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Large case/control Genome-Wide Association Studies (GWAS) often in-
clude groups of related individuals with known relationships. When testing
for associations at a given locus, current methods incorporate only the famil-
ial relationships between individuals. Here, we introduce the chromosome-
based Quasi Likelihood Score (cQLS) statistic that incorporates local
Identity-By-Descent (IBD) to increase the power to detect associations. In
studies robust to population stratification, such as those with case/control sib-
ling pairs, simulations show that the study power can be increased by over
50%. In our example, a GWAS examining late-onset Alzheimer’s disease,
the p-values among the most strongly associated SNPs in the APOE gene
tend to decrease, with the smallest p-value decreasing from 1.23 × 10−8 to
7.70 × 10−9. Furthermore, as a part of our simulations, we reevaluate our
expectations about the use of families in GWAS. We show that, although
adding only half as many unique chromosomes, genotyping affected siblings
is more efficient than genotyping randomly ascertained cases. We also show
that genotyping cases with a family history of disease will be less beneficial
when searching for SNPs with smaller effect sizes.

1. Introduction. Genome-Wide Association Studies (GWAS) of binary traits
can include related individuals from known pedigrees [Barrett et al. (2008), Willer
et al. (2008)]. In case–control studies, GWAS generally increase power by collect-
ing cases with affected relatives, and may therefore find it cost-effective to geno-
type these related cases as well. Furthermore, GWAS may target families because
the appropriate association tests are robust to population stratification [Ewens, Li
and Spielman (2008)], the families have previously been collected for linkage anal-
yses, the genetic variants can be called more accurately [Wang et al. (2007)], or
the effects of parental imprinting can be evaluated [Wilkinson, Davies and Isles
(2007)].

There are two general approaches for evaluating GWAS with related individu-
als from known pedigrees [Manichaikul et al. (2012), Ott, Kamatani and Lathrop

Received August 2013; revised November 2013.
1Supported by the intramural program of the National Institute of Cancer. This study utilized the

high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes
of Health, Bethesda, Md. (http://biowulf.nih.gov).

Key words and phrases. cQLS, GWAS, related individuals, case–control.

974

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS715
http://biowulf.nih.gov


CQLS 975

(2011)]. The first approach combines two independent tests, a family-based test
[Laird, Horvath and Xu (2000), Lange et al. (2003), Sham et al. (2002)], such as
the transmission-disequilibrium test, and a population-based test of association.
Methods exist for combining these two tests so the resulting analysis is robust to
population stratification [Manichaikul et al. (2012), Mirea et al. (2012), Won et al.
(2012), Zheng et al. (2010)]. The second approach, which potentially sacrifices ro-
bustness for improved power, calculates a single test statistic of association that ac-
counts for the correlated genotypes among relatives [Bourgain et al. (2003), Slager
and Schaid (2001), Thornton and McPeek (2007)]. Our focus is on the second ap-
proach and we derive a single test statistic which can use principal components
[Price et al. (2006)] to correct for population stratification when necessary.

Until now, standard GWAS analyses have focused on the individual. For each
individual, a study records their genotype and disease status. If all individuals were
unrelated, the appropriate test statistic would simply be the correlation between an
individual’s genotype and disease status [Hirschhorn and Daly (2005)]. However,
when some individuals are related, a test statistic should correct for the dependence
among genotypes and allow for the minor allele frequency (MAF) at a causal
SNP to be higher in controls with affected relatives, as compared to randomly
ascertained controls [Bourgain et al. (2003), Thornton and McPeek (2007), Zhu
and Xiong (2012)]. The more-powerful Quasi-Likelihood Score (mQLS) statistic
[Thornton and McPeek (2007)], an extension of the QLS [Bourgain et al. (2003)],
accomplishes both objectives. However, because these statistics consider only the
overall Identity By Descent (IBD) status between two individuals, they cannot al-
low for the MAF at a causal SNP to be higher in controls that share both alleles
(IBD = 2) with an affected sibling, as compared to controls that share no alleles
(IBD = 0) with an affected sibling.

We introduce a GWAS analysis that takes a different perspective and focuses
on the founder chromosomes within each family. For each founder chromosome,
we effectively identify its allele (at a given SNP) and the proportion of individuals
carrying the SNP from that chromosome who are affected. This step is made possi-
ble by recent advances in IBD mapping and haplotyping [Browning and Browning
(2010), He (2013), Peters et al. (2012)]. We suggest a chromosome-based Quasi
Likelihood Score (cQLS) statistic that, at its simplest, measures the correlation
between a binary indicator for the minor allele and the proportion of individu-
als affected. Formally, this test statistic is a partial score statistic from the retro-
spective likelihood that includes local IBD status among the observed data. The
cQLS effectively leverages local IBD to improve power in GWAS with a large
number of family-based controls. Furthermore, the derivation of the cQLS as a
score statistic shows how to appropriately handle families of arbitrary pedigrees,
include phenotype data from ungenotyped relatives, accommodate covariates, and
allow for arbitrary models (e.g., logistic, liability threshold) linking disease risk
and genotype status. In addition to these useful features, the cQLS also permits
permutation-based measures of statistical significance. Accounting for relatedness
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in permutation methods of subject-centric approaches has proven exceptionally
difficult [Wang (2011)].

In the next section, we define cQLS, describe the simulated data sets for test-
ing its performance, and introduce a GWAS of Late-Onset Alzheimer’s Disease
(LOAD) conducted by the National Institute of Aging and the National Cell Repos-
itory for Alzheimer’s Disease (NIA-LOAD/NCRAD) [Lee et al. (2008), Wijsman
et al. (2011)]. In the third section, we evaluate the performance of the cQLS in sim-
ulated data sets and the NIA-LOAD/NCRAD data set. In addition to showing the
potential benefit of cQLS, simulations evaluate the power gained by genotyping
affected siblings, as compared to randomly ascertained cases, and demonstrate the
diminished benefit of recruiting cases with a family history of disease when search-
ing for SNPs with small effects [Hattersley and McCarthy (2005), Ionita-Laza and
Ottman (2011), Teng and Risch (1999)]. In the final section, we conclude with a
brief discussion.

