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POWER-WEIGHTED DENSITIES FOR TIME SERIES DATA

BY DANIEL MCCARTHY AND SHANE T. JENSEN

University of Pennsylvania

While time series prediction is an important, actively studied problem,
the predictive accuracy of time series models is complicated by nonstationar-
ity. We develop a fast and effective approach to allow for nonstationarity in
the parameters of a chosen time series model. In our power-weighted density
(PWD) approach, observations in the distant past are down-weighted in the
likelihood function relative to more recent observations, while still giving the
practitioner control over the choice of data model. One of the most popular
nonstationary techniques in the academic finance community, rolling window
estimation, is a special case of our PWD approach. Our PWD framework is
a simpler alternative compared to popular state–space methods that explicitly
model the evolution of an underlying state vector. We demonstrate the ben-
efits of our PWD approach in terms of predictive performance compared to
both stationary models and alternative nonstationary methods. In a financial
application to thirty industry portfolios, our PWD method has a significantly
favorable predictive performance and draws a number of substantive conclu-
sions about the evolution of the coefficients and the importance of market
factors over time.

1. Introduction and motivation. An increasingly prominent area of statisti-
cal application is the modeling of data that is ordered over time, either as a single
time series or multiple time series, with the goal being the prediction of future
time series data. It is often unrealistic to assume stationarity, whereby the under-
lying parameters of the chosen model are constant over time. Rather, it may be
preferred to allow the parameters of the model to evolve over time, which com-
plicates modeling efforts. We propose a general methodology which may be used
to improve the predictive accuracy of time series models by addressing possible
nonstationarity in model parameters.

In the time series application that we focus upon, the issue of nonstationarity is
particularly acute—estimation of the sensitivity of stock returns to market factors.
Fama and French (1993) introduced the popular three factor model in asset pricing,
which relates the return on stock portfolios to their valuation, size and sensitivity
to the overall market. Specifically, the returns yj,t of a stock portfolio j at time t

were modeled as a linear function of three factors,

yj,t = αj + βm
j · mt + βs

j · st + βv
j · vt + εj,t ,(1.1)
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where mt represents excess return on the market portfolio (“MKT”), st repre-
sents excess return of small capitalization stocks over large capitalization stocks
(“SMB”), vt represents the excess return of value stocks over growth stocks
(“HML”) and εj,t is a noise term. Since then, hundreds of papers have been writ-
ten trying to explain cross-sectional heterogeneity in asset price returns through
the inclusion of additional factors. The overarching goal of this literature is to ex-
plain variation in returns across stocks through a relatively small number of mar-
ket factors, which is equivalent to predicting stock returns using contemporaneous
predictors in a time series regression.

Time series regression problems like this one are notoriously challenging be-
cause the parameters of the regression model are unlikely to be stationary over
time. The sensitivity of parameters should be allowed to evolve over time [e.g.,
βm

j,t rather than βm
j , βs

j,t rather than βs
j , etc., in equation (1.1)]. The question here,

and in many other applied settings, is how to address potential nonstationarity in
the parameters of a chosen model? Throughout the remainder of this paper, we will
use the term “nonstationarity” to mean that the parameters of the true underlying
process generating the observed data are potentially varying over time.

Our methodological objective is to produce the best possible predictions at the
next time point, conditional upon the model the practitioner has chosen. If we are
unwilling to assume stationarity over time for the model parameters, the conse-
quence is that not all historical data will be equally relevant to the prediction of
future outcomes. With prediction as our ultimate goal, we will propose statistical
methodology for a principled differential weighting of historical data that is simple
and efficient relative to traditional methods that focus on estimation of the underly-
ing parameter evolution. While this paper explores an application to market factor
sensitivies, our power-weighted densities (PWD) approach can be applied to any
time series setting where the underlying data-generating process is believed to be
nonstationary over time.

Financial data are an interesting case study for time series methods, as many
assets have been tracked for a relatively long time period. In this paper, we will
model the monthly returns of 30 industry portfolios (Kenneth French). The time
series begin in July 1926 and end in December 2014, which gives us 1062 time
points for each of 30 stock portfolios.

However, the long length of these time series is deceptive due to nonstationar-
ity in the underlying data-generating process. Acknowledging this nonstationarity,
practitioners usually employ some sort of data truncation, ignoring data which is
“old enough” under the assumption that market conditions make data prior to that
point irrelevant or even harmful to the predictive accuracy of their model.

In the finance literature, nonstationary is usually addressed by estimating asset
models using rolling windows, that is, assuming a stationary model in a fixed win-
dow of data closest to the current time point. The key question is how long should
one make the rolling window length? Petkova and Zhang (2005) chose a 5-year
rolling window, while Fama and French (1993) chose a 30-year rolling window.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research
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As part of their comparison of equity risk premium theories, Welch and Goyal
(2008) use an expanding rolling window: at each time point t , they use all data up
to and including time point t . While explicit data truncation via rolling window
estimation is very frequently employed, implicit data truncation may be at least as
prevalent, by prespecifying the date range over which analysis will be performed.
We seek a more principled approach to addressing nonstationarity in time series
without relying on ad hoc decisions of how to truncate the data.

In the general approach to time-ordered data, a practitioner has chosen a model
p(yt |θ) that links the observed data y1:T = (y1, . . . , yT) to underlying parame-
ters θ . The practitioner may also have prior beliefs summarized in the prior dis-
tribution p0(θ). The simplest Bayesian approach to modeling y1:T would be to
assume that θ is stationary over time and estimate the posterior distribution as-
suming the observed yt ’s are exchangeable,

p(θ |y1:T) ∝
T∏

t=1

p(yt |θ)p0(θ).(1.2)

However, as we discussed above, stationarity is not always a reasonable assump-
tion and so we need to allow for the underlying parameters of the model to evolve
over time, that is, θ1:T = (θ1, θ2, . . . , θT−1, θT).

A standard Bayesian approach to nonstationarity specifies an additional level of
the model for this parameter evolution (i.e., θ t given θ1:t−1) such as the dynamic
state–space model [West and Harrison (1998)]. In addition to these extra modeling
decisions, implementation is much more involved since the posterior distribution
for an entire time-varying series of parameters

p(θ1:T|y1:T) ∝
T∏

t=1

p(yt |θ t )p(θ t |θ1:t−1)p0(θ)(1.3)

must be estimated. Under the simplifying assumption of normality, Carter and
Kohn (1994) outline a Markov Chain Monte Carlo implementation for estimat-
ing the posterior distribution of a dynamic state–space model. More recent work
has offered implementations for more complicated dynamic state–space models
[Paez and Gamerman (2013)]. However, all of these modeling approaches are in-
herently complicated (and usually computationally intensive) because the entire
time-varying parameter vector θ1:T must be estimated.

In contrast, we propose an alternative power-weighted densities (PWD) ap-
proach that avoids the direct specification of an evolution model for the param-
eter vector θ1:T. We leave the practitioners’ chosen model as is, but differentially
weight the contribution of individual observations to the likelihood function, so
that more recent observations are more informative in the posterior distribution of
the parameters at the current time point. Specifically, as we will see in Section 2,

pα(θT|y1:T) ∝ p0(θT)

T−1∏
i=0

p(yT−i |θT)αi , α ∈ [0,1],(1.4)
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where αi are weights placed on the lagged observations yT−i away from the current
time point T. These weights are estimated from the data in order to optimize the
one-step-ahead predictive likelihood of the observed data.

Our PWD approach leaves intact the basic form of the model, p(yt |θ) and
p0(θ), which makes our approach complementary to whatever data model is pre-
ferred by the practitioner. In contrast with the dynamic state–space model (1.3),
our PWD approach does not require estimation of the entire parameter vector θ1:T
in order to infer the posterior distribution of the terminal time point or to make
predictions of future time points, which is the primary objective of our study.

