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We propose Bayesian functional mixed effect time series models to ex-
plain the impact of engine idling on ultrafine particle (UFP) counts inside
school buses. UFPs are toxic to humans and school engines emit particles
primarily in the UFP size range. As school buses idle at bus stops, UFPs pen-
etrate into cabins through cracks, doors, and windows. Counts increase over
time at a size dependent rate once the engine turns on. How UFP counts inside
buses vary by particle size over time and under different idling conditions is
not yet well understood. We model UFP counts at a given time using a mixed
effect model with a cubic B-spline basis as a function of size. The log residual
variance over size is modeled using a quadratic B-spline basis to account for
heterogeneity in error across size bin, and errors are autoregressive over time.
Model predictions are communicated graphically. These methods provide in-
formation needed to quantify UFP counts by size and possibly minimize UFP
exposure in the future.

1. Introduction. Ultrafine particles (UFPs) are particulate matter with diam-
eters less than 100 nm. UFPs’ small size and large surface area allow them to pen-
etrate the lung, enter the circulatory system, and deposit in the brain [Oberdorster
et al. (2004), Samet et al. (2009)], and it has been suggested that they are more
toxic to humans than larger particles [Alessandrini et al. (2006), Delfino, Sioutas
and Malik (2005), Ferin et al. (1990), Frampton et al. (2006)]. Though more re-
search must be done within the UFP fraction, the health effects of particles are
linked to particle size which determines the region in the lung the particles deposit
[Morawska et al. (2008)]. Children are more sensitive than adults to UFPs because
their physiological and immunological systems are still developing [Bennett and
Zeman (1998)].

In the U.S., roughly 25 million children ride school buses daily. About 90 per-
cent of buses are diesel powered, emitting particles primarily in the UFP size range
[EPA (2002, 2014)]. As school buses idle at bus stops, UFPs from diesel emis-
sions penetrate into cabins through cracks, doors, and windows. This so-called
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“self-pollution” increases the exposure to UFPs of children on board [Zhang et al.
(2012)]. How UFP counts vary by particle size as school buses idle over time and
under different idling conditions is not yet well understood.

In this paper, we reanalyze data collected by researchers measuring particle
counts inside buses first with the engine off and then after the engine is turned on
and idles. A Scanning Mobility Particle Sizer (SMPS) counted particles per cubic
centimeter in 102 size bins that group particles by diameter ranging from the first
size bin containing particles of the smallest diameters, 7.37–7.64 nm, to the last
size bin containing sizes of 269.0–278.8 nm. The ordered collection of counts in
these 102 size bins at a single point in time is called a UFP size distribution, even
though (i) technically particles with diameters greater than 100 nm are too big to
be UFPs and (ii) the counts are not a distribution in the statistical sense. Size bin
widths are approximately equally spaced on a log scale, and so UFP size distribu-
tions have more bins for the smaller UFP particles of interest. UFP distributions
were collected over time during multiple experiments, or runs, making the data
multivariate longitudinal.

In previous work, size distributions were typically modeled over size bin and
time via modal methods [Whitby (1978), Whitby et al. (1991)], which treat particle
size distributions as a mixture of densities [Hussein et al. (2005), Whitby et al.
(1991), Wraith et al. (2009, 2014)]. Modal methods standardize particle counts:
only information about the relative composition of particle size bins is retained. In
modeling vehicle emissions, understanding actual particle counts is crucial. Modal
methods have also not accounted for residual error which, as mentioned in Ramsay
and Silverman (2005), may not be constant across size bin. Other previous work
modeling UFP size distributions include the methods in Zhang et al. (2012), who
modeled UFP counts inside idling school buses over time using separate univariate
longitudinal models for each particle size bin.

The UFP size distribution is a function observed, with noise, over time. The
primary interest in the current application is to explain the variation in the size
distribution function across time in response to scalar covariates. This data setting
follows the same structure as the functional methods described in Morris (2015)
and Ramsay and Silverman (2005).

