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LONGITUDINAL MIXED MEMBERSHIP TRAJECTORY MODELS
FOR DISABILITY SURVEY DATA1

BY DANIEL MANRIQUE-VALLIER

Indiana University

We develop methods for analyzing discrete multivariate longitudinal data
and apply them to functional disability data on the U.S. elderly population
from the National Long Term Care Survey (NLTCS), 1982–2004. Our mod-
els build on a Mixed Membership framework, in which individuals are al-
lowed multiple membership on a set of extreme profiles characterized by
time-dependent trajectories of progression into disability. We also develop
an extension that allows us to incorporate birth-cohort effects, in order to as-
sess inter-generational changes. Applying these methods, we find that most
individuals follow trajectories that imply a late onset of disability, and that
younger cohorts tend to develop disabilities at a later stage in life compared
to their elders.

1. Introduction. This paper introduces new models and estimation proce-
dures to analyze discrete multivariate longitudinal data on functional disability,
motivated by the analysis of data from the National Long Term Care Survey
(NLTCS). The NLTCS is a longitudinal panel survey instrument aimed at assess-
ing chronic disability among the elderly (65+) population in the United States. It
enables researchers to answer important questions related to the aging process and
disability prevalence in the U.S.: how many elder Americans will live with disabil-
ities? What is the of duration of disability episodes? What is the age of onset of
disability? Is the nature of disability changing for younger generations? [Connor
et al. (2006)]. Answers to these questions are of importance in public policy de-
sign due to, among other reasons, the increased public and private expenditure for
disabled people in contrast with their able peers [Manton, Lamb and Gu (2007)].

Many of the relevant public policy questions for which the NLTCS can poten-
tially provide answers are related to changes over time: changes during the life of
an individual (“how is this individual likely to age?”) or comparing people across
different generations (“are people from later generations acquiring disabilities dif-
ferently than people born 20 years before?”). Thus, to answer these questions we
need to consider the longitudinal dimension of these data. In addition, as not every-
one could be expected to age the exact same way, it is safe to assume that elderly
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American people constitute a heterogeneous population. Models for longitudinal
disability data need to be capable of accounting for such heterogeneity.

Although the longitudinal nature of the NLTCS data is frequently invoked [e.g.,
Corder and Manton (1991), Manton, Corder and Stallard (1997), Manton, Gu and
Lamb (2006)], efforts to analyze the data using true longitudinal methods have
been few and far between. Most researchers have instead analyzed the NLTCS as a
series of uncorrelated cross-sectional samples [see, e.g., Manton, Corder and Stal-
lard (1997), Manton, Gu and Lamb (2006), Manton, Lamb and Gu (2007)]. Recent
attempts to deal with the longitudinal nature of the NLTCS have been undertaken
by Stallard (2005), Connor (2006) and White and Erosheva (2013).

The new models and methods that we propose in this paper, which we call Tra-
jectory Grade of Membership models (TGoM), seek to capture both the longitudi-
nal nature of the individual NLTCS data and the inherent individual heterogeneity
of the aging process. These models handle individual heterogeneity using the con-
cept of Mixed Membership [Erosheva and Fienberg (2005), Erosheva, Fienberg
and Lafferty (2004)]. Mixed Membership models describe a small number of ideal
types of individuals (or extreme profiles) and let each individual partially belong
to each pure type, to a different degree. At the same time, TGoM models focus on
the longitudinal nature of the process by defining the extreme profiles as typical
progressions over time. We also introduce an extension to this model aimed at cap-
turing differences across generational cohorts. We do this by allowing individuals’
Mixed Membership to depend on their dates of birth.

The remainder of this article is organized as follows. In the next section we
present a brief introduction and description of the National Long Term Survey.
Next, in Section 3, we describe the basic TGoM model and its extension to handle
generational cohorts. Estimation algorithms based on MCMC sampling are intro-
duced in Section 4 and fully described in Appendices A and B. In Section 5 we
apply the TGoM models to the NLTCS. Finally, in Section 6, we conclude with a
discussion on the insights provided by the models, their limitations and possible
extensions.

2. The National Long Term Care Survey. The National Long Term Care
Survey (NLTCS) is a longitudinal panel survey designed specifically to assess the
state and progression of chronic disability among the United States population
aged 65 years or more [Corder and Manton (1991)]. It consists of six waves, con-
ducted in 1982, 1984, 1989, 1994, 1999 and 2004. In very rough terms, each wave
consists of interviews to approximately 20,000 people, from which around 15,000
are previously interviewed individuals. Each wave includes a fresh new sample of
around 5000 individuals. These refreshment samples serve the double purpose of
replacing those who have died since the previous wave and of keeping each wave
representative of the current state of the population over 65 [Clark (1998)]. A total
of around 49,000 people have been screened in the survey between 1982 and 2004.
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The NLTCS assesses functional disability by evaluating subjects’ ability to per-
form two sets of activities. The first one, called Activities of Daily Living (ADL),
comprises basic self-care activities, such as bathing, eating and dressing. The sec-
ond, Instrumental Activities of Daily Living (IADL), involves activities necessary
for independent living within a community, like preparing meals or maintaining
finances. The NTLCS determines the functional status in these activities through
answers to a series of triggering questions, which are then summarized as binary
response items that indicate the presence or absence of impairments.

The design of the NLTCS is such that the survey data can be used as several
cross-sectional samples, considering each wave as a different sample from the tar-
get population at that time, and also as a longitudinal sample, following individuals
across different measurement waves.

The NLTCS first screens each sampled individual using a special, “screener,”
questionnaire aimed at quickly detecting if he or she is chronically disabled. The
operational definition of “chronically disabled” in the context of the NLTCS re-
quires that the individual presents an impairment in some ADL or IADL lasting
or expected to last at least 90 days. If screened-out, the individual’s status is reg-
istered and they are re-screened in subsequent waves, to assess if the disability
status has changed. If the individual is screened-in, he or she is then interviewed
using a detailed questionnaire. There are different detailed questionnaires for in-
stitutionalized and individuals living in the community. After receiving a detailed
questionnaire for the first time, the subject is then eligible to receive detailed ques-
tionnaires in all subsequent waves of the survey until death [Clark (1998)].

In what follows, we have used a subset of the NLTCS consisting of all six binary
answers to questions about the individual’s ability to perform ADLs (EAT: Eating;
DRS: Dressing; TLT: Toileting; BED: Getting in and out of bed; MOB: Inside
mobility; BTH: Bathing), from all six waves of the NLTCS. We obtained ages
and dates of birth from linked Medicare data from the Centers for Medicare and
Medicaid services (CMS). We provide further details about our data preprocessing
in Section 5.

