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A SEMIPARAMETRIC REGRESSION MODEL FOR PAIRED
LONGITUDINAL OUTCOMES WITH APPLICATION IN

CHILDHOOD BLOOD PRESSURE DEVELOPMENT1
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Indiana University School of Medicine

This research examines the simultaneous influences of height and weight
on longitudinally measured systolic and diastolic blood pressure in children.
Previous studies have shown that both height and weight are positively as-
sociated with blood pressure. In children, however, the concurrent increases
of height and weight have made it all but impossible to discern the effect of
height from that of weight. To better understand these influences, we propose
to examine the joint effect of height and weight on blood pressure. Bivariate
thin plate spline surfaces are used to accommodate the potentially nonlin-
ear effects as well as the interaction between height and weight. Moreover,
we consider a joint model for paired blood pressure measures, that is, sys-
tolic and diastolic blood pressure, to account for the underlying correlation
between the two measures within the same individual. The bivariate spline
surfaces are allowed to vary across different groups of interest. We have de-
veloped related model fitting and inference procedures. The proposed method
is used to analyze data from a real clinical investigation.

1. Introduction. Excess weight gain has long been recognized as a risk fac-
tor for metabolic and cardiovascular disorders, including hypertension. Popula-
tion studies have shown that weight strongly predicts blood pressure [Huang et al.
(1998), Masuo et al. (2000)], although the relationship between the two may not
be linear [Hall et al. (2010)]. Data from children and young adults are equally
persuasive on the weight–blood pressure association [Stray-Pedersen et al. (2009),
Levin et al. (2010)]. In fact, the observations are so consistent that some even ques-
tion whether obesity and hypertension are two epidemics or one [Davy and Hall
(2004)]. More recently, an increasing number of studies have recognized a simi-
larly salient relationship between height and blood pressure [Shankar et al. (2005),
Fujita et al. (2010)]. Although this latter relationship appears to have a seemingly
plausible physiological interpretation (taller individuals need greater pressure to
maintain oxygenated blood flow to the head and upper extremities), the concur-
rent increases of height and weight have nonetheless made it analytically difficult
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to discern the effect of weight from that of height. The matter is further compli-
cated by the observed significantly positive effect of body mass index (BMI, de-
fined as Weight/Height2) on blood pressure, as shown in numerous studies [Lauer
and Clarke (1989), Baker, Olsen and Sorensen (2007), Falkner (2010)]. In fact,
overweight and obesity, clinically defined by BMI cutoff points, have been recog-
nized as major risk factors for hypertension, and, indeed, hypertension prevalence
is much higher in overweight and obese children [Falkner et al. (2006), Steinberger
et al. (2009)]. Therefore, the scientific community has a great interest to elucidate
the independent influences of height and weight on blood pressure, as they may
implicate different pathophysiology for this etiologically less understood disease.
For example, an obesity mediated blood pressure elevation would implicate a more
activated sympathetic nervous system (perhaps stimulated by adipose-derived hor-
mones such as leptin), and increased sodium reabsorption by the kidney [Hall et al.
(2010)], whereas a strong height influence could give more credence to the notion
that the disease has its origin in growth [Lever and Harrap (1992)].

In this research, we assess the simultaneous influences of height and weight on
blood pressure using prospectively collected data from a cohort of healthy chil-
dren. Such an exercise, however, faces a number of methodological challenges:
(1) Outcomes are repeatedly measured paired observations. Blood pressure con-
sists of two readings, a systolic measurement taken during the contraction phase
of the cardiac cycle and a diastolic measurement taken during the recoil phase
of the cardiac cycle. Together, they represent the pressure exerted by the circu-
lating blood on the walls of blood vessels during two different phases of the
same cardiac cycle. For longitudinally collected blood pressure measurements,
separate modeling of the systolic and diastolic outcomes may not be appropri-
ate, as the two are biologically correlated and mutually influential [Guo and Car-
lin (2004)]. (2) Height and weight effects on blood pressure may be nonlinear.
Previous research has recognized a nonlinear pattern of the adiposity effects on
blood pressure [Hall (2003)]. More recent data indicate a nonlinear height effect
on blood pressure as well [Tu et al. (2009)]. Preliminary data from this investi-
gation also indicate nonlinear height and weight effects on blood pressure; see
Figure 1 in Section 5. Furthermore, interaction of height and weight may exist. To
accommodate, nonlinear bivariate effect surfaces will have to be incorporated into
the model for the purpose of depicting the joint height–weight effects on blood
pressure. (3) Inferences are needed for comparing the joint height–weight effects
across different gender and ethnicity groups. Such comparisons are of great inter-
est, as recent reports indicate significantly higher risks of obesity and hypertension
in black children than in white children [Anderson and Whitaker (2009), Brady
et al. (2010)]. Differentially expressed bivariate effect surfaces, therefore, may well
point to different pathophysiology of the disease among people of different ethnic
backgrounds.
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To address these challenges, we propose a joint semiparametric mixed effects
model that includes two individual components, one for systolic and the other for
diastolic blood pressure measures. Bivariate smooth functions for the joint height–
weight effects are embedded in these components to account for possible non-
linear effects as well as interactions between the two independent variables. The
two components are then connected by shared random subject effects in a unified
regression framework.

