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Statistical detection of a rare class of objects in a two-class classifica-
tion problem can pose several challenges. Because the class of interest is rare
in the training data, there is relatively little information in the known class
response labels for model building. At the same time the available explana-
tory variables are often moderately high dimensional. In the four assays of
our drug-discovery application, compounds are active or not against a spe-
cific biological target, such as lung cancer tumor cells, and active compounds
are rare. Several sets of chemical descriptor variables from computational
chemistry are available to classify the active versus inactive class; each can
have up to thousands of variables characterizing molecular structure of the
compounds. The statistical challenge is to make use of the richness of the
explanatory variables in the presence of scant response information. Our al-
gorithm divides the explanatory variables into subsets adaptively and passes
each subset to a base classifier. The various base classifiers are then ensem-
bled to produce one model to rank new objects by their estimated probabilities
of belonging to the rare class of interest. The essence of the algorithm is to
choose the subsets such that variables in the same group work well together;
we call such groups phalanxes.

1. Introduction. Our goal is detection of rare chemical compounds that are
active against a given biological target, such as lung cancer cells or the HIV virus.
Statistical detection of rare events in a highly unbalanced two-class situation oc-
curs in a variety of other applications. Detection of credit card fraud [Bolton and
Hand (2002)], spam email [Hastie, Tibshirani and Friedman (2009)], terrorism
threats and finding relevant documents in a Google search are all examples of this
problem.

In drug discovery, rare active compounds are sought in huge chemical libraries.
Our goal is to develop a quantitative structure activity relationship (QSAR) model
relating the probability of activity to variables characterizing chemical structure
for use in ranking a large number of candidate compounds and produce a shortlist
rich in active compounds.
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For improved analysis of four such drug-discovery problems relating to four as-
says, we propose a new classification methodology. The response variable in each
study is the 0/1 compound activity status against a specific biological target. For
each problem five descriptor sets of explanatory variables are available to build
a classifier of activity. The variables in the descriptor sets characterize the chem-
ical/molecular structures of the compounds in different ways. Some have thou-
sands of variables. In contrast, the assay data are relatively uninformative. While
the training data have thousands of compounds, very few are active: the fraction
of actives varies from about 1% to 8% for the four assays. Thus, this paper aims to
exploit the riches of up to thousands of explanatory variables in the descriptor sets
in the presence of limited response information caused by imbalance.

Recursive partitioning [Hawkins and Kass (1982)] and classification trees
[Breiman et al. (1984)] have been successful for modeling drug-discovery data.
Rusinko et al. (1999) were able to apply recursive partitioning to large structure-
activity data sets with thousands to millions of molecular descriptors by making
recursive partitioning scale well computationally.

Ensemble methods that combine several classifiers to produce one model are
widely viewed as even more competitive for drug-discovery data. The method of
random forests [RF, Breiman (2001)], an ensemble of classification trees, has at-
tracted particular attention. Chen, Liaw and Breiman (2004), Svetnik et al. (2003)
and Polishchuk et al. (2009), for example, all showed RF is a relatively accu-
rate method for classifying chemical compounds in QSAR studies. Bruce et al.
(2007) compared several machine learning tools for mining drug discovery data,
including support vector machines and ensembles based on classification trees:
bagging [Breiman (1996a)], boosting [Freund and Schapire (1996)] and RF. The
authors demonstrated that ensembles provide better predictive performances than
nonensemble methods. Hughes-Oliver et al. (2012) carried out a comprehensive
comparison of 12 classifiers, including RF, to rank the compounds in several highly
unbalanced two-class assay data sets in QSAR studies. Repeatedly, RF emerged as
one of the best ranking procedures. As we shall see, even RF, which is one of the
most competitive existing methods, may only find a minority of the active com-
pounds. There is much room for improvement.

Ensemble methods such as bagging and RF create a number of models to aver-
age by repeatedly perturbing the data. RF also randomly selects the set of explana-
tory variables considered at each iteration as a constituent tree is built. In principle,
however, like bagging, it has all variables available for each tree in the ensemble.
In contrast, the method we introduce ensembles classifiers built with distinct sub-
sets of variables. The algorithm identifies a number of such subsets, where the
variables in a subset work well together in the same model. We call such subsets
phalanxes.

This notion of phalanxes exploits the richness of the dimensionality of the
explanatory variables in the following way. Each phalanx is a relatively low-
dimensional subset of variables, so each variable has an opportunity to play a role
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in its model fit. In this way, variables in different models can contribute to the
overall classification model, without competing with each other in the sense that
one variable deselects another. Our phalanx-forming algorithm can also be thought
of as a special type of clustering of variables, where “similarity” between a pair
of variables or a pair of groups is working well together in the same model, and
“dissimilarity” means working well when separated in different models, which are
ultimately ensembled.

Natural subsets of variables are sometimes suggested by subject matter knowl-
edge. For example, in a single nucleotide polymorphism (SNP) genotyping ap-
plication, Podder et al. (2006) used pairs of variables suggested a priori by the
different chemical procedures employed in the genotyping platform. In the group
LASSO and its variants [Meier, van de Geer and Bühlmann (2008), Yuan and Lin
(2006)], given groups are evaluated by their ability to work together with other
groups, but in a single model. Most related to the proposed method is ensembles
over classifiers based on single variables, pairs of variables, etc., as used in the
thesis of Wang (2005), but again groups were not formed in a data-adaptive way.

In principle, any given base classification method can be used to model the
class response variable as a function of the explanatory variables in a phalanx and
to guide the data-adaptive grouping into phalanxes. We use RF here because of its
documented competitive performance for drug-discovery data. Thus, our ultimate
classifier is an ensemble across random forests, itself an ensemble method, where
each random forest only uses the variables in one phalanx.

The remainder of the article is organized as follows. Section 2 describes the
four assay data sets and the five descriptor sets, and Section 3 defines the assess-
ment metrics to assess classification performance in the context of ranking for this
application. Section 4 describes the algorithm for phalanx formation, leading to
the final ensemble, which we call an ensemble of phalanxes classifier. Section 5
presents performance results and comparisons. Comparisons are made with RF
and regularized random forests [RRF, Deng and Runger (2013)], and with meth-
ods specifically designed for imbalanced drug-discovery data. For more than a few
tens of explanatory variables, the proposed method needs to form initial groups,
and results are also provided for an application-specific approach to grouping ver-
sus more general, data-adaptive ways. Section 5 also explores the statistical diver-
sity of ensembles of phalanxes and the implications for finding chemically diverse
active compounds in the application. Finally, Section 6 draws some conclusions.