To best match this data setting, we propose Bayesian longitudinal functional
time series models to model the impact of engine idling on UFP counts inside
school buses. Unlike modal methods, functional time-series methods allow for in-
ference on particle counts while accounting for differences in residual variance
across particle size bin. This is also an improvement on the methods in Zhang
et al. (2012); as we expect neighboring bins to have similar counts, their univariate
longitudinal approach does not fully utilize the information in the data. We model
UFP size distributions at a given time with a cubic B-spline basis [de Boor (1978)]
and allow counts to increase over time at a size bin dependent rate once the engine
is turned on. Our approach is a varying coefficient model as in Hastie and Tib-
shirani (1993) or Lang and Brezger (2004). We explore alternate models for the
engine-on increase.
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UFP size distributions naturally change in shape throughout each day, but with
steady meteorological and background traffic, conditions can remain fairly con-
stant during short periods of time. Stable conditions before the engine turned on
resulted in clustering of baseline UFP size distributions within run. Despite stable
conditions, pertubations from minute to minute due to a distant passing car, SMPS
measurement error, or other natural disturbance were also observed, leading to ad-
ditional residual correlation over size. Functional mixed-effect models have been
utilized many times in the literature to model nested functional data [Berhane and
Molitor (2008), Goldsmith and Kitago (2013), Morris et al. (2003)] and are ideal
for this application. Baseline random effect functions are modeled by run, and ad-
ditional curve-to-curve UFP deviations are split into the sum of minute-to-minute
random effect functions and autoregressive error over time. To account for possi-
ble differential error across particle size bins, the log residual variance over size
bin is modeled using a quadratic B-spline basis.

Interest centers on how mean particle counts change after the engine turns on
as a function of size bin. Researchers are also interested in the mode of particle
size counts, the mode height, and how both evolve after the engine turns on. We
provide summaries of how the mode and mode height evolve as the engine idles.
Plots are presented to aid in the interpretation of model inferences and make model
output interpretable to nonstatisticians. Graphs also aid in diagnosis of lack of fit
and can help suggest model improvements.

In Section 2 we describe the dataset, Section 3 presents our model, and Section 4
gives results. Finally, Section 5 is discussion.

2. UFP size distributions inside buses. UFP size distribution measurements
were collected inside the bus every 2 minutes, and the current analysis considers
measurements taken during the time period between 15 minutes before the engine
was turned on and 20 minutes afterward. A set of UFP size distributions collected
over this time period defines one run, though a few runs are shorter than the defined
time. For certain runs, measurements occurred at odd-numbered minutes, while for
other runs measurements occurred at even numbers. Runs took place under one of
two window positions: (1) all windows closed, although some windows could not
be closed tightly; and (2) eight rear windows, four on each side, open 20 cm. There
are 21 runs in this dataset: 12 for windows open and 9 for windows closed. The
study was conducted over one month in an open space under stable meteorological
conditions without nearby UFP emission sources. Daily wind speed, temperature,
and relative humidity ranged from 2.5 to 3.6 m/s, 18.2 and 22.6◦C, and 58 to 80
percent, respectively [Zhang et al. (2012)].

Figure 1 plots UFP size distributions over time for 3 sample runs. Figure 1(a),
(d) represents one run, where Figure (a) plots UFP size distributions over time
before engine-on and and Figure (d) plots distributions for the same run after the
engine is turned on. Figure 1(b), (e) and (c), (f) are organized similarly. Time is
measured in minutes from when the engine is turned on, meaning measurements
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FIG. 1. UFP size distributions over time for 3 sample runs. Figure (a), (d) represents one run,
where Figure (a) plots UFP size distributions over time before engine-on and Figure (d) plots dis-
tributions for the same run after the engine is turned on. Figure (b), (e) and (c), (f) are organized
similarly. Time is measured in minutes from when the engine is turned on, meaning measurements
range from approximately −15 to 20 minutes and curves change color as time progresses. Figure
(a), (b), (c) shows baseline UFP size distributions cluster within run, but minute-to-minute pertuba-
tions are present by curve to varying extents, in particular in Figure 1(c), which shows the effect of
the rare occurrence of a passing vehicle in the fifteenth minute before engine-on. Figure (d), (e), (f)
shows engine-on counts increase most in size bins smaller than 60, but suggests this increase varies
by window position: in (d) the windows are closed, while in (e), (f) they are open. Figure (f) shows
minute-to-minute pertubations can also be seen for engine-on, as counts rapidly increased in the
20th minute.

range from approximately −15 to 20 minutes, and curves change color as time pro-
gresses. Figure 1(a), (b), (c) shows baseline UFP size distributions cluster within
run, but minute-to-minute pertubations are present to varying extents, in particular,
in Figure 1(c), which shows the effect of the rare occurence of a passing vehicle in
the fifteenth minute before engine-on. Figure 1(d), (e), (f) shows engine-on counts
increase most in size bins smaller than 60, but suggests this increase varies by
window position: in (d) the windows are closed, while in (e), (f) they are open.
Figure 1(f) shows minute-to-minute pertubations can also be seen for engine-on,
as counts rapidly increase in the 20th minute.
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FIG. 2. Figure (a) and (b) show particle counts and log particle counts over time, respectively, for
size bin 30 (20.9–21.7 nm) for all runs by window position. Each line is a separate run. Counts for
size bin 30 generally increase sharply when the engine first turns on, and then continue to increase
at slower rates thereafter, though in some cases increases are not seen, particularly for the windows
closed position. A log transformation allows for easier temporal modeling of counts.