2. Methods.

2.1. cQLS: Definition. We consider a case–control study that contains NFam
families, labeled j = 1, . . . ,NFam. Within family j , all genotyped chromosomes
are assumed to arise from a family-specific set of nj founder chromosomes, la-
beled k = 1, . . . , nj . We denote the total number of chromosomes by NT :

NT = ∑
j

nj .(2.1)

For a given SNP, we let Yjk = 1 if the unique founder chromosome k in family j

has a minor allele, and Yjk = 0 otherwise. Note that the subscripts “j1k” and “j2k”
refer to different founder chromosomes from different families. For our discussion
here, we will assume that Yjk is uniquely identifiable given the observed genetic
data and that we can identify, with certainty, those individuals in family j who
inherited the SNP from founder chromosome k. Both assumptions will be relaxed
in the Appendix. Furthermore, we will let Tjik′k = 1 if the k′th copy (k′ ∈ {1,2})
of the specified SNP in individual i is descended from founder chromosome k,
and Tjik′k = 0 otherwise. We let Aji = 1 if individual i is affected, and Aji = 0
otherwise.

For each founder SNP, we have Yjk , indicating the presence or absence of a mi-
nor allele, and Cjk = ∑

i,k′ Tjik′kAji , a count of the number of affected individuals
with that SNP. If we expect that the minor allele increases disease risk, then the
presence of a minor allele should be associated with a larger number of affected in-
dividuals. Therefore, the squared correlation between Yjk and Cjk should be high.
The proposed test statistic is a variation of this squared correlation.

Instead of using the count, Cjk , we use a version that normalizes each individ-
ual’s affection status to their expected affection status under the null hypothesis of
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no association,

Zjk = ∑
i

∑
k′

Tjik′k

(
Aji − π̂0

1 − π̂0
(1 − Aji)

)
,(2.2)

where π̂0 is our estimate of the prevalence of the disease in the population. We
presume there are established estimates of π̂0 available in the literature. In the
Appendix, we show how we can modify the expected affection status when other
characteristics are known. We further show how we can make specific individuals,
such as those with a family history of disease, carry more weight in the analysis
by effectively increasing their contribution to Zjk . We denote the average of all
observed values of Zjk by

Z̄ ≡
∑

j,k Zjk

NT

.(2.3)

Finally, we define a normalized version of the allele for chromosome k,

Y
†
jk = Yjk − φ̂,(2.4)

where

φ̂ ≡
∑

j,k Yjk

NT

(2.5)

and is our estimate of φ, the minor allele frequency in the population, under the null
hypothesis. As promised, our chromosome-based Quasi-Likelihood Score (cQLS)
statistic is then proportional to the squared correlation between Y † and Z,

cQLS ≡ (
∑

j,k(Zjk − Z̄)Y
†
jk)

2

∑
j,k(Zjk − Z̄)2φ̂(1 − φ̂)

.(2.6)

Because var(Y †
jk) is calculated as φ̂(1− φ̂), equation (2.6) requires the assumption

of the Hardy–Weinberg Equilibrium (HWE). Therefore, the version of cQLS de-
fined by equation (2.6) is appropriate in an ideal scenario where the genotypes and
phenotypes of all individuals are known, Yjk can be identified for all families and
chromosomes, and HWE holds. In the Appendix, we define a more robust cQLS
that allows for violations in all three assumptions.

2.2. Assigning chromosomes. To calculate cQLS, we need to determine Tjik′k ,
or the identity of the two chromosomes in individual i for all i, j, k′, and k at each
SNP. We perform this calculation in three steps. First, we phase subjects using
BEAGLE [Browning and Browning (2011)], a software package for analysis of
large-scale genetic data sets. Second, we detect shared segments within a family
using GERMLINE [Gusev et al. (2009)], a software package for discovering long
shared segments of Identity-By-Descent (IBD). In the third step, we convert the
IBD status to Tjik′k . The algorithm for this final step is described in Appendix B.4.
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2.3. Simulations. Our three aims are to (1) assess the benefit of chromosome-
based association tests (2) assess the value of genotyping an affected sibling
and (3) assess the benefit of genotyping cases known to have affected siblings.

For our simulations, we assume that the liability threshold model accurately de-
scribes disease risk. In the liability threshold model, a complex disease results from
an underlying, normally distributed, phenotype, or liability. When an individual’s
liability exceeds a specific threshold, the individual is affected. In our scenario,
the liability, Lj , for individuals in nuclear family j can be described by a linear
function of their genotypes Gj , where Gji is the number of minor alleles for indi-
vidual i, Gj = [Gj1 · · · GjNj

]t , and the superscript t indicates transpose. Here,
Ej accounts for environmental factors, while Fj accounts for background genetic
correlation:

Lj = βG(Gj − 2φ) + Ej + βF Fj ,(2.7)

where ⎡
⎢⎢⎢⎢⎣

Ej1

Ej2

...

EjNj

⎤
⎥⎥⎥⎥⎦ ∼ N

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0
0
...

0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

0 0 · · · 1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠(2.8)

and ⎡
⎢⎢⎢⎢⎢⎢⎣

Fj1

Fj2

Fj3

...

FjNj

⎤
⎥⎥⎥⎥⎥⎥⎦

∼ N

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0.5 · · · 0.5
0 1 0.5 · · · 0.5

0.5 0.5 1 · · · 0.5
...

...
...

. . .
...

0.5 0.5 0.5 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

.(2.9)

Here, Nj is the number of individuals in family j , and individuals j1 and j2 are
the parents. The liability threshold model will assign all individuals with Lji ex-
ceeding the population’s 95th percentile to have the disease. We chose βG so that
the corresponding OR for each additional minor allele was between 1.02 and 1.36.
We chose βF so that the sibling recurrence risk ratio, λS , was 1.5, 2 or 5 when
βG = 0. Note that the magnitude of the sibling recurrence risk ratio, as defined
here, is independent of the strength of the tested SNP. To calculate βF , we numer-
ically solved the following equation:∫ ∞

F−1
2 (0.95)

[∫ ∞
F−1

2 (0.95)
f1(x|y) ∂x

]
f2(y) ∂y = 0.05λS,(2.10)

where F2 and f2 are the cumulative distribution and density of N(0,1 + β2
F ), and

f1(x|y) is the density of N(β2
F y/(2(1 + β2

F )), (1 + 2β2
F + 1.75β4

F )/(1 + β2
F )).

The MAF in the population was fixed at 0.1, and genotypes were simulated under
HWE.
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TABLE 1
Each evaluated study design, labeled 1 through 7, genotypes different types of cases and controls.