As we will see in Section 2, rolling windows correspond to a specific set of
lag-dependent PWD weights. While rolling windows also leave the choice of the
data model up to the practitioner, we will see that the performance of rolling win-
dow approaches can be erratic in practice. In contrast, our PWD approach avoids
the prespecification of a fixed window length by differentially down-weighting all
previous observations to optimize the predictive likelihood of the observed data.
We present the details of our general power-weighted densities approach to time
series data and compare our approach to state–space models and other time series
methods in Section 2.

Our financial application consists of time series for 30 separate stock portfolios,
which motivates extending our PWD approach to a hierarchical linear regression
model in Section 2.3. This extension permits sharing of information between the
Fama and French (1993) three-factor models (1.1) for each stock portfolio while
addressing nonstationarity within each stock portfolio time series. A hierarchical
model is motivated by the central tendency of the market beta for a large number
of stocks, often referred to as “beta decay” by financial practitioners.

As much has been written about model uncertainty in stock return prediction, we
will also incorporate uncertainty about our model choices by outlining a Bayesian
Model Averaging (“BMA”) extension of our PWD approach in Section 2.4. Our
general PWD methodology for time series will be made available via a R package
on CRAN.

In Section 3, we compare the operating characteristics of our PWD approach for
hierarchical linear regression to alternative methods in synthetic data settings that
mimic aspects of our financial data. In Section 4, we apply our PWD approach
to hierarchical linear regression to the monthly returns of 30 industry portfolios
(Kenneth French). In both real and synthetic data, our PWD approach performs
significantly better in terms of predictive accuracy than models that assume station-
arity in the underlying parameters, as well as competing nonstationary approaches
such as dynamic state–space models and rolling windows. We will also demon-
strate the computational convenience of our PWD approach.

There are a number of substantive implications of our results for financial prac-
titioners. First, our results suggest a considerable amount of variation over time in
the sensitivity of industry portfolio returns, particularly in the time periods around

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research
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1960 and 2000. Second, we observe a “self-fulfilling prophecy” effect: the publi-
cation/acceptance of the importance of a market factor is followed by an increase
in the importance of that market factor for prediction.

2. Power-weighted densities for time series data. The idea of differentially
weighting historical data has been explored previously. Ibrahim and Chen (2000)
introduced “power priors” as a way to integrate historical data with more recent
data. Denoting the historical data by H , current data by y, parameters of interest
by θ and a fixed power α ∈ [0,1], the posterior distribution from their power prior
model is

p(θ |y,H,α) ∝ p(y|θ)p(H |θ)αp(θ).(2.1)

By setting α = 1, the historical data is exchangeable with the current data, while
α = 0 implies the historical data is not used at all. Power priors have been applied
in several clinical and epidemiological studies, including Berry and Stangl (1996),
Berry et al. (2010), Hobbs et al. (2011) and Tan et al. (2002). Brian (2010) applied
power priors to pediatric quality of care evaluation.

In this paper we are extending the power prior idea of Ibrahim and Chen (2000)
to the modeling of time-ordered observations

y �= y1:T = (y1, y2, . . . , yT−1, yT)

motivated by the assumption that older data may not be as relevant as more recent
data when predicting future time series outcomes. We estimate the posterior distri-
bution for θT at terminal time point T by raising the densities of each observation
yt to a different power,

pα(θT|y1:T) ∝ p0(θT)

T−1∏
i=0

p(yT−i |θT)αi , αi ∈ [0,1],(2.2)

which extends the power prior idea to place a lag-specific weight αi on each ith
lagged historical data point away from the current time point. We still encode any
prior beliefs we have regarding θT through the prior p0(θT).

The density (2.2) uniquely minimizes the convex sum of Kullback–Leibler di-
vergences over a T-simplex representing all possible poolings of the historical data
(further details in the supplementary material [McCarthy and Jensen (2015)]). The
popular rolling window strategy for model estimation in the financial literature cor-
responds to a special case of our PWD weights, where αi = 1 if i < τ and αi = 0
otherwise, with stopping time τ being prespecified by the practitioner.

By avoiding the estimation of the entire time series of underlying parameters
θ1:T, our PWD approach should be less computationally intensive than the usual
dynamic state–space model, but only if the extra weight parameters αi can be esti-
mated efficiently. We simplify this estimation task by imposing additional structure
on the weight parameters.
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Throughout this paper, we will restrict our weight parameters to an exponen-
tially decreasing function, αi = αi of the lag i, parameterized by a single weight
parameter α ∈ [0,1]. Under this constraint, our power-weighted densities (PWD)
posterior distribution for θT at current time point T becomes

pα(θT|y1:T) ∝ p0(θT)

T−1∏
i=0

p(yT−i |θT)α
i

, α ∈ [0,1],(2.3)

with a single weight parameter α that will be estimated from the data. This
exponentially decreasing regime of weights imposes a monotonicity constraint
αi ≥ αi+1 so that with α ∈ [0,1], more recent observations (those with smaller
lags i away from the current time point) have increased relevance relative to more
distant observations.

There are many alternatives to our exponentially decreasing weight regime,
with the most obvious alternative being linearly decreasing weights—we show in
the supplementary material [McCarthy and Jensen (2015)] that linearly decaying
weights also perform well in practice. The exponentially decreasing regime has
the advantage of leading to simple posterior and posterior predictive distributions
when used with exponential family likelihoods.

As an illustrative example, consider a single time series y1:T that is normally
distributed, yt ∼ N (μt , σ

2
t ), with unknown and possibly nonstationary mean μt

and variance σ 2
t . We employ the prior p(μt , σ

2
t ) ∝ σ−2

t suggested by Gelman et al.
(2003) (page 74). Combining this data and prior model with our exponentially
weighted PWD approach (2.3) gives the conditional posterior distribution for the
terminal mean,

μT|y, α, σ 2
T ∼ N

(
ŷα,T,

σ 2
T

Tα

)
,(2.4)

and the marginal posterior distribution for the terminal variance,

σ 2
T |y, α ∼ InvGamma

(
Tα − 1

2
,

Tα

2

(
ŷ2
α,T − ŷ2

α,T
))

,(2.5)

where

Tα =
T−1∑
i=0

αi, ŷα,T =
∑T−1

i=0 αiyT−i

Tα

and ŷ2
α,T =

∑T−1
i=0 αiy2

T−i

Tα

.

The posterior distribution for μT is centered at ŷα,T, the exponentially weighted
moving average (EWMA) of the observations y1:T, which is a common estimator
used by practitioners to accommodate nonstationary data. We interpret Tα as the
“scaled count” of the number of observations in y1:T, scaled by the weighting
parameter α.
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With prediction as our primary goal, the posterior predictive distribution of fu-
ture observation y� under our PWD approach is

y�|y1:T, α ∼ tTα−1

(
ŷα,T,

Tα + 1

Tα

Sα,T

)
,(2.6)

where

Sα,T = Tα

Tα − 1

(
ŷ2
α,T − ŷ2

α,T
)
.(2.7)

The posterior distributions (2.4)–(2.6) reduce to the standard posterior distributions
for a stationary model when α = 1, whereas when α < 1, data far in the past will
be less relevant to the terminal time point and prediction of future observations.

The posterior predictive distribution (2.6) has a very simple form that can be
used to make predictions of future data y� while avoiding the need to estimate the
nonstationarity in the underlying parameters μt and σ 2

t directly. These results are
conditioned on a known value of the weighting parameter α, but in Section 2.2 we
will discuss strategies for estimating α from the data.