Semiparametric regression as a practical data analytical tool has experienced
tremendous growth in the past ten years, especially since the publication of the
book Semiparametric Regression by Ruppert, Wand and Carroll (2003). Method-
ological extensions, stimulated by exciting applications, and new computational
approaches, have now covered most commonly encountered data situations. He,
Fung and Zhu (2005) considered robust generalized estimating equations (GEE)
for analyzing longitudinal data in generalized partial linear models. Lin and Car-
roll (2006) proposed profile kernel and backfitting estimation methods for a class
of semiparametric problems. Models with bivariate smoothing have been devel-
oped for geospatial [Sain et al. (2006), Guillas and Lai (2010)] and medical imag-
ing applications [Brezger, Fahrmeir and Hennerfeind (2007)]. Penalized splines
have been used to analyze longitudinally measured event counts [Dean, Nathoo
and Nielsen (2007)]. Crainiceanu, Diggle and Rowlingson (2008) have proposed
penalized bivariate splines for binary response and developed related Bayesian in-
ference procedures. More recently, Ghosh and Tu (2009) have developed a joint
semiparametric structure for zero-inflated counts that consists of a logistic model
for the proportion of zeros and a log-linear model for Poisson counts; both models
contain univariate nonparametric components. Ghosh and Hanson (2010) studied
a semiparametric model for multivariate longitudinal data in a Bayesian frame-
work. Although there is a rich literature on semiparametric analysis of longitu-
dinal (or clustered) data, not much has been developed for analyzing bivariate
joint effects of two continuous independent variables (height and weight in this
application) on a pair of closely related outcome variables (e.g., systolic and di-
astolic blood pressure). The current research extends the previous work by in-
troducing group-specific bivariate smooth components into the joint modeling of
paired outcomes. Related model fitting and inference procedures are also devel-
oped.

The outline of this paper is as follows. We introduce the semiparametric mixed
model for paired outcomes and its estimation in Section 2. Hypothesis testing
for group differences in the bivariate effect surfaces is discussed in Section 3,
followed by a Monte Carlo study in Section 4. As the motivation and illustra-
tion of the proposed methods, a real data application of childhood blood pressure
study is presented in Section 5. We conclude the paper with a few methodological
and scientific remarks in Section 6. Additional details on model-fitting algorithms
and model diagnostics are provided in the supplementary materials [Liu and Tu
(2012)].



1864 H. LIU AND W. TU

2. Methods.

2.1. A semiparametric mixed model for paired outcomes. We introduce our
model in a more generic setting. Let Yij = (Y

(1)
ij , Y

(2)
ij )T be a pair of outcomes

from the ith subject measured at the j th visit, where j = 1, . . . , ni and i =
1, . . . ,m. Assuming that we have g = 1, . . . ,G groups of interest, let zig be a
binary group indicator for the ith subject: zig = 1 if the ith subject belongs to
the gth group, zig = 0 otherwise. We propose the following semiparametric mixed
effects model for the paired outcomes:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y
(1)
ij = U

(1)
i + tTijψ1 +

G∑
g=1

f (1)
g (wij , hij )zig + ε

(1)
ij ,

Y
(2)
ij = U

(2)
i + tTijψ2 +

G∑
g=1

f (2)
g (wij , hij )zig + ε

(2)
ij ,

(2.1)

where Ũi = (U
(1)
i ,U

(2)
i )T is the random subject effect vector; tij denotes the time-

varying covariate vector of the ith subject at visit j whose effects are assumed
to be parametric with corresponding parameter vectors ψ1 and ψ2; the joint in-
fluences of two continuous independent variables wij and hij in each group are

modeled by the group-specific bivariate smooth functions f
(1)
g and f

(2)
g for the

paired outcomes respectively; ε
(1)
ij and ε

(2)
ij are random errors. Herein, we let

μ
(1)
ij = tTijψ1 +∑G

g=1 f
(1)
g (wij , hij )zig and μ

(2)
ij = tTijψ2 +∑G

g=1 f
(2)
g (wij , hij )zig

to denote the mean responses.
The regression equations of the paired outcomes in (2.1) are connected via the

shared random effect vector Ũi , which is used to account for not only the cor-
relation among the repeated measurements from the same subject, but also the
correlation between the two outcome variables. The subject-specific random effect
is assumed to be independently normally distributed, that is, Ũi ∼ N (0,�u), with
variance–covariance matrix