2. Data sets and variables. We analyze 20 data sets from four different as-
says in the Molecular Libraries Screening Center Network. The response data can
be downloaded from http://pubchem.ncbi.nlm.nih.gov/.

For each assay the response variable is y, where y = 0,1 denotes inactivity and
activity, respectively, of a compound against a specific biological target. Table 1
summarizes the four assays. Further information about AID 348 may be obtained

http://pubchem.ncbi.nlm.nih.gov/
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TABLE 1
Four assays from the Molecular Libraries Screening Center Network

Compounds Proportion
Assay Biological target (active) active

AID 348 Gaucher’s disease 4946 (48) 0.0097
AID 362 Tissue-damaging leukocytes 4279 (60) 0.0140
AID 364 Cytotoxicity 3311 (50) 0.0151
AID 371 Lung tumor cells 3312 (278) 0.0839

from https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=348, and similarly for
the other three assays.

These four assays were investigated by Hughes-Oliver et al. (2012), and all are
imbalanced with a sparse proportion of active compounds. For three of the assays
the proportion of actives is around 0.01; these three have only 48–60 active com-
pounds each, posing difficulties for any statistical modeling method. For example,
a classification tree would soon run short of active-class objects and tend to build
a shallow tree, only using a few important variables. If there are many important
variables, some must be omitted in the path to any one terminal node.

The assays cover a range of drug-discovery applications. AID 348 screens for
inhibitors of mutant forms of beta-glucocerebrosidase, implicated in Gaucher’s
disease. AID 362 is a whole-cell assay for another inhibitor of peptide binding,
associated with tissue-damaging chronic inflammation. Multiple mechanisms of
activity [Young and Hawkins (1998)] are possible even with the specific biological
targets of AID 348 and 362 and even more likely for the other two assays, AID
364 and AID 371. They are whole-cell live/dead assays. Multiple mechanisms of
activity, from multiple chemical structures, call for correspondingly broad statis-
tical modeling strategies such as the ensemble method proposed herein. In our
approach, constituent statistical models use distinct sets of explanatory variables.

The principle underlying QSAR modeling in drug discovery is that activity
(toxicity/drug potency) of a chemical compound is related to its molecular struc-
ture, which can be characterized by chemical descriptors. These explanatory vari-
ables or covariates are numeric variables that describe the structure or shape of
molecules.

We consider five sets of descriptors for each of the four assays, to give a total
of 4 × 5 = 20 data sets. The descriptor sets are the following: atom pairs (AP);
Burden numbers (BN) [Burden (1989), Pearlman and Smith (1999)]; Carhart atom
pairs (CAP) [Carhart, Smith and Venkataraghavan (1985)]; fragment pairs (FP);
and pharmacophores fingerprints (PH). The Burden numbers are continuous de-
scriptors, and the other four are bit strings where each bit is set to “1” when a
certain feature is present and “0” when it is not. See Liu, Feng and Young (2005)
and Hughes-Oliver et al. (2012) for further explanation of the molecular properties
captured by the descriptor sets.

https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=348
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TABLE 2
Five descriptor sets generated by PowerMV and the number of nonconstant variables for each of the

four assays

Variables for assay

Descriptor set
Potential
variables AID 348 AID 362 AID 364 AID 371

Atom pairs (AP) 546 367 360 380 382
Burden numbers (BN) 24 24 24 24 24
Carhart atom pairs (CAP) 4662 1795 1319 1585 1498
Fragment pairs (FP) 735 570 563 580 580
Pharmacophores (PH) 147 122 112 120 119

Table 2 summarizes the five descriptor sets, as generated by PowerMV [Liu,
Feng and Young (2005)]. PowerMV computes a total of 546, 24, 4662, 735 and 147
descriptor variables for AP, BN, CAP, FP and PH, respectively. For the molecules
in any given assay (see Table 1), some of the descriptors may be constant (e.g.,
a chemical feature is always absent). Such constant variables are removed, giving
the numbers of nonconstant variables in Table 2.

The bit-string descriptors have hundreds to thousands of variables, with CAP
having the most (1319–1795). The continuous BN descriptors have the lowest di-
mensionality, with 24 variables for all assays. They are also rich, however, in the
sense that continuous variables possess good resolution compared to binary vari-
ables.

3. Performance measures. We describe assessment metrics specific to eval-
uating ranking procedures when the goal is to detect the few instances of the rare
class hidden in a large set of objects, as in finding active compounds in a large
chemical library. These metrics are used instead of misclassification error, a stan-
dard criterion for classification performance in general, but one that is inappropri-
ate for highly unbalanced classes [Zhu, Su and Chipman (2006)].

For a given classifier, ranking of the compounds in a test set is based on their
estimated probabilities of activity, π̂ . The compound with the largest π̂ is ranked
first, etc. The goal is to rank the actives in the test set at the top of the list. The
performance measures relate to where the actives are in the ranked list.

Let N be the total number of compounds in a test set, and let M ≤ N be
the number of actives among them. Suppose the ranked list is cut off at n com-
pounds; for example, resources only allow follow-up of n leads from the list. Let
0 ≤ H(n) ≤ M be the number of actives or “hits” in the shortlist of size n. Per-
formance is measured by graphing H(n) or by computing one or more numerical
functionals of it.

3.1. Hit curve. The hit curve is a plot of H(n) versus n or, equivalently, a plot
of H(n)/M (proportion of actives found) versus p(n) = n/N (proportion of test



74 J. H. TOMAL, W. J. WELCH AND R. H. ZAMAR

FIG. 1. Hit curves from three classifiers, RF, RRF, and EPX, for the AID 348 assay and BN de-
scriptors. The numbers in the legend are values of AveP, defined below in Section 3.2.

compounds considered). The hit curve shows the ranking performance at all possi-
ble shortlist cutoff-points, n. Classifier 1 with hit curve H1(n) is uniformly superior
to classifier 2 with hit curve H2(n) if H1(n) ≥ H2(n) for 1 ≤ n ≤ N , with strict
inequality for at least one value of n.