The first set of columns lists the number of randomly ascertained cases (Random), identified
cases—or probands—with a family history (Fam. His.), and affected siblings of probands (Sib. 1)

genotyped for the given study. The second set of columns lists the number of randomly ascertained
controls (Rand.), unaffected “older” siblings (Sib. 1) and unaffected “younger” siblings (Sib. 2)

genotyped for the given study. Studies 1 and 2 are used to assess the benefit of genotyping
individuals with a family history of disease. Studies 3, 4 and 5 are used to assess the benefit of
genotyping siblings of probands. Studies 6 and 7 are used to assess chromosome-based tests

Cases Controls

Study Random Fam. His. Sib. 1 Random Sib. 1 Sib. 2

1 5000 0 0 10,000 0 0
2 0 5000 0 10,000 0 0
3 5000 5000 0 10,000 0 0
4 10,000 5000 0 10,000 0 0

Multiple family members genotyped
5 5000 5000 5000 10,000 0 0
6 0 10,000 0 0 10,000 0
7 0 10,000 10,000 0 10,000 10,000

Our simulated studies, summarized in Table 1, collect families and/or unrelated
cases and controls. The first five studies all start by identifying and genotyping
10,000 unrelated, randomly ascertained controls (R.A. controls). By randomly
ascertained, we mean that we have no knowledge of their family history of dis-
ease. Study 1 further genotypes 5000 unrelated, randomly ascertained cases (R.A.
cases). Study 2 genotypes 5000 unrelated cases (F.H. cases) with a family history
of disease, specifically with an affected sibling. Study 3 genotypes both the 5000
R.A. cases and the 5000 F.H. cases. Study 4 genotypes 10,000 R.A. cases and 5000
F.H. cases. Studies 5 and 6 genotype 1 sibling of each proband. Study 5 genotypes
the 5000 R.A cases, 5000 F.H. cases and their affected siblings. Study 6 includes
10,000 unrelated cases with an unaffected sibling and their unaffected siblings.
Study 7 genotypes multiple relatives of each proband. Specifically, study 7 geno-
types the 10,000 F.H. cases, their affected siblings and two unaffected siblings.
Studies 6 and 7 highlight the potential power gain for cQLS in scenarios where
only family-based controls are available.

For various combinations of βG, λS and study design, we simulated 10,000
data sets and calculated the FBAT test statistic [Laird, Horvath and Xu (2000)],
mQLS [Bourgain et al. (2003), Thornton and McPeek (2007)] and cQLS for each
data set. The power was defined as the proportion of p-values that were below
the 10−7 threshold, a common threshold for GWAS. By using 10,000 data sets,
the standard errors for our estimates of power are bounded by 0.01. A short de-
scription of FBAT and mQLS are provided in Appendix A. Previous comparisons
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[Manichaikul et al. (2012)] of the available test statistics have demonstrated that,
among currently available options, mQLS is consistently a top performer and the
appropriate reference for comparison. For all simulations, the cQLS statistic was
calculated using the true IBD of all chromosomes within each family. Moreover,
the tested SNP was assumed to be the causal SNP. We also evaluated the effect of
mistakes in IBD assignment on the power of the cQLS statistic. For a proportion
of sibling sets, we randomly assigned the IBD status for each individual in that set,
ensuring only that the IBD status was consistent with the observed genotypes. We
then recalculated the power for Studies 6 and 7 with λS = 1.5. We examined the
scenarios where 2%, 5% and 8% of sibling sets were allowed to have errors.

To test the accuracy of the p-value, we simulated 107 data sets under the null
distribution for study designs 5, 6 and 7, where the mQLS and cQLS statistics
differ, assuming λS = 5. For computational efficiency, we included only 1000 sub-
jects and only examined larger thresholds of 10−3 and 10−4.

2.4. NIA-LOAD. The details of the NIA-LOAD/NCRAD GWAS of Late On-
set Alzheimer’s Disease (LOAD) have been described elsewhere [Wijsman et al.
(2011)]. Briefly, the study recruited families with multiple affected individuals.
Specifically, probands were required to have a diagnosis of Alzheimer’s Disease
after the age of 60, have a sibling with a similar diagnosis and an additional
biologically-related family member available for genotyping. In these families,
additional relatives over the age of 50 were recruited regardless of cognitive sta-
tus. Study participants were then genotyped using Illumina’s Human610Quadv1B
BeadChips (Illumina, San Diego, CA, USA). We augmented the genotypes by
imputing SNPs in the APOE region that have been previously associated with
LOAD [Bertram et al. (2007)] using IMPUTE2 software version 2.2.2 [Howie,
Donnelly and Marchini (2009)], with prephasing by SHAPEIT software version 1
[Delaneau, Zagury and Marchini (2013)] and version 3 of the 1000 Genomes
Project data as the reference set. At each imputed SNP, we assigned the most likely
genotypes that were consistent with IBD status. In order to create a study guaran-
teed to be robust to population stratification, we focused on 115 sets of siblings
and pruned each set so that it had an equal number of cases and controls.

3. Results.

3.1. cQLS vs mQLS. Chromosome-based test statistics had higher power, as
compared to mQLS and FBAT, to detect associations when the study included
cases and controls from the same family (Figure 1). We first consider simula-
tions where the disease had a relatively low sibling relative risk of λS = 1.5. If
the GWAS included pairs of siblings (study 6), one affected and one unaffected,
then a SNP that would be detected by cQLS in 75% of such studies would only
be detected by QLS in 51% [Figure 1(a)]. In studies that included sets of four
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FIG. 1. The power for cQLS (blue), mQLS (red) and FBAT (black) to detect the association between
a SNP and the disease as a function of the OR when (a) λS = 1.5 in study 6, (b) λS = 5 in study 6,
(c) λS = 1.5 in study 7 and (d) λS = 5 in study 7. Studies 6 and 7 correspond to genotyping pairs of
siblings and groups of four siblings, respectively. λS is the sibling relative risk of the disease.

siblings (study 7), with each set including two affected and two unaffected indi-
viduals, when cQLS provided a power of 0.75, QLS provided a power of 0.36 [Fig-
ure 1(c)]. When we simulated a disease with a high sibling relative risk (λS = 5),
the power gained from using cQLS decreased. For study designs 6 and 7, mQLS
achieved a power of 0.59 and 0.63 for SNPs where cQLS achieved a power of 0.75
[Figure 1(b), (d)].

Errors in IBD assignment decreased the power for association tests using cQLS.
With an error rate of 2%, tests based on cQLS still had higher power for studies 6
and 7. However, with an error rate of 5%, cQLS performed no better than the other
two test statistics in study 6 (λS = 1.5). Specifically, when cQLS had a power
of 0.75 (SE = 0.01), QLS provided a similar power of 0.72 (SE = 0.01). When
the error rate reached 8%, the three test statistics performed similarly in study 7
(λS = 1.5), with QLS achieving a power of 0.74 (0.01) when cQLS had a power
of 0.75 (0.01).
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TABLE 2
The proportions of 107 null simulations where the cQLS, mQLS and FBAT p-values are below the
specified α threshold. With 107 simulations, the standard errors for our empirical α-levels of 10−3

and 10−4 are approximately 10−5 =
√

10−3/107 and 3 × 10−6 =
√

10−4/107

cQLS mQLS FBAT

Study α = 10−3 α = 10−4 α = 10−3 α = 10−4 α = 10−3 α = 10−4

5 9.81 × 10−4 9.65 × 10−5 9.79 × 10−4 9.03 × 10−5 9.44 × 10−4 8.38 × 10−5

6 9.80 × 10−4 9.25 × 10−5 1.00 × 10−3 1.08 × 10−4 9.56 × 10−4 1.04 × 10−4

7 9.70 × 10−4 1.00 × 10−4 9.78 × 10−4 9.68 × 10−5 9.62 × 10−4 9.28 × 10−5

Simulations suggest that the type-I error for the cQLS statistic matched the cho-
sen α threshold when simulating data from the null distribution (Table 2).