3. Mixed Membership trajectory models. The goal of this analysis is to
characterize typical progressions in acquisition of disabilities over time while tak-
ing into consideration and characterizing the heterogeneity of the population. For
this we combine two main ideas.

The first idea is clustering based on trajectories. This is the idea behind Latent
Trajectory models [LTMs; Nagin (1999)]. Broadly speaking, LTMs are mixture
models of the form

p(y|x) =
K∑

k=1

πkfk(y|x),(3.1)

where y is a vector containing T longitudinal measurements of a response vari-
able of interest and x is a vector that contains the corresponding T values of a
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time-dependent covariate. The joint densities corresponding to each mixture com-
ponent, fk(·), are in turn modeled using parametric trajectory functions. Trajec-
tory functions (or simply trajectories) describe typical progressions over time,
usually modeling the dependence of the outcome variables as a function of age.
For a given population, LTMs provide estimates of both the trajectories and the
individuals’ distribution over them. Therefore, LTMs perform data-driven cluster-
ing based on evolution over time [see Nagin (1999) for details]. Connor (2006)
adapted this technique for the analysis of multivariate discrete data and applied it
to the NLTCS. The trajectory curves represented the probability of presenting a
disability as a function of age. This tool provides a simple and easy mechanism
to interpret typical ways of aging, with a degree of heterogeneity handling. How-
ever, it assumes that individuals within a class are perfectly homogeneous. It thus
attributes all the potential within-class variability to random fluctuations. In Con-
nor’s formulation, this assumption essentially says that, within a class, every single
individual responds to the exact same underlying aging process. It thus disregards
the fact that classes are ideal constructions to which possibly no actual individuals
belong [Kreuter and Muthén (2008)].

The second idea, Mixed Membership, provides a powerful and conceptually
attractive way of relaxing the within-class homogeneity assumption. Similarly to
traditional clustering techniques, like the Latent Class model [Goodman (1974)]
or LTMs, Mixed Membership models still assume the existence of a small num-
ber of classes, called ideal types or extreme profiles. However, instead of forc-
ing every individual into one and only one class, they allow them to belong si-
multaneously to more than one, in different degree. The Grade of Membership
model [GoM; Manton, Stallard and Woodbury (1991), Woodbury, Clive and Gar-
son (1978)] is an example of a Mixed Membership model that has been success-
fully applied to the cross-sectional analysis of the NTLCS [see, e.g., Erosheva,
Fienberg and Joutard (2007), Manton, Corder and Stallard (1997), Manton, Gu
and Lamb (2006), Manton, Lamb and Gu (2007)]. Erosheva, Fienberg and Joutard
(2007) developed a full Bayesian version of the GoM model and applied it to a
pooled across-waves version of the NLTCS.

The approach we present here combines LTMs with Mixed Membership. It
seeks to produce a soft clustering based on trajectories. Similar to LTM, it assumes
that for a given population we can identify a few ways of progressing over time,
which we consider ideal extreme cases. At the same time it assumes that individu-
als in the population do not exactly correspond to these typical profiles, but instead
behave somewhere in between them, in quantifiable ways. Note that this approach
is conceptually different from previous cross-sectional applications of the GoM
model to the study of disability. In those applications extreme profiles represented
ideal types of disability, whereas in TGoMs they represent ideal types of people.
In the same way, it also differs from other previously proposed time-dependent
Mixed Membership models, which specify time-evolving individual membership
[e.g., Stallard (2005), Xing, Fu and Song (2010)]. In TGoMs the membership is an
immutable characteristic of the individual.
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3.1. Basic TGoM model. We consider a sample composed of N individuals.
Following Mixed Membership ideas, we assume the existence of a number, K , of
reference types of individuals called extreme profiles. These extreme profiles rep-
resent idealized individuals. This means that it might be the case that no real indi-
vidual corresponds exactly to any of them. Instead, we assume that each individual
i = 1, . . . ,N has an associated membership vector, gi = (gi1, . . . , giK), whose kth
component, gik , represents their degree of membership into the kth extreme profile.
We constrain membership vectors so that their components are positive numbers
that sum to 1, that is, they lie on a (K − 1)-dimensional unit simplex, �K−1. In
this way, we identify ideal individuals of the kth type as those whose membership
vectors’ components are zeros on each component distinct from k, and gik = 1.
For instance, we say that an individual with membership vector gi = (0,0,1,0)

belongs exclusively to the extreme profile k = 3. Similarly, we can represent more
complex membership structures. For example, gi = (0.1,0.2,0.4,0.3) indicates
that individual i has 10% membership in the first extreme profile, 20% in the sec-
ond and so on.

We are interested in modeling the progression of disability as time passes. We
start by modeling ideal individuals. Let individual i provisionally be a full mem-
ber of extreme profile k, that is, gik = 1. Let yij (τ ) be 1 if the individual does
experience difficulties performing ADL j at age τ , and 0 otherwise. We model
the evolution of the probability of a positive response to question j , yij (τ ), as a
function of age, λjk(τ ), so that

λjk(τ ) = Pr
(
yij (τ ) = 1|gik = 1,βjk, τ

)
.(3.2)

Here βjk is a generic vector of parameters that indexes λjk(·) within a parametric
family, for example, the parameters of a linear logistic curve. We call the functions
λjk(·) extreme trajectories.

Now moving to actual individuals, we specify the corresponding trajectory of a
generic, nonideal individual i, with membership vector gi = (gi1, . . . , giK), as the
convex combination

λ
(i)
j (τ ) = Pr

(
yij (τ ) = 1|gi ,βj , τ

) =
K∑

k=1

gikλjk(τ ),

where βj = (βj1, . . . ,βjK).
Although τ is a continuously-varying quantity, we only have measurements at

each of the t = 1, . . . , T = 6 occasions, corresponding to the waves of the sur-
vey. Thus, we define yij t = yij (Ageit ), where Ageit is the age of individual i at
measurement time t = 1, . . . , T . We group these numbers into individual vectors
Agei = (Agei1, . . . ,AgeiT ). Then we have that

p(yij t |gi ,βj ,Agei ) = Bern
(
yij t |λ(i)

j (Ageit )
)

=
K∑

k=1

gik Bern
(
yij t |λjk(Ageit )

)
,
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where Bern(y|p) = py(1 − p)1−y , for y ∈ {0,1} and 0 < p < 1.
Next, we assume that, for a single individual, the J responses at each of the