2.1. Related time series approaches. Our PWD approach for a normally dis-
tributed time series, yt ∼ N (μt , σ

2
t ), closely mimics the first order state–space

model of West and Harrison (1998),

yt = θt + νt , νt ∼N (0,V ),

θt = θt−1 + ωt, ωt ∼N (0,Wt),

with observation variance V constant over time but state variance Wt varying over
time. This state–space model is estimated through recursive equations culminating
in a normal posterior distribution for the terminal mean, θT|y1:T ∼ N (mT,CT)

with

mT = mT−1 + CT−1 + WT

CT−1 + WT + V
(yT − mT−1) and CT = CT−1 + WT

CT−1 + WT + V
.

West and Harrison (1998) also provide a discounted alternative to their model
with discount factor δ ∈ [0,1] that downweights more distant observations in the
time series by inflating the posterior variance of θt at each time step t ,

mT =
∑T−1

i=0 yT−iδ
i∑T−1

i=0 δi
and CT = V∑T−1

i=0 δi
,(2.8)

which are equivalent to our power-weighted densities (PWD) approach in (2.4)–
(2.5). However, this equivalence is specific to normally distributed data and does
not hold for the more general PWD approach in (2.2).
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There is a similar connection between dynamic state–space models and rolling
windows approaches if the discount factor δ is allowed to vary over time in a lag-
specific way with the following values:

{δ1, δ2, . . . , δT} = (0,0, . . . ,0︸ ︷︷ ︸
T−p

,1,1, . . . ,1︸ ︷︷ ︸
p

).

This representation highlights two issues with rolling windows. It is difficult
to interpret rolling windows as a data-generating process, since the normal model
with a rolling window of length p implies a posterior distribution for θt with in-
finite variance at all time points t ∈ {1,2, . . . ,T − p}. It is also not clear how to
estimate the optimal length p of the rolling window.

We will see superior predictive performance of our PWD approach over dis-
counted state–space models and rolling windows in our stock market analysis in
Section 4. That said, we can still borrow insight from the discounted state–space
model of West and Harrison (1998) in terms of their estimation of the discount fac-
tor δ. In particular, they select δ which maximizes the one-step-ahead predictive
likelihood of the data, and in Section 2.2 we will employ a similar strategy for the
estimation of our weight parameter α.

Our PWD approach for a normally distributed time series also bears similarity
to the exponentially weighted moving average model (EWMA), also known as an
autoregressive integrated moving average process, ARIMA(0,1,1), in which the
first differences of the data are modeled as

yt − yt−1 = εt + ρεt−1 where εt ∼ N
(
0, σ 2)

and ρ ∈ (−1,1).(2.9)

Recursively applying equation (2.9) and letting ρ ≡ −α gives

yt = εt + (1 − α)

t−2∑
i=0

αiyt−i−1,(2.10)

which has a similar mean for yt as that provided by our PWD approach in equa-
tion (2.4). The α parameter is estimated via (in-sample) maximum likelihood es-
timation in the usual EWMA procedure, whereas in Section 2.2 we propose es-
timating α by maximizing the one-step-ahead predictive likelihood of the data.
We will show substantial gains in terms of accuracy and computational cost of
our PWD approach compared to EWMA in synthetic settings in Section 3.1. In
addition, our PWD approach generalizes more naturally to hierarchical linear re-
gression (Section 2.3), which is needed for our financial application as well as
allowing for other decay specifications (such as rolling windows and linearly de-
caying weights).

Smith (1979, 1981) introduce a Power Steady Model (PSM) which produces
posterior distributions similar to our PWD approach for a general class of like-
lihoods with exponentially decaying weights. Grunwald, Raftery and Guttorp
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(1993) extend Smith’s (1981) framework to data which is conditionally Dirichlet-
distributed. However, in this approach both the likelihood and the prior distribution
are power-weighted, whereas our PWD approach only power-weights the likeli-
hood term. It is also not clear how to extend this PSM model to nonexponential
decays or hierarchical models.

Chen and Singpurwalla (1994) create a state–space model for data with a
Gamma likelihood that includes a parameter for discounting older data in an ex-
ponential manner. Shephard (1994) derives state–space models with normal or ex-
ponential likelihoods where a scale parameter evolves over time. Both of these
approaches are distribution-specific and the entire evolution of the state variable is
estimated, whereas our PWD approach is intended as a fast and simple alternative
to full state–space estimation when the goal is out-of-sample prediction.

2.2. Estimation of weight parameter α. Our estimation method for the weight-
ing parameter α of our power-weighted densities approach mimics a method pro-
posed by West and Harrison (1998) (page 58) for their local level state–space
model. We select the value α� that maximizes the one-step-ahead predictive like-
lihood,

α� = argmax
α

p�(α|y)
�= argmax

α
p0(α)

T∏
t=2

p(yt |y1:t−1, α)(2.11)

with p(yt |y1:t−1, α) being the one-step-ahead predictive densities,

p(yt |y1:t−1, α) =
∫

p(yt |θ t )pα(θ t |y1:t−1)p(θ t ) dθ t(2.12)

based on the power-weighted densities pα(θ t |y1:t−1) from (2.3). This procedure
is consistent with our primary goal: prediction of the next time point. The maxi-
mal value α� can be found with minor computational cost by a grid evaluation of
p�(α|y1:T) over α ∈ [0,1], though it is often easier to maximize the logarithm of
(2.11) instead.

Note that the predictive likelihood (2.11) includes a prior distribution p0(α)

that can reflect any prior beliefs that a practitioner may have about the relative
probability of particular values of α. In this paper we will assume that all values
of α are equally likely a priori.

Our predictive likelihood approach is related to the model selection procedure
of Gelfand and Dey (1994). Assuming all models in a set of candidate models
are equally likely a priori, they propose selecting the model with the best C-fold
cross-validated out-of-sample forecasting accuracy. This strategy is also similar to
the prequential approach of Dawid (1992) where preference is given to estimators
with the smallest predictive loss.
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For the illustrative normal model estimated by (2.4)–(2.6), we select the α� that
maximizes

logp�(α|y)

= logp0(α) +
T−1∑
t=2

log�

(
tα + 1

tα

)
− 1

2

(
log(tα + 1) + logSα,t

)
(2.13)

−
(

tα + 1

2

)
log

(
1 + (yt+1 − ŷα,t+1)

2

(tα + 1)Sα,t

)
,

where tα = ∑t−1
i=0 αi , ŷα,t = ∑t−1

i=0 yt−iα
i/tα and

Sα,t = tα

tα − 1

(
ŷ2
α,t − ŷ2

α,t+1
)

with ŷ2
α,t =

∑t−1
i=0 αiy2

t−i

tα
.

While the computation required for equation (2.13) may seem daunting, we
show in the supplementary material [McCarthy and Jensen (2015)] that evaluation
of this expression scales linearly with the length of the time series. We will see in
Section 3.1 that this linear time algorithm has computing times which are 5 to over
10 times faster than built-in R functions exponential weighted moving average and
state–space implementations. We will provide an R package for our PWD approach
so that practitioners may benefit from our fast implementation.

One could also consider a fully Bayesian approach where we obtain posterior
samples of α which would allow us to summarize the posterior variability in the
weight parameter. However, the estimated posterior distribution of α tends to fa-
vor α → 0 since small values of α correspond to individual parameters θ t for each
observation yt , since there is no penalty for over-parameterization when fitting
the entire time series in sample through the posterior distribution. For this reason,
we prefer our one-step-ahead predictive likelihood approach (2.11), since its out-
of-sample nature inherently protects against over-parameterization. If desired, we
still can incorporate the variability in our weight parameter by instead sampling α

from our one-step-ahead predictive likelihood p�(α|y). In the supplementary ma-
terial [McCarthy and Jensen (2015)], we present a simulation study that suggests a
sampling approach for α does not lead to better predictive performance than using
the point estimate α� from (2.11).