For example, Figure 1 shows hit curves for three ensemble classifiers: RF ap-
plied to all the available variables, RRF, and ensemble of phalanxes (EPX, de-
scribed in Section 4). The three classifiers are applied here to the AID 348 assay
and the BN descriptors. The plots show n up to 300, because actives are sought
early in a ranked list. Note that EPX dominates the other two ensembles: its hit
curve is uniformly above the other two. There is no clear winner between RRF and
RF, because their hit curves cross.

In the results of Section 5 we compare numerous hit curves, and it is conve-
nient to have a numerical criterion to summarize a hit curve. Two such criteria are
outlined next.

3.2. Average precision. The average precision (AveP) gives a single number
summary for a hit curve. Suppose we shortlist the top n ≤ N compounds and H(n)

of them are active. Then

h(n) = H(n)

n
∈ [0,1]

is the hit rate or precision for the top n ranked compounds. Naturally, we want
h(n) to be as large as possible at every n. Let 1 ≤ t1 < t2 < · · · < tM ≤ N be the
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positions of the M active compounds in the ranked list. AveP is defined as the
average of the hit rates at the points on the hit curve where actives are found:

AveP = 1

M

[
h(t1) + h(t2) + · · · + h(tM)

]
.

AveP reaches the maximum value 1 when all of the actives are ranked before all
the inactives. When there are tied π̂ values, and hence ties in the ranked list of
compounds, the expected value of AveP is computed under random ordering of
the compounds within each group of ties [Wang (2005), Chapter 3].

The AveP values for RF, RRF and EPX in Figure 1 are 0.103, 0.080 and 0.152,
respectively. EPX is a clear winner by the AveP measure, which makes sense as its
hit curve dominates the other two. By the AveP criterion, RF is preferable to RRF.

We use AveP not only to evaluate classifiers but also to choose the phalanxes in
our algorithm (Section 4).

3.3. Initial enhancement. Initial enhancement (IE), defined by Kearsley et al.
(1996), is the precision at one specific shortlist length, n, normalized by the pro-
portion of actives in the entire collection of compounds:

IE = h(n)

M/N
.

Because IE is just a rescaling of the precision at n, both measures would lead
to the same conclusions, but IE is often given in QSAR studies to measure the
improvement relative to the expectation under random ranking. Naturally, IE val-
ues (much) larger than 1 are desired. A drawback of IE is that it depends on the
particular shortlist size, n. Moreover, IE does not distinguish whether the actives
are ranked at the beginning or end of the shortlist. Therefore, while we report IE
performance results, the AveP criterion is used to choose phalanxes in Section 4.

Following Hughes-Oliver et al. (2012), we use n = 300 throughout to calculate
IE. The IE values for RF, RRF and EPX in Figure 1 are 7.15, 6.18 and 9.27,
respectively. Again EPX is the winner, and RF is the runner-up.

3.4. Balanced 10-fold cross-validation (CV). The assay data summarized in
Table 1 are used for training classifiers and testing them. Because actives are
sparse, throughout we use balanced 10-fold cross-validation to assess perfor-
mance. Thus, we randomly divide the data into 10 approximately equal sized
groups, each containing approximately 1/10 of the actives. When a group serves
as a test set, and the remaining nine groups are the training data for a classifier,
a π̂ value is obtained for every compound in the test set. After all 10 groups have
served as a test set, π̂ values are available for all compounds and can be ranked to
give a hit curve, as in Figure 1, or to compute AveP or IE.
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4. Phalanx-formation algorithm.

4.1. Phalanxes of variables. We borrow the term phalanx from the military
formation used by Alexander The Great and his father Philip II of Macedon to
deploy infantry soldiers in the battlefield. For psychological motivation, phalanxes
were organized as groups of friends and family members. As a result, the strength
of a phalanx would depend upon the individual strengths of its soldiers and the
emotional bonds between them. A phalanx was an autonomous fighting unit but
could be ensembled with other phalanxes to form a formidable military machine.

The analogy with classification is that the proposed algorithm selects a group of
variables in a statistical phalanx such that they form a strong classifier when put
together in a single model. In other words, the variables in a phalanx work better
together in a model than when separated in different models. At the same time,
the algorithm pays attention to the performance of the overall strength of the final
ensemble of models.

4.2. Phalanx formation. Even if the optimal number of phalanxes is known,
dividing the variables into phalanxes is a combinatorial problem. With the higher-
dimensional descriptor variables in Table 2, exhaustive search is infeasible, and
the algorithm performs a greedy (look one iteration ahead) optimization instead.
The amalgamation of variables into phalanxes resembles hierarchical clustering,
but variables are clustered, not observations.

As shown in Figure 2, there are four main steps in the algorithm to group the
original D variables into p final phalanxes:

1. Initial grouping. The original D variables are partitioned into d ≤ D initial
groups.

2. Screening. The d initial groups are screened down to s ≤ d groups.
3. Hierarchical merging into phalanxes. The s screened groups are amalga-

mated hierarchically into c ≤ s candidate phalanxes.
4. Screening. The c candidate phalanxes are screened down to p ≤ c final pha-

lanxes.

At termination, p base classifiers are trained, one for each phalanx of variables.
They form an ensemble of models: the π̂ values from the p classifiers are averaged
to give one value of π̂ for each compound.

We use RF as the base classifier for the ensemble of phalanxes throughout,
including phalanx formation. There are two reasons. As already mentioned, RF
is known to be a competitive method for drug-discovery data, so it will provide
strong base classifiers for our ensemble. Second, during phalanx formation its out-
of-bag (OOB) estimated class probabilities provide as good an assessment of per-
formance as cross-validation [Breiman (1996b, 2001), Tibshirani (1996), Wolpert
and Macready (1999)]. Thus, the computational expense of multiple fits in cross-
validation is avoided. To further reduce computation, for phalanx formation the
number of trees grown is reduced from the default of 500 to 150.
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FIG. 2. Algorithm for phalanx formation. D variables are partitioned into d initial groups,
screened down to s groups, combined into c candidate phalanxes, and then screened down to p

phalanxes in the final ensemble (D ≥ d ≥ s ≥ c ≥ p).

