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EXTREMES ON RIVER NETWORKS1
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Max-stable processes are the natural extension of the classical extreme-
value distributions to the functional setting, and they are increasingly widely
used to estimate probabilities of complex extreme events. In this paper we
broaden them from the usual situation in which dependence varies according
to functions of Euclidean distance to situations in which extreme river dis-
charges at two locations on a river network may be dependent because the
locations are flow-connected or because of common meteorological events.
In the former case dependence depends on river distance, and in the second it
depends on the hydrological distance between the locations, either of which
may be very different from their Euclidean distance. Inference for the model
parameters is performed using a multivariate threshold likelihood, which is
shown by simulation to work well. The ideas are illustrated with data from
the upper Danube basin.

1. Introduction. Modeling extreme events has recently become of great in-
terest. The financial crisis, heat waves, storms and heavy precipitation underline
the importance of assessing rare phenomena when few relevant data are available.

There is a vast literature on modeling the univariate upper tail of the distribution
of environmental quantities such as precipitation or river discharges at a fixed lo-
cation t . If Xi(t) (i = 1, . . . , n) are n ∈ N independent measurements of a random
spatial process X at location t , then the probability law of the maximum of the n

observations can be approximated by the generalized extreme value distribution
(GEVD)

P

{
max

i=1,...,n

Xi(t) − bn

an

≤ x

}
≈ G(x) = exp

{−(1 + ξx)
−1/ξ
+

}
, x ∈ R,(1)

where z+ = max(z,0) and bn ∈ R, an > 0 and ξ ∈ R are the location, scale and
shape parameters, respectively. For ξ = 0, G(x) is read as the limit
exp{− exp(−x)}. In fact, (1) represents the only possible nondegenerate limit for
maxima of independent and identically distributed sequences of random variables
[see, e.g., Coles (2001), Chapter 3]. This justifies the extrapolation to high quan-
tiles using the parametric tail approximation (1) for u close to the upper endpoint
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of the distribution of X(t) by

P
{
X(t) > u

} ≈ 1

n

(
1 + ξ

u − bn

an

)−1/ξ

+
.(2)

Often, however, univariate considerations are insufficient, because near-
simultaneous extreme events may cause the most severe damage. In consider-
ing flooding of a river basin, for example, it is crucial to understand the extremal
dependence between flows at different gauging stations. Many authors have an-
alyzed this using multivariate copulas or multivariate extreme value distributions
[e.g., Renard and Lang (2007), Salvadori and De Michele (2010)], but the explo-
sion of the number of parameters in high dimensions limits the applicability of
such models, and information on the geographical location of the stations can-
not be readily incorporated. Meteorological considerations suggest that extremal
dependence can be modeled as a function of the distance between two locations.
Indeed, for precipitation, temperature or wind data, the use of Euclidean distance
has become standard in spatial extremes [e.g., Davison and Gholamrezaee (2012),
Engelke et al. (2015), Huser and Davison (2014)]. An important class of prob-
ability models for extreme spatial dependence on the Euclidean space R

2 is the
class of max-stable processes, giving several flexible models whose dependence is
parameterized in terms of covariance functions [Opitz (2013), Schlather (2002)]
or of negative definite kernels [Brown and Resnick (1977), Kabluchko (2011),
Kabluchko, Schlather and de Haan (2009)]. Almost all such models have hitherto
presupposed that extremal dependence depends only on the Euclidean distance be-
tween two locations, but this may be too restrictive when more is known about the
physical processes underlying the data: locations on a river network may interact
because of the flow of water downstream between them.

In this paper we focus on assessment of the risk of extreme discharges on river
networks in order to understand and prevent flooding. There is longstanding inter-
est in the application of extreme value statistics in hydrology [e.g., Katz, Parlange
and Naveau (2002), Keef, Svensson and Tawn (2009), Keef, Tawn and Svensson
(2009)]. In Europe, floods are major natural hazards that can end human lives and
cause huge material damage. Figure 1 shows the upper Danube basin, which cov-
ers most of the German state of Bavaria and parts of Baden-Würtemberg, Austria
and Switzerland, and is regularly affected by flooding. For this reason there is a
well-developed system of gauging stations that measure the daily average river dis-
charge on this river network; the locations of 31 stations are shown on the map. For
each fixed location tj (j = 1, . . . ,31) on the network, the approximation (2) can
be applied to daily measurements Xi(tj ) (i = 1, . . . , n) of river discharge (m3/s)
in order to model univariate tail probabilities.

Dependence modeling is more challenging. The extremal coefficient θ(ti, tj ) ∈
[1,2] measures the degree of dependence of large values at two locations ti and
tj on the river network; it ranges from θ(ti, tj ) = 1 for complete dependence to
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FIG. 1. Topographic map of the upper Danube basin, showing sites of 31 gauging stations (black
circles) along the Danube and its tributaries. Water flows toward gauging station 1.

θ(ti, tj ) = 2 for independence. The left panel of Figure 2 shows its values for
all pairs of stations in Figure 1, plotted against their Euclidean distances. Unlike
similar plots for extreme precipitation, the non-Euclidean structure of the network
means that this graph shows only a weak relationship.

In this paper we aim to exploit both the geographical structure of the river basin
and the hydrological properties of the network in order to provide a parsimonious
model for extremal dependence. The resulting dependence function has two parts:

FIG. 2. Extremal coefficients (estimated using the madogram) of all pairs of gauging stations plot-
ted against Euclidean distance (left) and hydrological distance (right); those for flow-connected pairs
are blue crosses, and those for flow-unconnected pairs are black circles.
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• since precipitation is the major source of extreme river discharges and it is spa-
tially dependent, one also expects higher dependence of river discharges at sta-
tions which are close. The left panel of Figure 2 suggests that the Euclidean
distance between stations has low explanatory power, so we shift each gauging
station to a new position in the center of its sub-catchment, which we call its hy-
drological position. The extremal coefficients plotted against the hydrological
distance between the hydrological positions exhibit a strong functional relation-
ship, shown in the right panel of Figure 2, which is exploited in the dependence
model described in Section 3.3;

• the crosses in Figure 2 represent the extremal coefficients of pairs of flow-
connected stations, which have one station located upstream of the other. Such
pairs are generally more dependent than flow-unconnected pairs, not only be-
cause the catchments are close but also owing to the flow of water along the
river. In Section 3.2 we explain how knowledge about the network structure and
river sizes can be included in the dependence model for flooding using ideas
of Ver Hoef and Peterson (2010), who defined covariance functions on river
networks.

As one application of such a model, we would like to be able to compute the
multivariate counterpart of (2), that is, the probability of a rare event such as

P
{
X(s1) > u1, . . . ,X(sk) > uk

}
for large u1, . . . , uk > 0, where s1, . . . , sk ∈ T can be any stations on the river
network, even without measurements there. More complicated quantities, such as
the sum of discharges at several stations, may also be of interest.

2. Preliminaries.

2.1. Extreme value theory. The only nontrivial limiting distribution for the
normalized maxima of an independent and identically distributed sequence of
scalar random variables is the max-stable GEVD, expression (1). In the multi-
variate case, we can transform each margin such that the max-limit has a standard
Fréchet cumulative distribution function exp(−1/x) (x > 0). In this way, without
loss of generality, we can concentrate on the multivariate dependence between the
components [Resnick (1987), Proposition 5.8].