2.3. Power-weighted densities for hierarchical linear regression. In this sec-
tion we extend our power-weighted densities approach for a hierarchical linear
regression model, which is necessary for our application to monthly industry port-
folio returns in Section 4. For that analysis, we need to model multiple time series
each with potentially differing degrees of nonstationarity, while sharing informa-
tion hierarchically across the multiple stock portfolios.
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We consider the general setting of J different time series with outcome yj,t and
p covariates Xj,t at each time point t in group j . We specify a separate regression
model for each group j ,

yj,t = Xj,tβj,t + εj,t , εj,t ∼ N
(
0, σ 2

j,t

)
(2.14)

with time-varying coefficients βj,t and residual variances σ 2
j,t . We share informa-

tion across groups via a common prior distribution,

βj,t ∼ Np(β0,�0),(2.15)

where �0 is a diagonal matrix with diagonal entries τ 2. Note that by using a diag-
onal matrix �0, we are assuming a priori independence of the components of βj,t ,
but this still allows for a posteriori dependence. We use noninformative prior dis-
tributions p(β0,k, τ

2
k ) ∝ (τ 2

k )−1/2 for our global parameters and p(σ 2
t,j ) ∝ (σ 2

t,j )
−1

for the residual variances.
We can implement this hierarchical linear regression model using the Gibbs

sampler [Geman and Geman (1984)]. Denoting θ−a as all parameters exclud-
ing a, the conditional distributions of the global parameters for each covariate
k = 1,2, . . . , p are

β0,k|θ−β0,k
,y ∼ N

(∑J
j=1 βj,k

J
,
τ 2
k

J

)
,

(2.16)

τ 2
k |θ−τ 2

k
,y ∼ InvGamma

(
J

2
,

1

2

J∑
j=1

(βj,k − β0,k)
2

)
.

If our hierarchical regression model was assumed to be stationary (i.e., βj,t =
βj and σ 2

j,t = σ 2
j ), we would have the following conditional distributions for the

group-specific parameters:

βj |θ−βj
,y ∼ Np(β̂j , V̂j ),

(2.17)

σ 2
j |θ−σ 2

j
,y ∼ InvGamma

(
T

2
,

1

2

T∑
i=1

(yj,i − Xj,iβj )
2

)
,

where

β̂j = V̂j

((
σ 2

j

)−1X′
j,1:Tyj,1:T + �−1

0 β0
)

and

V̂j = (((
σ 2

j

)−1X′
j,1:TXj,1:T

)−1 + �−1
0

)−1
.

However, in our financial application (and for many other time series), the as-
sumption of stationary in the group-specific parameters is not realistic. Rather,
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we can use our exponentially decreasing PWD approach (2.3) to address potential
nonstationarity in our model parameters,

pα(θ j,T|yj,1:T) ∝ p0(θT)

T−1∏
i=0

p(yj,T−i |θ j,T)
αi

j , αj ∈ [0,1],(2.18)

where by using different weight parameters αj we allow for differing degrees of
nonstationarity in each time series j . Under this PWD approach, the conditional
distributions of the time-varying group-specific parameters at terminal time point T
are

βj,T|θ−βj,T
,y ∼ Np(β̂α,j , V̂α,j ),

σ 2
j,T|θ−σ 2

j,T
,y ∼ InvGamma

(
Tαj

2
,

1

2

T−1∑
i=0

αi
j (yj,T−i − Xj,T −iβj,T)2

)
,

where

β̂α,j = V̂α,j

((
σ 2

j,T
)−1X′

j,1:TAj,Tyj,1:T + �−1
0 β0

)
and

V̂α,j = ((
σ 2

j,T

)−1X′
j,1:TAj,TXj,1:T + �−1

0

)−1

with weighting matrix Aj,T
�= diag(1, αj , α

2
j , . . . , α

T−1
j ) and Tαj

= ∑T−1
i=0 αi

j .
Comparing to the stationary model (2.17), our PWD approach acts through the

weight matrix Aj,T to downweight observations that are farther away from ter-
minal time point T. The global parameters β0 and τ 2 can still be sampled us-
ing (2.16).

The model implementation above is conditional upon knowing the weight pa-
rameters αj for each group. Our usual estimation procedure for the weight param-
eters (Section 2.2) would be to select the αj which maximizes the one-step-ahead
predictive likelihood for each group j :

α�
j = argmax

αj

p0(αj )

T∏
t=2

pαj
(yj,t |yj,1:t−1).

This requires the evaluation of each one-step-ahead predictive density

pαj
(yj,t |yj,1:t−1) =

∫
p(yj,t |θ j,t )pαj

(θ j,t |yj,1:t−1)p0(θ j,t ) dθ j,t(2.19)

at each time point t by integrating over posterior samples of θ j,t , which becomes
computationally intensive if there are many groups J .

For that reason, we prefer the following approximate approach based on plug-in
estimators of θ which is very fast and performs well in practice. Specifically, we
estimate each αj as

α�
j = argmax

αj

p0(αj )

T∏
t=2

pαj ,approx(yj,t |yj,1:t−1, θ̂),(2.20)
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where pαj ,approx(yj,t |yj,1:t−1, θ̂) is the predictive likelihood of yj,t using plug-in
estimators of the model parameters. For the hierarchical linear regression model,
this predictive likelihood is

yj,t ∼ ttα−p−1
(
Xj,t β̃j,t , σ̃

2
j,t + Ṽj,t

)
,(2.21)

where

β̃j,t = Ṽj,t

((
σ̃ 2

j,t

)−1X′
j,1:(t−1)Aj,t−1yj,1:(t−1) + �̃−1

0 β̃0
)
,

Ṽj,t = ((
σ̃ 2

j,t

)−1X′
j,1:(t−1)Aj,t−1Xj,1:(t−1) + �̃−1

0

)−1
,

σ̃ 2
j,t =

(
t−1∑
i=0

αi
j (yj,t−i − Xj,t−i β̃j,t )

2

)/
(Tαj

− p),

β̃0 =
J∑

j=1

β̃j,t /J and �̃0 =
J∑

j=1

(β̃j,t − β̃0)
2/(J − 1),

with tαj
= ∑t−1

i=0 αi
j and weighting matrix Aj,t−1 = diag(1, αj , α

2
j , . . . , α

t−1
j ).

Since each of the above plug-in estimators is a function of αj , we must iterate
between the following:

1. Updating the plug-in estimators β̃j,t , σ̃ 2
j,t , Ṽj,t , β̃0 and �̃−1

0 based on the
current estimate of αj .

2. Optimizing αj in (2.20) using the predictive likelihood (2.21) based on the
updated values of the plug-in estimators.

In the supplementary material [McCarthy and Jensen (2015)] we show that eval-
uation of these expressions scale linearly with the length of the time series. We
assume convergence is achieved when the change in any αj falls below a prespec-
ified threshold (in practice, we set this to be 0.005). This plug-in method performs
quite well in practice and has a much lower computation cost than the evaluation
of integral (2.19) when estimating many group-specific αj ’s.