Figure 2(a) and (b) plot particle counts and log particle counts over time for
size bin 30 (20.9–21.7 nm) for all runs by window position. Each line is a separate
run. Counts for size bin 30 generally increase sharply when the engine first turns
on, and then continue to increase at slower rates thereafter, though in some cases
increases are not seen, particularly for the windows closed position. A log trans-
formation allows for easier temporal modeling of counts [Whitby et al. (1991),
Wraith et al. (2009, 2014)].



302 FISCHER, ZHANG, ZHU AND WEISS

3. A time series semiparametric model for UFP size distributions. Let i

be index run, where i = 1, . . . ,R and for our data R = 21. Let s be index particle
size bin, with s = 1, . . . , S and for our data S = 102. Time, t , has a run dependent
range of tmin,i to tmax,i . Time is measured in minutes and defined so that usually
tmin, i = −14 or −15, always the engine is turned on at t = 0, and usually tmax,i =
19 or 20; there is modest variation by run for tmin, i and tmax, i . Baseline refers
to time before engine-on, when t < 0. Let z(i) be an indicator of window position
where z(i) = 1 corresponds to windows open and z(i) = 0 corresponds to windows
closed. The window position should only affect measurements after t = 0, not
before. Let p(i, t) index each unique UFP distribution, where p(i, t) = 1, . . . ,P ,
and P is the total number of UFP distributions across all runs. We write p ≡ p(i, t)

and z ≡ z(i) to simplify notation. Outcome yist is the natural log of particle count
plus 10 for run i, size bin s at time t . A log transformation allows easier temporal
modeling of counts.

3.1. Modeling mean log counts. Before engine-on, baseline mean log counts
are expected to be constant over time and are modeled by a hierarchical model
with random run intercepts which vary as a function of size bin s. At baseline, we
expect yist to have a size bin specific population mean, αs , and size bin specific
random intercept, γis .

After engine-on, the yist increase additively from baseline levels. Let f (t) be a
J × 1 vector of functions of t , with j th element

fj (t) =
{

0, t < 0,

mj(t), t ≥ 0.
(3.1)

For a model with quadratic trend after engine-on, J = 2, m1(t) = t , and m2(t) =
t2. Other choices for f (t) are discussed in Section 3.3.

Engine-on increases in mean vary by window position z. Let δzs be a J × 1
vector of size bin and window position-specific regression coefficients for f (t).
Then, for given s and z, the increase in mean log particle count from baseline is
δT
zsf (t).

The size-specific model for any time t is

yist = αs + γis + δT
zsf (t) + uist .(3.2)

Errors uist are discussed shortly.
We want the baseline engine-off population mean αs , baseline random intercept

γis , and the coefficients for the time trends δzs to vary smoothly by size bin s, and
we model αs , γis , and the elements of δzs as cubic B-spline functions of s. Let
B(s) be a cubic (K × 1) B-spline basis over size bin s with (K − 4) knots. Let α
be the coefficients of B(s) for the population mean. Then

αs = αT B(s),
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and let γi be the coefficients of B(s) for random intercept for run i. Then

γis = γ T
i B(s).

The vectors of random coefficients describing baseline UFP size distribution
variation by run, γi , have distribution

(3.3) γi |�γ ∼ NK(0,�γ )

for i = 1, . . . ,R. Together αT B(s) + γ T
i B(s) model the baseline UFP size distri-

bution for run i and size bin s.
Let δzsj be the j th element of δzs . Set δzsj = �T

zjB(s) so that δzsj varies
smoothly over s according to coefficients in the K × 1 vector �zj . We define
the J × K matrix �z so that �zj is the j th row of �z. Then

(3.4) f (t)T �zB(s) = δT
zsf (t).

There is one �z, J × K , for each window position, closed, �0, and open, �1.

3.2. Modeling errors. Errors uist are modeled in two parts. First, despite sta-
ble meteorological conditions, pertubations from minute to minute due to a pass-
ing car, SMPS measurement error, or other disturbance were observed, leading to
a correlation of errors over size bin beyond that observed by run. We use the same
cubic B-spline basis B(s) to model this correlation. Let νp be the random per-
turbation coefficients of B(s) for UFP distribution p. These random vectors have
distribution

(3.5) νp|�ν ∼ NK(0,�ν)

for p = 1, . . . ,P . To keep notation in terms of run, size, and time, we define ξist =
νT
p B(s).

Because we have longitudinal data, we typically expect higher correlation in
observations closer together in time and lower correlations between observations
farther apart in time. This is the second part of our error, called vist , which we
model with an autoregressive process over time conditioning on the first observa-
tion [Prado and West (2010)]:

vist = θvi,s,t−1 + εist ,(3.6)

εist ∼ N
(
0, σ 2

s

)
,(3.7)

where the lag one correlation is θ , and σ 2
s is the variance of εist given vi,s,t−1.