Let Xi = (X1,i , . . . ,Xm,i) (i = 1, . . . , n) be independent copies of an m-variate
random vector X and assume that for each j = 1, . . . ,m the maximum maxi Xj,i

converges to a GEVD Gj , as in (1), with norming constants bj,n ∈ R, aj,n > 0 and
shape parameter ξj . Define the transformations

Uj(x) = −1/ logGj(x) = (1 + ξjx)
1/ξj

+ ,(3)

and note that

lim
n→∞P

{
max

i=1,...,n
Uj

(
Xj,i − bj,n

aj,n

)
≤ x

}
= exp(−1/x), j = 1, . . . ,m.
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We say that X is in the multivariate maximum domain of attraction (MDA) of a
random vector Z = (Z1, . . . ,Zm), if for any z = (z1, . . . , zm),

lim
n→∞P

{
max

i=1,...,n
U1

(
X1,i − b1,n

a1,n

)
≤ z1, . . . , max

i=1,...,n
Um

(
Xm,i − bm,n

am,n

)
≤ zm

}
(4)

= P(Z ≤ z);
call this joint distribution FZ(z). In this case, Z is max-stable with standard Fréchet
marginal distributions; see before (9). Moreover, by Resnick (1987), Proposi-
tion 5.8, we may write

FZ(z) = exp
{−V (z)

}
, z ∈ R

m,(5)

where the exponent measure V is a measure defined on the cone E = [0,∞)m \{0}
and V (z) is shorthand for V ([0, z]C). The object V incorporates the extremal de-
pendence structure of Z, where V (z) = 1/min(z1, . . . , zm) and V (z) = 1/z1 +
· · · + 1/zm represent complete dependence and independence, respectively. The
measure V is homogeneous of order −1, that is, V (λz) = λ−1V (z), for λ > 0, and
it satisfies V (z,∞, . . . ,∞) = 1/z for z > 0 and any permutation of its arguments.
There are many parametric models for the exponent measure V and thus for mul-
tivariate extreme value distributions or copulas. The explosion of parameters in
most such models makes fitting them feasible only in low dimensions.

By Proposition 5.17 of Resnick (1987) the convergence in (4) is equivalent to

lim
n→∞nP

[{
U1

(
X1 − b1,n

a1,n

)
, . . . ,Um

(
Xm − bm,n

am,n

)}
∈ A

]
= V (A)(6)

for any Borel subset A ⊂ E which is bounded away from 0 and satisfies V (∂A) =
0, where ∂A is the boundary of A. This important observation allows us to ap-
proximate the probability that X falls into a rare region. For instance, if A =
(u1,∞) × · · · × (um,∞) (u1, . . . , um ∈ R), then for large n (6) implies that

P(X1 > u1, . . . ,Xm > um) ≈ 1

n
V

{
m∏

j=1

(
Uj

(
uj − bj,n

aj,n

)
,∞

)}
,(7)

where
∏

denotes the Cartesian product. More complicated events such as A = {x ∈
R

m : ∑m
i=1 xi > u} for some u ∈ R can also be considered. Equation (6) implies

that as n → ∞ the empirical point process{(
U1

(
X1,i − b1,n

a1,n

)
, . . . ,Um

(
Xm,i − bm,n

am,n

))
: i = 1, . . . , n

}

converges vaguely to a Poisson point process on E with intensity measure V

[Resnick (1987), Proposition 3.21]. In Section 4 this result will be used to derive
the asymptotic distribution of exceedances and to fit parametric models for V .
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In the bivariate case m = 2, a common summary statistic for the dependence
among components of FZ is the extremal coefficient θ ∈ [1,2] [see, e.g., Schlather
and Tawn (2003)], which is defined through the expression

P(Z1 ≤ u,Z2 ≤ u) = P(Z1 ≤ u)θ , u > 0,(8)

or, equivalently, θ = V (1,1). Consequently, the cases θ = 1 and θ = 2 correspond
to complete dependence and independence. Model-free estimation of the extremal
coefficient is possible through the madogram [Cooley, Naveau and Poncet (2006)],
and these estimates of θ can be used for model-checking.

2.2. Max-stable processes. Max-stable processes can be defined on any in-
dex set T , though this is usually taken to be a subset of an Euclidean space R

d .
A random process {Z(t) : t ∈ T } is called max-stable if there exists a sequence
(Xi)i∈N of independent copies of a process {X(t) : t ∈ T } and functions an(t) > 0,
bn(t) ∈ R, such that the convergence

Z(t) = lim
n→∞

{
max

i=1,...,n
Xi(t) − bn(t)

}
/an(t), t ∈ T ,(9)

holds in the sense of finite dimensional distributions. In this case, the process X is
said to lie in the max-domain of attraction of Z.

The class of max-stable processes is generally too large for statistical model-
ing, so one typically considers parametric subclasses of models. Examples include
mixed moving maxima processes [Wang and Stoev (2010)], Schlather processes
[Schlather (2002)] and Brown–Resnick processes [Brown and Resnick (1977),
Kabluchko, Schlather and de Haan (2009)]. In this paper we rely on the construc-
tion principle for a large class of max-stable processes given in Kabluchko (2011);
see also Kabluchko, Schlather and de Haan (2009). A negative definite kernel �

on an arbitrary nonempty set T is a mapping � : T × T → [0,∞) such that for
any n ∈ N and a1, . . . , an ∈ R with

∑n
i=1 ai = 0, we have

n∑
i=1

n∑
j=1

aiaj�(ti, tj ) ≤ 0, t1, . . . , tn ∈ T .

The following result states that there corresponds a max-stable process to any neg-
ative definite kernel on T .

THEOREM 2.1 [Kabluchko (2011), Theorem 1]. Suppose that Wi (i ∈ N) are
independent copies of the zero-mean Gaussian process {W(t) : t ∈ T } whose in-
cremental variance E{W(s) − W(t)}2 equals �(s, t) for all s, t ∈ T . Let σ 2(t) =
E{W(t)2} denote the variance function of W and let {Ui : i ∈N} denote a Poisson
process on (0,∞) with intensity u−2 du. Then the process

η�(t) = max
i∈N Ui exp

{
Wi(t) − σ 2(t)/2

}
, t ∈ T ,(10)

is max-stable, has standard Fréchet margins, and its distribution depends only
on �.



EXTREMES ON RIVER NETWORKS 2029

If T = R
d and W is an intrinsically stationary Gaussian process, then η�

is called a Brown–Resnick process [Brown and Resnick (1977), Kabluchko,
Schlather and de Haan (2009)]. This is a popular model for complex extreme
events. The generation of random samples from Brown–Resnick type processes
is challenging [cf. Engelke, Kabluchko and Schlather (2011), Oesting, Kabluchko
and Schlather (2012)], but recent advances provide exact and efficient algorithms
[Dieker and Mikosch (2015), Dombry, Engelke and Oesting (2016)].

REMARK 2.2. (a) For any negative definite kernel � there are many different
Gaussian processes with incremental variance � [Kabluchko (2011), Remark 1].
In particular, for u ∈ T , we can choose a unique Gaussian process W(u) with in-
cremental variance � and W(u)(u) = 0 almost surely. The covariance function of
this process is

E
{
W(u)(t)W(u)(s)

} = {
�(s,u) + �(t, u) − �(s, t)

}
/2.(11)

Thus, there is a one-to-one correspondence between negative definite kernels �

and the class of max-stable processes η� .
(b) If {X(t) : t ∈ T } is a zero-mean Gaussian process with covariance function

C : T × T → R, then �(s, t) = C(s, s) + C(t, t) − 2C(s, t) is a negative definite
kernel on T .