2.4. Bayesian model averaging with power-weighted densities. When model-
ing time series data, there is often uncertainty over the correct model to use in ad-
dition to the issue of nonstationarity within a particular model. For example, in our
financial application we consider the Fama and French (1993) three-factor model,
but other popular alternatives are using no factors [Welch and Goyal (2008)], the
CAPM model and the four-factor model of Carhart (1997) which adds a fourth
momentum (“MOM”) factor. More generally, we may want to allow for any of
the 24 = 16 combinations of these four factors in our model for industry portfo-
lios in Section 4, and incorporate uncertainty about our model choices into our
predictions.
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Bayesian model averaging (“BMA”) is a popular way of allowing for model
uncertainty [Kass and Raftery (1995)] where the posterior densities of model pa-
rameters θ are weighted by the probability of each model, Mk (k = 1, . . . ,K),

P(θ |D1:T) =
K∑

k=1

P(θ |D1:T,Mk)P (Mk|D1:T),(2.22)

with the weights proportionate to the marginal likelihood of the data under each
alternative model,

P(Mk|D1:T) = P(D1:T|Mk)∑K
l=1 P(D1:T|Ml)

,(2.23)

with D1:T denoting the data available up to and including time point T.
We adopt a predictive likelihood-based analog to BMA to allow for model un-

certainty within our PWD approach. Similar to how our PWD approach selects the
value of α which maximizes the marginal one-step-ahead predictive likelihood of
the observed data, our PWD–BMA approach weighs the posterior density of pa-
rameters θ under each alternative model by its respective marginal one-step-ahead
predictive likelihood. In other words, instead of equation (2.23), we use

Pα(Mk|D1:T) =
∏T

t=2 P(Dt |D1:t−1, α
�
k,Mk)∑K

l=1
∏T

t=2 P(Dt |D1:t−1, α
�
l ,Ml)

,(2.24)

where α�
k maximizes the one-step-ahead marginal predictive likelihood of the data

under model Mk :

α�
k = argmax

α

T∏
t=2

P(Dt |D1:t−1,Mk).(2.25)

BMA-based estimators have many favorable qualities [Raftery and Zheng
(2003)] and tend to perform well in terms of out-of-sample performance [Hoeting,
Raftery and Madigan (2002), Madigan and Raftery (1994)]. In the finance liter-
ature, Avramov (2002) shows that BMA improves predictive regression forecast
errors. Rapach, Strauss and Zhou (2009) accommodate model uncertainty in a fi-
nancial setting based upon Stock and Watson (2004) by combining models using
weights which are a function of their previous forecasting ability but with a dis-
count factor which assigns greater weight to more recent forecasting accuracy.
Aiolfi and Timmermann (2006) also address model uncertainty in a predictive re-
gression setting, but Rapach, Strauss and Zhou (2009) showed that their perfor-
mance may be uneven when used to predict monthly equity returns. Dangl and
Halling (2012) applied BMA to a state–space linear regression model and outper-
formed alternatives which do not allow for time variation in the regression coeffi-
cients in a financial prediction setting.
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In summary, our PWD approach to model uncertainty is a variation of BMA
where we, as in Avramov (2002), weight each model by its predictive fitness, em-
phasizing more recent predictions more than older predictions which performed
well in Rapach, Strauss and Zhou (2009). We implement our approach in our fi-
nancial application to industry stock portfolios in Section 4, which leads to both
favorable performance and several implications for the importance of the model
factors over time.

3. Simulation evaluation of our PWD approach. We use several synthetic
data settings to evaluate the predictive and computational performance of our PWD
approach relative to other methods. We first consider a “null” setting where the
data are normally distributed with an underlying scalar mean that is stationary
over time. We then consider a nonstationary hierarchical regression setting that
emulates the characteristics of our financial application in Section 4. We also com-
pare several variants of our PWD approach in simple nonstationary data settings
in the supplementary material [McCarthy and Jensen (2015)].

3.1. Stationary normal mean setting. While methods which allow for param-
eter evolution are expected to perform better when there is actual nonstationarity
in those parameters, it is also important to evaluate performance of those methods
when the underlying parameters are, in fact, stationary. In this stationary case, non-
stationary methods may lose predictive accuracy and have a higher computational
cost.

We generate synthetic data for a univariate time series of length T = 500, where
the true underlying mean of the time series is constant over time:

yt = β + εt where εt ∼N
(
0, σ 2)

.(3.1)

We set the true mean β = 2 and variance σ 2 = 1. We generate 4000 datasets under
this setting and use the first T − 1 time points of each dataset (holding out the
terminal observation yT) to train the following models:

1. Stationary: Assume mean is stationary and predict yT with the simple
average of the first T − 1 time points of each dataset.

2. PWD: Predict yT with the mean of the posterior predictive distribution from
equation (2.6) using α� that maximizes equation (2.13).

3. EWMA: Use R’s ARIMA function within the stats package to fit an
ARIMA(0,1,1) model. The prediction of yT is an exponentially weighted mov-
ing average of the first T − 1 time points.

4. State-Space: Use R’s StructTS function within the stats package
to fit a local level state–space model via maximum likelihood. The prediction of
yT is the mean of the one-step-ahead predictive distribution.

In Table 1 we compare these four methods in terms of root mean square pre-
diction error (RMSE) for the held-out terminal observation yT, the standard error



320 D. MCCARTHY AND S. H. JENSEN

TABLE 1
Comparison of methods in stationary setting

Stationary EWMA PWD State-Space

RMSE 0.045 0.064 0.054 0.064
SE 0.000 0.001 0.001 0.001
Time (ms) 0.01 6.13 1.14 11.52

(SE) over datasets of the RMSE and the mean computing time in milliseconds
[Time (ms)].

Since the underlying mean is stationary in this setting, Stationary should
have an advantage and this is indeed the case, with the RMSE for Stationary
approximately 20% lower than PWD. However, PWD has an RMSE approximately
20% smaller than both State-Space and EWMA, which suggests that our PWD
approach is not as easily misled compared to these other methods when the under-
lying data-generating process is truly stationary. The small SEs suggest that all of
these RMSE differences are statistically significant.

Moreover, PWD was approximately 5 times faster than EWMA and approximately
10 times faster than State-Space. This dramatic speedup is impressive given
that the arima and structTS functions, as part of the stats package within
R, have been optimized for speed. In Figure 1 we further emphasize the reduced
computational cost of our PWD approach by plotting the mean computing time in

FIG. 1. Mean computing time of 4 models: Stationary, PWD, EWMA and State-Space as a
function of time series length.
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milliseconds (averaged over 2000 replications) for the four methods as a function
of time series length. All methods have computing times which scale linearly with
time series length, but the slope associated with that linear scaling is much smaller
for PWD compared to EWMA and State-Space.

3.2. Nonstationary hierarchical linear regression setting. We generate syn-
thetic data in a regression setting that represents a simplified version of our finan-
cial application in Section 4. Specifically, each synthetic dataset consists of a set
of J portfolios where the return on each portfolio yj,t is a linear function of the
return of the overall market mt ,

yj,t = βj,tmt + εj,t , εj,t ∼ N
(
0, σ 2)

(3.2)

with portfolio-specific sensitivities βj,t to the overall market that evolve over
time t . This synthetic data model is analogous to the celebrated CAPM model
[Fama and French (1989)]. The market factor is generated as mj,t ∼ N (μm,σ 2

m),
where we set μm = 0.047 and σ 2

m = 0.0452 based on historical monthly stock
market data from Shiller (2014). The sensitivity of stocks to the market is nonsta-
tionary in that βj,t is centered upon its value from the prior period, βj,t−1, plus a
disturbance term,

βj,t = βj,t−1 + ηj,t .(3.3)

The evolution of βj,t is also group mean reverting in that the disturbance term ηj,t

pulls βj,t toward the group average of the prior period:

ηj,t = φj (β̄j,t−1 − βj,t−1) + ζj,t ,(3.4)

where φj represents the magnitude of stock j ’s mean reversion toward the overall
group average, β̄t−1 is the group average β at time point t − 1, and ζj,t is white
noise:

φj ∼ Beta(a, b), β̄t−1 =
J∑

j=1

βj,t−1/J and ζj,t ∼N
(
0, τ 2)

.(3.5)

We set σ 2 = 0.042, τ 2 = 0.082, a = 3 and b = 97, which leads to a strong
correlation between portfolios and the overall market and meaningful evolution of
βj,t over time, as well as mild mean reversion, shrinking the market sensitivity
of portfolios toward the group average of the prior time point, consistent with the
notion of “beta decay” among finance practitioners.