T measurement times are conditionally independent of one another, given their
membership vector, gi , and covariate vector Agei . Under this assumption we ef-
fectively use the membership vector and the covariates to decouple the dependence
structure present in the components of the response. Then we have

p(Yi |gi ,β,Agei ) =
J∏

j=1

T∏
t=1

K∑
k=1

gik Bern
(
yijt |λjk(Ageit )

)
,(3.3)

where Yi = (yij t )J=1,...,J,t=1,...,T and β = (β1, . . . ,βJ ). By assuming that each
individual has been randomly sampled from the population, we finally get the joint
model of Y = (Yi ), conditional on g = (gi ) and Age = (Agei ),

p(Y|g,β,Age) =
N∏

i=1

J∏
j=1

T∏
t=1

K∑
k=1

gik Bern
(
yijt |λjk(Ageit )

)
.(3.4)

We assume that membership vectors are i.i.d. samples from a common distribu-
tion Gα , with support on the simplex �K−1. This yields the unconditional (on g)
model for the sample Y,

p(Y|β,Age) =
N∏

i=1

∫
�K−1

J∏
j=1

T∏
t=1

K∑
k=1

ωk Bern
(
yijt |λjk(Agei )

)
Gα(dω),(3.5)

where ω = (ω1, . . . ,ωK) ∈ �K−1. Figure 1 shows a graphical representation of
the structure of this model.

As Erosheva, Fienberg and Joutard (2007) discuss for the Grade of Membership
model, the model in (3.3) admits the augmented data representation,

f AUG(Yi ,Zi |Agei ,β,gi)
(3.6)

=
J∏

j=1

T∏
t=1

K∏
k=1

[
gik Bern

(
yijt |λjk(Ageit )

)]I (zij t=k)
,

FIG. 1. Graphical probabilistic representation of the basic TGoM model. Observed variable Ageit

is the age of individual i at survey wave t . Gray nodes represent observed quantities; white nodes
represent parameters to estimate.
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where Zi = (zij t )j=1,...,J,t=1,...,T with zij t ∈ {1,2, . . . ,K}. Following Erosheva,
Fienberg and Joutard (2007), it is easy to show that the expression in (3.3) is equiv-
alent to

p(Yi |Agei ,β,gi) = ∑
z∈Z

f AUG(Yi , z|Agei ,β,gi ),(3.7)

where Z = {(zjt )J×T : zjt ∈ {1, . . . ,K}}. We then see that the model in (3.3) can
be thought of as a marginalized version of the model in (3.6). This equivalence
shows that the TGoM model conforms to the general mixed-membership structure
described in Erosheva, Fienberg and Lafferty (2004). It also makes it possible to
construct algorithms for posterior inference of the TGoM using the augmented
model [Tanner (1996)].

3.2. Detailed specification. The extreme trajectories functions, λjk(·), encode
several assumptions about the dynamics of the underlying process over time. Thus,
their specific functional form must be application-specific. For this application to
the NLTCS, following Connor (2006), we use a linear logit specification

logit
[
λjk(τ )

] = β0jk + β1jkτ.(3.8)

Here βjk = (β0jk, β1jk). This specification expresses the intuitively sound notion
that the underlying probability of disability is a monotonic function of age. It also
has the advantage of being relatively simple, with just 2 × J parameters per ex-
treme profile. In the supplementary material [Manrique-Vallier (2014)] we present
an analysis using an alternative specification and include a discussion about the
appropriateness of 3.8.

Similar to Erosheva (2002) and Airoldi et al. (2008), we take the common dis-
tribution of the N membership vectors gi , Gα , as

gi |α i.i.d.∼ Dirichlet(α),(3.9)

where α = (α1, α2, . . . , αK) with αk > 0 for all k = 1, . . . ,K .
The Dirichlet distribution has some good properties in this setting. First, it

is conjugate to the multinomial distribution. This simplifies computations using
Gibbs samplers. Second, adopting the reparametrization α = (α0 · ξ1, . . . , α0 · ξK)

with α0 > 0, ξk > 0 and
∑

k ξk = 1, we can interpret the vector ξ = (ξ1, . . . , ξK)

as the average proportion of responses generated by the kth extreme profile and
α0 as a parameter governing the spread of the distribution: as α0 approaches 0, the
samples from Gα are more and more concentrated on the vertices of the simplex
�K−1; and as α0 increases they are more concentrated near its mean, ξ .

As Erosheva, Fienberg and Joutard (2007) and Airoldi et al. (2007) discuss,
a priori setting parameter α in the Dirichlet distribution is too strong an assump-
tion to do realistic modeling. Estimates can be highly sensitive to this prior spec-
ification. For this reason, we prefer to estimate these parameters directly from the
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data, specifying hyperpriors and computing posterior distributions. We specify hy-
perpriors for α0 and ξ similar to Erosheva (2002) and Erosheva, Fienberg and
Joutard (2007): α0 ∼ Gamma(aα, bα) and ξ ∼ Dirichlet(1K). This specification
takes advantage of the interpretation of the parameters α0 and ξ , considering them
as independent entities and modeling them separately. For the same reason we also
assume that p(α0, ξ) = p(α0)p(ξ ).

We specify the priors for the parameters that define the extreme trajectories,

βjk = (β0jk, βjk), as two independent normal distributions, β0jk
i.i.d.∼ N(μ0, σ

2
0 )

and β1jk
i.i.d.∼ N(μ1, σ

2
1 ), for all j = 1, . . . , J and k = 1, . . . ,K . These priors can

be set to be noninformative, by a priori specifying high variances. We also assume
that βjk are a priori independent of α.

3.3. Representing generational changes. The basic TGoM model from Sec-
tion 3.1 takes advantage of the longitudinal nature of the NLTCS by following
individuals as they age. It, however, attributes all variation over time, including
changes in prevalence of disability patterns, to the individual progression of aging.
Thus, it attributes all changes in prevalence of disability between different epochs
to the aggregation of individuals that are at distinct points of their life trajectories.

To answer questions about changes in the ways of aging across different
generations—for example, “are younger generations acquiring disabilities differ-
ently than older ones?”—we need to take into account the birth cohort of individ-
uals. We do so by modeling the dependence between cohorts and the membership
scores, keeping the extreme trajectories the same for the whole population. This
arrangement allows us to read differences in the ways of aging as differences in the
underlying distribution of membership, conditional on birth cohort. We interpret
these differences using the common frame of reference provided by the extreme
trajectories.

A direct way of enabling inter-generational comparisons under this framework
is to keep the individual-level structure proposed for the basic TGoM model, but
replace the common distribution of membership vectors with a family indexed by
a function of the date of birth (DOB) covariate:

p(yijt |gi ,Ageit ,β) =
K∑

k=1

gik Bern
(
yijt |λjk(Ageit )

)
,

gi |DOBi
indep∼ Gα(DOBi ).

