisson process (NHPP) with an intensity λ(s, t) over, say, D × S1, where
D is the spatial region of interest and time lies on the unit circle, S1. We illuminate
such intensities below, but we also note that an NHPP will not prove rich enough
for our data, and so we propose a space by circular time log Gaussian Cox process
(LGCP). This leads to consideration of space–time dependence. Does time of day
affect the spatial pattern of crime? Does location affect the point pattern of event
times? Hence, we consider both separable and nonseparable models. We develop
a parametric nonseparable space by circular time correlation function building on
Gneiting’s specification [see Gneiting (2002)]. We note very recent work from
Porcu, Bevilacqua and Genton (2016) which presents valid covariance functions
on R1 crossed with spheres.

Typically, time is modeled linearly, leading to a large literature on point pat-
terns over bounded time intervals [see, e.g., Daley and Vere-Jones (2003, 2008)].
Adding space, Brix and Diggle (2001) offer development of a space–time LGCP.
Rodrigues and Diggle (2012) consider a space–time process convolution model for
modeling of space–time crime events. Liang et al. (2014) consider process convo-
lution for space with a dynamic model for time. Taddy (2010) proposes a Bayesian
semiparametric framework for modeling correlated time series of marked spatial
Poisson processes with application to tracking intensity of violent crime.

In fact, in this context, it is important to articulate the difference between view-
ing time in a linear manner vs. a circular manner. With linear time there is a past
and a future. We can condition on the past and predict the future, and we can in-
corporate seasonality and trend in time. With circular time, as with angular data
in general, we only obtain a value once we supply an orientation, for example, the
customary midnight with time, although, below, we argue to start the day at 02:00.
Then we have no temporal ordering of our crime events except within a defined
24 hour window. We are only interested in modeling the intensity over space and
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circular time. For us, prediction would consider the number of events of a partic-
ular crime type, in a specified neighborhood, over a window of hours during the
day, adjusting for day of the week. For a decision maker, the value would be to
facilitate making daily spatial staffing decisions during 24 hour cycles. We do not
assert that one modeling approach is better than the other. Rather, the modeling
approaches address different questions and yield different inference. We do note
that our approach is novel in considering space with circularity of time.

There is a useful literature modeling crime data as linear in time using past lo-
cations to predict future locations. In this regard, see Mohler et al. (2011), Mohler
(2013) and Chainey, Tompson and Uhlig (2008). Mohler et al. (2011) employ
self-exciting point process models, similar to those used in earthquake modeling
[e.g., Ogata (1998)], arguing that crime, when viewed linearly in time, can exhibit
“contagion-like” behavior. Mohler (2013) considers a self-exciting process with
the background rate driven by a log Gaussian Cox process to disentangle conta-
gion from other types of correlation. Chainey, Tompson and Uhlig (2008) focus
on hotspot assessment. This is purely spatial analysis, which may be implemented
across various time periods for comparison.

Wrapping time to a circle takes us to the realm of directional or angular data
where we find applications to, for example, wind directions, wave directions and
animal movement directions. For a review of directional data methodology see, for
example, Fisher (1993), Jammalamadaka and SenGupta (2001), Mardia (1972) and
Mardia and Jupp (2000). Traditional models for directional data have employed the
von Mises distribution, but recent work has elaborated the virtues of the wrapping
and projection approaches, particularly in space and space–time settings [see Jona-
Lasinio, Gelfand and Jona-Lasinio (2012) and Wang and Gelfand (2014)].

For event times during a day, wrapping time seems natural. Again, these times
only arise given an orientation. However, crimes at 23:55 and 00:05 are as tempo-
rally close as crimes at 23:45 and 23:55. Another example analogous to our setting
might be to model the arrival times (over 24 hours) of patients to a hospital (and,
to add space, we might consider the addresses of the arrivals).

Our data consists of a set of crime events in San Francisco (SF) during the
year 2012. Each event has a time of day and a location. In fact, we also have a
classification into crime type, and we also have assignment of each crime to a
district, arising by suitable partitioning of the city. Last, we know the day of the
year for the event, enabling consideration of day of the week effects.

There is a substantial literature which employs regression models to explain the
incidence of crime using a variety of socio-economic variables. In particular, for
spatially referenced covariates, we can imagine employing census unit risk factors
such as percent of home ownership, median family income and measures of neigh-
borhood quality, along with racial and ethnic composition. Such covariates could
be developed as tiled spatial surfaces over San Francisco using census data at, say,
tract or block scale. As an alternative, we introduce illustrative point-referenced
constructed covariates in space and time. In particular, with regard to space, we
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imagine high-risk locations, so-called crime attractors, that is, places of high pop-
ulation and high levels of human activity such as commercial centers and malls.
Then we view risk as exposure in terms of distance from such landmarks. We adopt
these covariates in both the NHPP and LGCP models. As a temporal risk factor,
we introduce into the mean a function which reflects the fact that, depending upon
the type of crime, evening and late night hours may experience higher incidence
of crime than morning and afternoon hours. Again, we adopt this covariate in both
the NHPP and LGCP models. Exploratory data analysis in Section 2 reveals a day
of the week effect with regard to daily crime time.

Finally, we address model comparison. In particular, within the Bayesian frame-
work, how do we compare a NHPP model with a LGCP model? We adopt the
strategy proposed in Leininger and Gelfand (2016). Briefly, the idea is to develop a
cross-validation, employing a fitting/training point pattern and a testing/validation
point pattern. Using the validation point pattern, with regard to model adequacy,
we look at empirical coverage vs. nominal coverage of credible predictive inter-
vals. In particular, these intervals are associated with the posterior distribution
of predictive residuals for cell counts for randomly selected sets. With regard to
model comparison, we look at rank probability scores [see, e.g., Gneiting and
Raftery (2007) and Czado, Gneiting and Held (2009)] for the posterior distribu-
tions associated with predictive residuals, again for cell counts for randomly se-
lected sets.