The error variance σ 2
s may not be constant and needs to vary smoothly over size

bin, matching the functional methods described in Ramsay and Silverman (2005).
The log variance is modeled with a separate quadratic (L × 1) B-spline basis over
size bin, Berr(s), with (L − 3) knots. Log variance is modeled

log
(
σ 2

s

) = ηT Berr(s) + ws,(3.8)

ws ∼ N
(
0, τ 2

η

)
,(3.9)
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where the ws are small normal residual terms with known variance τ 2
η added to

ηT Berr(s) to enable efficient MCMC sampling [Baladandayuthapani, Mallick and
Carroll (2005), Crainiceanu et al. (2007), Hadfield (2010)]. We set τ 2

η to a small
number to not add too much variation.

The two-part errors then are modeled as

(3.10) uist = ξist + vist ,

along with equations (3.5), (3.6), (3.7), (3.8), and (3.9). Now we discuss time trend
models after engine-on.

3.3. Time trend models. The time trend after the engine turns on has not been
explored in current research, and thus we consider competing parametric models.

3.3.1. Quadratic time trend. For the model with quadratic trend, J = 2,
m1(t) = t , m2(t) = t2, and �z is a 2 × K matrix with rows of coefficients of
B(s) for the linear and quadratic time trend terms.

3.3.2. Jump models with a quadratic time trend. We consider an immediate
jump in counts when the engine first turns on followed by a quadratic time trend.
Here J = 3, m1(t) = 1, m2(t) = t , and m3(t) = t2.

3.4. Random jumps for the time trend. Finally, we considered random jumps
as part of the time trend to determine if further improvements in model fit were
possible. The random jump time trend uses the same B-spline basis B(s) to vary
time trend coefficients by size bin. Let g(t) be a G × 1 vector of functions of t ,
defined analogously to f (t) in equation (3.1). Let ϒi be defined as �z in equa-
tion (3.4), except ϒi varies by run, not window position, and ϒi |�ϒ ∼ N(0,�ϒ).
A model with a random jump would have g(t) = 1, G = 1, and ϒi be a K ×1 ran-
dom vector. This notation allows for more complex random effects after engine-on,
however, residual analysis did not indicate a need for additional random effects;
see Appendix A [Fischer et al. (2017)], Figures A1, A2, and A3.

The model now takes the form

(3.11) yist = αT B(s) + γ T
i B(s) + f (t)T �zB(s) + g(t)T ϒiB(s) + uist ,

along with equations in Section 3.2.
The model with only quadratic time trend is referred to as the no-jump model,

while the model with an engine-on jump is referred to as the jump model. These
models are described by equation (3.11) without the term g(t)T ϒiB(s). The
model with the engine-on random jump is referred to as the random jump model
and is described by equation (3.11). We used 7 knots (implying K = 11) to choose
between engine-on parametric forms, and then experimented with various values
of K to determine which resulted in our preferred model fit.
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3.5. Priors. Proper priors are used on all parameters. Priors for the fixed ef-
fects α and �zj , j = 1, . . . , J , are

α|cα ∼ NK(4, cαIK),(3.12)

�zj |cδj
∼ NK(0, cδj

IK),(3.13)

where IK is the K × K identity matrix. We believed the engine-off fixed effects
would be between two and six on the log scale with fair uncertainty around that
value, and thus we gave a prior mean equal to 4 and set cα equal to 16. For the
engine-on fixed effects we set the prior means to zero to match the null hypothesis
of no engine-on effect for either window position. Because we do not believe this
null hypothesis, we set the prior variances, cδj

, to be fairly large to accommodate
the anticipated prior uncertainty. If jump, linear, and quadratic terms contribute
equally to the engine-on effect at 10 minutes, the linear term should be about 1/10
of the jump term, and the quadratic term should be about 1/100 of the linear term.
Thus, for jump models, we set cδ1 = 2, cδ2 = 2/10, and cδ3 = 2/100. The no-jump
model removed the jump portion of the prior, cδ1Ik .