For our application we keep the Dirichlet specification, but replace its parameter α
with a function of DOB, so that Gα(DOB) = Dirichlet(α(DOB)). We note that under
this specification the membership vectors, gi , are now dependent on a covariate.

A simple, yet reasonably flexible, way of specifying α(DOB) is by defin-
ing a number of cohorts and making it constant within each of them. Let � =
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FIG. 2. Probabilistic graphical representation of the extended TGoM model with cohort effects.
Gray nodes represent observed quantities; white nodes represent parameters to estimate.

{γ1, γ2, . . . , γC} be a finite partition (contiguous nonoverlapping intervals) of the
range of possible dates of birth. Define α(DOB) = (α1(DOB), α2(DOB), . . . ,

αK(DOB)) by

αk(DOB) = ∏
γ∈�

(
α

γ
k

)I (DOB∈γ )
,(3.10)

where α
γ
k > 0. Then, we extend the TGoM model to handle cohort information by

replacing the population level distribution of membership vectors, p(gi |α), with
its conditional version, p(gi |α(DOBi )). Figure 2 shows a graphical representation
of this expanded model.

We specify the same hyperprior distribution that we used for the basic TGoM for
all the newly introduced parameters. To this end, define α

γ
0 = ∑K

k=1 α
γ
k and ξ

γ
k =

α
γ
k /α

γ
0 , and take α

γ
0

i.i.d.∼ Gamma(τ, η) and ξγ = (ξ
γ
1 , . . . , ξ

γ
K)

i.i.d.∼ Dirichlet(1K).

4. Estimation. We developed MCMC algorithms based on Gibbs sampling to
obtain samples from the posterior distribution of parameters for both the basic and
the generational model. These algorithms rely on the augmented data representa-
tion in (3.6). We present the full description in Appendices A and B.

5. Application to the NLTCS. We have selected an extract from the NLTCS
data that includes data from all six waves. These data include all the individuals
that received the screener in at least one of the first five waves of the survey (1982,
1984, 1989, 1994 or 1999). We excluded individuals who entered the sample for
the first time in 2004 because of lack of information about their dates of birth and
death. Similarly, we excluded all the individuals that were institutionalized in 1982
because the NLTCS did not register their ADL statuses that year. The resulting
sample size was N = 38,428 subjects. For each individual at each wave we focused
on six ADLs: Eating (j = 1), Dressing (j = 2), Toileting (j = 3), Getting In or Out
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TABLE 1
Cohort definition and distribution by wave

Wave

1982 1984 1989 1994 1999 2004∗
Cohort DOB (t = 1) (t = 2) (t = 3) (t = 4) (t = 5) (t = 6)

1 –1906 6329 6025 1347 1397 617 70
2 1906–1914 7631 7082 3452 3335 1753 575
3 1914–1919 3696 7839 2627 5102 3679 2010
4 1919–1926 1 463 2410 4581 4724 3505
5 1926– 0 0 0 2478 6403 4251

∗Only individuals present in 1999.

of Bed (j = 4), Inside Mobility (j = 5) and Bathing (j = 6). We determined the
age of each individual in years by computing the difference between the interview
and birth dates, and assuming 365 days for all years. For computing and prior
specification purposes, we recentered ages at 80 years. However, for clarity we
report any estimates or descriptive statistics related to age without the offset.

We defined five cohorts or generational groups, partitioning the ranges of pos-
sible dates of birth according to the intervals defined in the second column of
Table 1. We selected these intervals so that they group approximately the same
number of individuals. A salient feature of this arrangement is that individuals
from the youngest cohort (cohort 5—born after 1926) have measurements only
in the last three waves due to age eligibility, as its oldest members turned 65 af-
ter 1991. Also note that neither the oldest (cohort 1—born before 1906) nor the
youngest (cohort 5—born after 1926) cohorts span the whole range of relevant
dates of birth in the NLTCS. In fact, the oldest individual in cohort 5 could be at
most 78 years old in 2004, while the youngest individual from cohort 1 could not
be younger than 76 years old in 1982.

5.1. Basic GoM trajectory model. We fitted the basic model described in Sec-
tion 3.2 to the NLTCS data using the MCMC algorithm from Appendix A, for
K = 2,3,4 and 5 extreme profiles.

We set the prior distribution for the proportions parameter of the member-
ship vector, ξ , as a uniform distribution over �K−1, or Dirichlet(1K). We spec-
ified the prior distribution for the corresponding concentration parameter, α0, as
Gamma(1,5), in shape/inverse scale parametrization. This last specification ex-
presses a slight preference for small values of α0, although not very pronounced.
This choice is more a modeling decision than an expression of prior knowledge:
small values of α0 in the Dirichlet parametrization have the effect of concentrating
the probability of individual membership vectors around the vertices of the unit
simplex. This has the effect of producing individual membership vectors where
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one single profile is predominant, but where the other profiles still exert some ef-
fect. This behavior is a desirable characteristic from an interpretative standpoint
that allows us to discuss “predominant” profiles, while still having a significant
degree of flexibility in the handling of heterogeneity due to the influence of the
other profiles. For the parameters governing the extreme trajectories, we selected
diffuse independent normal priors with μ = 0 and variance σ 2 = 100.

In all cases, the MCMC chains converged rapidly, reaching stationary distri-
butions after approximately 15,000 iterations. Still, run times were long due to
the chains’ slow mixing. In all cases, we ran 120,000 iterations, discarded the
first 20,000 and subsampled them, keeping 20% of the remaining. Similar to other
latent variable models, the TGoM is invariant to permutation of its extreme pro-
file labels. Thus, we inspected the trace plots for signs of label switching [Jasra,
Holmes and Stephens (2005)]. No switching was found. Although label switch-
ing is a potential problem, in this application the modal regions of the posterior
distributions seem to be well separated due to the abundance of data.

5.1.1. Basic model results. The basic TGoM model includes parameters that
represent two distinct structural features: typical ways of aging, given by the ex-
treme profiles (parameters β), and the way individuals distribute with respect to
these extreme profiles (parameters ξ and α0). Extreme profile parameters can be
difficult to interpret directly. Thus, we instead consider the quantities given by the
transformation

Ageq,jk = − 1

β1jk

[
β0jk + log

(
1 − q

q

)]
+ 80,(5.1)

for q = 0.1, q = 0.5 and q = 0.9. These parameters express the age at which an
ideal individual of the extreme profile k reaches a probability q of being unable to
perform ADL j . The 80 year offset is required because we have recentered the age
data, subtracting 80. We also relabel extreme profiles according to the decreasing
sequence of posterior estimates of ξk . This is necessary because of the TGoM’s
invariance to permutations of the extreme profile labels. This way, the expression
“first extreme profile” (k = 1) will always refer to the extreme profile with the
highest relative importance in the population (the one to which most individuals
are the closest; see Section 5.1) and “the last” (k = K) to the one with the lowest.