The format of the paper is as follows. In Section 2 we provide the details of our
crime event dataset along with some exploratory analysis. In Section 3 we consider
model construction with associated theoretical background. Employing day of the
week marks, in Section 4 we introduce our model specifications and fitting strate-
gies. In Section 5 we provide the inference results for both a simulated dataset and
the crime event dataset. Finally, in Section 6 we present a brief summary along
with proposed future work.

2. The dataset. Our dataset consists of crime events in the city of San
Francisco in 2012. We have three crime type categories: (1) assault, (2) bur-
glary/robbery2 and (3) drug. Each crime event has a time (date, day of week, time
of day) and location (latitude and longitude) information. Spatial coordinates (lat-
itude and longitude) were transformed into eastings and northings. Each crime
event is also classified into a district. In particular, there are 10 districts in San
Francisco: (1) Bayview, (2) Central, (3) Ingleside, (4) Mission, (5) Northern, (6)
Park, (7) Richmond, (8) Southern, (9 ) Taraval, (10) Tenderloin (see Figure 1).

2In the original dataset, burglary and robbery events are reported separately with hourly histograms
and spatial density maps provided in the supplementary materials [Shirota and Gelfand (2017)]. Bur-
glary and robbery are not universally accepted as being behaviorally similar. However, we aggregate
these crimes due to their similar definition and to increase the number of events in our point patterns.
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FIG. 1. The map of San Francisco (left) and crime counts on each day of week (right).

Figure 1 shows the counts of crime events for day of week.3 Counts for crime
types show different patterns. Assault events happen more on weekends, but bur-
glary/robbery events happen most on Friday. Interestingly, it seems drug events
happen most on Wednesday.

Figure 2 shows the data by type and by day of the week (3×7 plots) in the form
of “rose” diagrams. This figure reveals differences among crime types and also
differences across day of the week. For example, drug-related crime events are

FIG. 2. Histograms of crime events by type and by day of the week.

3Here, and in the sequel, we take day of the week as 02:00 to 02:00. This definition interprets
crime events on, for example, Saturday night as including the early hours of Sunday morning.
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observed more from 5 to 7 pm, while burglary/robbery crime events are observed
later in the day. Overall, the circular time dependence of crime events is seen,
for example, large counts from evening to late night and small counts from early
morning through the middle of the day. In the point pattern model construction
below, we model each crime type separately and, within crime type, incorporate
day of week as a mark.

3. Modeling and theory. Observations on a circle lead us to the world of di-
rectional data, as illustrated in Figure 2. Once an orientation has been chosen, the
circular observations are specified using the angle from the orientation to the cor-
responding point on the unit circle. However, here, we are only concerned with
point patterns on a circle. For the nonhomogeneous Poisson process and log Gaus-
sian Cox process models we only need to specify the intensity functions for the
processes, and so, in what follows, we only consider specifications for intensities
for space–time point patterns over D × S1 where S1 is the unit circle.

3.1. The nonhomogeneous Poisson process (NHPP) and Log Gaussian Cox
process (LGCP). Again, since the crime events are random both in number and
in space–time location, it is natural to think of them as a random point pattern over
space and time. Here, we make the assumption that events are located in space and
time, conditionally independent given their intensity, anticipating that the intensity
surface will explain the observed clustering in space and time. Then we consider
the two most common models for such a setting: the NHPP and the LGCP. The
LGCP dates at least to Møller, Syversveen and Waagepetersen (1998). As a spatial
process, it is defined so that the log of the intensity is a Gaussian process (GP),
that is,

(3.1) logλ(s) = X(s)T β + Z(s), Z(s) ∼ GP(0,C).

Here, Z(s) is a zero mean stationary, isotropic GP over D with covariance func-
tion C, which provides spatial random effects for the intensity surface, pushing
up and pulling down the surface, as appropriate. If we remove Z(s) from the log
intensity, then we obtain the associated NHPP. NHPP’s have a long history in the
literature [see, e.g., Illian et al. (2008)]. In fact, if Y is a Cox process with intensity
�(s), then, conditional on �(s) = λ(s), Y is an NHPP with intensity λ(s). Evi-
dently, an LGCP provides a very flexible intensity specification. Below, we will
argue that, with regard to our crime data, we prefer the additional flexibility of a
space–time Log Gaussian Cox Process (LGCP) to the associated NHPP. Our model
is in the spirit of the space–time LGCP introduced in Brix and Diggle (2001).

3.2. Circular covariance functions for Gaussian processes. Again, we con-
sider a three-dimensional Gaussian process with a two-dimensional location, and
one-dimensional circular time. In general, we seek

(3.2) Z(s, t) ∼ GP(0,C), (s, t) ∈ R
2 × S1.

We need to specify valid correlation functions over R2 × S1.
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Gneiting (2013) proposes families of circular correlation functions (CCF’s)
based on truncation of familiar spatial correlation functions. He shows that the
completely monotone functions are strictly positive definite on spheres of any
dimension, for example, powered exponential, Matérn, generalized Cauchy and
Dagum families. One of the examples in Gneiting (2013) is the powered exponen-
tial family,

(3.3) CPE(u) = exp
(−(φu)α

)
, u ∈ [0, π], α ∈ (0,1].

If α ∈ (0,1], then this function is a strictly positive definite function for any dimen-
sion, but if α > 1, then (5) is no longer positive definite, even in one dimension.

Another example in Gneiting (2013) is the generalized Cauchy family,

CGC(u) = (
1 + (φu)α

)−τ/α
, for u ∈ [0, π]α ∈ (0,1], τ > 0,(3.4)

where τ is a shape parameter which doesn’t affect the positive definiteness as long
as τ > 0. This function is positive definite for any dimension if α ∈ (0,1]. Again,
for α > 1, (3.4) is also not positive definite, even in one dimension.