The bivariate distribution function of (η�(s), η�(t)) (s, t ∈ T ) is

P
{
η�(s) ≤ x,η�(t) ≤ y

}
= exp

{
−1

x
	

[√
�(s, t)

2
+ log(y/x)√

�(s, t)

]
− 1

y
	

[√
�(s, t)

2
+ log(x/y)√

�(s, t)

]}
,(12)

x, y > 0,

where 	 is the standard normal distribution function. Analogously to the extremal
coefficient in (8), one considers the extremal coefficient function θ(s, t) (s, t ∈
T ), defined as the extremal coefficient of the bivariate vector (η�(s), η�(t)), as
a measure of the functional extremal dependence of the max-stable process η� .
By (12), we conclude that

θ(s, t) = 2	

{√
�(s, t)

2

}
,(13)

so the negative definite kernel � parameterizes the extremal dependence between
observations at positions s and t ; small and large values of �(s, t) correspond
to strong and weak dependence, respectively. By Remark 2.2(a), any kernel �

yields a max-stable process η� , so in Section 3 we can and will focus on finding a
parametric model for � suitable for our application.

The higher dimensional distributions of η� are more complicated. For instance,
for t = (t1, . . . , tm) ∈ T m, the random vector (η�(t1), . . . , η�(tm)) is max-stable
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FIG. 3. River network with three locations t1, t2, t3 ∈ T ; t1 is flow-connected with both t2 and t3,
but t2 and t3 are flow-unconnected.

and its exponent measure V�,t defined in (5) is characterized by [Kabluchko
(2011)]

V�,t(x1, . . . , xm) = E

[
max

i=1,...,m

{
W(ti) − σ 2(ti)/2

xi

}]
.(14)

This multivariate max-stable distribution is called the Hüsler–Reiss distribution
[Hüsler and Reiss (1989)]. Computation of the expected value in (14) involves
high-dimensional integrals and thus is awkward in general.

3. Model.

3.1. River network. In the previous section we showed how to define max-
stable processes on an arbitrary index set T . From here on, T will represent a river
network and we will construct a kernel � flexible enough to explain the extremal
dependence observed in data.

Let us first fix some notation for river networks [Ver Hoef and Peterson (2010)].
We embed our network T in the Euclidean space R2 representing the geographical
river basin. To this end, let T ⊂ R

2 denote the collection of piecewise differentiable
curves, called river segments, that are connected at the junctions of the river and
whose union constitutes the river network. There is a finite number M ∈ N of such
segments and we index them by i ∈ S = {1, . . . ,M}. The network is dendritic, in
the sense that there is one most downstream segment, which splits up into other
segments when going upstream; see Figure 3. For a location ti ∈ T on the ith
segment, we let Di ⊆ S denote the index set of river segments downstream of
ti , including the ith segment. Moreover, for another location tj ∈ T on the j th
segment we say that ti and tj are flow-connected, written ti ↔ tj , if and only
if Di ⊆ Dj or Dj ⊆ Di . If ti and tj are not flow-connected, we say that they
are flow-unconnected and write ti � tj . If tj is upstream of ti , that is, Di ⊂ Dj ,
then we denote the set of segments between tj and ti , inclusive of the j th but
exclusive of the ith segment, by Bi,j = Dj \ Di . If tj is downstream of ti , then
Bi,j = Di \Dj . In the case that ti and tj are on the same segment, that is, Di = Dj ,
we put Bi,j = ∅.

We define the river distance d(t1, t2) between two arbitrary points t1, t2 on the
network T as the shortest distance along T , that is, we sum the arc-lengths of the
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FIG. 4. Gauging stations 5 and 23 (black circles), their sub-catchments in light green and blue,
respectively, and their hydrological locations (black triangles) as defined in (17).

segment curves lying between t1 and t2; see Figure 3. The embedding of the river
network T in the Euclidean space R

2 has the advantage that we can exploit the
geographical structure of the river basin. To this end, associate to each location
t = (x, y) ∈ T ⊂ R

2 the set St ⊂ R
2 of all points on the geographical map such

that water from this point will eventually flow through point t on the river. The set
St is called the sub-catchment of location t ; see Figure 4.

As explained in Section 2.2, we need to construct a negative definite ker-
nel � on the space T × T that captures the dependence structure of ex-
treme values on the river network T . Figure 2 suggests that this should be
based on two components: one, �Riv, for the flow-connected dependence along
the river, taking into account the hydrological properties of the river net-
work; and another, �Euc, for the dependence resulting from the geographi-
cal structure of the river basin and spatially distributed meteorological vari-
ables.

3.2. Dependence measure �Riv. There are many models for Gaussian random
fields where the covariance between two locations depends only on the Euclidean
distance between two points. Such covariances are not valid with metrics such as
the river distance d on our network because they may not be positive definite. Re-
cent work [Cressie et al. (2006), Ver Hoef and Peterson (2010), Ver Hoef, Peterson
and Theobald (2006)] has developed covariances that are positive definite as func-
tions of river distance. A related approach, the top-kriging of Skøien, Merz and
Blöschl (2006), uses variograms integrated over catchments, but does not provide
closed-form formulae, so we focus on river distance methods.
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Following the “upstream construction” in Ver Hoef, Peterson and Theobald
(2006), we can define a covariance function based on river distance for ti , tj ∈ T

by

CRiv(ti, tj ) =
⎧⎪⎨
⎪⎩

∏
k∈Bi,j

√
πkC1

{
d(ti, tj )

}
, ti ↔ tj ,

0, ti � tj ,
(15)

where the covariance function C1 arises from a moving average construction on R.
If Bi,j = ∅ in (15), then

∏
k∈Bi,j

√
πk is set to 1. The corresponding weights

πk (k ∈ Bi,j ) are chosen such that the variance is constant, that is, CRiv(ti , ti) =
CRiv(tj , tj ) = C1(0) for all ti , tj ∈ T . For a fuller treatment, see Ver Hoef, Peterson
and Theobald (2006) and Ver Hoef and Peterson (2010), who also provide differ-
ent parametric classes for the covariance function C1, including the linear with sill
model

C1(h) = (1 − h/τ)+, τ > 0,

which we use below. Intuitively, the covariance function (15) can be understood
as follows: an event at a downstream location, for example, t1 in Figure 3, can be
caused by an event on one of the two branches of an upstream bifurcation. The
weights πk quantify the proportions of events coming from the branches. If sev-
eral bifurcations lie between two flow-connected locations, then the weights along
the connection must be multiplied. The choice of the weights in the covariance
function CRiv in (15) is crucial and depends on the application. As we consider
extreme discharges on river networks, the weights at a bifurcation should reflect
the proportion of large discharge values at the downstream river that are caused by
a large discharge of one of the upstream rivers. In Figure 3, for example, a natural
choice for the weights π2, π3 on the river segments of t2, t3 is to take the propor-
tion of mean water volumes, that is, πi = Eti /(Et2 +Et3), where Eti is the average
discharge at location ti (i = 2,3). This, however, requires measurements at all
bifurcations. Since we would like to use our model for extrapolation to parts of
the network without measurements, we must approximate Et1 and Et2 . A digital
elevation model can be used to extract the geographical coordinates of the sub-
catchment St corresponding to each location t ∈ T on the river network, including
the altitude h(x, y) at all (x, y) ∈ St . Exploratory analysis shows that altitude is
an excellent covariate for average precipitation, so we define E∗

t as the integrated
altitude over St , that is,

E∗
t =

∫
St

h(x, y) dx dy,

which is thus approximately proportional to the average runoff accumulated in the
sub-catchment St . We then define the weights in the above example to be

πi = E∗
ti
/
(
E∗

t2
+ E∗

t3

)
, i = 2,3.(16)
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By the second part of Remark 2.2 and the construction of the positive definite
covariance function in (15), we obtain a negative definite kernel �Riv on the river
network T by setting

�Riv(ti , tj ) =
⎧⎪⎨
⎪⎩

1 − ∏
k∈Bi,j

√
πk

(
1 − d(ti, tj )/τ

)
+, ti ↔ tj ,

1, ti � tj .