Figure 3 and Table 2 present summaries of the posterior distribution of the
extreme profile and Mixed Membership parameters, respectively. Plots in Fig-
ure 3 are based on posterior means of the quantities Ageq,jk , for models with
K = 2,3,4. For each extreme profile, vertical line segments represent the age in-
terval at which the probability of being unable to perform each ADL increases
from 10% to 90%, that is, [Age0.1,jk,Age0.9,jk]. To aid visualization, we sorted
the ADLs according to the Age0.5,jk estimates. Note that this procedure resulted
in the exact same sequence of ADL in every case. Table 2 shows the posterior
summaries of the Mixed Membership distribution parameters, α0 and ξ .
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FIG. 3. Posterior estimates of extreme profiles for models with K = 2,3,4. Vertical segments rep-
resent the age range at which ideal individuals’ probabilities of disability go up from 0.1 to 0.9,
for each ADL ([Age0.1,jk,Age0.9,jk ]). For visualization purposes, ADLs are sorted according to
Age0.5,jk posterior estimates.

Estimates of the parameter α0, in Table 2, are relatively small for all models.
This was expected since the prior distribution of α0, Gamma(1,5), was already
expressing strong a priori preference for small values of α0. However, as we can
note from their very small posterior dispersion relative to the prior dispersion,
these estimates are strongly data driven. This is not surprising, considering the
large amount of data available to perform the estimations.

For all models, the extreme profile with the highest relative importance in the
population, k = 1, represents a pattern of healthy aging, with a very late onset of
disability. Extreme trajectories in this profile show that for any ADL, ideal indi-
viduals in this class have a very small probability of experiencing disability until
approximately age 90. The remaining extreme profiles show patterns with progres-
sively earlier onsets of disability, as we consider the extreme profiles in sequence.
This is a feature worth noting: all models point to an inverse relationship between
the relative importance of a profile in the population and its implied age of onset

TABLE 2
Posterior estimates of population-level parameters for basic model with K = 2,3,4,5 extreme

profiles. Numbers between parenthesis are posterior standard deviations

α0 ξ1 ξ2 ξ3 ξ4 ξ5

K = 2 0.328 0.824 0.176 – – –
(0.007) (0.002) (0.002)

K = 3 0.261 0.645 0.251 0.104 – –
(0.006) (0.004) (0.004) (0.002)

K = 4 0.237 0.540 0.259 0.124 0.078 –
(0.006) (0.005) (0.004) (0.003) (0.002)

K = 5 0.235 0.496 0.244 0.128 0.074 0.058
(0.005) (0.007) (0.006) (0.003) (0.002) (0.001)



2280 D. MANRIQUE-VALLIER

of disability. That is, most people’s aging trajectories are closer to a profile that
describes a late onset of disability.

We note that the sequence of ADLs obtained from sorting them according to
their implied age of onset of disability (represented by parameter Age0.5,jk) is
the same for all extreme profiles of all models. Closer inspection reveals that the
pattern of acquisition of disabilities directly inferred from the data closely follows
what we can interpret as a sequence of activities decreasingly sorted in terms of
difficulty: inside mobility, toileting, dressing, bathing, getting in and out of bed,
and eating.

Another salient feature of these results is that for k = 1,2,3 and 4, the inferred
slope parameters of the extreme trajectories (β1jk) are all positive, even though the
prior specification allows for negative values. This result supports the intuition that
the probability of experiencing a disability in any ADL can only increase as one
ages. It also makes it possible to construct the graphical summaries in Figure 3.
The only exception to this regularity is in profile k = 5, in the model with K = 5
extreme profiles. In this profile trajectories exhibit a counterintuitive decreasing
progression. We note that the relative importance of this profile in the popula-
tion is small, with ξ̂5 ≈ 0.058 (compared with ξ̂1 ≈ 0.496 for the most important
profile). From a modeling perspective, an obvious way of avoiding this type of
aberrant behavior is to make it an impossibility a priori, restricting the support
of the slope parameters to positive values. We have implemented such a model.
However, while the rest of the parameters remained almost the same, the slope
parameter of most trajectories in this profile were zero or very close to zero. These
outcomes—together with the results obtained using a different trajectory specifi-
cation, in the supplementary material [Manrique-Vallier (2014)]—suggest that this
profile captures a small residual variability, which is not correctly modeled by the
main extreme trajectories. Accounting for this effect is an area for future improve-
ments.

To better understand the way TGoM models handle individual-level heterogene-
ity, it is instructive to visualize, in addition to the extreme trajectories, the actual
individual trajectories that result from the individual-level mixing, λ

(i)
jk (τ ). Plots in

Figures 4 and 5 show a random sample of 100 such curves, overlaid over the three
extreme trajectory curves, for each ADL, under the model with K = 3 and K = 4
extreme profiles, respectively. We see that most of the individual curves cluster in
the vicinity of the extreme curves. This is expected, given the small value of the
concentration parameter, α0. However, we also see that a significant portion of the
individual curves lies somewhere in between extremes, exhibiting trajectories that
are the product of the interaction of more than one extreme. In particular, we ob-
serve a fair number of individual trajectories that fall in between extremes k = 1
and k = 2. These trajectories form a somewhat homogeneous cluster different from
the extreme profiles. Nonetheless, the TGoM model has been able to accommodate
them as a combination of (mainly) profiles k = 1 and k = 2, without needing to
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FIG. 4. Individual-level mixture of trajectories for model with K = 3 extreme profiles for each
ADL. Extreme trajectories are represented with thick lines and a random sample of 100 individual
posterior trajectory curves are plotted using thin lines.

create a whole new category for them. This behavior is what gives TGoM models
the flexibility to accommodate complex individual heterogeneity while at the same
time producing meaningful and interpretable summaries. Different from traditional
LTMs [Connor (2006), Nagin (1999)], which require that individuals follow one
and only one of the typical trajectories, this approach allows them to depart from
the main tendencies, but not too much, thus retaining interpretability.