The prior for the correlation parameter θ is taken to be truncated normal, as it is
conditionally conjugate up to a constant, which improves computational speed in
an already complicated model

(3.14) θ |μθ,σ
2
θ ∼ N

(
μθ,σ

2
θ

)
I
[
θ ∈ (−1,0.9)

]
,

with the indicator function giving the lower −1 and upper 0.9 truncation points.
The upper limit of 0.9 was chosen to avoid singularity in the likelihood, noted to
be an issue in Palmer and Pettit (1996), and additionally because it is reasonable to
believe that θ is much smaller than 0.9 though likely positive. We set μθ = 0 and
σ 2

θ = 0.1 to allow some flexibility over this range. Covariance matrices �γ , �ν ,
and �ϒ are given Inverse-Wishart priors

�γ ∼ Inverse-Wishart
(
f, (f − K − 1) ∗ M

)
,(3.15)

�ν ∼ Inverse-Wishart(K + 1,D),(3.16)

�ϒ ∼ Inverse-Wishart(K + 1,2D),(3.17)

where the known K × K scale matrix M uses information from 65 other engine-
off experiments reported in Zhang et al. (2012) but not used in the current analysis:
a Bayesian linear mixed-effects model using B(s) for the fixed and random UFP
size distribution effects was run using log counts from this additional data. The es-
timated posterior covariance matrix for the random effects from this fit was used as
the scale matrix M in the Inverse-Wishart prior, and we set f = 65. This allowed
information available about typical correlations in UFP size distribution shapes
from urban environments under similar meteorological conditions to be used, sup-
plementing the sparse information available in the current dataset with only 21
runs.
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There was no prior information available for �ν and �ϒ . We believed the vari-
ances would be smaller for minute-to-minute random effects than the engine-off
random effects, but because we did not have information on this, to be conserva-
tive, we set the scale matrix D to be a diagonal matrix with the diagonal equal to
twice the mean of all the variances in M . We set the scale matrix for �ϒ to 2D
to reflect larger possible variances for the random jump compared to minute-to-
minute random effects. Both priors were given low degrees of freedom equal to
K + 1.

The prior for the coefficients of the log variance is taken to be

(3.18) η ∼ NL

(
log(0.4), g2IL

)
,

where 0.4 was the mean residual error reported in the experiments of Zhang et al.
(2012) not examined here, IL is the L×L identity matrix, and the hyperparameter
g is set to put a 95 probability around residual variances between 0.2 and 0.7. The
prior is centered at a constant residual across size bins.

Sensitivity analyses were conducted; prior variances (or the mean of prior vari-
ances in the case of random effects) were halved and doubled to give two additional
fits.

3.6. Computing overview. Posterior estimates are obtained via Markov Chain
Monte Carlo (MCMC) simulations [Gelfand and Smith (1990), Hastings (1970)]
using JAGS 3.3.0 [Plummer (2003)]. The MCMC convergence and mixing prop-
erties were assessed by visual inspection of the autocorrelation and chain histories
of individual parameters, some of which are presented in Appendix A [Fischer et
al. (2017)] in Figures A4 and A5. Convergence appeared to be immediate for all
parameters. The orginal dataset, as well as R and JAGS code to conduct the main
analyses and produce plots from the paper, is included in Appendix B [Fischer et
al. (2017)].

3.7. Estimates of interest. Let Y be the vector of all yist . To investigate
model fit, we plotted subsets of equation (3.11): baseline UFP size distributions,
αT B(s)+γ T

i B(s), and engine-on posterior time trend changes, f (t)T �zB(s). In-
tegrating out random engine-off and engine-on effects, predicted mean log counts
at size bin s and time t are ψst = αT B(s) + f (t)T �zB(s).

For emission monitoring purposes, posterior predictions must be transformed
back to their original scale. Conditional on run i and UFP distribution p, engine-
on predicted counts at size bin s have marginal variance, λ2

s ≡ var(yist |γi, νp,ϒi)

that is the same for all times t . Then var(vist |γi, νp,ϒi) = var(θvi,s,t−1 +
εist |γi, νp,ϒi) so that λ2

s = θ2λ2
s + σ 2

s to give λ2
s = σ 2

s /(1 − θ2). Defining
ρst = B(s)t(�γ +�ν +1t>0�ϒ)B(s), this implies a marginal predictive variance
ζ 2
st ≡ ρst + λ2

s for size s at a new run i and a new UFP residual distribution p for
random jump models. No-jump, jump, and random jump models define marginal
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predictive variance ζ 2
st equivalently, but no-jump and jump models remove �ϒ

from the definition of ρst . Size bin means, the back transformed mean of predicted
counts for size bin s at time t , are then

(3.19) μst = exp
(
ψst + ζ 2

st /2
)
.

Define st as the modal size bin at time t and the modal particle count as ht ≡
argmax(μst ), where the maximum is over size bins s for fixed t and μst is defined
in (3.19).