It may be surprising that restriction of familiar spatial correlation functions to
the spherical domain maintains positive definiteness on the sphere. However, this
enables convenient choices and, in fact, we adopt the generalized Cauchy family
as the circular correlation function in the analysis below.

3.3. Space and linear time covariance functions. Next, we turn to valid co-
variance functions over R2 × S1. We consider both the separable case, which is
immediate, and also the nonseparable case.

Separable covariance functions. In the context of the LGCP model, we need to
specify the covariance function for the latent Gaussian process Z(s, t). Separable
space–time covariance functions are often adopted due to convenient specifica-
tion and computational simplification [Banerjee, Carlin and Gelfand (2015)]. The
separable specification arises if the space–time covariance function is written as a
product of a valid space and a valid time covariance function, that is,

Cs,t (h, u) = Cs(h)Ct (u).(3.5)

In our setting, we can define a valid space–time covariance function merely by
choosing as Cs any valid covariance function on R2 and multiplying it by any of
the foregoing valid CCF’s. The resulting covariance matrix for a set of (s, t)’s with
N s’s by M t’s will have a Kronecker product form Cs ⊗ Ct where Cs and Ct are
N × N and M × M covariance matrices. The simplified inverse, determinant and
Cholesky decomposition result, making the separable specification computation-
ally efficient and tractable in high-dimensional cases.

In this regard, we note that the point pattern data arises as a set (si , ti), i =
1,2, . . . , n, where n is the total number of points. As we don’t have a factorization
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in space and time, why is the separable form helpful? Below, we clarify the need
for grid approximation (discretization) for both space and time in order to evalu-
ate the LGCP likelihood and in order to obtain manageable computation for the
model fitting. Then N and M will become the number of grid centroids for space
and for time, respectively. For the separable case, we can then take advantage of
the Kronecker factorization. For the nonseparable case, we require the Cholesky
decomposition and the inverse of an NM × NM matrix, making the computation
much more demanding.

Nonseparable covariance functions. It is evident that the separable covariance
specification is restrictive for real data applications because it precludes space–
time interaction of the sort we mentioned in the Introduction. Various versions of
nonseparable covariance functions have been proposed for the case where space
is again R2 and time is linear. Cressie and Huang (1999) propose specifications
of nonseparable stationary covariance functions based on Fourier transformation
on R

d with criteria which guarantee positive definiteness. Since their specification
requires a closed-form solution for the d-dimensional Fourier transformation, the
class of functions is relatively small. Gneiting (2002) proposed a flexible paramet-
ric family of nonseparable covariance functions, extending the results of Cressie
and Huang (1999). Gneiting’s class takes the form

C(h, u) = σ 2

ψ(‖u‖2)d/2 ϕ

( ‖h‖
ψ(‖u‖2)

)
, (h, u) ∈ R

d ×R
l ,(3.6)

where ϕ(t), t ≥ 0, is a completely monotone function and ψ(t), t ≥ 0, is a posi-
tive function with a completely monotone derivative. In our modeling below, we
utilize Gneiting’s specification. However, these covariance functions are specified
on R

d × R
1; our need is to provide valid nonseparable covariance functions on

R
d × S1.

3.4. Space by circular time covariance functions. Finally, we turn to the
space–time covariance functions we seek. For the spatial correlation function, we
assume the exponential correlation function,

Cs(h) = exp
(−φs‖h‖)

.(3.7)

For the circular time correlation function, we consider the truncated generalized
Cauchy correlation function [again, see, Gneiting (2013)].

Then we arrive at the following proposed nonseparable covariance function over
space by circular time:

C(h, u) = σ 2

(1 + (φtu)α)δ+γ (d/2)

(3.8)

× exp
(
− φs‖h‖

(1 + (φtu)α)γ/2

)
, γ ∈ (0,1], α ∈ (0,1],
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where (h, u) ∈ R
2 × [0, π] and γ is the nonseparability parameter. We can show

that this is a valid covariance function on R
2 × S1 following the proof in Gneiting

(2002), working with the valid circular choices according to Gneiting (2013). We
prove this result in the supplemental material.

As noted in the Introduction, motivated by processes observed on the Earth over
time, recently, Porcu, Bevilacqua and Genton (2016) proposed nonseparable co-
variance functions on spheres crossed with linear time (as well as cross-covariance
functions for multivariate random fields defined over a sphere). Hence, in space
and time, their nonseparable covariance functions are specified on Sd ×R, where
Sd is the d-dimensional unit sphere. One of their contributions is similar to ours,
that is, following work by Gneiting (2002) presenting nonseparable space–time
covariance functions with further work by Gneiting [Gneiting (2013)] presenting
spatial correlation functions on a sphere, they obtain fairly general nonseparable
forms [see Table 2 in the online supplementary material of Porcu, Bevilacqua and
Genton (2016)] over this product space. Here, we follow a similar path but take
space as R2 with time as circular, and, for our application, we employ the particu-
lar class of the generalized Cauchy family over this product space. As a result, the
case of the real line crossed with the circle provides the common domain.

For model fitting with (3.8), we need to implement calculations for an NM ×
NM matrix. For the whole of the city of San Francisco, N is very large. Thus,
for convenience, we take a smaller region and adopt a more local investigation of
nonseparability for space–time crime patterns. Figure 3 shows the spatial locations
of all of the crime events and the point patterns for the Tenderloin and Mission dis-
tricts where relatively more events are observed than in the other districts. Then we
create a rectangular region around this area (see Figure 4 below). For this region,
in the interest of comparison, we implement the truncated generalized Cauchy cor-
relation function for circular time in both the separable and nonseparable cases.