3.2. Genotyping F.H. cases vs R.A. cases. Genotyping cases with a family
history of disease provides a study with significantly higher power than genotyping
randomly ascertained cases. For a disease with a low sibling relative risk (λS =
1.5), when the effect size for a SNP was large enough so that the study with all
F.H. cases (study 2) had a power of 0.75, a study with all R.A. cases (study 1) had
a power of only 0.20 [Figure 2(a)]. However, as we increase the total heritability,
shrinking the proportion of heritability attributable to the tested SNP, the power
gained from using F.H. cases is decreased. When λS = 5, a SNP with a power
of 0.75 in study 2 would have had a power of 0.55 [Figure 2(b)] in study 1. For
interpretation, recall that the sibling relative risk (λS) reflects the heritability from
genetic variants other than the tested SNP. Therefore, as Figure 2(a) and 2(b) show,

FIG. 2. (a) The power to detect the association between a SNP and the disease, as a function of
OR, when the study compares 10,000 randomly ascertained controls with either 5000 R.A. cases
(red, study 1) or 5000 F.H. cases (blue, study 2) when the sibling relative risk, λS , is 1.5. (b) Same,
but with λS = 5. For tests of unrelated individuals, all QLS statistics give identical results.
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FIG. 3. (a) The power to detect the association between a SNP and the disease, as a function of OR,
when the study compares 10,000 randomly ascertained controls with either 5000 R.A. cases + 5000
F.H. cases (blue, study 3), 10,000 R.A. cases + 5000 F.H. cases (purple, study 4) or 5000 R.A.
cases + 5000 pairs of affected siblings (red, study 5) given a sibling relative risk, λS , of 1.5 and
all tests based on the score statistic. (b) Same, but with λS = 5. (c) The power when the study com-
pares 10,000 R.A. controls and either 5000 R.A. cases + 5000 F.H. cases and the score statistic
(blue), 5000 R.A. cases + 5000 F.H. cases and cQLS (purple), or 5000 R.A. cases + 5000 pairs
of affected siblings and the cQLS (red) given a sibling relative risk, λS , of 1.5. (d) Same, but with
λS = 5.

the power of study 1, which collects R.A. cases, does not depend on λS , but only
on the relative risk of the tested SNP.

3.3. Genotyping affected sibling. Genotyping the affected siblings of F.H.
cases increases the power. The additional genotyping of 5000 siblings, or mov-
ing from study 3 and a simple score test to study 5 and cQLS, will increase the
power to detect a SNP with OR = 1.15 from 0.57 to 0.75 [Figure 3(a)]. Each sib-
ling, on average, only offers one new chromosome, but siblings are also F.H. cases
and, as such, are enriched for the causal allele. Therefore, genotyping the 5000
siblings promises higher power than genotyping an additional 5000, unrelated,
but randomly ascertained cases. Moving from study 3 to study 4, which includes
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TABLE 3
The p-values test from association tests of Late-Onset Alzheimer’s Disease and SNPs in the APOE

region among the NIA-LOAD/NCRAD population. The first three columns indicate SNP ID,
chromosome and position. The last three columns indicate the p-values calculated from the mQLS,

FBAT and cQLS statistics

SNP Chr. Position mQLS p-value FBAT p-value cQLS p-value

rs4806173 19 36,024,925 8.5 × 10−1 7.7 × 10−1 9.1 × 10−1

rs12984928 19 36,029,852 8.5 × 10−1 7.7 × 10−1 9.1 × 10−1

rs6857 19 45,392,254 6.0 × 10−5 5.8 × 10−6 2.0 × 10−5

rs157582 19 45,396,219 4.7 × 10−5 4.8 × 10−6 1.4 × 10−5

rs449647 19 45,408,564 1.9 × 10−1 2.1 × 10−1 7.5 × 10−2

rs440446 19 45,409,167 1.8 × 10−2 2.4 × 10−2 2.1 × 10−2

rs429358 19 45,411,941 1.2 × 10−8 5.9 × 10−8 7.7 × 10−9

rs4420638 19 45,422,946 5.2 × 10−7 1.1 × 10−6 1.8 × 10−7

rs157580 19 50,087,106 3.9 × 10−2 3.2 × 10−2 1.8 × 10−2

rs2075650 19 50,087,459 3.0 × 10−4 7.1 × 10−5 1.7 × 10−4

rs405509 19 50,100,676 4.5 × 10−2 2.3 × 10−2 4.2 × 10−2

10,000 R.A. cases and 5000 F.H. cases, only increases the power from 0.57 to
0.63 [Figure 3(a)]. In studies with a mixture of F.H. cases and R.A. cases, such
as study 3, the power of a standard association test can be improved by appropri-
ately upweighting F.H. cases through use of either mQLS or cQLS. When moving
from study 3 and cQLS to study 5 and cQLS, the power gain is less impressive,
increasing from 0.60 to 0.75 [Figure 3(c)]. When the total heritability is high and
λS = 5, mQLS and cQLS overweight the F.H. cases, and including information
about ungenotyped individuals can potentially lower power [Figure 3(d)].

3.4. LOAD. In addition to the simulations, we tested 11 SNPs in the APOE
region of chromosome 19 for an association with LOAD in participants of the
NIA-LOAD/NCRAD GWAS. Table 3 shows that eight of these 11 SNPs were
associated with LOAD at a p-value below 0.05. In 7 of these 8 SNPs, the test
based on the cQLS statistic resulted in a lower p-value, as compared to using
the mQLS or FBAT statistic. However, all three methods provide similar evidence
that these SNPs are associated with Alzheimer’s disease. For the two most strongly
associated SNPs, rs429358 and rs4420638, the p-values were reduced from 1.23−8

and 5.23−7 based on the mQLS statistic, or 5.9−8 and 1.2−6 based on the FBAT
statistic, to 7.70−9 and 1.79−7 based on the cQLS statistic.