For residual analysis, errors were initially calculated as

(3.20) eist = yist − (
αT B(s) + γ T

i B(s) + f (t)T �zB(s) + g(t)T ϒiB(s)
)
,

removing both fixed and run-specific random effects as implemented in Chaloner
and Brant (1988), Chaloner (1994), and Weiss and Lazaro (1992). Minute-to-
minute random effects and autoregressive error are not removed from equation
(3.20) to better visualize lack of fit in the fixed and run-specific random effects
that may be picked up by minute-to-minute size correlation νT

p B(s) and by the
autoregressive term θ . The estimate for the autocorrelation term θ can be inflated
if there is systematic lack of fit over size or time. Errors for no-jump and jump
models are calculated omitting g(t)T ϒiB(s) from the right-hand side of 3.20. Fi-
nally, we define errors e∗

ist = eist − νT
p B(s) to examine the variance not explained

by minute-to-minute random effects.

4. Results. Figure 3 plots posterior means, μ̄st ≡ E[μst |Y ], of windows open
size bin means, μst , for no-jump, jump, and random jump models at t = 5,15, and
20 minutes after the engine is turned on. Figure 3(d) plots posterior modal heights,
ĥt ≡ argmax(μ̄st ), as a function of t . The nonjump quadratic model predicts that
counts will have an unintuitive sharp decrease between time t = 15 and t = 20;
this decrease is not seen in the jump and random jump models. The jump appears
to be a valuable addition to the model. Credible intervals are not plotted to ease
visual interpretation, but there is overlap in these intervals for all models. Posterior
estimates μ̄st and ĥt for the windows closed position are more similar across all
models over time, and these results are presented in Appendix A [Fischer et al.
(2017)] in Figure A6.

Model choice was through a combination of DIC [Spiegelhalter et al. (2002)]
and graphical examination of residuals. The model with the lowest DIC is the pre-
ferred model, however, other factors must also be taken into consideration during
model selection. The DIC and components for each model are presented in Table 1.

Models were further evaluated by plotting mean posterior residuals, ēist ≡
E[eist |Y ] as defined by equation (3.6), by time and by size. Figure 4 presents
residuals ēist for the quadratic, jump quadratic, and random jump models plot-
ted against size and time. Adding the jump component to the model narrowed the
range of mean posterior residuals and reduced outliers. Adding the random jump
component reduced these to an even greater extent.
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FIG. 3. Posterior means, μ̄st ≡ E[μst |Y ], of windows open size bin means, μst , for no-jump, jump,
and random jump models at (a) t = 5, (b) 15, and (c) 20 minutes after the engine is turned on as well
as the posterior modal heights, ĥt ≡ argmax(μ̄st ), in (d). The nonjump quadratic model differs from
knot models in that it predicts counts to sharply decrease from time t = 15 to t = 20, however, this
decrease is removed with the addition of the jump. Credible intervals are not plotted to ease visual
interpretation, but there is overlap in these intervals for all models.

The posterior median θ̂ of the AR parameter for all models was about 0.06 with
credible intervals of about (0.05,0.07), indicating this parameter was not sensitive
to model choice.
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TABLE 1
DIC calculations for models

Model DIC DIC bar pD

Quadratic −45,243.3 −47,740.0 2,496.7
Jump quadratic −45,237.1 −47,738.1 2,501.0
Random jump quadratic −45,283.4 −47,762.0 2,478.6

The random jump quadratic model had the best (lowest) DIC score. Of all the
models, it also had superior fit when looking at the residuals not adjusted for
minute-to-minute random effects or AR. The fit of the model at engine-off was
also vastly improved. Plots showing the improvement in fit are presented in Ap-
pendix A [Fischer et al. (2017)] in Figures A7 and A8. The random jump quadratic
model was selected to present further inferences.

Minute-to-minute random effects νT
p B(s) did a great deal to further explain cor-

relation in residual variance over size, as residuals ē∗
ist ≡ E[e∗

ist |Y ] demonstrate in
Figure 5(a) and (b). Residual variance shows slight heteroskedasticity over size
bin, with smaller sizes showing higher variances. Figure 5(c) plots posterior me-
dian and 95 percent credible intervals for σ 2

s by bin size.
Figure 6 plots baseline posterior mean log counts by size bin for t < 0 for

all runs i. The plots show significant variation in baseline UFP size distributions
across run.

B-splines in the model above used seven equally spaced knots. As a sensitiv-
ity analysis, we experimented with alternate numbers of equally spaced knots to
determine the effect on inference and model fit. Choosing seven knots resulted
in a superior DIC score and much lower posterior median estimate for the AR
parameter θ compared to models with fewer knots. Using eight or nine equally
spaced knots did result in lower DIC scores, but the posterior median estimates for
θ were unchanged and these additional knots had little effect on model inferences.
Because these higher knot models also resulted in significantly greater comput-
ing requirements, seven knots was chosen as a sensible compromise. DIC scores,
AR estimates, and model inferences for alternate knot choices are presented in
Appendix A [Fischer et al. (2017)] in Section A.5 and Figures A9 and A10.