4. Model specification, fitting and checking. We specify the intensity for the
NHPP as logλ(s, t) = logλ0(s)+ logκ0(t). For the LGCP, we add Z(s, t), a mean
0 GP with covariance function chosen according to the previous section.

Covariate specification. We employ constructed space and time covariates.
For the spatial covariates, we identify a set of landmarks. These landmarks are
referred to as crime attractors [Brantingham and Brantingham (1995)] and are se-
lected from centers of commercial activity, that is, places with high population
density and high human exposure. Examples might include malls, market streets
and amusement centers. For a given landmark, we employ a directional Gaussian
kernel function as the distance measure from crime location to landmark, that is,
inverse distance measures risk; the smaller the distance the larger the risk.

Formally, the covariate level at location s associated with landmark k is

gk

(
s, s∗

k

) = exp
(
−1

2

(
s − s∗

k

)′
�−1

k

(
s − s∗

k

))
,(4.1)
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FIG. 3. Crime event locations in SF (upper), Tenderloin (middle) and Mission (lower) for assault
(left), burglary/robbery (middle) and drug (right).

where s∗
k is the location of landmark k and �k = ( σ 2

1 ρkσ1σ2

ρkσ1σ2 σ 2
2

)
is a positive def-

inite matrix for landmark k. Here, σ 2
1 and σ 2

2 are scales for Easting and Northing
coordinates, and ρk is the correlation of the kernel for landmark k. In fact, σ1 is
the centroid to centroid Easting distance between adjacent grid cells, and σ2 the
centroid to centroid Northing distance between adjacent grid cells. ρk is treated as
an unknown, along with the βk’s, a regression coefficient assigned to gk . Thus, we
let logλ0(s) = ∑K

k=1 βkgk(s, s
∗
k).

Figure 4 shows the contour plot for assault events and the landmarks. Illustra-
tively, we create two landmarks, L1 = (−122.408,37.784) (Union Square Shop-
ping Center, henceforth “Union Square”) and L2 = (−122.419,37.764) (BART
Station, 16th and Mission, henceforth “BART Station”). The left-hand side is the
contour plot of the kernel density estimate for the observed assault events, obtained
by ggplot2 in R package. The right-hand side of Figure 4 overlays the subregion
used with the nonseparable covariance.

To form a temporal covariate, we need a function whose support is the unit cir-
cle. Since crime events occur more frequently in the evening and night hours, and
less in the morning and afternoon hours, the most elementary constructed covariate
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FIG. 4. The contour plot of the kernel density estimate for the assault events (left) and landmarks
with the subregion (right, color rectangular region).

which reflects this would have two levels. Here, we let

(4.2) κ(t) = μ
(
1 + δ1

(
t ∈ [4π/3,2π)

))
.

On the 24 hour scale, this choice of κ would be interpreted as adopting level μ

for times between 02:00 and 18:00 and level μ(1 + δ) for times between 18:00
and 02:00 in the morning. μ and δ become model parameters; alternative windows
could be explored. In fact, as demonstrated in Figure 2, the pattern and incidence
of crime events vary across day of week, and so we introduce a different temporal
covariate for each day of the week (writing μw and δw for w = Sun, . . . ,Sat).
Recalling Section 3, we make these covariates consistent by defining day of the
week as 02:00 to 02:00. This specification yields κ(t,w) of the form in (4.2).
Combined with gk(s, s

∗
k) in (4.1), this enables our specification of λ(s, t,w) below.

Model specification. Our baseline space by circular time LGCP model with
separable space–time covariance function is defined below. We employ the fore-
going binary time of day covariate and landmark distance covariates. The model is
defined on grid points and on each day of week. After discretization, let J be the
total number of space–time grids cells, that is, we have (sj , tj ), for j = 1, . . . , J

and w = Sun, . . . ,Sat,

ysj ,tj ,w|λ(sj , tj ,w) ∼ NHPP
(
λ(sj , tj ,w)

)
, sj ∈R

2tj ∈ S1,(4.3)

λ(sj , tj ,w) = λ0(sj )κ(tj ,w) exp
(
−σ 2

2
+ Z(sj , tj )

)
,(4.4)

Z(sj , tj ) ∼ GP(0,C), C = σ 2Cs ⊗ Ct,(4.5)

logλ0(sj ) =
K∑

k=1

βkgk

(
sj , s

∗
k

)
,(4.6)

gk

(
sj , s

∗
k

) = exp
(
−1

2

(
sj − s∗

k

)′
�−1

k

(
sj − s∗

k

))
,(4.7)
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κ(tj ,w) =
Sat∑

v=Sun

1(w = v)μv

(
1 + δv1(tj ∈ I )

)
,(4.8)

where ysj ,tj ,w is the count for grid cell j on day w, t ∈ S1 is the circular time
variable, s is the location coordinates and I = [4π/3,2π). The space and circular
time Gaussian process Z(s, t) is common across all the days of week, while the
temporal covariate κ(t,w) is dependent on the day of week.

Prior specifications. We assume gamma priors for the timescale parameters μ

and δ for convenience and normal priors for β’s with large variance. As for the
parameters of Gaussian processes, we assume uniform distributions for φs and φt .
The range associated with φs is chosen such that the correlation between locations
at the maximum distance for the study region is 0.05. The maximum circular dis-
tance in time is π , and so we chose φt to provide correlation 0.05 at that distance.
We used these priors in both the separable and nonseparable cases.

For the spatial Gaussian processes, φs and σ 2 are not identifiable [Zhang
(2004)], and so we need to adopt an informative prior distribution for one of them.
Here, we are informative about φ and adopt an inverse gamma distribution for σ 2

with relatively large variance. Finally, we assume a uniform prior on the domain
of definition for the separability parameter γ .