All steps in phalanx formation are guided by a chosen assessment measure, a.
We use AveP for a, but the final ensembles are also evaluated using IE, and the
algorithm trivially generalizes to other criteria. (The algorithm assumes a is to be
maximized, but the changes for a smaller-the-better criterion are straightforward.)

The four steps of the algorithm are now described in greater detail;

1. Initial grouping. This optional step has two motivations. First, the dimen-
sionality of the AP, CAP, FP and PH descriptors in Table 2 makes the later
hierarchical-merging step too computationally expensive, even with the greedy im-
plementation. At each iteration the algorithm considers amalgamating all pairs of
groups, and the computational complexity (see Section 4.4) is still quadratic in
the number of groups, too demanding for all but the BN descriptors. Second, the
four higher-dimensional sets have binary variables, and a single binary variable
can only give two possible π̂ values. Consequently, the initial classifiers are all ex-
tremely weak. In contrast, an initial group of k > 1 binary variables can generate
up to 2k possible ranks.

Guidance is available to group the AP, CAP, FP or PH descriptors from the
variable names. For FP, for example, there are seven variables relating to the
presence of two aromatic rings: AR_01_AR,AR_02_AR, . . . ,AR_07_AR. Here,
AR_01_AR represents two phenyl (aromatic) rings separated by one bond, etc.
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These seven variables form one of the initial groups, similarly the other groups.
We have empirically verified that grouping by the variable names provides better
final classification accuracy than forming initial groups at random. A data-adaptive
alternative for grouping is presented in Section 5.3.

In this way, the D original variables are grouped into d ≤ D initial groups,
denoted by g1, g2, . . . , gd . For the BN descriptors, this step is omitted: the initial
groups are the individual variables, that is, d = D = 24.

2. Screening of initial groups. We screen out weak initial groups to reduce com-
putational burden and noise.

To survive this step, a group must be strong in the sense of a comparison with
the distribution of the assessment criterion, a, under random ranking. To compute
this reference distribution, we randomly permute the 0/1 values of the response
variable y relative to the descriptor values and obtain the corresponding value of a.
Repeating for many random permutations results in an empirical distribution of a

(we use 1000 repeats throughout), from which we take the α quantile, denoted
by aα (we use α = 0.95 for all reported results). The algorithm also makes use of
a0.5, the median of the empirical distribution.

An initial group is deemed to be strong if the base classifier using its variables
is competitive with aα . There are actually three tests, and a group gi survives
the initial screening if it passes at least one of them. The three tests consider the
performance of gi by itself, or when its variables are combined with those in any
other group gj , or when it forms an ensemble with any other group.

Thus, we need to define the following performance measures. Denote by π̂(gi)

the estimated probabilities of activity from the base classifier using only the vari-
ables in gi , and let ai = a(π̂(gi)) be the assessment measure. Similarly, denote by
π̂(gi ∪ gj ) the estimated probabilities of activity when the variables in gi and gj

(i �= j ) are all available to the base classifier to fit a single model, and let

aij = a
(
π̂(gi ∪ gj )

)
(4.1)

be the resulting performance measure. Finally, consider the performance of an
ensemble of two models based on gi and gj , respectively. Probability averaging of
their two sets of estimated probabilities gives (π̂(gi) + π̂(gj ))/2 for ranking. The
resulting assessment measure is

aij = a
((

π̂(gi) + π̂(gj )
)
/2

)
.(4.2)

Based on these various uses of gi and the corresponding assessment measures,
gi is deemed to be strong and survives the initial screening if it passes at least one
of the following tests:

• gi is strong alone:

ai ≥ aα.(4.3)
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• gi improves the strength of another group gj when gi and gj are used together
in a single model:

a0.5 + aij − aj ≥ aα for at least one j �= i.(4.4)

The rationale is that aij − aj is the improvement from adding the variables in gi

to those in gj in a single model, an improvement that has to be competitive with
aα − a0.5.

• gi improves the strength of another group gj when gi and gj are in an ensemble
of two models:

a0.5 + aij − aj ≥ aα for at least one j �= i.(4.5)

After removing weak initial groups, the list of surviving groups is relabeled as
{G1,G2, . . . ,Gs} for the next step.

3. Hierarchical merging into phalanxes. This step to merge G1,G2, . . . ,Gs

into phalanxes of variables is the heart of the algorithm. It resembles hierarchical
clustering, but merges groups of variables, not groups of observations.

Each iteration merges the pair of groups Gi and Gj that minimizes

mij = aij /aij ,

where aij and aij are defined in (4.2) and (4.1). Values of the ratio less than 1 in-
dicate that Gi and Gj perform better in a single model than when ensembled in
separate models. After each merge, the number of groups, s, is reduced by 1, and
one of the new groups is the union of two of the old groups. The algorithm contin-
ues until mij ≥ 1 for all i, j , suggesting that merging reduces performance and the
groups should be ensembled.

The following example illustrates. For simplicity, consider only s = 3 initial
groups (actually individual variables) from the BN descriptors and assay AID 348.
The three groups are G1 = WBN_GC_L_1.00, G2 = WBN_EN_H_0.50 and
G3 = WBN_LP_H_1.00. The AveP values when pairs of groups are used to-
gether in a single model are a12 = 0.052, a13 = 0.037 and a23 = 0.054. When
pairs of groups are ensembled, the AveP values are a12 = 0.069, a13 = 0.050 and
a23 = 0.031. Thus, the corresponding mij ratios are 1.31, 1.36 and 0.57. As the
variables G2 and G3 give the smallest mij and it is less than 1, we merge G2 and
G3 into a new group and there are now s = 2 groups. At the next step it turns out
that m12 = 1.18 and the two new groups should not be merged. Thus, the algorithm
terminates with two candidate groups or phalanxes, one of which contains two of
the original variables.

In general, the c final groups are candidate phalanxes, PX1,PX2, . . . ,PXc.
4. Screening out weak phalanxes. A candidate phalanx is kept in the ensemble

if it is individually strong as defined in (4.3) or it is strong in an ensemble with
another phalanx as defined in (4.5). There is no need to check condition (4.4), as
there was an exhaustive search for merging groups in the previous step.