5.1.2. Multivariate model diagnostics. TGoM models explicitly model indi-
vidual-level dependency between disability outcomes, both longitudinally and be-

FIG. 5. Individual-level mixture of trajectories for model with K = 4 extreme profiles for each
ADL. Extreme trajectories are represented with thick lines and a random sample of 100 individual
posterior trajectory curves are plotted using thin lines.
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tween ADLs, with the help of an individual-level Mixed Membership structure.
In order to investigate empirically how TGoMs handle this dependency, we eval-
uate posterior univariate and multivariate out-of-sample predictive quantities. We
define

φK
ijt = Pr

(
y∗
ij t = yijt |D,K

)
,(5.2)

φK
ij = Pr

(
y∗
ij t = yijt , for all t |D,K

)
,(5.3)

φK
it = Pr

(
y∗
ij t = yijt , for all j |D,K

)
,(5.4)

φK
i = Pr

(
y∗
ij t = yijt , for all t and all j |D,K

)
,(5.5)

where y∗
ij t is the posterior predictive outcome of individual i in ADL-j at wave t ,

D are the NLTCS data, and K refers to the number of extreme profiles. Thus, for
individual i, φK

ijt is the (univariate) posterior probability of correctly predicting

outcome yijt using a TGoM with K extreme profiles; φK
ij is the probability of

simultaneously correctly predicting the whole sequence of responses to ADL-j ,
at all waves; φK

jt is the corresponding probability of correctly predicting all the
ADLs at wave t ; and φi is the probability of simultaneously correctly predicting
all the responses of an individual. In order to estimate the out-of-sample predictive
performance of our models, we compute all these quantities using a 4-fold cross-
validation scheme [Airoldi et al. (2010), Hastie, Tibshirani and Friedman (2009)].

As a comparison we also fit a model that assumes stochastic independence be-
tween univariate outcomes, given age. We fit six (one for each ADL) nonpara-
metric logistic regressions of πijt = Pr(yij t = 1) on age, using Generalized Ad-
ditive Models [GAM; Hastie, Tibshirani and Friedman (2009), Chapter 9]. We
use this model as a reference for assessing how our models handle the multivari-
ate structure present in the data. To this end, we compute quantities analogous
to (5.2)–(5.5): φGAM

ij t = Bern(yij t |π̂ij t ), φGAM
ij = ∏

t φ
GAM
ij t , φGAM

it = ∏
j φGAM

ij t ,

and φGAM
i = ∏

j,t φ
GAM
ij t , where π̂ij t is the fitted value of πijt . We compute these

quantities using the same 4-fold cross-validation scheme we use for the TGoM
quantities.

Table 3 shows the 4-fold cross-validated means (over all their subindexes) of
φijt , φij , φit and φi , for TGoM with K = 1,2, . . . ,5 extreme profiles and for the
logistic GAM models. We take these numbers as estimates of the corresponding
file-level rates of correct predictions for each model. We note that both TGoM
and GAM models have similar univariate prediction rates, of around 80%, slightly
favoring GAM. However, most of the joint prediction rates of the TGoM mod-
els with K > 1 are substantially better than the alternative. In particular, TGoM
correct prediction rates for complete individual outcomes vectors, φi , are between
41.4% and 45.4%, while for the GAM model it drops down to 24.7%. We also
observe that multivariate prediction rates using TGoM models tend to be much
closer to their univariate prediction rates than the corresponding quantities using
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TABLE 3
Out-of-sample rates of univariate and multivariate correct predictions for TGoM and

nonparametric logistic regression models. Percentages between parentheses are the ratio of each
entry with respect to its corresponding univariate correct prediction rates, φijt

Model φijt φij φit φi

TGoM K = 1 0.811 (100%) 0.644 (79.4%) 0.452 (55.7%) 0.251 (30.9%)
TGoM K = 2 0.803 (100%) 0.666 (82.9%) 0.567 (70.6%) 0.414 (51.6%)
TGoM K = 3 0.802 (100%) 0.668 (83.3%) 0.593 (73.9%) 0.440 (54.9%)
TGoM K = 4 0.801 (100%) 0.668 (83.4%) 0.605 (75.5%) 0.451 (56.3%)
TGoM K = 5 0.799 (100%) 0.664 (83.1%) 0.607 (76.0%) 0.454 (56.8%)
GAM-logistic 0.812 (100%) 0.645 (79.4%) 0.451 (55.5%) 0.247 (30.4%)

the GAM alternative. For instance, the ratio φi/φijt (numbers between parenthe-
sis in the 5th column of Table 3) ranges from 51.6% to 56.8% for TGoM models
(K = 2 and K = 5, resp.), while for GAM it falls down to 30.4%. We finally ob-
serve that estimates with the TGoM model with K = 1 are almost identical to those
obtained with GAM. This is because fitting TGoMs with only one extreme profile
(K = 1) is equivalent to fitting J independent logistic regressions of the response
variable (ADLs) on the predictors (Age).

An interesting feature in Table 3 is that longitudinal predictions (φij ) are better
than cross-sectional predictions (φit ) for all models. This can be explained noting
that both the TGoM and GAM approaches exploit the extra longitudinal informa-
tion provided by the vectors of individuals’ ages. By contrast, when modeling the
multivariate cross-sectional structure, TGoM relies only on Mixed Membership
and GAM only on independence given age. Nonetheless, the comparison between
the two modeling approaches still favors TGoM models.

The conclusion of this prediction exercise is that TGoM models with more than
one extreme profile do capture a large portion of the multivariate structure present
in the data, both longitudinally and cross-sectionally.

5.2. Fitting the cohort extensions. We have fitted the model with extensions
to handle cohort information to the NLTCS data using the MCMC algorithms in
Appendix B, for K = 2,3 and 4 extreme profiles.

The main objective of the analysis with this model is to compare the under-
lying distribution of the membership vectors conditional on generational groups,
as a way of assessing differences in the ways of aging between different cohorts.
We do this by directly comparing the parameters of these distributions for each
generational group γ ∈ �, αγ , and interpreting them with respect to the common
extreme trajectories, defined by the parameters (βjk).

Figure 6 shows the estimates (posterior means) of the components of the vec-
tor ξ for models with K = 2,3 and 4 extreme profiles, for each cohort. For each
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FIG. 6. Evolution of the parameter vector ξ across different generations for models with K = 2,3
and 4 extreme profiles. The error bars show 95% equal tail posterior credible intervals associated
with the kth component of the vector ξ .

generational group, γc, the sequence of values of ξ
γc

k are linked with lines. Reading
from left to right, these sequences indicate the evolution of the relative weight of
the kth component in each cohort as we shift our attention from older to younger
cohorts. Posterior estimates of the common extreme profile parameters, (βjk), are
very similar to those computed using the basic TGoM model (see the supplemen-
tary material [Manrique-Vallier (2014)] for details), so we can safely refer to them
when discussing extreme profiles.