We examine two different data settings using this particular data-generating
process. Setting 1 consists of a large number of groups (J = 100) that each
contain a short time series (T = 10). Setting 2 consists of a small number of
groups (J = 10) that each contain a long time series (T = 100). Setting 2 is
more similar to our application to industry portfolios in Section 4, as that data
contains a small number of relatively long time series.
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TABLE 2
Comparison of methods in Setting 1: Large number of short time series

Hier–PWD Sep–PWD State–Space–LR Stationary Stat–Hier

Mean(RMSE) 19.00 22.00 28.11 21.43 19.04
SE(RMSE) 0.18 0.32 0.82 0.30 0.18
t-test p-value 0.000 0.000 0.000 0.878

We generated 500 synthetic datasets under both settings. For each approach that
we consider, we train the model on the first T − 1 observations of each time series,
yj,0:T−1, as well as the market return over that same time period, m0:T−1, and then
predict the terminal observation, yj,T, using the return on the market from the final
time point, mT. Performance of each method is judged based on the RMSE of that
prediction.

In these evaluations we consider two variants of our PWD approach that differ
in the modeling of the weighting parameters and group-specific means: 1. Hier-
PWD where we model all portfolios simultaneously using the hierarchical linear
regression model outlined in Section 2.3, and Sep-PWD where we model each
portfolio separately without any sharing between portfolios.

We compare these two PWD variants to three alternative approaches:

1. Stationary: Estimate the parameters in (3.2) using standard OLS regres-
sion applied separately to each portfolio time series, assuming that the coefficients
are stationary over time, that is, βj,t = βj .

2. Stationary-Hier: Estimate the parameters in (3.2) simultaneously
across portfolios using the hierarchical linear regression model (3.2)–(3.4), but
still assume the coefficients are stationary over time, that is, βj,t = βj .

3. State-Space-LR: Estimate the coefficients βj,t in (3.2) using a local
level dynamic linear regression model estimated via maximum likelihood [Petris,
Petrone and Campagnoli (2009)].

Table 2 compares performance of our PWD variants to the three alternative
approaches in Setting 1 where we have a large number of groups (J = 100)
that each contain a short time series (T = 10). In this setting there is limited data
available within each portfolio time series to estimate nonstationary parameters,
and so the hierarchical methods should benefit from borrowing strength between
portfolios.

In Table 2 we evaluate each approach using the average RMSE of the terminal
time point prediction across the 500 datasets, as well as the standard error of that
average RMSE1. Observing that Hier-PWD had the best average RMSE, we also

1RMSE(Mean) and RMSE(SE) are rescaled by a factor of 104.
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TABLE 3
RMSE: Small group count, long time series; 500 datasets

Hier–PWD Sep–PWD State–Space–LR Stationary Stat–Hier

Mean(RMSE) 18.52 19.14 18.83 20.67 20.52
SE(RMSE) 0.27 0.29 0.27 0.37 0.37
t-test p-value 0.114 0.412 0.000 0.000

provide the p-value from a two-sided t-test (assuming unequal variances) of the
difference between the RMSE of Hier-PWD and the RMSE of each method.

We see in Table 2 that Hier-PWD performed significantly better (at the 1%
level) than all other methods except for Stationary-Hier. The fact that
Stationary-Hier was the only method competitive with Hier-PWD sug-
gests a benefit from sharing information across groups but perhaps not enough
data within each group to benefit from allowing nonstationarity. We note the par-
ticularly poor performance of State-Space-LR in this data setting where we
have a large number of short time series.

Table 3 compares performance of our PWD variants to the three alternatives in
Setting 2 where we have a small number of groups (J = 10) that each contain
a long time series (T = 100), which more closely emulates our financial applica-
tion in Section 4 where we have long time series for a relatively small number of
portfolios.

Comparing between our two PWD variants, we see that the pooling induced by
Hier-PWD did not lead to as much of a gain in predictive performance as seen
in Setting 1. The situation of few groups with substantial amounts of data
within each group limits the benefit of hierarchically sharing information between
groups. In this long time series setting where there is ample data for estimating
the nonstationary evolution of the underlying βj,t ’s, we see that the stationary
models Stationary and Stat-Hier performed poorly relative to the nonsta-
tionarity methods. Among the nonstationary methods, Hier-PWD, Sep-PWD and
State-Space-LR did not have significant differences in their predictive accu-
racy.

Our evaluation of both Setting 1 and Setting 2 suggests our power-
weighted densities approach is robust to different data conditions, and is espe-
cially beneficial in situations where information sharing between groups is impor-
tant, as in financial markets. The State-Space-LR approach was less robust:
it performed competitively in Setting 2 but performed significantly worse in
Setting 1 where less data was available in each time series.

We also observed dramatic benefits of our PWD approach in terms of com-
putational cost in both Setting 1 and Setting 2. Comparing the variant
of our PWD approach most similar to the state–space model, Sep-PWD’s aver-
age computing time was 20–40 times faster than State-Space-LR. Sep-PWD
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had an average computing time for all groups of 50 milliseconds in Setting 1
(compared with 2099 milliseconds for State-Space-LR) and 340 milliseconds
in Setting 2 (compared with 7660 milliseconds for State-Space-LR). In-
deed, our Sep-PWD variant may strike the best balance between computing speed
and predictive accuracy for practitioners.

4. Application to prediction of industry portfolios. The ability to accu-
rately estimate the sensitivity of portfolios to market factors is very important to
financial practitioners since it enables firms to more accurately “hedge” or decrease
risk through offsetting financial positions. Dynamic hedging forms the basis for the
pricing of financial derivatives, and the expected cost of the dynamic replication
of a financial derivative (as well as the variability) drives the cost that a finan-
cial institution will charge to sell that derivative [Wilmott, Howison and Dewynne
(1995)], directly tied to the notion of basis risk [Figlewski (1984)]. In this section
we apply our power-weighted densities (PWD) approach for hierarchical linear
regression (Section 3.2) to estimate the sensitivity of industry stock portfolios to
market factors over time and compare with several alternative methods.

Our data consists of 49 stock portfolios formed based upon industry, available
on Kenneth French’s website (Kenneth French). Of those 49 industries, we re-
stricted our attention to the portfolios with the longest time series: there are 30 in-
dustry portfolios with monthly data starting December 1932 and running through
December 2014. Using monthly data is the general convention in the CAPM and
factor model literature [e.g., Fama and French (1989) and Lewellen and Nagel
(2006)].

In total, we have J = 30 stock portfolios and T = 985 monthly time points per
stock portfolio with no missing data over that period. This data provides us with a
representative cross section of market returns for many different asset classes and
is a similar setting to the “few groups of long time series” synthetic Setting 2
of Section 3.2.