The p surviving phalanxes from this second stage of screening form the army
or ensemble, PX(1), . . . ,PX(p), for ranking.
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4.3. Ensemble of phalanxes. We fit p RF classifiers, one for each of the p

phalanxes of variables, and obtain probabilities of activity from them. Here, 500
trees are grown for each random forest, the default. For any test point, the p prob-
abilities of activity from the ensemble of phalanxes (EPX) are averaged to give the
final probabilities for ranking.

4.4. Computational complexity. We now show that the computational com-
plexity of phalanx formation is O(d2) fits of the underlying base classifier in the
worst case. Recall d is the number of initial groups, or the number of variables if
there is no grouping.

The screening phase first involves d fits, one for each group. Then, models are
fit for all the unions of all possible pairs of groups, that is, d(d − 1)/2 fits. Hence,
screening involves a total of d(d + 1)/2 fits. In the worst case, no groups are
removed by screening.

For the first merger of the phalanx formation stage, no new fits are required: the
performance measures for individual groups and pairs of groups to evaluate (4.1)
are already available from the screening stage. If the algorithm continues, two
groups are merged to create a new one. At the second iteration, one fit needs to be
made for the new group just formed as well as another d − 2 fits using the union of
variables from the new group and one of the other d − 2 groups, that is, a total of
d − 1 fits. Note that we do not need to refit models for all possible pairs of groups.
In the next iteration, with one fewer group, there are d − 2 fits, etc. In the worst
case, phalanx formation continues until there is only one phalanx remaining, for a
total of (d − 1) + (d − 2) + · · · + 1 = d(d − 1)/2 fits.

Thus, between screening and phalanx formation, there are at most d2 fits. The
computational burden caused by the dimensionality of four of the five descriptor
sets is greatly reduced by forming initial groups with d � D. Moreover, the com-
putations are embarrassingly parallel: The many fits necessary at any iteration can
be made independently of each other. Thus, parallel computation is straightforward
using the R packages foreach, iterators, doSNOW and doMPI.

5. Results.

5.1. Comparison with random forests. We consider 20 data sets: there are four
assays and each has five possible descriptor sets. For each data set an EPX classifier
is constructed, as described in Section 4; this is repeated three times using different
random seeds. The results from EPX are compared with RF and RRF, constructed
using the defaults in their respective R packages, randomForest [Liaw and
Wiener (2002)] and RRF [Deng and Runger (2013)]. We give detailed results for
AID 348. Summary results will also be given for the other three assays (AID 362,
AID 364 and AID 371).

The last five columns of Table 3 summarize the steps in the EPX algorithm
of Section 4 for AID 348. For example, the descriptor set AP has a total of 367
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TABLE 3
Number of variables, initial groups, screened groups, candidate phalanxes and screened phalanxes

for the AID 348 assay and five descriptor sets. There are three runs of the EPX algorithm

Number of

Descriptor
set

Groups Phalanxes

Run Variables Initial Screened Candidate Screened

AP 1 367 75 22 4 2
2 19 8 5
3 22 8 4

BN 1 24 24 24 8 8
2 24 9 9
3 24 4 4

CAP 1 1795 455 398 13 10
2 128 8 8
3 352 17 12

FP 1 570 101 24 6 4
2 22 5 4
3 22 5 5

PH 1 120 21 5 1 1
2 5 3 2
3 5 1 1

variables arranged into 75 initial groups, of which 22 survive screening in the
first EPX run. The 22 groups are ultimately merged into 4 candidate phalanxes,
of which 2 survive screening. Thus, the final EPX classifier is an ensemble of 2
phalanxes. Two further runs of EPX with different random seeds result in armies
of 5 and 4 phalanxes, respectively. (The impact of the variation in the number of
phalanxes is reported later in this section.)

Table 3 shows that many of the initial groups are screened out from the four
descriptor sets based on binary variables: AP, CAP, FP, and PH. For example, 71–
75% of AP’s initial groups are dropped. For the other binary descriptor sets, 13–
72%, 76–78% and 76% of the initial groups are screened out. In contrast, all of the
continuous BN variables are always used.

The AveP performance measures are reported in Table 4 for EPX, RF and RRF.
(The description of two further methods, SRF and WRF appearing in Table 4, is
taken up in Section 5.2.) All results are based on balanced 10-fold cross-validation.
Because of randomness in cross-validation, especially with such small frequen-
cies of active-class compounds, cross-validation is repeated 16 times for differ-
ent random, balanced data splits (16 times because we initially had 16 proces-
sors conveniently available for parallel processing). Table 4 therefore reports mean
AveP across the 16 cross-validations. For the binary descriptor sets AP, CAP, FP
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TABLE 4
AveP averaged over 16 replications of balanced 10-fold cross-validation for EPX, RF, RRF, SRF
and WRF applied to the AID 348 assay and five descriptor sets (DS). The last four columns show
the number of times EPX has larger AveP among the 16 repeats of cross-validation relative to RF,

RRF, SRF and WRF

Mean AveP EPX beats

DS Run EPX RF RRF SRF WRF RF RRF SRF WRF

AP 1 0.182 0.063 0.081 0.052 0.058 16/16 16/16 16/16 16/16
2 0.194 16/16 16/16 16/16 16/16
3 0.146 16/16 16/16 16/16 16/16

BN 1 0.143 0.090 0.078 0.075 0.075 16/16 16/16 16/16 16/16
2 0.153 16/16 16/16 16/16 16/16
3 0.132 16/16 16/16 16/16 16/16

CAP 1 0.201 0.068 0.090 0.095 0.088 16/16 16/16 16/16 16/16
2 0.184 16/16 16/16 16/16 16/16
3 0.155 16/16 16/16 15/16 16/16

FP 1 0.157 0.077 0.098 0.091 0.099 16/16 16/16 16/16 16/16
2 0.130 16/16 16/16 15/16 16/16
3 0.157 16/16 16/16 16/16 16/16

PH 1 0.108 0.070 0.080 0.082 0.060 16/16 16/16 15/16 16/16
2 0.108 16/16 16/16 15/16 16/16
3 0.108 16/16 16/16 15/16 16/16

and PH—where there are many descriptor variables and screening is presumably
important—RRF outperforms RF. But for BN, RF outperforms RRF. Mean AveP
is always largest for EPX, however. The advantage of EPX is greatest for CAP, the
set with the largest number of descriptors.