3.3. Dependence measure �Euc. Two flow-unconnected locations on the river
network can have dependent extreme discharges, since precipitation is spatially
dependent. As shown in Figure 2, the usual Euclidean distance between two points
cannot fully explain this dependence, because the total amount of water at location
t ∈ T on the river network comes not only from precipitation there, but also from
the accumulated runoff from its sub-catchment St . Thus, instead of the Euclidean
distance between two points s, t ∈ T , we should consider a hydrological distance
that appropriately describes the distance between runoff in sub-catchments Ss and
St due to precipitation. For this purpose we first shift each location t ∈ T to a
hydrological location by a function H : T →R

2. In our case, the center of mass of
mean annual precipitation on the sub-catchment St gives a good choice [Merz and
Blöschl (2005)]. As noted in Section 3.2, precipitation data on a dense grid is often
difficult to obtain, so we use the altitude h(x, y) at location (x, y) ∈ St instead.

The hydrological location H(t), or “altitude weighted centroid,” of a point on
the river network is

H(t) =
(

1

E∗
t

∫
St

xh(x, y) dx dy,
1

E∗
t

∫
St

yh(x, y) dx dy

)T

, t ∈ T ,(17)

and the hydrological distance between s, t ∈ T is ‖H(s) − H(t)‖, where ‖ · ‖
denotes Euclidean distance. Figure 4 shows two stations on the river network that
are close in terms of Euclidean distance but whose hydrological locations are far
apart. The right-hand panel of Figure 2 reveals strong functional dependence of
the extremal coefficients on hydrological distance.

A variogram that is valid on the Euclidean space R2 can be applied to the hydro-
logical positions H(t) (t ∈ T ). The fractal variogram family �α(x, y) = ‖x − y‖α

(x, y ∈ R
2), where α ∈ (0,2] is called the shape parameter, is commonly used,

but it is isotropic: the dependence decreases at the same rate in each direction.
Extremal meteorological data often exhibit anisotropies that can be captured by
including a rotation and dilation matrix [Blanchet and Davison (2011), Engelke
et al. (2015)]

R ≡ R(β, c) =
(

cosβ − sinβ

c sinβ c cosβ

)
, β ∈ [π/4,3π/4], c > 0,(18)

where the restriction of β to one quadrant ensures the identifiability of the param-
eters (β, c). Applying the kernel �α and transformation R to the positions H(t),
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we obtain a negative definite kernel on the river network T , that is,

�Euc(ti, tj ) = ∥∥R · H(ti) − R · H(tj )
∥∥α

, ti, tj ∈ T ,

where R · v denotes matrix multiplication of R and the vector v ∈R
2.

3.4. Max-stable process on T . In Sections 3.2 and 3.3 we defined two negative
definite kernels on the river network T : �Riv models the extremal dependence
of flow-connected stations due to the specific hydrological properties of the river
network, and �Euc describes additional dependence between all stations due to the
geographical structure of the river basin and spatially distributed precipitation. We
combine these to obtain our final dependence model: given weights λRiv, λEuc ≥ 0,
we put

�(ti, tj ) = λRiv�Riv(ti, tj ) + λEuc�Euc(ti , tj )
(19)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λRiv

{
1 − ∏

k∈Bi,j

√
πk

(
1 + d(ti, tj )/τ

)
+

}

+ λEuc
∥∥R · H(ti) − R · H(tj )

∥∥α
, ti ↔ tj ,

λRiv + λEuc
∥∥R · H(ti) − R · H(tj )

∥∥α
, ti � tj ,

for any ti , tj ∈ T . By Remark 2.2 we can define a Gaussian random field W on T

with variogram �, and by Theorem 2.1 we obtain a max-stable process η� on T ,
defined in (10), with dependence function �. The process η� is nonstationary:
indeed, since it is not defined on a Euclidean space, even the notion of stationarity
is unclear.

The process η� has standard Fréchet margins. However, even after normaliza-
tion of the data with scale and location parameters at each location t ∈ T as in (1),
the univariate tail distributions will have different shapes. We must therefore trans-
form the standard Fréchet margins in (10) to GEVD. We set

η̃�(t) = η�(t)ξ(t) − 1

ξ(t)
, t ∈ T ,(20)

where ξ(t) ∈ R is the shape parameter at point t ∈ T . It is then easily verified that
the margins of η̃� follow a GEVD, that is,

P
{
η̃�(t) ≤ x

} = exp
[−{

1 + ξ(t)x
}−1/ξ(t)
+

]
, x ∈ R.

4. Inference.

4.1. General. Inference for the extremes of univariate data is well devel-
oped [Coles (2001), de Haan and Ferreira (2006), Embrechts, Klüppelberg and
Mikosch (1997)], so we merely sketch it in Section 4.2. Statistical inference for
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multivariate or spatial models is more difficult, as their distributions are rarely
known in closed form or involve high-dimensional integration. Composite like-
lihood methods based on bivariate densities have therefore been widely applied
[Davison and Gholamrezaee (2012), Huser and Davison (2014), Padoan, Rib-
atet and Sisson (2010)]. Recent research has focused on methods that exploit full
likelihoods of multivariate extreme observations through peaks-over-threshold ap-
proaches [Wadsworth and Tawn (2014), Engelke et al. (2015), Thibaud and Opitz
(2015), Bienvenüe and Robert (2014)] and on M-estimators for spatial extremes
[Einmahl et al. (2015)]. However, different definitions of an extreme event yield
different inferences. One might call a multivariate observation extreme if at least
one component is large, leading to multivariate generalized Pareto distributions
[Rootzén and Tajvidi (2006)], whereas choosing data where a single fixed compo-
nent exceeds a high threshold gives a conditional extreme value model [Heffernan
and Tawn (2004)], and spectral estimation is based on observations where a suit-
able norm of the components is large [cf. Coles and Tawn (1991)]. For finite sam-
ples each choice has advantages and disadvantages [Huser, Davison and Genton
(2014)].

We consider two estimation procedures tailor-made for a max-stable process
η� whose finite-dimensional margins follow the Hüsler–Reiss distribution (14).
Engelke et al. (2015) compute the spectral density of the exponent measure
(14) and introduce an estimator for the parameters of a Brown–Resnick process
[Kabluchko, Schlather and de Haan (2009)]. Wadsworth and Tawn (2014) use
events for which at least one component exceeds a high threshold, and censor any
components that stay below it.