4. Discussion. Our primary objective was to introduce the chromosome-
based Quasi-likelihood Score (cQLS) statistic and demonstrate that it can offer
increased power to detect associations in GWAS with related individuals. Specif-
ically, in studies designed to be robust to population stratification, such as those
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including sibling sets equally divided between cases and controls, statistical power
can be increased by over 50%. The new statistic can also be applied to less robust
study designs, but, like GWAS with unrelated individuals, would then require ad-
justing for population-eigenvectors. The derivation of cQLS as a partial likelihood
shows how to easily adjust for covariates in both logistic and liability-threshold
models.

Although our evaluation has focused on single SNP tests with fixed thresholds
for statistical significance (e.g., 10−7), cQLS can offer a key, additional advantage
when testing groups of SNPs in linkage disequilibrium. In GWAS with unrelated
individuals, genotypes can be permuted among individuals to obtain permutation-
based measures of significance. In GWAS with related individuals, standard meth-
ods are not appropriate, as individuals are not independent [Wang (2011)]. How-
ever, the founder chromosomes are independent and, therefore, it is straightforward
to apply permutation methods with cQLS in GWAS of related individuals.

In addition to illustrating the improved power, we designed our simulations to
reevaluate our expectations about the use of families in GWAS. First, affected sib-
lings are often not genotyped because adding, on average, only one unique chro-
mosome to the study is thought not to be worth the cost. However, we show that the
power gained from genotyping an affected sibling can actually exceed the power
from genotyping a randomly ascertained case. Second, it is well known that stud-
ies will have higher power when including cases (F.H. cases) with a family history
of disease. F.H. cases should be enriched with disease-causing variants. However,
we show that when a disease is highly heritable, the enrichment for any specific
disease-causing variant is weaker. Thus, the benefit from genotyping cases with a
family history of disease is lower, as demonstrated by our comparison of diseases
with λS = 1.5 and λS = 5.

Like mQLS, cQLS offers the ability to use phenotyped, but not genotyped fam-
ily members. Such an advantage could also be gained by imputing the genotype
of such individuals and then performing the GWAS using the entire population,
with appropriate adjustment for the uncertainty introduced by imputation. How-
ever such methods are not easily available and would still not offer the other benefit
of cQLS, identifying local IBD.

Although cQLS requires calculating haplotypes for determining IBD, the test
statistic still focuses on finding associations with single SNPs as opposed to hap-
lotypes. A haplotype analysis [Akey, Jin and Xiong (2001)], which looks for as-
sociations with a specific haplotype, will decrease power when the causal SNP
is directly genotyped, as is likely to be the case when using dense arrays or se-
quencing. However, having identified the haplotypes, this information can be used
to adjust for local ancestry instead of using a more global principal components
approach [Wang et al. (2011)].

The cQLS has limitations. First, the statistic will lose power in the presence of
IBD error. In our examples, we found an error rate of 5% was large enough to offset
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the benefit of cQLS in the smaller studies. A second issue is that this new statis-
tic requires a larger computational investment. Specifically, the first three steps of
phasing, detecting shared segments of IBD and calculating Tjik′k required a total of
8.8 hours on a single 2.8 GHz Intel X5660 processor for the NIA-LOAD/NCRAD
GWAS containing 575003 SNPs. After these initial steps, calculating the cQLS
statistic for the NIA-LOAD/NCRAD GWAS required only 3.2 minutes. In compar-
ison, mQLS required 70.4 minutes and FBAT required 11.1 minutes. Both mQLS
and FBAT required less time by dividing the genome into 22 regions. For mQLS,
we divided the genome into 22 intervals with an equal number of SNPs and for
FBAT, we divided the genome into chromosomes. The mQLS program was not
designed to handle GWAS, and we would expect that if optimized, performing an
mQLS analysis would require less computational time than a cQLS analysis.

The benefit of cQLS depends on study design. For those designs that include
mixtures of family-based and randomly ascertained controls, the increased power
offered by cQLS will be lowered. Therefore, the additional computational cost
would offer less value. Second, we have examined cQLS only in nuclear families
and simple three-generation families (data not shown) where IBD can be recon-
structed with high accuracy. We need further testing to assess the quality of IBD
estimates from more distant relationships. Third, cQLS tests for association and,
unlike FBAT, will have no power when there is linkage but no association. Al-
though sequencing has removed our reliance on tag SNPs, a linkage analysis may
still offer advantages in the presence of epistasis.

Finally, we remark that there is no consensus on how to best combine within-
family and between-family information in GWAS with related individuals. How-
ever, a technical way to address this question would be to examine the full-data
likelihood. The derivation of the cQLS (Appendix B) starts by defining this like-
lihood. The form of the final test statistic is the likelihood ratio test statistic based
on the key partial likelihood, suggesting that the cQLS offers a near optimal com-
bination of the two types of information.

APPENDIX A: MQLS AND FBAT

We compared the performance of a cQLS test to two standard tests: mQLS
[Thornton and McPeek (2007)] and FBAT [Laird, Horvath and Xu (2000)]. mQLS
is a quasi-likelihood score statistic that presumes an individual’s expected geno-
type increases with the sum, over all affected family members, of their kinship
coefficients with that individual. A complete, but terse, definition follows.

For purposes of defining mQLS, we assume there are n = Ng +M total subjects,
of which Ng have been genotyped. We let � be the (Ng + M) × (Ng + M) matrix
of kinship coefficients and �N,M be the submatrix containing the last M columns
of the first Ng rows. The phenotype data are coded as A‡, a column vector of
length Ng + M having ith entry 1 if individual i is affected, 0 if unknown and
π̂0/(1 − π̂0) otherwise. A

‡
N is the vector containing the first Ng elements (e.g.,
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genotyped individuals) and A
‡
M contains the last M elements. Let G be the vector

of observed genotypes ( 1
2Gi ∈ {0,0.5,1}) for the first Ng individuals. Finally, let 1

be a column vector of 1’s. Then mQLS is defined as

mQLS = σ̂−2(1
2G − μ̂0

)T
α
−1αT (1

2G − μ̂0
)
,(A.1)

where

α = A
‡
N + �−1�N,MA

‡
M,(A.2)


 = αT (
�A‡

n + �N,MA
‡
M

) − (
1T α

)2(
1T �−11T )−1

,(A.3)

μ̂0 = p̂null1,(A.4)

σ̂−2
0 = [1

2 p̂null(1 − p̂null)
]−1

,(A.5)

p̂null = 1
2

(
1T �−11

)−11T �−1G.(A.6)

For implementation, we downloaded the software from http://galton.uchicago.edu/
~mcpeek/software/MQLS/index.html and, in simulations, set the prevalence of the
disease to the “true” value.