Columns 8 and 9 in Table 4 show that EPX consistently beats RF and RRF in
all 16 repeats of cross-validation across all descriptor sets.

Figure 3 shows box-plots for the 16 values of AveP over the 16 cross-
validations. The three box-plots for EPX correspond to the three runs—with dif-
ferent random seeds—in our cross-validation experiment. Despite exhibiting some
run-to-run variability, EPX consistently outperforms RF and RRF. We could sta-
bilize the algorithm by using RF with a larger number of trees at the phalanx-
formation stage, but this would increase the computational burden of the algo-
rithm.

To visualize the performance gains of EPX, the hit curves in Figure 1 (for de-
scriptor set BN) and Figure 4 (for the other descriptor sets) are from the first bal-
anced 10-fold cross-validation. In all cases the hit curve for EPX starts rising very
quickly and dominates the curves for the other two methods. In other words, EPX
is more successful here in detecting actives early in a list of ranked compounds.
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FIG. 3. Box-plots of AveP for the AID 348 assay and five descriptor sets from 16 replications of
balanced cross-validation for RF (light gray), RRF (gray) and 3 armies of phalanxes (dark gray).

Although we have formed armies of phalanxes by optimizing AveP, Table 5
shows they also have good performance in terms of the metric IE. Mean IE aver-
aged over the 16 replications of balanced cross-validation is consistently larger for
EPX.

EPX also exhibits strong performance when similar studies are performed for
the other three assays, AID 362, AID 364 and AID 371. Summary performance
measures are given in Tables 6, 7 and 8, respectively. For these assays, the perfor-
mances of EPX and RF are comparable for the smallest set of binary descriptors,
PH, but EPX dominates for CAP, the largest descriptor set and the one that overall
provides the best results.

5.2. Methods for imbalanced data. A key property of the data for all four
assays is that active compounds are rare (Table 1), suggesting that methods specific
to imbalanced data might provide a more relevant benchmark for comparison than
off-the-shelf RF.

Chawla et al. (2002) proposed the synthetic minority over-sampling technique
(SMOTE) and applied it to an assay from the National Cancer Institute’s yeast anti-
cancer drug screen. The method artificially generates new examples of the minority
class objects using their nearest neighbors. In addition, the majority class is under-
sampled, leading to a balanced data set. Whereas these authors combined SMOTE
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(a) Atom pairs (AP) (b) Carhart atom pairs (CAP)

(c) Fragment pairs (FP) (d) Pharmacophores (PH)

FIG. 4. Hit curves from RF (dashed line), RRF (dotted line) and EPX (solid line) for the AID 348
assay. Results are given for four descriptor sets: (a) AP; (b) CAP; (c) FP; and (d) PH. The numbers
in parentheses in the legends are the values of AveP.

TABLE 5
IE for RF, RRF and EPX averaged over 16 balanced 10-fold

cross-validations for the AID 348 assay and five descriptor sets

Ensemble AP BN CAP FP PH

RF 5.19 6.62 7.16 7.07 5.53
RRF 5.80 6.25 6.83 7.28 5.78
EPX 6.27 8.80 8.20 8.40 6.44
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TABLE 6
AveP averaged over 16 replications of balanced 10-fold cross-validation for EPX, RF, RRF, SRF
and WRF applied to the AID 362 assay and five descriptor sets (DS). The last four columns show
the number of times EPX has better AveP than RF, RRF, SRF and WRF over the 16 replications

Mean AveP EPX beats

DS Run EPX RF RRF SRF WRF RF RRF SRF WRF

AP 1 0.300 0.280 0.256 0.159 0.203 16/16 16/16 16/16 16/16
2 0.306 15/16 16/16 16/16 16/16
3 0.295 13/16 15/16 16/16 16/16

BN 1 0.261 0.242 0.238 0.129 0.274 16/16 16/16 16/16 02/16
2 0.299 16/16 16/16 16/16 15/16
3 0.285 16/16 16/16 16/16 14/16

CAP 1 0.363 0.267 0.171 0.178 0.197 16/16 16/16 16/16 16/16
2 0.355 16/16 16/16 16/16 16/16
3 0.368 16/16 16/16 16/16 16/16

FP 1 0.315 0.266 0.174 0.196 0.188 16/16 16/16 16/16 16/16
2 0.323 16/16 16/16 16/16 16/16
3 0.306 16/16 16/16 16/16 16/16

PH 1 0.227 0.216 0.168 0.167 0.142 14/16 16/16 16/16 16/16
2 0.212 07/16 16/16 16/16 16/16
3 0.218 09/16 16/16 16/16 16/16

with a single classification tree (C4.5), we combine it with RF, widely recognized
as more powerful for drug-discovery data. The R function SMOTE in the package
DMwR with default settings adjusts the AID 348 data, for instance, in the following
way. The original 48 active compounds are augmented with 48 × 2 = 96 syn-
thetic samples. Furthermore, the inactive compounds are randomly under-sampled
to leave 96 × 2 = 192 cases. Hence, the SMOTE data have a more balanced 144
active compounds and 192 inactive compounds. The results for SMOTE with RF,
called SRF in Tables 4 and 6–8, show that overall SRF performs about the same as
RF here, and sometimes worse. EPX still dominates.