4.1. Model fitting. In fitting of the LGCP model, we have a stochastic integral
of the form

∫
D×S1 λ(s, t) ds dt in the exponential of the likelihood. We use grid

cell approximation for this integral as well as for the product term in the likelihood,
yielding

L
(
λ(·)) ∝ exp

(
−

Sat∑
w=Sun

J∑
j=1

λ
(
s∗
j , t

∗
j ,w

)
�s,t,w

) Sat∏
w=Sun

J∏
j=1

λnj,w
(
s∗
j , t

∗
j ,w

)
,(4.9)

where nj,w is the number of events in grid j on day w, J is the number of grid cells,
N is the total number of points in the point pattern and (s∗

j , t
∗
j ) are the centroids

of the grids cells. Fitting this approximation is straightforward because we only
require evaluation of λ(s∗

j , t
∗
j ,w) over the grid cells.

Sampling of parameters related to the NHPP model can be implemented through
the Metroplis Hastings (MH) algorithm. However, for the LGCP model, sampling
the large number of Z’s from the Gaussian process is difficult to implement effi-
ciently with standard Gibbs sampling. The customary Metropolis–Hastings algo-
rithm often gets stuck in local modes, and so a more sophisticated MCMC algo-
rithm is required. A now common approach for the LGCP model is to utilize the
Metropolis adjusted Langevin algorithm (MALA) [see Møller, Syversveen and
Waagepetersen (1998) and Girolami and Calderhead (2011)].

Here, for the Gaussian process outputs and hyperparameters, we use ellipti-
cal slice sampling [Murray, Adams and Graham (2010) and Murray and Adams
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(2010)] as discussed in Leininger and Gelfand (2016). Our sampling algorithm is
based on algorithms 1 and 2 in Leininger (2014), pages 50–51. Let Z denote the
vector of Gaussian process variables we need to sample, with Z having covari-
ance matrix Cθ . Let Z = Lθ ν, where Cθ = LθL

′
θ and ν ∼ N(0, I ). We sample

ν∗ = ν cos(ω) + η sin(ω), where η ∼ N(0, I ) through the elliptical slice sampling
algorithm. Given a sampled ν, we sample the hyperparameters θ by proposing the
θ∗ ∼ q(θ∗|θ) and Z∗ = Lθ∗ν such that

u <
L(Z∗)π(θ∗)q(θ |θ∗)
L(Z)π(θ)q(θ∗|θ)

, u ∼ U[0,1],
where L(·) is the likelihood in (4.9). We use random walk Metropolis Hastings for
proposing the candidates, adaptively tuning the variance of the proposal density
[see Andrieu and Thoms (2008)]. In this algorithm, sampling the hyperparameters
does not involve direct evaluation of the prior distribution of the Gaussian process
[N(Z|0,Cθ )] due to the transformation of variables.

4.2. Model adequacy and model comparison. Cross-validation is a standard
approach for assessing model adequacy and is available for point pattern models
with conditionally independent locations given the intensity, as for both the NHPP
and LGCP [see Leininger and Gelfand (2016)].

We implement cross-validation by obtaining a training (fitting) dataset and a
testing (validation) using p-thinning as proposed by Leininger and Gelfand (2016).
Let p denote the retention probability, that is, we delete si ∈ S with probabil-
ity 1 − p. This produces a training point pattern S train and test point pattern
S test, which are independent, conditional on λ(s). In particular, S train has inten-
sity λ(s)train = pλ(s). We set p = 0.5 and estimate λ(s)train s ∈ D. Then we
convert the posterior draws of λtrain(s) into predictive draws of λtest(s) using
λtest(s) = 1−p

p
λtrain(s).

Let {Bk} be a collection of subsets of D. For the choice of {Bk}, Leininger and
Gelfand (2016) suggest to draw random subsets of the same size uniformly over D.
Specifically, for q ∈ (0,1), if the area of each Bk is q|D|, then q is the relative size
of each Bk . They argue that making the subsets disjoint is time-consuming and
unnecessary. Based on the p-thinning cross-validation, we consider two model
performance criteria: (1) predictive interval coverage (PIC) and (2) rank probabil-
ity score (RPS). PIC offers assessment of model adequacy, and RPS enables model
comparison.

Predictive interval coverage. After the model is fitted to S train, the posterior
predictive intensity function can supply posterior predictive point patterns and
therefore samples from the posterior predictive distribution of N(Bk). For the �th
posterior sample, � = 1, . . . ,L, the associated predictive residual is defined as

R
pred
� (Bk) = N test(Bk) − N(�)(Bk),
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where N test(Bk) is the number of points of the test data in Bk . If the model is ade-
quate, then the empirical predictive interval coverage rate, that is, the proportion of
intervals which contain 0, is expected to be roughly the nominal level of coverage;
below, we choose 90% nominal coverage. Empirical coverage much less than the
nominal suggests model inadequacy; predictive intervals are too optimistic. Em-
pirical coverage much above, for example, 100%, is also undesirable. It suggests
that the model is introducing more uncertainty than needed.

Rank probability score. Gneiting and Raftery (2007) propose the continuous
rank probability score (CRPS). This score is derived as a proper scoring rule and
enables a criterion for assessing the precision of a predictive distribution for con-
tinuous variables. In our context, we seek to compare a predictive distribution to an
observed count. Czado, Gneiting and Held (2009) discuss rank probability scores
(RPS) for count data. Intuitively, a good model will provide a predictive distri-
bution that is very concentrated around the observed count. While the RPS has
a challenging formal computational form, it is directly amenable to Monte Carlo
integration. In particular, for a given Bk , we calculate the RPS as

RPS
(
F,N test(Bk)

) = 1

L

L∑
�=1

∣∣N(�)(Bk) − N test(Bk)
∣∣

− 1

2L2

L∑
�=1

L∑
�
′=1

∣∣N(�)(Bk) − N(�
′
)(Bk)

∣∣.
Summing over the collection of Bk gives a model comparison criterion. Smaller
values of the sum are preferred.