To determine the sensitivity of model inference to prior choice, we also fit mod-
els halving and doubling prior variances for the fixed effects and prior mean vari-
ances for the random effects, which were given priors to utilize information across
runs from the data. Results were invariant to changes in prior variances for the
fixed effects and the minute-to-minute and jump random effects. Changes to the
prior mean for engine-off random effects, which used substantive prior informa-
tion available from other experiments not used in these analyses, did result in some
changes in inference: halving this variance resulted in an approximate 10 percent
reduction in posterior estimates for μ̄st , while doubling it resulted in about a 10
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FIG. 4. Residuals ēist for the quadratic, jump quadratic, and random jump models plotted against
time and size bin. Adding the jump component to the model narrowed the range of mean posterior
residuals and reduced outliers. Adding the random jump component reduced these to an even greater
extent.
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FIG. 5. Residuals ē∗
ist for the random jump model plotted against time in Figure (a) and size bin in

Figure (b). Minute-to-minute random effects νT
p B(s) did a great deal to further explain correlation in

residual variance over size. Residual variance shows slight heteroskedasticity over size bin. Figure (c)
shows posterior medians and 95 percent credible intervals for σ 2

s as a function of size bin.

percent increase in estimates. This is to be expected given only R = 21 runs, where
an informative prior using information from other experiments provides valuable
additional information not available in the data. Results from this sensitivity anal-
ysis are also presented in Appendix A [Fischer et al. (2017)] in Section A.6 and
Figures A11 and A12.

Time trend components are presented at t = 15 in Figure 7. Figure 7(a) plots
posterior means of the jump component, E[�T

z1B(s)|Y ], (b) plots posterior means
of 15 times the linear component, E[15∗�T

z2B(s)|Y ], and (c) plots posterior means
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FIG. 6. Posterior mean log baseline counts by size bin for t < 0. The thick black curve is the
posterior population mean, and the lighter curves show posterior mean log counts by size bin for
individual run i.

of 152 times the quadratic component, E[152�T
z3B(s)|Y ], for both window posi-

tions. Adding these curves together gives the net log particle count increase after
15 minutes with the engine-on. The jump component is negligible for the win-
dows closed position, but there is an initial jump estimated for the windows open
position for all size bins, with the greatest increase for particles between 10 and
40 nm. For particle sizes between 10 and 90 nm, the linear component is larger
for the windows open position than the windows closed position. Negative val-
ues across size bin for both windows positions in the quadratic component imply
that particle counts increase at slower rates for all bins as the engine continues to
run, though these rate decreases are smaller across size for the windows closed
position. Credible intervals are not plotted, as there is overlap across all size bins,
however, Figure (d) plots posterior means for the difference in jump, linear, and
quadratic components for windows open minus windows closed to show for all
components there is a nonzero difference between the two scenarios for most size
bins at t = 15. Ninety-five percent credible intervals are plotted with thin lines.

In Figure 8, μ̄st are plotted against s for engine-off and for windows open and
closed after the engine has been idling for (a) 5, (b) 10, (c) 15, and (d) 20 minutes
for the random jump quadratic model. Adding the random jump both increased
predicted means and widened credible intervals compared to models without it.
The windows open position has higher predicted counts for sizes between about
15 and 30 nm at all time points except t = 20 compared to the windows closed
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FIG. 7. Posterior fixed time trend components on the log scale. Figure (a) plots the jump compo-
nent, E[�T

z1B(s)|Y ], (b) plots the linear component, E[15 ∗�T
z2B(s)|Y ], and (c) plots the quadratic

component E[152�T
z3B(s)|Y ] for both window positions. Adding these curves together gives the

net log particle count increase after 15 minutes. The jump component is negligible for the windows
closed position, but there is an initial jump estimated for the windows open position for all size bins.
The linear component is larger for the windows open position than the windows closed position for
most size bins. Negative values across size bin for both window positions in the quadratic component
imply that particle counts increase at slower rates for all bins as the engine continues to run. Figure
(d) plots posterior means for the difference in jump, linear, and quadratic contributions for windows
open vs. windows closed to show there is a nonzero difference between the two scenarios at t = 15
for most size bins. Ninety-five percent credible intervals are plotted with thin lines.
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FIG. 8. Posterior means, μ̄st , of size bin means for engine-off are plotted in all figures. Windows
open and closed posterior means are plotted after the engine has been idling for (a) 5, (b) 10, (c) 15,
and (d) 20 minutes for the random jump quadratic model. Thin lines are 95 percent credible in-
tervals. Adding the random jump both increased predicted means and widened credible intervals.
The windows open position has higher predicted counts for sizes between about 15 and 30 nm at
all time points except for t = 20 compared to the windows closed position, and also becomes much
more peaked over time as the mode gets higher and higher. The windows closed position predictions
increase over time at a slower, more constant rate.
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position, and also becomes much more peaked over time as its mode gets higher
and higher. The windows closed position predictions increase over time at a slower,
more constant rate. While before 10 minutes credible intervals between the engine-
off and windows closed curves overlap slightly, at 10 minutes particles of sizes less
than 30 nm show increases from the engine-off state which increase further at 15
minutes. Closing windows hinders self-pollution over time but does not prevent it.