The method of weighted random forests [WRF, Chen, Liaw and Breiman
(2004)] was partially motivated by QSAR applications with imbalanced data. It
assigns large and small weights to the minority and majority class compounds,
respectively. Because of a known bug with weighting in the R package random-
Forest, we increased the weight of active compounds by duplicating them. For
example, to make the AID 348 assay data balanced, the 48 active compounds were
repeated 102 times to have approximately as many cases as the 4898 inactive com-
pounds. The results for WRF in Tables 4 and 6–8 again show little practical im-
provement versus RF. For AID 362 and the BN descriptors, WRF performs better
than RF and approaches the mean AveP of one of the EPX models, but CAP is the
descriptor set of choice here, and WRF performs worse than RF for it.
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TABLE 7
AveP averaged over 16 replications of balanced 10-fold cross-validation for EPX, RF, RRF, SRF
and WRF applied to the AID 364 assay and five descriptor sets (DS). The last four columns show
the number of times EPX has better AveP than RF, RRF, SRF and WRF over the 16 replications

Mean AveP EPX beats

DS Run EPX RF RRF SRF WRF RF RRF SRF WRF

AP 1 0.291 0.265 0.230 0.204 0.289 16/16 16/16 16/16 09/16
2 0.292 16/16 16/16 16/16 09/16
3 0.310 16/16 16/16 16/16 15/16

BN 1 0.371 0.327 0.300 0.174 0.274 16/16 16/16 16/16 16/16
2 0.365 16/16 16/16 16/16 16/16
3 0.373 16/16 16/16 16/16 16/16

CAP 1 0.379 0.334 0.252 0.244 0.269 16/16 16/16 16/16 16/16
2 0.390 16/16 16/16 16/16 16/16
3 0.390 16/16 16/16 16/16 16/16

FP 1 0.318 0.305 0.261 0.257 0.202 15/16 16/16 16/16 16/16
2 0.320 16/16 16/16 16/16 16/16
3 0.317 14/16 16/16 16/16 16/16

PH 1 0.278 0.275 0.219 0.185 0.081 11/16 16/16 16/16 16/16
2 0.276 09/16 16/16 16/16 16/16
3 0.282 14/16 16/16 16/16 16/16

5.3. Initial groups. For the drug-discovery application, the initial groups pre-
sented to the phalanx formation algorithm consist of variables in a descriptor set
with related names (Section 4.2). In other applications without logical groups of
names, how should initial groups be formed? Here we demonstrate a data-adaptive
method that does not use name information.

The goal is to find a diverse set of phalanxes. For binary descriptors, the Jaccard
dissimilarity index is appropriate and defined between binary variables xi and xj

as

dJ (xi, xj ) = 1 − xi ∩ xj

xi ∪ xj

.

Here xi ∩ xj is the number of observations where xi and xj both take the value 1,
and xi ∪ xj is the number of observations where xi or xj take the value 1, and
0 ≤ dJ (xi, xj ) ≤ 1. We compute the Jaccard distances between variables via the
vegdist function in package vegan and hierarchically cluster the variables (not
observations) using hclust in Rwith method ward. For consistency, the number
of clusters equals the number of groups formed from the names. For example, the
AP descriptors of AID 348 again have 75 initial groups.

Table 9 compares average AveP for EPX with initial groups based on the vari-
ables names versus initial groups from clustering. Results are given for assays
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TABLE 8
AveP averaged over 16 replications of balanced 10-fold cross-validation for EPX, RF, RRF, SRF
and WRF applied to the AID 371 assay and five descriptor sets (DS). The last four columns show
the number of times EPX has better AveP than RF, RRF, SRF and WRF over the 16 replications

Mean AveP EPX beats

DS Run EPX RF RRF SRF WRF RF RRF SRF WRF

AP 1 0.327 0.315 0.281 0.311 0.313 16/16 16/16 16/16 16/16
2 0.331 16/16 16/16 16/16 16/16
3 0.328 16/16 16/16 16/16 15/16

BN 1 0.342 0.335 0.333 0.289 0.322 16/16 16/16 16/16 16/16
2 0.354 16/16 16/16 16/16 16/16
3 0.338 13/16 13/16 16/16 16/16

CAP 1 0.390 0.347 0.310 0.342 0.356 16/16 16/16 16/16 16/16
2 0.384 16/16 16/16 16/16 16/16
3 0.378 16/16 16/16 16/16 16/16

FP 1 0.358 0.362 0.338 0.338 0.320 03/16 15/16 16/16 16/16
2 0.358 04/16 14/16 16/16 16/16
3 0.364 12/16 16/16 16/16 16/16

PH 1 0.277 0.277 0.282 0.267 0.244 09/16 05/16 12/16 16/16
2 0.284 15/16 10/16 14/16 16/16
3 0.279 09/16 06/16 13/16 16/16

TABLE 9
AveP from EPX averaged over 16 replications of balanced 10-fold cross-validation, with initial

groups formed from the variables’ names (Names) or clusters based on the Jaccard index (Clusters)

Mean AveP of EPX

AID 348 AID 371Descriptor
set Run Names Clusters Names Clusters

AP 1 0.182 0.200 0.327 0.339
2 0.194 0.163 0.331 0.334
3 0.146 0.121 0.328 0.336

CAP 1 0.201 0.258 0.390 0.386
2 0.184 0.275 0.384 0.388
3 0.155 0.167 0.378 0.380

FP 1 0.157 0.166 0.358 0.373
2 0.130 0.170 0.358 0.364
3 0.157 0.175 0.364 0.364

PH 1 0.108 0.087 0.277 0.284
2 0.108 0.102 0.284 0.276
3 0.108 0.113 0.279 0.273
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AID 348 and AID 371 and the four binary descriptor sets. These two assays have
the smallest and largest proportions of actives, respectively, and cover a range of
performances of EPX relative to RF. The results show that neither method for gen-
erating initial groups is uniformly better. One difference of note is that for AID
348, EPX with clusters makes some improvement with the CAP descriptors. As
CAP and AP already perform well for AID 348, CAP with clusters emerges as
the method of choice. Overall, the clustering method is a viable data-adaptive ap-
proach to forming initial groups here.

5.4. Diversity. Breiman (2001) argued that the classification performance of
an ensemble method increases with the strengths of the underlying classifiers being
averaged and their diversity. We now illustrate that ensembles from phalanxes can
have these desirable traits.

Figure 5 depicts a diversity map [Hughes-Oliver et al. (2012)] of ranks from
cross-validated probabilities for AID 364 and the BN descriptors. The ranks of
the 50 active compounds are shown for the four underlying phalanxes (denoted
PX-1 through PX-4) and their EPX ensemble in the first EPX run, and for ran-
dom forests. This particular map relates to the first cross-validation. The 50 active
compounds on the right axis of the figure are ordered according to the ranks from
EPX. Ideally, they would have ranks 1–50, depicted by black to mid-gray on the
gray scale on the left of the figure. Lighter colors indicate a failure to rank well the
active compounds.