FBAT compares the genotypes observed in the cases to their expected value
under the null hypothesis of “no linkage and no association” or “no association, in
the presence of linkage,” conditioned on the parent’s genotypes (or the appropriate
sufficient statistic if parental genotypes are unknown). For details, we suggest the
user’s manual for the software downloadable from http://www.biostat.harvard.edu/
~fbat/default.html.

APPENDIX B: CQLS: DERIVATION

B.1. Model assumptions. Without loss of generality, we can assume that all
Nind individuals come from the same family, and therefore drop the subscript j

from notation. We further define � to be the set of parameters in the model, in-
cluding those defining the SNP’s effect on the disease. All notation and discussion
assume a single SNP under study.

We will assume random mating.
We will assume

P [Ai = 1|Gi = 2,Xi ,�] = H 2
i P [Ai = 1|Gi = 0,Xi�],

where Gi is defined as the genotype, or the number of minor alleles, for individ-
ual i, Xi is a vector of covariates, � is a set of parameters, and

Hi = P [Ai = 1|Gi = 1,Xi]
P [Ai = 1|Gi = 0,Xi] .(B.1)

The immediate consequence is that

P [Ai = 0|Gi = 2,Xi ,�] = (1 − πi)

[
1 − Hiπi

1 − πi

]2

+ πi

1 − πi

(Hi − 1)2,

http://galton.uchicago.edu/~mcpeek/software/MQLS/index.html
http://www.biostat.harvard.edu/~fbat/default.html
http://galton.uchicago.edu/~mcpeek/software/MQLS/index.html
http://www.biostat.harvard.edu/~fbat/default.html
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where πi is the probability individual i is affected.
For purposes of deriving our test statistic, we further assume that (πi/(1 −

πi))(Hi − 1)2 is small or that we can treat the following approximation as an
equality without issue:

P [Ai = 0|Gi = 2,Xi ,�] ≈
(

1 − Hiπi

1 − πi

)2

P [Ai = 0|Gi = 0,Xi].

The properties of the test statistic, such as being distributed as a χ2
1 variable

under the null, will not depend on this approximation holding.
These approximations give us two simplifying results:

P
[
Y1, . . . , Yn|A,X,M∗,�

] = ∏
k

P
[
Yk|A,X,M∗,�

]
(B.2)

P
[
Yk = 1|A,X,M∗,�

] = p
∏

i h

∑
k′ Tik′k

i

1 + p
∏

i h

∑
k′ Tik′k

i

,(B.3)

where hi = HiAi + (1 − Hiπi)(1 − πi)
−1(1 − Ai), p = P [Yi = 1]/P [Yi = 0] =

φ/(1 − φ) and M∗ = {Tik′k : i ∈ 1, . . . ,Nind, k
′ ∈ {1,2}, k ∈ {1, . . . , n}} is the IBD

architecture. We will derive equations (B.2) and (B.3) in a later section of the
Appendix.

B.2. Probability and score. We are interested in the distribution of Y and
MO given A, X, S and �. Here, S is a vector indicating that the individuals were
selected for the study and MO are the observed values of M∗. The variables Tik′k
cannot be identified in family members that are phenotyped, but not genotyped. We
have chosen to treat Y as the outcome because we will not need to know the selec-
tion procedure used to choose families and we do not need to estimate the nuisance
parameter that is the correlation of disease status in the family due to nongenetic
similarities. We do note that a full probability would be P [Y,MO,A,X|S,�] and
we ignore P [A,X|S,�] because it carries little information about �:

P
[
Y,MO |A,X, S, θ

] = P
[
Y|A,X,MO,S, θ

]
P

[
MO |A,X, S, θ

]
.

However, we consider only the conditional probability, as this half is far more
sensitive to �. Also, although not mentioned above, we will make the additional
assumption that, conditional on all other information, the genotypes and the char-
acteristics used to select the individuals are independent. Then we know that S

drops out of the desired probability:

P
[
Y|A,X,MO,S,�

] = P [Y, S|A,X,MO,�]
P [S|A,X,MO,�]

(B.4)
= P

[
Y|A,X,MO,�

]
.

In an upcoming section, we will show that the score statistic for P [Y|A,X,

MO,�] is defined by equation (2.6) when M∗ is known.



CQLS 989

B.3. Mathematical detail.

B.3.1. Detail for Section B.1. We first demonstrate equation (B.2):

P
[
Y1, . . . , Yn1 |A,X,M∗,�

]
(B.5)

= P [A|Y1, . . . , Yn1,X,�]∏
k P [Yk]

P [A|X,M∗,�](B.6)

= P [A|Y = 0,X,�]∏
k

∏
i h

∑
k′ Gik′T M∗

ik′k
i P [Yk]

P [A|M,X,�](B.7)

= ∏
k

P [Yk|A,M,X,�].(B.8)

We next demonstrate equation (B.3), where we let Y−k be the vector of all
alleles except for k:

P
[
Yk = 1|A,X,M∗,�

]
(B.9)

= P
[
Yk = 1|A,X,M∗,�,Y−k

]
(B.10)

= P [A|Y−k, Yk = 1,X,M∗,�]P [Yk = 1]
P [A|Y−k,X,M∗,�](B.11)

=
(

P [A|Y−k, Yk = 1,X,M∗,�]
P [A|Y−k, Yk = 0,X,M∗,�]

P [Yk = 1]
P [Yk = 0]

× P
[
A|Y−k, Yk = 0,X,M∗,�

]
P [Yk = 0]

)
(B.12)

/
P

[
A|Y−k,X,M∗,�

]
= P [A|Y−k, Yk = 1,X,M∗,�]

P [A|Y−k, Yk = 0,X,M∗,�]
P [Yk = 1]
P [Yk = 0]P

[
Yk = 0|A,X,M∗,�

]
(B.13)

=
∏

i h

∑
k′ Tik′k

i P [Ai |Y−k, Yk = 0,X,M∗,�]∏
i P [Ai |Y−k, Yk = 0,X,M∗,�]

P [Yk = 1]
P [Yk = 0]

(B.14) × P
[
Yk = 0|A,X,M∗,�

]
= ∏

i

h

∑
k′ Tik′k

i

P [Yk = 1]
P [Yk = 0]P

[
Yk = 0|A,X,M∗,�

]
.(B.15)

B.3.2. Score statistic: Yjk and M∗ can be uniquely identified. The overall
probability can be written as the product of the probabilities for each chromosome
with the assumptions in place:

P [Y|D,p,�] = ∏
k

P [Yk|D,p,�],(B.16)

where D abbreviates the collected data, D = {A,X,M∗}.
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Because we must account for the nuisance parameter p, the score statistic for �

is equation (B.17) evaluated under the null hypothesis

−
[∑

k

d

d�
�D(Yk)