5. Data analysis. In this section we implement our model first for simulated
data and then for the SF crime dataset. We investigate our ability to recover the true
model through the simulation study where we use the same geographic region and
time period as in the real SF data. We approximate the likelihood by taking space
and circular time grid cells. We take 238 spatial grid cells for the full region and
64 spatial grid cells for the subregion. As for the time grid, we take 48 time grid
cells, that is, 02:00–02:30,02:30–03:00, . . . ,1:30–02:00. As representative points
to evaluate the intensity, we take the centroids of the cells. We consider a separable
covariance specification for the full region and nonseparable covariance for the
subregion around the Tenderloin and the northern part of the Mission districts.
We use the constructed spatial and temporal covariates as discussed in Section 4.
For the directional Gaussian kernels associated with the landmarks, we need to
estimate the correlation parameters ρk, k = 1,2. We plug in the posterior means of
these parameters obtained under the NHPP models for each crime category (see
Table 1).
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TABLE 1
Posterior means of the correlation parameters ρ1 and ρ2 in the directional Gaussian kernels for the

NHPP model

Full region Subregion

Assault Burg/Rob Drug Assault Burg/Rob Drug

ρ1 0.097 0.088 0.209 0.151 0.232 0.284
ρ2 −0.142 −0.344 0.054 −0.537 −0.893 0.946

Following Section 4.1, the priors for the parameters are chosen as μw, δw ∼
G(2,0.05), β ∼ N (0,100IK), σ 2 ∼ IG(2,0.05), φs ∼ U[0,0.3], φt ∼ U[0,6] and
γ ∼ U[0,1). We generate 150,000 posterior samples and take 100,000 as the burn-
in period for the full region, and 100,000 samples and take 50,000 as burn-in period
for the subregion. We also report the inefficiency factor (IF),4 which suggests the
relative number of correlated draws necessary to attain the same variance of the
posterior sample mean from the uncorrelated draws [Chib (2001)].

5.1. Simulation study results. The simulation data are generated from our
model specification in Section 4.1 with posterior means ρ1 and ρ2 for assault
events (i.e., ρ1 = 0.097 and ρ2 = −0.142) and without day of week effects, that is,
μw = μ and δw = δ for w = Sun, . . . ,Sat. Specifically, we generate a point pattern
under a separable covariance function for the full region and a second point pattern
under a nonseparable covariance function for the subregion. The resulting numbers
of points are 9,935 for the full region and 6,451 for the subregion. A LGCP model
with separable covariance (LGCP-Sep) and NHPP model with the spatial and time
covariates are implemented for simulated data over the full region.

Table 2 shows the estimation summary for the simulation data over the full
region. The NHPP inference shows high precision but poor accuracy. For LGCP-
Sep, although consistency for φs and σ 2 is not guaranteed [see Zhang (2004)], we
see good recovery of the parameters. For the NHPP model with the spatial and
time covariates, since the space–time Gaussian processes are not included in the
model, the estimation results have biases relative to the true values based on the
LGCP-Sep. The true and posterior intensity surface at two time grids: (1) 12:00–
12:30 and (2) 24:00–00:30 are shown in the supplementary material. Compared
with the true surface, we see some preference for the LGCP-Sep.

Table 3 shows the estimation summary for the simulated data over the subre-
gion. True values of parameters are recovered well by the LGCP model with non-
separable covariance (LGCP-NonSep). Although the true value of γ is included in

4The inefficiency factor is the ratio of the numerical variance of the estimate from the MCMC
sample relative to that from hypothetical uncorrelated samples, and is defined as 1 + 2

∑∞
s=1 ρs ,

where ρs is the sample autocorrelation at lag s. These values on tables are calculated with samples
obtained at each 50th iteration.
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TABLE 2
Estimation summary for NHPP and the space by circular time LGCP with separable covariance for

the simulation data over the full region

NHPP LGCP-Sep (True)

True Mean 95%CI IF True Mean 95%CI IF

μ 1 0.081 [0.079, 0.084] 1 μ 1 1.317 [0.705, 2.485] 72
δ 0.5 1.125 [1.049, 1.208] 1 δ 0.5 0.391 [0.185, 0.649] 66
β1 3 3.048 [2.966, 3.128] 4 β1 3 3.990 [3.165, 4.949] 72
β2 3 3.287 [3.204, 3.362] 4 β2 3 2.673 [1.599, 3.907] 74
ρ1 0.097 0.551 [0.501, 0.596] 1 σ 2 3 3.256 [2.850, 3.886] 73
ρ2 −0.142 −0.424 [−0.480,−0.362] 1 φs 0.02 0.019 [0.018, 0.021] 60

φt 0.1 0.101 [0.085, 0.117] 65
σ 2φs 0.06 0.064 [0.056, 0.075] 68
σ 2φt 0.3 0.328 [0.290, 0.375] 56

the 95% CI, the posterior for γ has large variance. Since the true model is LGCP-
NonSep with γ = 0.8, the estimation of φt by LGCP-Sep yields some bias. The
true and posterior intensity surface for two time grids: (1) 12:00–12:30 and (2)
24:00–00:30 are shown in the supplemental material. The estimated intensity sur-
faces for LGCP-Sep and LGCP-NonSep are similar to each other. Additionally,
we also compare the values of RPS and PIC of LGCP-Sep with those of LGCP-
NonSep. Model comparison will change with the selection of time grid but, al-
together, the differences are ignorable. Details are provided in the supplementary
material.