In Section 4.3 we review these two methods, show how they can be adapted
to our framework, and derive a new representation of the conditional densities,
simpler than that in Wadsworth and Tawn (2014). Asadi, Davison and Engelke
(2015) describe a small simulation study that aids in the choice of estimator for
our application.

4.2. Univariate margins. We must estimate the univariate extreme value pa-
rameters, that is, the norming constants aj,n, bj,n, and the shape parameter ξj

(j = 1, . . . ,m) in (1). This allows the calculation of univariate return levels at each
location and is needed for the transformations Uj,n in (3) that appear in the mul-
tivariate exceedance probabilities (7). We use the Poisson point process approach
[Coles (2001), Section 7.3] to fit these models for the univariate exceedances.

Recall that Xi = (X1,i , . . . ,Xm,i) (i = 1, . . . , n) are independent copies of an
m-variate random vector X as in Section 2.1. For each location j = 1, . . . ,m,
let qj,p be the empirical p-quantile, with p ≈ 1, of the data Xj,1, . . . ,Xj,n, and
write Ij = {i ∈ {1, . . . , n} : Xj,i > qj,p}. Then the Poisson point process likeli-
hood for the exceedances at station tj , assumed independent, can be written as
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[Coles (2001), (7.9)]

L(ξj , aj,n, bj,n) ∝ exp
{
−nj

[
1 + ξj

(
qj,p − bj,n

aj,n

)]−1/ξj
}

(21)

× ∏
i∈Ij

a−1
j,n

[
1 + ξj

(
Xj,i − bj,n

aj,n

)]−1/ξj−1

,

where nj is the number of years of observations at location tj . Owing to the inclu-
sion of nj , the parameters aj,n, bj,n and ξj equal those in the GEVD (1) for yearly
maxima. A joint model for the parameters at different locations, such as a linear
model with environmental covariates, can be fitted by maximizing a so-called in-
dependence likelihood [Chandler and Bate (2007)] based on the product of (21)
over all stations.

4.3. Estimation of η� . In order to fit the max-stable process η� introduced in
Section 3 with dependence kernel (19), we must estimate the six parameters

λRiv ≥ 0, λEuc ≥ 0, τ > 0,
(22)

α ∈ (0,2], β ∈ [π/4,3π/4], c > 0,

that characterize the river and Euclidean dependence functions �Riv and �Euc and
their weights. Below we write ϑ = (λRiv, λEuc, τ, α,β, c), and denote the corre-
sponding parameter space by �. When stressing that � depends on the parame-
ter ϑ , we write � = �ϑ .

We do not observe data from the asymptotic limit model η� itself, so let us
specify the assumptions for our observations. As in Section 3, let T denote the river
network and assume that we have n observations X1, . . . ,Xn ∈ R

m at m locations
t = (t1, . . . , tm) ∈ T m. Further, suppose that the data are normalized to standard
Pareto margins with cumulative distribution function 1 − 1/x (x ≥ 1) and that the
vectors Xk (k = 1, . . . , n) are independent copies of a random vector X in the max-
domain of attraction of the max-stable process η�(t) = (η�(t1), . . . , η�(tm)). This
means that

lim
n→∞nP(X/n ∈ A) = V�,t(A),(23)

for any Borel subset A ⊂ E which is bounded away from 0 and which has zero
V�,t measure on its boundary; recall the definition of the exponent measure in
Section 2.1.

4.3.1. Spectral estimation of �ϑ . The random vector η�(t) follows a multi-
variate Hüsler–Reiss distribution. Even though its multivariate densities are not
available, the densities of its exponent measure V�,t have closed forms for any
dimensions and we can apply the spectral estimator proposed by Engelke et al.
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(2015). Indeed, for large thresholds u > 0 the convergence in (23) justifies the
approximation

P
(
X ∈ dx,‖X‖1 > u

) ≈ − ∂m

∂x1 · · · ∂xm

V�,t(x1, . . . , xm)dx,(24)

where ‖x‖1 = ∑m
j=1 xj (x ∈ E) denotes the L1-norm, and V�,t({x ∈ E : ‖x‖1 >

1}) = m. Owing to the homogeneity of the exponent measure V�,t in Section 2.1,
it suffices to specify the angular part of (24), namely, its spectral density on the
positive L1-sphere Sm−1 = {x ≥ 0 : ‖x‖1 = 1} ⊂ R

m [Coles and Tawn (1991)].
Engelke et al. (2015) showed that the spectral density of the Hüsler–Reiss exponent
measure is

gϑ(ω1, . . . ,ωm) = 1

ω2
1ω2 · · ·ωm(2π)(m−1)/2|det�ϑ |1/2

exp
(
−1

2
ω̃T�−1

ϑ ω̃

)
,

ω ∈ Sm−1,

where ω̃ = (log(ωj/ω1) + �ϑ(tj , t1)/2 : j = 2, . . . ,m)T and �ϑ ⊂ R
(m−1)×(m−1)

is the covariance matrix from Remark 2.2(a) for u = t1, that is,

�ϑ = 1
2

{
�ϑ(ti, t1) + �ϑ(tj , t1) − �ϑ(ti, tj )

}
2≤i,j≤m.(25)

Thus, denoting the index set of extremal observations by I = {k = 1, . . . , n :
‖Xk‖1 > u}, the spectral estimator ϑ̂SPEC of ϑ is defined by

ϑ̂SPEC = arg max
ϑ∈�

∑
k∈I

loggϑ

(
Xk/‖Xk‖1

)
.(26)

The advantage of this estimator over composite likelihood counterparts is that it
uses a full likelihood and thus is fully efficient, thus giving improved estimation
of Brown–Resnick processes; see the simulation study in Engelke et al. (2015).
Owing to the explicit form of the spectral densities, this approach is feasible even
for a large number m of locations.

4.3.2. Censored estimation of �ϑ . Conditioning on the norm of observations
being large, as in (24), might introduce bias, since the limit distribution may pro-
vide a poor density approximation to any of the Xk that have small individual com-
ponents. To overcome this, Wadsworth and Tawn (2014) apply censoring to those
components that do not exceed a fixed high threshold. We adopt their approach,
giving a new, simpler expression for the censored likelihood, valid for any process
with Hüsler–Reiss margins, not just for stationary Brown–Resnick processes.

Similarly to the spectral estimation based on (24), for large thresholds u > 0 we
have the approximation

P

(
X ∈ dx, max

j=1,...,m
Xj > u

)
≈ − ∂m

∂x1 · · · ∂xm

V�,t(x1, . . . , xm)dx.(27)

Here, a multivariate observation is said to be extreme if at least one component
exceeds the threshold. For the likelihood contribution from an observation X =
(X1, . . . ,Xm) we distinguish two cases:
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• if at least one component exceeds the threshold, that is, Xj > u for all j ∈ K and
Xj ≤ u for all j ∈ KC = {1, . . . ,m} \K for a nonempty subset K ⊂ {1, . . . ,m},
we compute the likelihood fϑ,K(X) by censoring all KC-components of the full
likelihood fϑ,1:m(X). We thus only use the information that those components
are below the threshold u, but not their exact values. Without loss of generality,
let K = {1, . . . , b}, for some b ∈ {1, . . . ,m}. Then the censored likelihood is

fϑ,K(x) = − ∂b

∂x1 · · · ∂xb

V�,t(x1, . . . , xb, u, . . . , u)

(28)

= 1

x2
1x2 · · ·xb

φb−1(x̃2:b;�2:b,2:b)	m−b(μC;�C),

where � = �ϑ is the covariance matrix in (25), x̃ = (logxj − logx1 +
�ϑ(tj , t1)/2 : j = 1, . . . ,m)T ∈ R

m, and φp(·,�) and 	p(·,�) denote the den-
sity and the cumulative distribution function of a p-dimensional, zero-mean nor-
mal distribution with covariance matrix � . We set φ0 to 1 if b = 1, and 	0 to 1
if b = m. The conditional mean μC and covariance matrix �C are

μC = (
logu − logx1 + �ϑ(tj , t1)/2

)
j=b+1,...,m − �(b+1):m,2:b�−1

2:b,2:bx̃2:b,(29)

�C = �(b+1):m,(b+1):m − �(b+1):m,2:b�−1
2:b,2:b�2:b,(b+1):m.(30)

In the case b = 1, μC and �C are unconditional, that is, the last summands in
the formulas above vanish. The derivation of this new representation of fϑ,K can
be found in Asadi, Davison and Engelke (2015).