The most salient feature in Figure 6 is the increasing monotonicity of the relative
importance of the first component (k = 1) in each cohort as we consider younger
and younger cohorts, that is, ξ

γ1
1 < ξ

γ2
1 < · · · < ξ

γ5
1 . This is especially clear in

models with K = 2 and K = 3. In the model with K = 4, because of the high
posterior dispersion, it is not clear if the youngest generation actually follows this
pattern. A likely explanation for this uncertainty is the lack of data for ages past
78 years old in cohort 5.

This trend tells us that, as we consider newer cohorts, their members tend to be
increasingly close to profile k = 1. This profile corresponds to the healthiest ag-
ing progression, with extremely low probability of acquiring disabilities until very
advanced ages, as can be observed in Figure 3. Thus, we conclude that younger
generations tend to have healthier ways of aging compared to their elders.

6. Discussion. The methods we propose and apply here have several desirable
features. First, they produce meaningful and easy-to-interpret summaries of the
main temporal trends in the population. In this application, these summaries—the
extreme trajectories—isolate typical ways of progressing into disability and allow
a simplified analysis of the longitudinal patterns. Second, they allow a simple,
but not oversimplified, characterization of the individual heterogeneity in terms of
the extreme trajectories. This keeps the extreme profile characterizations simple,
while still allowing the representation of complex individual trajectories. Finally,
the model’s extensions allow comparisons between groups of individuals defined



MIXED MEMBERSHIP TRAJECTORY MODELS 2285

by given static characteristics. In this application it enables the separation of time-
dependent effects that depend on age from those dependent on birth cohort.

The results obtained through the application of our methods to the NLTCS high-
light some interesting characteristics of the data and, in general, of the aging pro-
cess in the U.S. All the models considered here showed that most individuals are
close to the “healthy aging” profile (k = 1), whose associated extreme trajecto-
ries (for the 6 ADLs) describe a practically disability-free life until very late ages
(90+). Then we find that profiles with trajectories that specify earlier onsets of
disability exhibit progressively less importance in the population. This means that
most people could be expected to have a relatively disability-free old age and that
very bad aging processes are not so common.

When considering the effect of the birth cohort—estimating simultaneously
population-wide extreme profiles together with individual membership conditional
on cohort—we find a similar situation. However, different generations have a dif-
ferent membership composition: the relative importance of the “healthy aging”
profile (k = 1) experiences a monotonic increase when moving from older to
younger generations, to the detriment of all the other profiles. Thus, the answer
to the question “do younger generations acquire disabilities differently than older
ones?” appears to be affirmative. Furthermore, it is so in a positive sense: not only
do younger generations acquire disabilities differently, they also acquire them later.
These findings are consistent with previous evidence showing a decline in disabil-
ity obtained from purely cross-sectional analyses [Manton, Corder and Stallard
(1997), Manton, Gu and Lamb (2006)], from wave to wave latent class transition
analysis [White and Erosheva (2013)], and from latent trajectory analysis [Connor
(2006)].

So far declines in disability have been analyzed mostly from wave to wave, ei-
ther from uncorrelated cross-sectional samples as changes in prevalence [Manton,
Corder and Stallard (1997), Manton, Gu and Lamb (2006), Manton, Lamb and
Gu (2007)] or from longitudinal analysis as transitions between states [Stallard
(2005), White and Erosheva (2013)]. Our approach, in contrast, is not rooted on
survey waves, nor does it directly assess changes in prevalence of disability. In-
stead, it characterizes whole individual life trajectories. It therefore enables direct
comparisons across different ways of aging.

An important issue that we have addressed informally here is choosing the num-
ber of extreme profiles, K . In Section 5.1.2 we noted that in general the out-of-
sample multivariate fit measures improved with model complexity, increasing K ,
although the improvement was different depending on which multivariate dimen-
sion we chose to analyze. We also have observed that the least important profiles
in models with K > 4 do not reveal informative trajectories. Furthermore, we note
that our conclusions do not really depend on an exact number of extreme profiles.
Therefore, we evaluate that in this case we do not need to select a “best” model;
instead, we have opted for reporting results from several models, with numbers
of extreme profiles ranging from K = 2 to K = 4. Model selection, however, can
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be an important issue in other applications. Possible approaches include the use
of indexes such as AIC [Akaike (1973)] or BIC [Schwarz (1978)]—or their more
computationally convenient counterparts DIC [Spiegelhalter et al. (2002)], AICM
or BICM [Raftery et al. (2007)]—although in this case the difficulty in computing
the integrated likelihood could make this approach impractical. Another approach
is to use Bayesian nonparametric specification that favor sparse representations,
such as Dirichlet Process mixtures. Bhattacharya and Dunson (2012) have pro-
posed what is essentially a nonparametric Mixed Membership model for categori-
cal data which could be adapted for this purpose.

As for model limitations, this analysis attributes all variability in the data to a
combination of random fluctuation, age effects, cohort effects and Mixed Member-
ship. Thus, it neglects other potential systematic effects, some of which might be
important either to capture previously unaccounted variability or simply for better
understanding the underlying processes. For instance, it is well known [see, e.g.,
Ferrucci et al. (1996), Manton (2008)] that men and women follow different aging
and mortality processes. One natural way of accounting for nontime-dependent
categorical covariates, like gender or race, is to introduce them in the same way
we introduced the DOB covariate: as conditioners on the prior distribution of in-
dividual membership. If the cells on the contingency table generated by the cross-
classification according to the covariates are well populated, we can directly use
the TGoM extensions from Section 3.3. If this is not the case, the joint covariate
vector can be smoothed using more complex prior specifications, such as those
proposed in Bertolet (2008) for the Grade of Membership model.

Another related limitation of these models is that they do not account for mor-
tality. In essence, these models correspond to what Kurland and Heagerty (2005)
and Kurland et al. (2009) call an “immortal cohort.” This is of particular impor-
tance in the present application because patterns of disability are usually tied to
patterns of mortality [Connor (2006), Ferrucci et al. (1996), White and Erosheva
(2013)]: progression into more severe disability goes together with an increased
probability of death. One way of integrating mortality into this framework is to
extend the definition of extreme profiles to characterize not only patterns of dis-
ability acquisition, but also of survival. Such a joint model could be the topic of a
future article.