It is seen in Figure 5 that PX-1 through PX-4 assign different ranks, that is,
they show a fair degree of diversity. This is beneficial, as averaging probabilities

FIG. 5. Diversity map of ranks for the AID 364 assay and BN descriptors from the first run of EPX
and the first cross-validation. The AveP values of PX-1 through PX-4, EPX and RF are given on the
x-axis. The y-axis has the 50 active compounds, ordered by their ranks from EPX. A darker gray on
the gray scale indicates a smaller rank (higher probability of activity).
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TABLE 10
Six active compounds where EPX and RF have the largest absolute difference in ranks for the AID
364 assay and BN descriptors. The actives are identified by PubChem’s compound identification
(CID) number. Ranks are also given for the individual phalanxes; the best rank among them is

in bold

Rank from

CID PX-1 PX-2 PX-3 PX-4 EPX RF

657713 106 715 102 1082 133 943
661140 2099 353 649 52 158 847
657803 101 651 1833 744 241 1220
4993 94 1003 2673 932 245 2040
5389334 114 2737 1833 2376 364 2040
661535 537 211 1511 2376 738 1417

providing the same ranks is unlikely to improve on the underlying performances. If
one phalanx misses an active compound (lighter gray on the rank scale in Figure 5),
we see that other phalanxes might rank it well (darker gray on the rank scale).

Moreover, the AveP values for PX-1 through PX-4 reported on the x-axis of
Figure 5 range from 0.240 to 0.367. PX-2 by itself beats the 0.349 AveP value
from RF using all 24 BN descriptor variables. Thus, PX-1 through PX-4 include
one classifier that is strong relative to RF, and they constitute a diverse set for an
ensemble. Hence, the AveP of 0.374 for EPX is also relatively high.

AID 364 is highlighted in this analysis, because it is a whole-cell live/dead assay
likely to have multiple mechanisms of activity from multiple chemical structures.
We now explore how diversity of the four phalanxes formed from the BN descrip-
tors translates into diversity of the active chemical structures identified by them.

We focus attention on the structures differentiating EPX’s performance. Sorting
the active compounds by their absolute difference in ranks from EPX versus RF
leads to Table 10. The six largest discrepancies all favor EPX: there are no ac-
tives ranked substantially higher by RF than by EPX. The structures of these six
compounds presented in Figure 6 have differences in some sub-structures, particu-
larly across phalanxes, which may be chemically significant. Identifying a variety
of structures offers more leads for the next stages of drug development, where
compounds are adjusted to increase efficacy, and compounds that are toxic and
mutagenic in further screens have to be removed.

The inactive compounds in the list of top 300 compounds identified by EPX also
show some diversity. Clustering the 270 inactive compounds in the list, according
to the 24 BN descriptors via hclust in Rwith method ward, leads to two distinct
clusters according to the CH index computed by NbClust. Again, this is not
surprising, as all the compounds in the top-ranked list, including the inactives,
result from several phalanx models.
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(a) CID 657803 (PX-1) (b) CID 4993 (PX-1) (c) CID 5389334 (PX-1)

(d) CID 661535 (PX-2) (e) CID 657713 (PX-1 and PX-3) (f) CID 661140 (PX-4)

FIG. 6. Six active compounds ranked substantially higher by EPX than RF for assay AID 364 and
the BN descriptors. For each compound, the phalanx(es) giving a high rank are indicated after the
compound identification (CID).

Further inspection of the compounds classified by EPX as active is revealing.
Compounds CID 661658 and CID 660076 are ranked 3 and 12 by EPX and have
the similar structures shown in Figure 7. Compound CID 661658 is active, whereas
CID 660076 is not. A small difference in structure like this, that determines activity
versus inactivity, may be helpful to a chemist in designing an even more potent
structure.

(a) CID 661658 (active) (b) CID 660076 (inactive)

FIG. 7. Compounds CID 661658 and CID 660076 are ranked 3 and 12, respectively, by EPX for
assay AID 364 and the BN descriptors. They have similar structures, but CID 661658 is active, while
CID 660076 is not.
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6. Conclusions and discussion. The concept of phalanxes of variables was
motivated by data sets with little information in the response variable relative to
the dimensionality of the explanatory variables. Scant information in the response
variable arises in drug discovery because molecules in the biologically active class
of interest are rare. Thus, it will be difficult to use more than a few of the ex-
planatory variables in a single model, even if many of them are potentially useful.
An ensemble of phalanxes uses distinct explanatory variables in each of several
models, hence, many variables have a chance to contribute to classification perfor-
mance. The phalanx-formation algorithm is guided by this aim. The best ranking
performance, both in absolute terms and relative to RF and RRF, is seen for the
CAP descriptor set, which has the most variables. Adapting RF for imbalanced
data did not make it competitive with EPX here. Thus, we speculate that it is the
sparsity of information, caused by imbalance, and not imbalance itself, that is the
key factor in EPX’s performance.

Often one of the phalanxes by itself will give a classifier that outperforms RF or
RRF using all the variables. In this sense phalanx-formation provides an effective
variable selection or regularization for QSAR studies [Goodarzi, Dejaegher and
Vander Heyden (2012)]. But this is just a bonus. The EPX algorithm attempts
to identify several such competitive subsets of variables in its various phalanxes.
Averaging their models in an ensemble usually provides the greatest advantage.

The proposed method is not a stand-alone classifier. It works on top of a base
method. For the drug discovery problem the base classifier was RF, because that
method was among the best known for such applications. The phalanx method
divides up the variables and gives each subset of them to the RF method. It then
combines the different results from the various RF models (one model per subset
of variables) into one model. In that sense, the phalanx method sits on top of a base
classifier like RF and improves it.

Thus, the method is potentially extensible to other applications with a richness
of explanatory variables but other statistical aims such as regression or survival
analysis. The user needs to provide a competitive base statistical method for the
problem and a metric for the quality of a model. Phalanx-formation to improve the
base method would then be guided by the metric, closely following the algorithm
in Section 4.
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