• if none of the components exceeds u, that is, K = ∅, then the likelihood con-
tribution is just the probability fϑ,K(x) = 1 − V�,t(u) that X lies entirely below
the threshold.

Let J = {i = 1, . . . , n : maxk=1,...,m Xi,k > u} denote the index set of obser-
vations extreme in the sense of (27) and, for each i ∈ J , let Ki be the index set
of those components of Xi that exceed u. Then, the censored estimator ϑ̂CENS is
obtained by maximizing the log-likelihood [Thibaud and Opitz (2015), Section 3]

ϑ̂CENS = arg max
ϑ∈�

[(
n − |J |) log

{
1 − V�,t(u)

} + ∑
i∈J

logfϑ,Ki
(Xi )

]
.(31)

This estimator has the advantage of using full likelihoods and reducing potential
bias by censoring components that might not yet have converged, but the disad-
vantage of being slow when m is large, since the censored likelihood fϑ,K then
involves the burdensome evaluation of high-dimensional normal distribution func-
tions.
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4.3.3. Simulation study. The two estimators ϑ̂SPEC and ϑ̂CENS use different
data and will have different behavior for finite sample sizes. We conducted a small
simulation study to assess their performance in a setting similar to our application.
Details can be found in Asadi, Davison and Engelke (2015). Both estimation pro-
cedures work for the simulated data, even with a low number of observations; only
the extreme events contribute to the likelihoods. In simulated data, the advantage of
censoring cannot be seen, but it will reduce any bias for real data. As also noted by
Engelke et al. (2015) and Einmahl et al. (2015), the estimates of λEuc have larger
variation than the others. In fact, owing to a near-functional relationship between
the scale λEuc and the shape α of the fractal variogram, these two parameters are
strongly related in the range considered here, and this near lack of identifiability
gives highly variable estimators of λEuc.

5. Extreme river discharges in the upper Danube basin.

5.1. Data. We used data for average daily discharges recorded at m = 31 Ger-
man gauging stations on 20 rivers in the upper Danube basin, made available by
the Bavarian Environmental Agency (http://www.gkd.bayern.de). The average dis-
charges at these stations range from around 20 m3/s at high altitudes to around
1400m3/s at the most downstream station. The major part of the runoff in the basin
arises from the Alps, situated south of the Danube; see Figure 1. The series at in-
dividual stations have lengths from 50 to 130 years, with 50 years of data for all
stations from 1960–2009. Originally, data were provided for 47 stations, but we ex-
cluded 16 stations which have very small discharges or whose largest discharges
are affected by hydroelectric installations or dampened by big lakes; it might be
possible to include these data by applying special preprocessing techniques, but
we have not explored this.

Exploratory analysis shows that around one-half of the annual maxima in the
basin occur in June, July and August. This agrees with the study of floods in the
Danube tributaries Lech and Isar by Böhm and Wetzel (2006), which shows that
nearly all major floods in recent decades have occurred in these three months;
floods in this area are typically caused by heavy summer rain. In order to eliminate
temporal nonstationarities and the effect of snow melt, we restrict our analysis
to these months. For k = 1, . . . ,N , we let Yk = (Y1,k, . . . , Ym,k) denote the daily
mean discharge at the m stations on day k. The number of common measurements
at all stations is thus N = 50×92 = 4600, that is, 50 years of 92 daily observations
in the summer months.

Seasonality and overall trend are the main sources of nonstationarity in river
flow data, but as we use only the summer month discharges, the seasonality be-
comes negligible. National studies have concluded that there are no significant
trends in the extremes of stream flows in our area of interest [Katz, Parlange and
Naveau (2002), Kundzewicz et al. (2005)], in agreement with our exploratory anal-
ysis, so henceforth we treat our data as temporally stationary.

http://www.gkd.bayern.de
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In addition to the time series of daily average discharges, we use a digital ele-
vation model to obtain the following geographical covariates at each station: the
latitude and longitude of both the station itself and the weighted centroid of its
sub-catchment, and catchment attributes including its size, mean altitude and mean
slope.

5.2. Declustering. Extreme discharges at a given station occur in clusters due
to temporal dependence, which must be removed for spatial modeling. Moreover,
a large value at an upstream station may cause a peak further downstream a day
or two later. These slightly shifted maximum values on different rivers stem from
the same event and should be treated as dependent. In the framework of meteo-
rology, multivariate declustering is used by Tawn (1988), Coles and Tawn (1991)
and Palutikof et al. (1999) to extract independent “storm events.” We apply a sim-
ilar technique to obtain a set of independent flood events X̃1, . . . , X̃n ∈ R

m on the
river network from the full time series Yk (k = 1, . . . ,N ).

In order to extract the flood events, we first identify nonoverlapping windows
of length p days in each of the 50 summer periods. We replace each observation
by its rank within its series, and then consider the day with the highest rank across
all series, choosing this day randomly if it is not unique. We then take a window
of p days centered upon the chosen day, and form an event by taking the largest
observation for each series within this window. We delete the data in this window
and then repeat the process of forming events, stopping when no windows of p

consecutive days remain. Figure 5 illustrates this declustering procedure. In agree-
ment with Kallache et al. (2010), our data suggest that flood events last no longer
than 9 days, so we put p = 9; a sensitivity analysis showed that our results are
robust to this choice. For the ith time window, the corresponding flood event X̃i

is the m-dimensional vector whose j th entry is the maximum discharge value at
location tj within this window. This procedure yields a declustered time series of
n = 428 supposedly independent events X̃i from the N = 4600 summer measure-
ments common to the 31 series.

5.3. Marginal fitting. Before using the techniques from Section 4.3 to fit the
multivariate dependence model, we assess the univariate tail behavior at individual
gauging stations, obtaining the constants aj,n, bj,n and shape parameters ξj that
allow us to normalize the margins to lie in the standard Fréchet max-domain of
attraction, using (3). The model η̃� in (20) is a max-stable stochastic process on
the whole river network T , so in order to make predictions throughout T , we must
allow the norming constants and shape parameters to vary with covariates that are
easily obtainable even at locations without gauging stations or find some other way
to extend the model to the entire network, such as kriging.