∑
k

d

dp
�D(Yk)

]
(B.17)

×

⎡
⎢⎢⎢⎣

∑
k

d

d2�
�D(Yk)

∑
k

d

d�dp
�D(Yk)

∑
k

d

d�dp
�D(Yk)

∑
k

d

d2p
�D(Yk)

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

∑
k

d

d�
�D(Yk)

∑
k

d

dp
�D(Yk)

⎤
⎥⎥⎥⎦ ,

where

�D(Yk) = log
(
P

[
Yk|A,X,M∗,p,�

])
.(B.18)

It is straightforward to evaluate the needed derivative

U ≡ ∑
k

d

d�

∣∣∣∣
H0

�D(Yk) = ∑
k

Zk(Yk − φ̂),(B.19)

φ̂ =
∑

k Yk∑
k 1

,(B.20)

where

Zk ≡ ∑
i

∑
k′

Tik′k
ḣi

hi

,(B.21)

ḣi = d

d�
hi.(B.22)

We can rewrite U , so that we can calculate its variance, σ 2
U , without comput-

ing/inverting the matrix in equation (B.17):

U ≡ ∑
k

d

d�

∣∣∣∣
H0

�D(Yk) = ∑
k

(Zk − Z̄)(Yk − φ̂),(B.23)

Z̄ =
∑

k Zk∑
k 1

,(B.24)

σ 2
U = φ(1 − φ)

∑
k

(Zk − Z̄)2.(B.25)

B.3.3. Score statistic: All individuals are not genotyped and M∗ cannot be
uniquely identified. When all family members are not genotyped, the probabil-
ity must be averaged over the B possible IBD states

P
[
Y|A,X,MO,p,�

]
(B.26)

=
B∑

b=1

P
[
Y|A,X,M∗ = mb,p,�

]
P

[
mb|MO]

.
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We can take advantage of the equality

d

d�

∣∣∣∣
H0

log
(∑

b

cbP
[
Y|D(mb),p,�

])
(B.27)

= d

d�

∣∣∣∣
H0

∑
b

cb log
(
P

[
Y|D(mb),p,�

])
,

where we use the abbreviation cb = P [mb|MO] and use D(mb) because M∗ is no
longer known.

Equation (B.27) shows us that the score for P [Y|A,X,MO,p,�] is propor-
tional to the score we would observe had there been NM families, where all fami-
lies had the observed Y and cbNM of those families had IBD structure mb. There-
fore, equation (B.19) still holds, so long as we now let

Zk ≡ ∑
i

∑
k′

P [Tik′k = 1] ḣi

hi

.(B.28)

B.3.4. Score statistic: Yjk cannot be uniquely identified. In some scenarios,
Yk cannot be uniquely identified given the available genetic information. In these
scenarios, we must average the two possibilities to obtain the value of cQLS. As an
example, this situation occurs in our simulated studies of sibling pairs. When two
siblings have IBD = 1 and are each heterozygous, we cannot determine whether
the shared chromosome has the minor or common allele. We focus on this specific
example to explain the needed adjustment.

Let Qj = 1 if the siblings have IBD = 1 and are both heterozygous. Further-
more, in such a family, let Y1, Y2 and Y3 denote the alleles on the chromosome
uniquely in the first brother, in both brothers and uniquely in the second brother,
respectively. Let Z1, Z2 and Z3 be the disease variable for each of those chromo-
somes. We know

P
(
Q = 1|A,X,M∗,p,�

)
(B.29)

= P
({Y1, Y2, Y3} = {1,0,1}|A,X,M∗,p,�

)
(B.30)

+ P
({Y1, Y2, Y3} = {0,1,0}|A,X,M∗,p,�

)
.(B.31)

For families with Q = 1, we must reevaluate their contribution to the score equa-
tions. Under the null hypothesis, we find

d log(P (Q = 1|A,X,M∗,p,�))

dp

∣∣∣∣
H0

(B.32)

= (2 − φ)
−φ2/p2

1 − φ
+ (1 + φ)

φ

p2



992 SAMPSON, WHEELER, LI AND SHI

and

d log(P (Q = 1|A,X,M∗,p,�))

d�

∣∣∣∣
H0

= (1 − 2φ)Z2.(B.33)

Our new contributions to the score equations lead us to the following MLE of φ:

φ̂ = N1 + N3

N0 + N1 + N3
,(B.34)

where

N0 = ∑
j,k

1(Qj = 0)1(Yjk = 0),(B.35)

N1 = ∑
j,k

1(Qj = 0)1(Yjk = 1),(B.36)

N3 = ∑
j,k

1(Qj = 1).(B.37)

Furthermore, we can rewrite U as

U = ∑
j,k:Qj=1

(Zk − Z̄)(Yk − φ̂) + ∑
j :Qj=0

(1 − 2φ̂)(Z2 − Z̄)(B.38)

and the score statistic as

U2

σ̂ 2
U

,(B.39)

where we let pu be the unique probabilities of each of the eight possible combina-
tions of {Y1, Y2, Y3} when IBD = 1, Zj∗ be the possible corresponding contribu-
tions from family j , and σ̂ 2

U be the appropriate estimate of the variance under the
null:

pu1 = φ̂3,(B.40)

pu2 = φ̂2(1 − φ̂),(B.41)

pu3 = φ̂(1 − φ̂)2,(B.42)

pu4 = (1 − φ̂)3,(B.43)

Z∗j1 =
( 3∑

k=1

(Zk − Z̄)(1 − φ̂)

)2

,

Z∗j2 =
( 3∑

k=1

(Zk − Z̄)(1 − φ̂) − Z3 + Z̄

)2

+ (
(Z2 − Z̄)(1 − φ)

)2
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+
( 3∑

k=1

(Zk − Z̄)(1 − φ̂) − Z1 + Z̄

)2

,

Z∗j3 =
( 3∑

k=1

(Zk − Z̄)(1 − φ̂) − Z2 − Z3 + 2Z̄

)2

+ (
(Z2 − Z̄)(1 − φ)

)2

+
( 3∑

k=1

(Zk − Z̄)(1 − φ̂) − Z1 − Z2 + 2Z̄

)2

,

Z∗j4 =
3∑

k=1

(
(Zk − Z̄)(−φ̂)

)2

and

σ̂ 2
U = φ̂(1 − φ̂)

∑
j,k:IBD(j) 	=1

(Zk − Z̄)2 + ∑
j :IBD(j)=1

4∑
t=1

putZ∗j t .(B.44)

Accurate haplotyping would overcome this difficulty and allow us to uniquely
identify Yjk . As we expect haplotyping to become standard practice in the very
near future [Peters et al. (2012)], we expect that this step will soon be unnecessary.