The celebrated work of Fama and French (1993) predicted the return yj,t on a
stock portfolio j at a time t with a linear three-factor model,

yj,t = αj,t + βm
j,t · mt + βs

j,t · st + βv
j,t · vt + εj,t ,

(4.1)
εj,t ∼ N

(
0, σ 2

j,t

)
,

where mt is the excess return on the market (MKT), st is the excess return of small
capitalization stocks over large capitalization stocks (SMB), and vt is the excess
return of value stocks over growth stocks (HML). Compared to equation (1.1),
we are now specifying normally-distributed errors and allowing for coefficients
that are possibly time-varying (e.g., βm

j,t rather than βm
j , etc.). In the usual matrix

notation, (4.1) is

yj,t = Xt · βj,t + εj,t where εj,t ∼ N
(
0, σ 2

j,t

)
,(4.2)

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research
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with Xt = [1 mt st vt ] and βj,t = [αj,t βm
j,t βs

j,t βv
j,t ].

It is reasonable to believe that the β’s for individual portfolios will have some
central tendency, which suggests that sharing information across portfolios may
be useful. We share information between our set of J = 30 portfolios through a
global prior distribution at each time point,

βj,t ∼ N (β0,t ,�0,t ), j = 1, . . . , J,(4.3)

with β0,t = [α0,t βm
0,t βs

0,t βv
0,t ] and �0,t being a diagonal matrix with diago-

nal elements (τ 2
α,t τ 2

m,t τ 2
s,t τ 2

v,t ). We use noninformative priors p(β0,t ,�0,t ) ∝
(τ 2

α,t τ
2
m,t τ

2
s,t τ

2
v,t )

−1/2 for the global parameters as well as p(σ 2
t,j ) ∝ (σ 2

t,j )
−1 for

the residual variances.
Even with a hierarchical structure on the parameters, this model is difficult to

estimate unless we make a strong assumption of stationarity over time, that is,
βj,t = βj for all t = 1, . . . ,T. However, stationarity is not a reasonable assumption
in most financial applications, and the standard approach in the literature [e.g.,
Fama and French (1993)] is to estimate time-varying coefficients using a rolling
window.

As an alternative to rolling windows, we will apply our power-weighted density
(PWD) approach for hierarchical linear regression models (Section 2.3) to this
set of 30 industry portfolio time series. Our PWD approach allows the regression
coefficients βj,t to evolve over time for each portfolio j but avoids estimating
the entire parameter vector βj,1:T when constructing the posterior distribution for
the terminal coefficients βj,T that are used to predict the future return yj,T+1. As
outlined in Section 2.3, we estimate portfolio-specific weighting parameters αj so
that influence of past observations can vary between different portfolios.

We apply three variants of our PWD approach. The first two variants, Hier-
PWD and Sep-PWD, were employed in our synthetic data evaluation in Section 3.2.
We also consider a third variant, Sep-PWD-BMA, where we combine Bayesian
model averaging with our PWD approach as described in Section 2.4. This BMA
variant explores 16 different linear models that are the combinations of inclu-
sion/exclusion of the three Fama–French factors and the extra momentum factor
of Carhart (1997). We will evaluate the quality of these different models for each
industry stock portfolio j at each time point t . The fast computational speed of our
PWD approach greatly aids the practical implementation of Sep-PWD-BMA.

We will compare our three PWD variants to several alternative time series meth-
ods. Three of these alternatives were also evaluated in Section 3.
Stationary, Stationary-Hier and State-Space-LR. We will also

evaluate a rolling window approach, Window-5, which estimates the coefficients
βj,t in (4.2) at each time point t with a standard OLS regression using only the
5 years prior to time point t , the same as in Petkova and Zhang (2005). Rolling
windows are the standard approach to nonstationarity in the financial literature
[Welch and Goyal (2008)].



326 D. MCCARTHY AND S. H. JENSEN

We will evaluate the predictive performance of each method by the rolling cu-
mulative evaluation of their forecast errors, as done in Welch and Goyal (2008).
Specifically, for a particular model M and a specific portfolio j up to time point t ,
we calculate the squared prediction error between the actual return at time t + 1
and predicted return given all information up to time t ,

SPE(M)j,t+1

= (yj,t+1 − ŷj,t+1)
2(4.4)

= (
yj,t+1 − α̂j,t − β̂m

j,tmj,t+1 − β̂s
j,t sj,t+1 − β̂v

j,t vj,t+1
)2

,

where (α̂j,t , β̂
m
j,t , β̂

s
j,t , β̂

v
j,t ) are estimated by model M using all data up to time

point t . We aggregate the squared prediction errors across all J = 30 stock portfo-
lios to get the cumulative sum of squared prediction errors for a particular model
M up to any time point t ,

SSPE(M)1:t =
t∑

i=1

J∑
j=1

SPE(M)j,i .

For each model, we evaluate this cumulative sum of squared prediction errors at
each monthly time point, starting in November 1937 when all competing methods
are able to provide predictions, and ending in December 2014. As in Welch and
Goyal (2008), we select the Stationary model as a benchmark for our compar-
ison since it represents the simplest approach to estimating the Fama and French
(1993) three-factor model. Relative to the benchmark Stationary model, we
can calculate the difference in our cumulative sum of squared prediction errors up
to time point t ,

�SSPE(M,Stationary)1:t = SSPE(M)1:t − SSPE(Stationary)1:t .

In Figure 2 these differences in the cumulative sum of squared prediction errors
(relative to Stationary) are plotted over time for our three PWD variants and
our alternative models.

The most striking feature of Figure 2 is that the nonstationary methods
(Window-5, Sep-PWD, Hier-PWD and Sep-PWD-BMA) show much better
predictive performance than the baseline Stationary model, with rolling cu-
mulative prediction errors �SSPE that grow increasingly negative over time. The
State-Space-LR model shows the worst predictive performance among the
nonstationary methods. Stationary-Hier offers even less improvement over
the stationary model, although we do see some gains in predictive performance
from the hierarchical version of the stationary model.

Among the nonstationary methods, the three variants of our power-weighted
densities approach, Sep-PWD, Hier-PWD and Sep-PWD-BMA, have the best
predictive performance with increasingly lower cumulative prediction errors than



POWER-WEIGHTED DENSITIES FOR TIME SERIES DATA 327

FIG. 2. Rolling �SSPE relative to the Stationarymodel of six models: Hier-PWD, Sep-PWD,
Sep-PWD-BMA, Window-30, State-Space-LR and Stat-Hier.

the rolling window (Window-5) and dynamic linear model (State-Space-
LR) methods. The outperformance of our PWD approach is not isolated to any one
period of time, though the time period around 2000–2001 saw a sharp jump in the
gains for all nonstationary methods.

In Table 4 we evaluate each model M by its squared prediction error, SSPE(M).
We provide the mean SSPE(M) averaged over time points and portfolios as well
as its standard error across portfolios. Observing that PWD-BMA had the smallest
mean SSPE(M), we also provide the p-value for a t-test on the difference between
the PWD-BMA mean SSPE and the mean SSPE of each other method.

Table 4 implies that PWD-BMA, Hier-PWD and Sep-PWD significantly im-
proved upon the performance of State-Space-LR, Window-5, Station-

TABLE 4
Industry portfolio performance comparison: Squared prediction error mean, standard error and
p-value of difference in mean versus PWD–BMA. For compactness, we denote Hier–PWD by

H–PWD, State–Space–LR by SS–LR, Window-5 by W-5, stationary by Stat and Hier–Stat by H–Stat

Statistic PWD–BMA H–PWD Sep–PWD SS–LR W–5 Stat H–Stat

Mean 13,392 13,476 13,481 14,570 13,893 14,889 14,729
Std. Error 367 358 363 392 378 360 353
p-value 0.619 0.233 0.001 0.000 0.000 0.000
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FIG. 3. Smoothed estimated α�
j for highest and lowest empirical average estimated α∗

j over time.
A local linear kernel bandwidth smoother over a dense grid of 600 grid points was used for the
smoothing.

ary, Stat-Hier and Stat-BMA. We see that PWD-BMA outperformed all other
methods, achieving the smallest mean squared prediction error as well as one of
the smaller standard errors. Financial practitioners value improvement in both the
mean and the variance of squared prediction error because both reduce the amount
of capital a financial practitioner would need to hold aside to maintain a hedge
position over time. As we will see shortly, it appears PWD-BMA was able to adapt
to secular cycles in the importance of the different market factors.