We fitted a generalized extreme value distribution (2) to the tail of the declus-
tered daily discharges at each gauging station location tj , estimating the extreme
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FIG. 5. Declustered flood events at four gauging stations. The grey hatched areas are the p-day
time windows around flood events. Only events for which at least one river exceeds its 90% quantile
(dotted horizontal lines) are shown. The black circles show maxima for each river in each window.

value parameters aj,n, bj,n and ξj . At each location we tested whether the extremal
behavior from any available earlier data changed relative to the 50 common years.
In almost all cases there was no such change, and we could use the longer series of
independent events, declustered using the procedure of Section 5.2, for each sta-
tion. For the marginal fitting we use the independent events at gauging stations and
estimate the GEV parameters by maximizing the joint Poisson process likelihood
given in (21) in an independence likelihood [Chandler and Bate (2007)].

We fitted and compared a variety of different models using this technique, fi-
nally settling on a version of regional analysis, as widely used in hydrological ap-
plications. The idea is similar to the regionalization method of Merz and Blöschl
(2005), who predict high quantiles of river flows using the catchment attributes
of stations that are “hydrologically” close. Exploratory analysis suggests that for
our purposes the upper Danube basin can be split into four disjoint regions: R1
contains eight stations in the southwest of the upper Danube basin and has mid-
altitude sub-catchments; R2 comprises five stations in the Inn basin that are fed
by precipitation in high-altitude alpine regions; R3 contains 13 stations in the cen-
ter of the Danube basin that are fed by precipitation from regions with both high
and low altitudes; and R4 contains five stations with sources north of the Danube.
With J1, . . . , J4 denoting the index sets of stations in regions R1, . . . ,R4, we let
for j ∈ Ji (i = 1, . . . ,4)

log(aj,n) =
4∑

k=1

α
(i)
k log(Pj,k),

(32)

log(bj,n) =
4∑

k=1

β
(i)
k log(Pj,k), ξj = ξ (i),
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FIG. 6. 100-year return levels for river flow (m3/s), extrapolated to the entire network T ; the colors
of the points indicate the return levels at the 31 numbered gauging stations.

where Pj,1, . . . ,Pj,4 are the latitude of the centroid, the size, the mean altitude
and the mean slope of the sub-catchment of gauging station j . Likelihood ratio
statistics were used to further simplify the model, finally yielding a model with
28 parameters, compared to 93 = 3 × 31 parameters in the full model. Diagnostic
plots indicate a very satisfactory fit of the simpler model, which is also strongly fa-
vored by the AIC. The estimated shape parameters and their standard errors for the
four regions are 0.030 (0.025), 0.145 (0.034), 0.028 (0.022) and 0.294 (0.045),
suggesting that catchments influenced by mountain regions tend to have heavier-
tailed responses.

This model allows the extrapolation of the marginal fit to ungauged locations
on the network T , thereby enabling computation of return levels throughout T ;
see Figure 6. More details are given in Asadi, Davison and Engelke (2015).

5.4. Joint fitting. The generalized extreme value distributions constitute all
possible limits for univariate maxima, but the dependence structure of multivari-
ate extremes is infinite-dimensional, so we must first check that the extreme dis-
charges at different stations on the river network are asymptotically dependent; if
not, max-stable processes would not be suitable models. Keef, Svensson and Tawn
(2009) note that the spatial dependence of extreme river flows is much stronger
than that of precipitation data, since the former averages the latter and thus is
less vulnerable to small-scale variation, and standard diagnostics [Coles, Heffer-
nan and Tawn (1999)] show strong extremal dependence between all 31 stations in
our data. Moreover, Figure 7 shows bivariate scatter plots of two flow-connected
and two flow-unconnected stations. In both cases, the assumption of asymptotic
dependence seems appropriate and, moreover, a symmetric model for the tail de-
pendence can be justified.
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FIG. 7. Scatter plots of declustered discharges (normalized to the unit Fréchet scale) of two
flow-connected stations (left) and two flow-unconnected stations (right).

The choice of a parametric subclass within the asymptotic dependence models
must be a good approximation to the infinite-dimensional structure of multivari-
ate max-stable distributions. Theorem 17 in Kabluchko, Schlather and de Haan
(2009) gives some justification for the fitting of Hüsler–Reiss distributions and
Brown–Resnick type processes, which are essentially the only possible limits of
pointwise maxima of suitably rescaled and normalized, independent, stationary
Gaussian processes.

In order to assess whether the Hüsler–Reiss distribution approximates the ex-
tremal dependence of our data well, we estimate the extremal coefficient θ̂ as in (8)
for each pair of locations using the madogram [Cooley, Naveau and Poncet (2006)]
based on summer maxima. We then fit the bivariate Hüsler–Reiss distribution (12)
to these data by a censored peaks-over-threshold approach and use (13) to compute
a model-based extremal coefficient estimate θ̂HR. The left panel of Figure 8 sug-
gests that the Hüsler–Reiss model provides an excellent overall approximation to
the bivariate extremal dependence structure of the discharge data, albeit with slight
overestimation of dependence at longer distances for flow-unconnected pairs.

We compare four overall models for the dependence kernel �:

• the stationary variogram based on Euclidean distances with anisotropy matrix R
as in (18),

�1(s, t) = λ
∥∥R · (s − t)

∥∥α
, λ > 0, α ∈ (0,2], β ∈ [π/4,3π/4], c > 0;

• a variogram using the transformation H to hydrological locations,

�2(s, t) = λ
∥∥R · {

H(s) − H(t)
}∥∥α

,

λ > 0, α ∈ (0,2], β ∈ [π/4,3π/4], c > 0;
• a variogram that includes the hydrological properties of the river network for

flow-connected locations, corresponding to (19),

�3(s, t) = λRiv�Riv(s, t) + λEuc
∥∥R · {

H(t) − H(s)
}∥∥α

,
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FIG. 8. Comparison of empirical estimates of extremal coefficients found nonparametrically us-
ing the madogram and those implied by different models, for all pairs of gauging stations. Left:
madogram-based estimates and extremal coefficients θ̂HR of the Hüsler–Reiss model, estimated by
fitting to independent events. Center: estimates using �̂3 plotted against hydrological distance. Right:
madogram-based estimates and those from fitted joint model �̂3. Those for flow-connected pairs are
blue crosses, and those for flow-unconnected pairs are black circles.

whose six parameters are given in (22); finally,
• we also consider the previous model without anisotropy,

�4(s, t) = λRiv�Riv(s, t) + λEuc
∥∥H(t) − H(s)

∥∥α
,

λRiv, λEuc > 0, τ > 0, α ∈ (0,2].
The weights in �Riv are computed according to (16) using a digital elevation
model.

In Section 5.2 we extracted n = 428 independent multivariate flood events
X̃1, . . . , X̃n, whose univariate extremal behavior was analyzed in Section 5.3. In
order to fit the multivariate dependence structure, we use the marginal empiri-
cal distribution functions to transform the distribution at each gauging station to
standard Pareto, and denote the resulting data by X1, . . . ,Xn. We fit the functions
�1, . . . ,�4 for the negative definite kernel in η� to these data using the inference
procedures described in Section 4.3, first obtaining the spectral estimate ϑ̂SPEC
in (26) by grid search on the parameter space �, and then using this as an initial
value for the more demanding computation of the censored estimate ϑ̂CENS in (31).
It would be preferable to fit the univariate margins and the dependence structure si-
multaneously, but here this is infeasible since the optimization for the dependence
structure is very time intensive.