TABLE 3
Estimation summary for the space by circular time LGCP for simulation data over the subregion:

LGCP with separable covariance (left) and LGCP with nonseparable covariance (right)

LGCP-Sep LGCP-NonSep (True)

True Mean 95%CI IF True Mean 95%CI IF

μ 1 0.778 [0.196, 2.283] 73 μ 1 0.533 [0.144, 1.796] 73
δ 0.5 0.196 [0.000, 0.502] 70 δ 0.5 0.249 [0.076, 0.491] 58
β1 3 2.909 [1.913, 4.150] 73 β1 3 2.961 [2.261, 3.946] 72
β2 3 2.600 [1.903, 3.213] 71 β2 3 2.472 [1.895, 3.132] 70
σ 2 1 0.842 [0.567, 1.442] 72 σ 2 1 0.913 [0.535, 1.301] 72
φs 0.02 0.029 [0.014, 0.043] 70 φs 0.02 0.024 [0.014, 0.039] 69
φt 0.1 0.168 [0.117, 0.236] 58 φt 0.1 0.125 [0.084, 0.181] 61
σ 2φs 0.02 0.023 [0.017, 0.032] 64 σ 2φs 0.02 0.022 [0.013, 0.032] 67
σ 2φt 0.1 0.139 [0.091, 0.217] 64 σ 2φt 0.1 0.111 [0.075, 0.163] 61

γ 0.8 0.498 [0.031, 0.951] 67
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FIG. 5. The rank probability score (left) and predictive interval coverage (right) for the full region:
NHPP (blue line) and LGCP with separable covariance (red line). q is the relative area of Bk to that
of D.

5.2. Real data application.

Full region. The numbers of crime events in 2012 for the full region are 9834
for assault, 9884 for burglary/robbery and 6234 for drug. We implement LGCP-
Sep and NHPP, assessing validation with 90% PIC and comparison using RPS. We
separate S test and S train with p = 0.5. We calculate RPS and 90% PIC for three
time ranges: (1) 02:00–10:00, (2) 10:00–18:00 and (3) 18:00–02:00. As for the
choice of Bk , from the grid approximation over space and time, each Bk is chosen
as a sum of grid units over space for each time interval. As above, the area of Bk

is approximately equal to q|D|, where |D| is the total area and here we choose
the relative size q ≤ 0.1. We randomly choose 1,000 sets of Bk uniformly over D

and, following Section 4.2, compute average RPS and 90% PIC over these sets.
Figure 5 shows RPS and PIC for the three crime categories and three time ranges.
Figure 5 reveals that the LGCP-Sep model outperforms the NHPP model for all
of the crime types and all of the time ranges. Figure 5 also demonstrates that the
LGCP-Sep 90% predictive intervals capture nominal coverage very well while the
PIC’s for the NHPP are too small.

There may be interest in assessing local model adequacy to see if there are areas
where the model is not performing well. Due to the flexibility of the LGCP-Sep
model, we would not expect to see any local anomalies. However, we can assess
this using our posterior samples and our collection of Bk’s, enabing calculation of
local PIC’s. These are presented in Figure 6 for each crime type over the spatial
region. We see that most are above the nominal, and a few below, but there is no
evident pattern, no clustering. Then we can conclude that any over- or under-fitting
occurs at random over the region.

Table 4 shows the estimation results for the space by circular time LGCP for the
three crime categories in 2012. With day of week-specific μw and δw , μ0 and δ0
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FIG. 6. Local in-sample PIC for the three crime types.

are set to the means of them over the days of week, yielding μw − μ0 and δw − δ0
as deviations. See Figure 7 below for inference on the δw across day of the week.
The spatial covariates β are positively significant. In particular, β1 and β2 for drug
crimes show larger values than those for the other crime types. This result suggests
that drug events are more concentrated around landmarks L1 and L2.

Figure 7 shows the posterior mean and 95% CI of
∑J

j=1 λ(s∗
j , t

∗
j ,w)�s,t,w

against counts on each day of week. For a given w,
∑J

j=1 λ(s∗
j , t

∗
j ,w∗

j )�s,t,w is
approximately the expected number of crime events on day w a year. The left
panel demonstrates that the posterior mean of

∑J
j=1 λ(s∗

j , t
∗
j ,w)�s,t,w traces the

observed counts on days of week accurately. The right panel displays the posterior
mean and 95% CI of δw . Although the variance of δw is large, this figure shows
that δw varies with day of week; for assault, weekend δ’s are larger. Since all of
the δw’s are positive, regardless of day of week or type of crime, we find elevated
risk in the evening hours. Interestingly, although drug counts on Wednesday are

TABLE 4
Estimation results for space by circular time LGCP for the full region with separable covariance:

assault (left), burglary/robbery (middle) and drug (right)

Assault Burglary/Robbery Drug

Mean 95%CI IF Mean 95%CI IF Mean 95%CI IF

μ0 36.94 [20.62, 60.12] 70 36.18 [21.45, 57.79] 70 32.43 [19.04, 58.32] 69
δ0 0.342 [0.201, 0.613] 68 0.188 [0.069, 0.424] 69 0.344 [0.137, 0.672] 70
β1 1.654 [1.146, 2.023] 69 2.646 [2.038, 3.542] 73 3.874 [2.146, 5.045] 74
β2 1.202 [0.614, 1.778] 70 0.470 [0.048, 0.823] 65 3.745 [2.117, 4.399] 71
σ 2 5.598 [5.064, 6.471] 73 5.756 [5.331, 6.219] 72 8.424 [7.868, 8.984] 67
φs 0.011 [0.010, 0.013] 70 0.005 [0.005, 0.007] 70 0.027 [0.025, 0.030] 68
φt 0.137 [0.123, 0.151] 58 0.178 [0.163, 0.196] 59 0.161 [0.140, 0.182] 63
σ 2φs 0.066 [0.059, 0.072] 61 0.033 [0.028, 0.037] 65 0.231 [0.207, 0.259] 63
σ 2φt 0.769 [0.681, 0.864] 61 1.027 [0.887, 1.164] 65 1.362 [1.182, 1.540] 60
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FIG. 7. Posterior mean and 95% CI of
∑J

j=1 λ(s∗
j , t∗j ,w)�s,t,w (left: dotted points are crime

counts) and δw (right) on each day of week for the full region: dashed lines are 95% CI.

larger than those on other days, δWed for drug is smaller than those for the other
days. Additionally, in the supplemental material, we provide figures for the poste-
rior mean intensity surfaces for the three crime categories for three time grids: (1)
08:00–08:30, (2) 16:00–16:30 and (3) 24:00–00:30. The figures reveal different
intensity patterns for each category and time grid.