APPENDIX A: MCMC SAMPLER FOR THE TGOM MODEL

In this appendix we present a Gibbs sampling algorithm for Bayesian estima-
tion of the TGoM model, also described in Manrique-Vallier (2014). Following
the discussion at the end of Section 3.1, we construct an algorithm for obtaining
samples from the posterior distribution of parameters in the augmented data model
in equation (3.6), which after marginalizing z is equivalent to the TGoM model.
This posterior distribution is

p(α,β,Z,g|Y,Age) ∝ p(α,g,β)

N∏
i=1

f AUG(Yi ,Zi |Agei ,β,gi ),(A.1)
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which following the detailed specification from Section 3.2 is equivalent to

p(α,β,Z,g|Y,Age)

∝ Gamma(α0|aα, bα) × Dirichlet(ξ |1K)

(A.2) ×
N∏

i=1

Dirichlet(gi |α) ×
J∏

j=1

K∏
k=1

N
(
β0jk|μ0, σ

2
0
) × N

(
β1jk|μ1, σ

2
1
)

×
N∏

i=1

J∏
j=1

T∏
t=1

gizij t

exp(yij tβ0jzij t
+ yijtβ1jzij t

Ageit )

1 + exp(β0jzij t
+ β1jzij t

Ageit )
,

with α0 = ∑
αk and ξ = (α1/α0, . . . , αK/α0). Parameters aα and bα are shape and

inverse scale parameters, respectively.
A Gibbs sampling algorithm for obtaining samples from the joint posterior dis-

tribution of (α,β,Z,g) can be constructed as follows:

1. Sampling from Z: For every i ∈ {1, . . . ,N}, j ∈ {1, . . . , J } and t ∈
{1, . . . , T }, sample zij t | · · · ∼ Discrete({1, . . . ,K}, (p1,p2, . . . , pK)), with

pk ∝ gik

exp[yijt (β0jk + β1jkAgeit )]
1 + exp(β0jk + β1jkAgeit )

for all k ∈ {1, . . . ,K}.
2. Sampling from βjk : let � = {(i, t) : zij t = k} and assume that μ0 = μ1 = 0.

The full joint conditional distribution of (β0jk, β1jk) is

p(β0jk, β1jk| · · ·)

∝ exp[−(β2
1jk/2σ 2

1 + β2
0jk/2σ 2

0 ) + β0jk

∑
� yijt + β1jk

∑
� Ageit yij t ]∏

�[1 + exp(β0jk + β0jkAgeit )]
.

To sample from this distribution, we use a random walk Metropolis step:

(a) Sample proposal values β∗
0jk ∼ N(β0jk, σ

2
β0) and β∗

1jk ∼ N(β1jk, σ
2
β1), where

σ 2
β0 and σ 2

β1 are tuning parameters.
(b) With probability

rM = min
{

1,
∏
�

[
1 + exp[β0jk + β0jkAgeit ]
1 + exp[β∗

0jk + β∗
0jkAgeit ]

]

× exp
[
−β∗2

0jk − β2
0jk

2σ 2
0

+ (
β∗

0jk − β0jk

)∑
�

yijt

]
(A.3)

× exp
[
−β∗2

1jk − β2
1jk

2σ 2
1

+ (
β∗

1jk − β1jk

)∑
�

yijtAgeit

]}
,

make (β0jk, β1jk) = (β∗
0jk, β

∗
1jk). Otherwise keep the current value.
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3. Sampling from gi :

gi | · · · indep∼ Dirichlet
(
α1 + ∑

j,t

I (zij t = 1), . . . , αK + ∑
j,t

I (zij t = K)

)
.

4. Sampling from α: The full conditional distribution of α,

p(α| · · ·) ∝ α
aα−1
0 e−α0bα ×

[
�(α0)∏K

k=1 �(αk)

]N K∏
k=1

[
N∏

i=1

gik

]αk

,

does not have any recognizable form. We use a Metropolis–Hastings step similar
to Manrique-Vallier and Fienberg (2008):

(a) Obtain the proposal

α∗ = (
α∗

1 , α∗
2, . . . , α∗

K

)
with α∗

k

indep∼ lognormal
(
logαk, σ

2)
.

(b) Let α∗
0 = ∑K

k=1 α∗
k . With probability

r = min

{
1, e−aα(α∗

0−α0)

(
α∗

0

α0

)bα−1
(

K∏
k=1

α∗
k

αk

)

×
[

�(α∗
0)

�(α0)

K∏
k=1

�(αk)

�(α∗
k )

]N K∏
k=1

(
N∏

i=1

gik

)α∗
k−αk

}
,

make α = α∗. Otherwise keep the current value. Obtain (α0, ξ) by making
α0 = ∑K

k=1 αk and ξk = αk/α0, for all k = 1, . . . ,K .

APPENDIX B: FITTING THE GENERATIONAL EXTENSION

The only difference between the posterior distributions of the basic and the ex-
tended TGoM models is the distribution of gi |α. Thus, we only have to adapt
steps 3 and 4 in the previous algorithm by replacing

∏N
i=1 p(gi |α) with

N∏
i=1

p
(
gi |α(DOBi )

) = ∏
γ∈�

N∏
i=1

[
p

(
gi |αγ )]I (DOBi∈γ )

.(B.1)

Let γi ∈ � be the unique interval from the partition such that DOBi ∈ γi . We obtain
an MCMC sampler for this model by modifying steps 3 and 4 from the algorithm
in Appendix A with the following:

3′. Sampling from gi :

gi | · · · indep∼ Dirichlet
(
α

γi

1 + ∑
j,t

I (zij t = 1), . . . , α
γi

K + ∑
j,t

I (zij t = K)

)
.



MIXED MEMBERSHIP TRAJECTORY MODELS 2289

4′. Sampling from α: let �γ = {i :γi = γ }. The full conditional distribution
of αγ is

p
(
αγ | · · ·) ∝ (

α
γ
0

)aα−1
e−α

γ
0 bα ×

[
�(α

γ
0 )∏K

k=1 �(α
γ
k )

]#(�γ ) K∏
k=1

[∏
�γ

gik

]α
γ
k

,

where #(�γ ) is the number of elements in the set �γ .
This expression is similar to (B.1) in Appendix A. We thus adapt the procedure

by replacing r in step 4 of the algorithm with

r = min

{
1, exp

[−τ
(
α∗

0 − α
γ
0

)]( K∏
k=1

α∗
k

α
γ
k

)(
α∗

0

α
γ
0

)τ−1

×
[

�(α∗
0)

�(α
γ
0 )

K∏
k=1

�(α
γ
k )

�(α∗
k )

]#(�γ ) K∏
k=1

( ∏
i∈�γ

gik

)α∗
k−α

γ
k

}
.
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SUPPLEMENTARY MATERIAL

Supplement to “Longitudinal Mixed Membership trajectory models for
disability survey data” (DOI: 10.1214/14-AOAS769SUPP; .pdf). Estimation us-
ing TGoM models with piecewise constant trajectories and tables with posterior
estimates for all the fitted models.
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