The maximized log-likelihoods corresponding to �1, . . . ,�4 are −6629.17,
−6161.86, −5907.49 and −5915.97; �3 has six parameters, and the others all
have four parameters. The use of hydrological distances for �2,�3,�4 gives a
huge improvement over the use of Euclidean distances in �1, and adding the com-
ponent �Riv for flow-connected dependence means that �3 is much better than �2.
The drop from �3 to �4 shows that the anisotropy matrix R also contributes to the
good fit of the model based on �3.
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The center and right panels of Figure 8 (recall also the right panel of Figure 2)
compare the extremal coefficients obtained with the madogram and those implied
by the fitted model �3. The center panel shows that the latter do not lie on a smooth
curve; flow-connected pairs at the same distance can have different extremal coef-
ficients, depending on where the two stations lie on the network, because the river
dependence kernel �Riv is nonstationary, unlike those based on simple meteorol-
ogy. Overall there is a fairly good fit, though the model tends to slightly understate
dependence at short hydrological distances and to overstate it at long ones.

The parameter estimates ϑ̂CENS are λ̂Riv = 0.73 (0.07), λ̂Euc = 1.93 × 10−4

(0.75 × 10−4), τ̂ = 839 (280) km, α̂ = 1.75 (0.08), β̂ = 1.10 (0.11) and ĉ =
0.64 (0.08), with standard errors in parentheses obtained from 100 nonparametric
bootstrap simulations. The high uncertainty for λ̂Euc was mentioned when dis-
cussing the simulation study; it does not translate into high variation of the fitted
model.

The fitted weights λ̂Riv and λ̂Euc cannot be compared directly, because the var-
iogram �Euc is unbounded and thus does not have a natural normalization. The
influences of the river and the Euclidean dependence kernel on the overall ex-
tremal dependence between two flow-connected points s, t ∈ T can be measured
by �̂Riv(s, t)/�̂3(s, t) and �̂Euc(s, t)/�̂3(s, t), respectively. In fact, for certain pairs
of stations the river dependence kernel is dominant, whereas for others the Eu-
clidean kernel has a stronger influence on the extremal dependence. The parameter
τ̂ is the scale for dependence along the river; as expected, this dependence is very
strong, decreasing to zero only after τ̂ = 839 km. The shape parameter α̂ describes
how local the influence of spatial meteorological events on river flows is; note that
α̂ = 1.75 is much larger than in applications on extreme precipitation, confirming
the observation of Keef, Svensson and Tawn (2009) that extreme river flows ex-
hibit stronger spatial dependence due to an averaging effect. The parameters β̂ and
ĉ describe the anisotropy of meteorological dependence, since the transformation
R(β̂, ĉ) dilates the space in direction (sin β̂, cos β̂) by ĉ. As ĉ < 1, extremal depen-
dence is increased in this direction, which corresponds approximately to the planar
vector (2,1). Thus, in terms of hydrological distance, two stations that are 64 km
apart in a direction roughly parallel to the Alps have the same dependence as two
stations that are 100 km apart perpendicular to the Alps. In view of the orientations
of the catchments and the blocking effect that the Alps have on weather systems,
this seems quite plausible.

5.5. Higher-order properties. Figure 8 shows how the max-stable model η�3

fits the bivariate extremal features of the data. In practice, higher-order proper-
ties such as multivariate exceedance probabilities are also of interest, and to check
these we randomly choose groups of 3, 10, 15 and 31 stations and compute the
quantiles of their observed group maxima, suitably rescaled [cf. Davison and Gho-
lamrezaee (2012)]. Figure 9, which compares these quantiles with the theoretical
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FIG. 9. QQ-plots (Gumbel scale) of observed groupwise yearly maxima and theoretical values
from the fitted model, for groups of 3 (top left), 5 (top right), 15 (bottom left) and all 31 (bottom
right) stations. Dashed lines and dotted lines correspond to values for complete independence and
complete dependence, respectively, and the solid line corresponds to the fitted model.

values derived from the fitted model, shows that the model captures even high or-
der structures of the data very well. Moreover, the comparison of observed quan-
tiles to those corresponding to complete independence and complete dependence
underlines the importance of proper dependence modeling.

A joint extremal model allows the estimation of the risk of simultaneous ex-
ceedances of high thresholds at multiple locations. More precisely, we can use
equation (7) to approximate these probabilities as a function of the univariate ex-
treme value parameters and the exponent measure V of the dependence model. For
three stations t = (t1, t2, t3) ∈ T 3, the exponent measure for our model is V�,t as
in (14). Let qj,p be the p-quantile of the distribution of daily discharges at sta-
tion tj . The probability of a flood that exceeds the respective p-quantiles at all
three stations in the same summer can be approximated by

KP
(
X(tj ) > qj,p; j = 1,2,3

)
(33)

≈ V
�̂3,t

{ 3∏
j=1

((
1 + ξ̂j

qj,p − b̂j,n

âj,n

)1/ξ̂j

+
,∞

)}
,
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where K is the mean number of multivariate events per year. The estimates for the
shape and scale parameters are taken from the fitted covariate model in (32), so this
multivariate exceedance probability, and others for more complex events, can be
computed for any locations, even ungauged, on the river network. To compare the
model with empirical data, we randomly choose 500 out of the

(31
3

)
possible triplets

of gauging stations and evaluate (33) for different values of p close to 1. The
mean relative absolute differences of these model probabilities and their empirical
counterparts are 15% for p = 0.95, 14% for p = 0.97, 19% for p = 0.99, and 31%
for p = 0.995; the empirical counterparts are highly variable, since they are based
on very few events.

6. Discussion. The approach described above was used to fit other max-stable
processes, such as the extremal-t or Schlather models, but we found that the
Brown–Resnick model was the best of those fitted; perhaps this is not surprising,
since this model is flexible and allows independent extremes at long distances,
unlike the Schlather model, for example.

Keef, Svensson and Tawn (2009), Keef, Tawn and Lamb (2013), Keef, Tawn and
Svensson (2009) describe an alternative approach to modeling joint flooding that
allows the possibility of asymptotically independent extremes through the fitting
of the Heffernan and Tawn (2004) model. This can handle large-scale problems,
but has the drawback of not treating the variables symmetrically, and it is not clear
whether it corresponds to a well-defined joint model. In those papers, it is impor-
tant to allow for asymptotic independence because the data arise from rivers that
may be quite unrelated, whereas stronger dependence might be anticipated in a sin-
gle river network, as in the present paper. Moreover, our approach uses the known
structure of the river networks, which should provide better dependence modeling.

Finally, the ideas suggested here might be extended to similar problems for
which Euclidean geometry does not seem natural, such as the transmission of
earthquake shocks along fault lines, or communication networks, though it would
then be important to allow for flows in different directions. In some applications
it might be useful to include the relative timings of extremes at different nodes of
the network.
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SUPPLEMENTARY MATERIAL

Supplement to “Extremes on river networks” (DOI: 10.1214/
15-AOAS863SUPP; .zip). The supplementary material contains the following:
a PDF document containing the derivation of the new likelihood representation
mentioned in Section 4.3.2, results of the simulation study mentioned in Sec-
tion 4.3.3, and additional details germane to Section 5.3; and R code and data files
to reproduce the data analysis and figures.

http://dx.doi.org/10.1214/15-AOAS863SUPP
http://dx.doi.org/10.1214/15-AOAS863SUPP
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