Subregion. Finally, we turn to the nonseparable case, providing results for the
subregion and comparison with the separable case. The number of points are 5579
for assault, 5407 for burglary/robbery and 4415 for drug crimes. Figure 8 shows
the RPS and PIC for three models for the subregion: (1) NHPP, (2) LGCP-Sep and
(3) LGCP-NonSep. Although both LGCP models fit considerably better than the
NHPP model, the model performance of LGCP-Sep is difficult to distinguish from

FIG. 8. The rank probability score (left) and predictive interval coverage (right) for the subre-
gion: NHPP (blue line), LGCP with separable covariance (red line) and LGCP with nonseparable
covariance (green line). q is the relative area of Bk to that of D.
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TABLE 5
Estimation results for the space by circular time LGCP for the subregion with nonseparable

covariance: assault (left), burglary/robbery (middle) and drug (right)

Assault Burglary/Robbery Drug

Mean 95%CI IF Mean 95%CI IF Mean 95%CI IF

μ0 38.49 [19.89, 66.82] 67 67.93 [12.39, 51.44] 71 0.281 [0.237, 0.764] 71
δ0 0.360 [0.196, 0.625] 67 0.347 [0.000, 0.980] 71 0.284 [0.001, 0.764] 70
β1 1.875 [0.819, 2.586] 72 2.236 [1.819, 2.551] 65 4.204 [3.643, 4.975] 71
β2 1.889 [1.103, 2.726] 72 1.498 [0.449, 2.464] 66 2.562 [1.451, 3.972] 66
σ 2 5.065 [4.435, 5.508] 70 7.244 [6.661, 8.382] 72 2.331 [1.761, 2.935] 67
φs 0.014 [0.012, 0.016] 65 0.003 [0.003, 0.004] 60 0.075 [0.059, 0.094] 66
φt 0.147 [0.117, 0.191] 69 0.236 [0.196, 0.277] 59 0.604 [0.354, 0.815] 68
γ 0.104 [0.006, 0.246] 55 0.069 [0.003, 0.194] 48 0.236 [0.016, 0.533] 53
σ 2φs 0.072 [0.063, 0.083] 57 0.033 [0.028, 0.037] 65 0.231 [0.207, 0.259] 63
σ 2φt 0.742 [0.617, 0.933] 66 1.027 [0.887, 1.164] 65 1.362 [1.182, 1.540] 60

that of LGCP-NonSep. This result is consistent with our findings in the simulation
study.

Table 5 shows the estimation results. The estimated values of μ0 for assault
and burglary/robbery crimes are higher and have larger variances than that for
drug crimes. From our model specification, μ0 and σ 2 have strong positive cor-
relation because both parameters are scale parameters for the intensity, that is,
μ0 exp(−σ 2/2). In fact, the results reveal larger values of μ0 and σ 2 for assault
and burglary/robbery events, and a smaller value of μ0 and σ 2 for drug events.
γ > 0 express the degree of nonseparability. It varies with crime type but has high
uncertainty so that the differences between types are not distinguished. As in the
simulation study, the difference between LGCP-Sep and LGCP-NonSep is very
small with respect to RPS. Figure 9 shows the posterior mean and 95% CI of the∑J

j=1 λ(s∗
j , t

∗
j ,w)�s,t,w against counts on each day of the week. The right figure

exhibits the posterior mean and 95% CI of the δw . Although the results are similar
to those for the full region, δWed for drug is larger than that for the full region,
while now δT ue for drug is smaller than that for the full region.

6. Summary and future work. We have looked at times and locations of
crime events for the city of San Francisco. We have argued that these data should
be treated as point patterns in space and time where time should be treated as circu-
lar. We introduced derived spatial covariates (using distance from landmarks) and
temporal covariates (using day of the week). We have looked at NHPP and LGCP
models for such data. For the latter, we have proposed valid space and circular
time Gaussian processes, both separable and nonseparable, for use in the LGCP.
We have shown through a simulation example that we can recover the underly-
ing model and intensity surface. We have discussed criteria for model adequacy
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FIG. 9. Posterior mean and 95% CI of
∑J

j=1 λ(s∗
j , t∗j ,w)�s,t,w (left: dotted points are crime

counts) and δw (right) on each day of week for the subregion: dashed lines are 95% CI.

(PIC) and model comparison (RPS). We have shown that the LGCP outperforms
the NHPP for the SF crime data. However, strong support for nonseparability for
the subregion is not seen through our model estimation.

Future work will focus on more efficient computation. It will find us trying to
develop appropriate approximations to enable us to fit the nonseparable model to
larger regions. It will also consider alternative approaches to the likelihood approx-
imation, following strategies proposed by Adams, Murray and MacKay (2009).

Acknowledgments. The authors thank Giovanna Jona Lasinio for suggesting
this problem, for useful conversations and for providing the San Francisco dataset.
The computational results are obtained by using Ox [Doornik (2007)].

SUPPLEMENTARY MATERIAL

Supplement to “Space and circular time log Gaussian Cox processes with
application to crime event data” (DOI: 10.1214/16-AOAS960SUPP; .pdf). In
this online supplement article, we provide (1) proof of the validity of our proposed
nonseparable covariance function on R

2 × S1 and (2) additional figures and tables
to see posterior mean intensity estimates under different models.
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