B.3.5. Violation of the Hardy–Weinberg Equilibrium. Our estimate for the
variance of U in equation (B.25) assumes that the genotypes are in HWE. As
an alternative, start by calculating the 16 possible values (one for each geno-
type) of U = ∑

k(Zk − Z̄)(Yk − φ̂) for each family j . The second step is to
calculate the probability of each of the 16 genotypes. Given these probabili-
ties and the possible values of U , it is straightforward to calculate the variance
of U for any family under the null hypothesis, conditional on IBD architec-
ture. Currently, this alternative is only available for families with at most four
founding chromosomes (e.g., nuclear families) and, therefore, the remaining goal
is to estimate p = {p200,p110,p101,p020,p011,p002}, where pxyz is the proba-
bility that the founding individuals include x, y and z individuals with geno-
types Gi = 0, Gi = 1 and Gi = 2. We estimate these six probabilities by ef-
fectively maximizing P(Y |MO,p) with the constraints that pxyz ≥ 0 and that
0.25p110 + 0.5p020 + 0.5p101 + 0.75p011 + p002 = φ̂. Specifically, we minimize
the following function:

2
(∑

j

1(nj = 2)

)
(M2V2 − A2)

2 + 3
(∑

j

1(nj = 4)

)
(M3V3 − A3)

2

(B.45)

+ 4
(∑

j

1(nj = 4)

)
(M4V4 − A4)

2,
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where M4 is a 6 × 6 identity matrix,

M2 =
⎡
⎣ 1 0.5 0.25 0 0 0

0 0.5 0.5 1 0.5 0
0 0 0.25 0 0.5 1

⎤
⎦ and

M3 =

⎡
⎢⎢⎢⎢⎢⎣

1 0.25 0 0 0 0
0 0.5 0.5 0.5 0 0
0 0 0.5 0.5 0.5 0
0 0 0 0 0.25 1
0 0.25 0 0 0.5 0

⎤
⎥⎥⎥⎥⎥⎦

and V2 is the vector estimating {P(
∑

k Yk = 0|nj = 2),P (
∑

k Yk = 1|nj =
2),P (

∑
k Yk = 2|nj = 2)}, V3 estimates {P(

∑
k Yk = 0|nj = 3),P (

∑
k Yk =

1,W = 1|nj = 3),P (
∑

k Yk = 2,W = 1|nj = 3),P (
∑

k Yk = 3|nj = 3),

P (
∑

k Yk = 2,W = 0|nj = 3)}, V4 estimates {P(
∑

k Yk = 0|nj = 4),P (
∑

k Yk =
1|nj = 4),P (

∑
k Yk = 1,G2 = 1|nj = 4),P (

∑
k Yk = 1,G2 	= 1|nj = 4),

P (
∑

k Yk = 3|nj = 4),P (
∑

k Yk = 4|nj = 4)}, W is a binary variable indicating
whether all alleles are identifiable, and {G1,G2} are the founder genotypes.

B.4. Algorithm for assigning Tijk′k . We start by arbitrarily assigning num-
bers to the chromosomes of the founder individuals and trimming the family so
that no two individuals have IBD = 2. Founder individuals are defined to be the
largest group possible such that all pairs of founder individuals have IBD = 0. Let
A be initialized as the founder individuals.

Find an individual, i3, in the compliment of A, that meets the first of the follow-
ing possible criteria and follow the assignment mechanism. Add individual i3 to A

and then repeat.

(a) i3 has IBD = 1 with two individuals in A, say, i1 and i2, that are also IBD = 1
with each other. Count the number of minor alleles, among individuals i1, i2
and i3, at all loci in the shared region. Assume chromosomes in individuals i1
and i2 have been labeled as {1,2} and {1,4}.
Option (a1). If (nearly) all counts are even, the chromosomes in individual i3

are assigned as {2,4}.
Option (a2). (Nearly). All counts are not even, and individual i3 is either

IBD = 0 with all other individuals in A or IBD = 1 only with individu-
als who are IBD = 1 with both i1 and i2. Then the chromosomes in i3 are
labeled as {1,X}, where X is a new chromosome number.

Option (a3). (Nearly). All counts are not even, and individual i3 is IBD = 1
with at least two more individuals in A, say, i4 and i5, that are IBD = 1
with each other, but IBD = 0 with both i1 and i2. Then the chromosomes
in i3 are labeled as {1,5}, where we assume the chromosomes in i4 and i5
are labeled as {5,6} and {5,8}.
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Option (a4). (Nearly). All counts are not even, and individual i3 is IBD = 1
with exactly one other individual in A, say, i4, that is IBD = 0 with both i1
and i2. Then, we label i3 as {1,5}, where the chromosomes in individuals
i4 have been labeled as {5,6}.

(b) i3 has IBD = 1 with two individuals in A, say, i2 and i3, that share IBD = 0
with each other.
Option (b1). Individual i1 (or i2) has IBD = 1 with another individual in A,

say, i4, in A. Then, we label i3 as {2,3}, where the chromosomes in indi-
viduals i1, i2 and i4 have been labeled as {1,2}, {3,4} and {1,6}.

Option (b2). Individual i1 and i2 have IBD = 0 with all other individuals in A.
Then, we label i3 as {1,3}, where the chromosomes in individuals i1 and
i2 have been labeled as {1,2} and {3,4}.

(c) i3 has IBD = 1 with only one individual in A, say, i1.
Option (c1). Individual i1 has IBD = 1 with another individual in A, say, i2.

Assign the chromosomes in individual i3 as {2,X}, where the chromo-
somes in individuals i1 and i2 have been labeled as {1,2} and {1,4} and X

is a new chromosome number.
Option (c2). Individual i1 has IBD = 0 with all other individuals in A. Assign

the chromosomes in individual i3 as {2,X}, where the chromosomes in
individuals i1 have been labeled as {1,2} and X is a new chromosome
number.

B.5. Limitations. The standard method for finding an optimal test statistic
starts by defining the parameter of interest and then writing out the likelihood of
the observed data given this, and possibly other, parameters. In the GWAS dis-
cussed here, such a likelihood would necessarily bridge the within-family and
between-family information, and immediately show how the two pieces of infor-
mation should be combined. Here, we have defined this likelihood and shown that
the cQLS is derived as the score statistic to a specific partial likelihood. However,
as that likelihood shows, we ignore information that can be derived from the ob-
served IBD structure. For example, if all affected siblings are IBD = 2 at a SNP,
that provides some evidence of an association between SNP and disease. Although
that information is minimal, we are currently looking into methods for capturing
and including this independent information as well. By using only the partial like-
lihood, the cQLS is not guaranteed to result in the most powerful test.
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