Figure 9 plots posterior medians, ŝt , of mode locations, st , and posterior modal
heights, ĥt , defined previously. The location of the mode in the engine-off state
is uncertain, with 95 percent credible intervals (33,64), equivalent to a size range
of 23–71 nm (full credible interval not shown on plot). In 9(a), the windows open
mode location decreases in size, and the credible interval rapidly narrows to finally
reach (23,27) at 20 minutes. The windows closed position mode location in 9(b)
decreases at a slower rate and with more uncertainty: at 20 minutes the 95 percent
credible interval is (21,36). In Figure (c), ĥt reach counts of over 1400 for win-
dows open at t = 20 compared to about 450 for windows closed. The windows
closed position has posterior mode heights that increase at an almost linear rate
over time that is slower than for the windows open position. Credible intervals do
not overlap, but get wider over time for both window positions.

In Appendix A [Fischer et al. (2017)], Section A7, we present results from a
simulation study with parameters set to the posterior means from the final model
and find that posterior mean estimates are consistent with the truth and that cover-
age is generally acceptable.

5. Discussion. Our use of mixed-model functional time-series methods
greatly reduce the size of confidence intervals compared to the nonfunctional uni-
variate longitudinal methods used in Zhang et al. (2012) which show overlap for
both window positions at all size bins. Our methods permit inference about actual
particle counts not available using modal methods. Though estimates for residual
variance over size were small in this dataset, in other cases error can be much
higher for smaller size bins so that having this component in the model is very
beneficial [Ramsay and Silverman (2005)].

At all time points the windows open position had higher predictions for particles
between about 15 and 22 nm than windows closed, but predictions for the windows
closed position continued to increase over time. Having the window closed does
not prevent UFPs from entering the bus cabin, particularly for particles less than
22 nm.

A major benefit of these methods are the ease in which model fit can be eval-
uated, both through the use of DIC and through residual checks allowing visual
inspection of model fit across size bin and time. Graphical techniques also allow
for the evaluation of the fit of random effects. Plots demonstrating a subset of
these residual checks for random effects are included in the Supplementary Ma-
terial [Fischer et al. (2017)]. Our methods are easily adapted to different model
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FIG. 9. Median posterior mode locations, ŝt , for (a) windows open and (b) windows closed, and (c)
posterior modal heights, ĥt , over time for both window positions with 95 percent credible intervals.
The location of the mode in the engine-off state is uncertain, with 95 percent credible intervals
(33,64), equivalent to a size range of 23–71 nm (full credible interval not shown on plot). In Fig-
ure (a), the windows open mode location rapidly narrows, while in (b) the windows closed position
mode location decreases at a slower rate and with more uncertainty. Posterior mode heights ĥt in
Figure (c) for the windows closed position increase at a slower, almost constant linear rate over time.
Credible intervals do not overlap, but get wider over time for both window positions.

specifications, such as a different form for the time trends or engine-on random
effects and other variance structures.

Our methods allow uncertainty in predictions to be quantified and communi-
cated graphically in ways easily interpretable to a nonstatistician. We provide sta-



FUNCTIONAL TIME SERIES MODELS 317

tistical summaries of useful quantities currently used by researchers such as mode
locations and heights.

A limitation of the current methods is that they do not take into account other
factors that may affect particle distribution such as engine type, organic content of
diesel fuel, engine load, and the conditions of combustion. Thus, current conclu-
sions cannot be generalized to all conditions. This is a valuable direction for future
research.

Our methods provide a basis to monitor exposure to UFPs based on particle
counts separated into particles of different groups of size bins. These methods pro-
vide information needed for understanding vehicle emissions’ contribution to UFP
counts. Our methods allow evaluation and comparison of emissions by particle
size for UFPs.

SUPPLEMENTARY MATERIAL

Appendix A: Online supplementary material (DOI: 10.1214/16-
AOAS1004SUPPA; .zip). Supplementary analyses referred to in manuscript.

Appendix B: Dataset and source code (DOI: 10.1214/16-AOAS1004SUPPB;
.zip). R and JAGS programs to perform analyses and produce plots and original
dataset.
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