4.1. Evolution of α�
j and βm

j over time. Our power-weighted densities ap-
proach provides some additional insight when we compare the estimated weight
parameters α�

j for each of the 30 industry portfolios and their implication for the
evolution of the sensitivities to changes in the overall stock market (“market beta”).

In Figure 3 we compare the estimated α�
j for the two industry portfolios with

the lowest average α�
j to the two industry portfolios with the highest average α�

j , as
well as the average α�

j across all portfolios. Each α�
j is plotted as a smoothed trend

over time, where the value of α�
j at time t is estimated using data for that portfolio

up to time t .
The average α� across industries has been trending slightly upward over time.

Business services and other industries (“BusSv” and “Other”) have the highest
amount of nonstationarity (lowest α�

j values), whereas lab equipment and clothes
(“Lab Eq” and “Clths”) have the lowest amount of nonstationarity (highest α�

j val-
ues). It is unsurprising that the “Other” industry has high nonstationarity since its
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FIG. 4. Estimated β̂m
j for BusSv industry over time from 4 models.

risk profile and industry mix is most likely to change over time, while an industry
like “Clothes” has a more stable risk profile over time.

Figure 4 provides further examination of the role of our PWD weighting on
βm, the sensitivity of industry portfolio returns to the overall market over time.
Specifically, we plot the estimated βm

j over time for the Business Services indus-
try as estimated by the Stationary, Stat-Hier, Sep-PWD and Hier-PWD
models. Our PWD approaches suggest that βm

j for the Business Services industry
is far less stable over time than implied by the Stationary and Stat-Hier
models. For example, after the burst of the technology stock market bubble in the
early 2000s, our PWD approach inferred a sharp rise in βm

j , which is indicative of
heightened sensitivity of returns to overall market movements, while the stationary
models made no such adjustment.

Figure 5 compares the evolution of βm
j estimated by our Hier-PWD approach

for the four industries that represented the highest and lowest degrees of nonsta-
tionarity in Figure 3. Interestingly, there were two time periods in which βm

j ’s
sharply diverged from 1.0: the period preceding 1960 and immediately following
2000. These fluctuations would not be detectable by a stationary model that uses
all historical data to estimate βm

j .

4.2. The evolution of factor weightings in Bayesian model averaging. The
Bayesian model averaging variant of our PWD approach provides additional in-
sight into the importance of the different predictor factors over time and across
industries. As outlined in Section 2.4, our PWD–BMA calculates posterior model
probabilities [equation (2.24)] for the 16 possible models that can be formed by
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FIG. 5. Estimated β̂m from Hier-PWD for four industries over time.

the inclusion/exclusion of our four factors. We calculate the posterior probability
of inclusion for each factor as the sum of the posterior model probabilities over the
subset of models that included that factor. These inclusion probabilities are calcu-
lated for each portfolio j and for each time point t (using only data up to that time
point).

In Figure 6 we plot the evolution of the inclusion probability, averaged over
the thirty portfolios, for each of the four factors: MKT, SMB, HML and MOM.
In Figure 7 we give the inclusion probability for each of the four factors averaged
over time separately for each of the thirty portfolios.

We see in Figure 6 that the MKT and SMB factors have inclusion probabil-
ities near to 1.0 for almost the entire time series. The HML and MOM factors
initially have much lower inclusion probabilities for most of the time series, with
the momentum factor being particularly interesting. For almost 60 years, MOM’s
inclusion probability vacillated between 15% and 25% with an inclusion probabil-
ity of 17% in November 1997. The MOM inclusion probability abruptly increased
to 58% by January 2001 and then further increased to 70% by November 2014.
It is probably not a coincidence that Carhart (1997), which first introduced the
momentum factor, immediately preceded a sharp rise in the importance of MOM
after 60 years of relative unimportance. We observe a similar phenomenon with the
HML factor, which had a step function-like increase from 78% in December 1991
to 89% in January 1993, the month before Fama and French (1993) was published.

Of the 16 regression models considered, the one with the highest posterior prob-
ability over the time period from November 1937 to May 1960 was a two-factor
model including only MKT and SMB factors. From June 1960 to January 2001,
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FIG. 6. Inclusion probability for each factor, averaged over portfolios.

the three-factor model had the highest posterior probability. Thereafter, the four-
factor model had the highest posterior probability. We see in Figure 7 the consider-
able heterogeneity across industries in the inclusion probabilities of the MOM and

FIG. 7. Inclusion probability for each factor by industry portfolio.
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HML factors. For example, the “Other,” “Aerospace” and “Real Estate” industries
have MOM inclusion probabilities of under 2%, while the “Steel,” “Transporta-
tion” and “Clothes” industries have MOM inclusion probabilities above 70%.

These results could impact how financial practitioners may want to go about
hedging their positions. For example, our PWD approach does suggest that MOM
factor is more important than it has ever been in explaining cross-sectional hetero-
geneity in returns across stock portfolios.

5. Summary and discussion. As an alternative to standard times series mod-
els, we have developed a power-weighted densities (PWD) approach where obser-
vations in the distant past are down-weighted in the likelihood function relative to
more recent observations (2.2). Our general approach provides an effective way
to allow for nonstationarity in time series while still giving the practitioner control
over the choice of the underlying data model, which could be useful in a wide vari-
ety of applications. In this paper we focused on a specific exponentially decreasing
weighting scheme (2.3), though other weighting schemes could be considered. For
example, the most popular way of allowing for nonstationarity in finance, rolling
window estimation, is another special case of our PWD approach.

Our PWD approach is a simpler alternative for allowing nonstationarity com-
pared to dynamic linear state space methods [West and Harrison (1998)] that ex-
plicitly model the evolution of an underlying state vector. Our approach has the
greatest benefit when the goal is forward-looking prediction, which is relevant in
our application: prediction of future prices given the concurrent movement of mar-
ket factors is often the primary goal in the financial markets. With this emphasis
on prediction, we have focused heavily on the posterior distribution for the param-
eters θT at the terminal time point T, instead of inferring the entire evolution of an
underlying state vector θ1:T as is done in state–space models.

Our simulation evaluation (Section 3) suggests that our PWD approach per-
forms well in terms of both predictive accuracy and computational cost across dif-
ferent data settings and should be considered in situations where the practitioner
suspects the underlying process generating the data evolves over time.

In Section 2.3 we developed the specific methodology for our PWD approach
for a hierarchical linear regression model, which was needed for our application
to industry portfolios in Section 4. In that application, our PWD approach showed
superior predictive performance over models that assume stationary parameters,
as well as alternative nonstationary methods such as dynamic linear models and
rolling windows. In Section 2.4 we developed a PWD variant of Bayesian Model
Averaging which yielded the best predictions in our application, and also gave
interesting insights into the evolution in the importance of market factors over
time.
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SUPPLEMENTARY MATERIAL

Discussion of “Power-weighted densities for time series data” (DOI: 10.
1214/15-AOAS893SUPP; .pdf). In McCarthy and Jensen (2015), we show the
conjugacy for exponential families under our PWD approach and the Kullback–
Leibler optimality of the general PWD setup. We provide additional results for
computational cost and simulations comparing additional PWD variants to com-
peting models. An adaptive PWD variant which switches between linear and ex-
ponentially decaying weights is also explored.
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