�u =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
,(2.2)

where σ 2
1 and σ 2

2 are two variance components, and ρ is the correlation coefficient

of the random subject effects of the paired outcomes Y
(1)
ij and Y

(2)
ij from the same

subject measured at one visit. The correlation structure allows us to jointly exam-
ine the two closely related clinical outcomes in a unified modeling framework. The
within-subject random errors associated with Y

(1)
ij and Y

(2)
ij , namely, ε

(1)
ij and ε

(2)
ij ,

are assumed to follow two independent stochastic processes that could possibly
lead to serial correlation within each error series. In general, a wide range of cor-
relation structures could be embedded into the errors by assuming, for example,
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cor(ε(l)
ij , ε

(l)
ij ′ ) = q(d(sij , sij ′),φ), l = 1,2, where q is a correlation function taking

values between −1 and 1, d is some distance measure of the two position vectors
sij and sij ′ associated with ε

(l)
ij and ε

(l)
ij ′ , respectively, and φ denotes a vector of

correlation parameters. Without loss of generality, in the following discussion on
model estimation we assume simple independent errors with normal distribution
(ε

(1)
ij , ε

(2)
ij )T ∼ N (0,�ε), where �ε = σ 2

ε diag(1, δ2) with the dispersion param-

eter σ 2
ε and a relative scale parameter δ for modeling heteroscedasticity of the

random errors associated with the two outcomes. More general error processes
including autoregressive moving-average (ARMA) and continuous time autore-
gressive structures can be introduced into the current modeling framework, which
will be revisited at the end of Section 2.3.

In (2.1) we assume a compound symmetry covariance for the random subject
effects, which implies that the correlation between the two random effects corre-
sponding to the paired outcomes remains constant over time. If necessary, serial
correlations among repeated measures from the same individual could be speci-
fied by the within-subject error structure. In this study, we are primary interested
in the effect of somatic growth on blood pressure development in children, both
of which increase with age. Hence, we opt not to explicitly introduce temporal
effects into the model. In applications where time trajectories are of primary inter-
est, time-varying correlation structures can be incorporated if constant correlation
assumption is not adequate. See Morris et al. (2001) and Dubin and Müller (2005)
for related discussion on the modeling of varying correlations between random
functions.

2.2. Nonparametric smooth functions. In the proposed semiparametric mixed
model (2.1), the group-specific bivariate smooth functions are represented by lin-
ear combinations of some generic basis functions as follows:

f (1)
g (w,h) =

K∑
k=0

bk(w,h)βgk, f (2)
g (w,h) =

K∑
k=0

ck(w,h)γgk,

where b0 = c0 = 1, bk(w,h) and ck(w,h), k = 1, . . . ,K , are the basis functions
of any bivariate smoother; βg = (βg0, . . . , βgK)T , γ g = (γg0, . . . , γgK)T , g =
1, . . . ,G, are regression coefficients associated with the nonparametric compo-
nents in each group. Note that (β10, . . . , βG0) and (γ10, . . . , γG0) represent, re-
spectively, the population average of the paired outcomes in different groups. In
this research, we choose to use a thin plate spline as the bivariate smoother [Wood
(2003)], which is computationally more convenient for modeling high-dimensional
nonparametric functions. The thin plate regression splines in a semiparametric
model can be estimated via the penalized likelihood approach [Green and Silver-
man (1994)]. The penalized log-likelihood function of model (2.1) can be written
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as

�p = � −
G∑

g=1

λgJ
(
f (1)

g

) −
G∑

g=1

ϕgJ
(
f (2)

g

)
,

where � is the log-likelihood function, and J is the roughness penalty functional
for a bivariate twice-differentiable function f . Here we write the roughness penalty
J of a generic function f (x1, x2) in the following form:

J (f ) =
∫ ∫

R2

{(
∂2f

∂x2
1

)2

+ 2
(

∂2f

∂x1 ∂x2

)2

+
(

∂2f

∂x2
2

)2}
dx1 dx2.

As in the unidimensional case, with the observed data, one could express
the roughness penalty as quadratic forms of the regression coefficient vectors,
that is, J (f

(1)
g ) = βT

g �
β
gβg/2 and J (f

(2)
g ) = γ T

g �
γ
g γ g/2, where �

β
g and �

γ
g

are positive semi-definite penalty matrices. The nonnegative smoothing param-
eters λ = (λ1, . . . , λG)T and ϕ = (ϕ1, . . . , ϕG)T control the trade-off between
goodness of fit and model smoothness. The roughness penalties could be fur-
ther written into a more condensed form (βT �ββ + γ T �γ γ )/2, where �β =
diag(λ1�

β
1 , . . . , λG�

β
G) and �γ = diag(ϕ1�

γ
1 , . . . , ϕG�

γ
G) are block-diagonal

penalty matrices corresponding to the two outcomes.
With the observed values of the independent variables {wij , hij }1≤j≤ni ;1≤i≤m,

we write the smooth terms (including the intercepts) into a matrix form[
G∑

g=1

f (1)
g (wij , hij )zig

]
1≤j≤ni;1≤i≤m

= Xββ,

[
G∑

g=1

f (2)
g (wij , hij )zig

]
1≤j≤ni;1≤i≤m

= Xγ γ ,

where

Xβ =
[
zi1bk(wij , hij )

0≤k≤K

· · · ziGbk(wij , hij )
0≤k≤K

]
1≤j≤ni;1≤i≤m

,

β = (
βT

1 , . . . ,βT
G

)T
,

Xγ =
[
zi1ck(wij , hij )

0≤k≤K

· · · ziGck(wij , hij )
0≤k≤K

]
1≤j≤ni;1≤i≤m

and
γ = (

γ T
1 , . . . ,γ T

G

)T
.

Therefore, estimation of the nonparametric bivariate smooth functions can be
achieved through penalized estimation procedure of the corresponding regression
coefficients. The smoothing parameters in semiparametric regression models can
be determined by, for example, generalized cross-validation (GCV) or maximum
likelihood (ML) approaches [Wahba (1985)], among other methods. In the next
section we discuss estimation of the nonparametric components in the proposed
semiparametric mixed model, based on the ML method.
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2.3. Mixed model presentation and estimation. Let Y1 = (Y
(1)
1,1 , . . . , Y

(1)
m,nm)T ,

Y2 = (Y
(2)
1,1 , . . . , Y

(2)
m,nm)T , Y = (YT

1 ,YT
2 )T be the response variable vectors, and

N = ∑m
i=1 ni be the number of total observations. We denote U1 = (U

(1)
1 , . . . ,

U
(1)
m )T , U2 = (U

(2)
1 , . . . ,U

(2)
m )T , U = (UT

1 ,UT
2 )T as the vectors of subject-specific

random effects. We write ε1 = (ε
(1)
1,1, . . . , ε

(1)
m,nm)T , ε2 = (ε

(2)
1,1, . . . , ε

(2)
m,nm)T , ε =

(εT
1 , εT

2 )T as the random error vectors. We denote the model matrix associated
with the parametric components in (2.1) as T̃ = I2 ⊗ T (In is the identity matrix
of dimension n, ⊗ denotes Kronecker product, and henceforth) with correspond-
ing parameter vector ψ , where T = [tTij ]1≤j≤ni;1≤i≤m and ψ = (ψT

1 ,ψT
2 )T . It is

straightforward to set up the model matrix Z̃ = I2 ⊗ Zu of the random effects U,
such that the elements of ZuU1 corresponding to subject i are equal to U

(1)
i , and

similarly for ZuU2. Then the semiparametric mixed model for paired outcomes
could be expressed in a more condensed form as follows:

Y = X̃ϑ + Z̃U + ε,(2.3)

where the block-diagonal matrix X̃ = (T̃,diag(Xβ,Xγ )) is the model matrix of
the fixed effects (including parametric and nonparametric components), parameter
vector ϑ = (ψT ,βT ,γ T )T , U ∼ N (0,�u ⊗ Im) is the random effects vector, and
random errors ε ∼ N (0,�ε ⊗ IN). Model (2.3) can be fitted using the penalized
maximum likelihood method with roughness penalties on the nonparametric com-
ponents. Compared with the GCV approach for choosing smoothing parameters
through penalized estimation procedure, ML-based methods are computationally
more advantageous [Kohn, Ansley and Tharm (1991)]. Furthermore, under the
mixed model framework, determination of the smoothing parameters can be natu-
rally embedded in the model estimation procedure [Lin and Zhang (1999)]. In the
remainder of this section we discuss the fitting algorithm of the proposed semi-
parametric mixed model in greater detail.

As many have noted, the penalized likelihood approach has a natural connection
to the mixed effects models [Ruppert, Wand and Carroll (2003), Wood (2006)].
Within the mixed model framework, the nonparametric smooth terms are treated
as regular components, with the unpenalized terms as fixed effects and penalized
terms as random effects. Because of the unpenalized terms (e.g., the intercepts) in
the smooth components, the penalty matrices �β and �γ are often singular; it is
therefore necessary to separate the unpenalized (fixed) and penalized (random) ele-
ments in the parameter vectors β and γ so that the penalty matrices associated with
the penalized elements are of full-rank. Specifically, we write the parameter vec-
tors as β = (βT

F ,βT
R)T and γ = (γ T

F ,γ T
R)T , with corresponding full-rank penalty

matrices Sβ and Sγ on βR and γ R respectively. In this formulation, we consider
βF , γ F as fixed effects, βR , γ R as random effects so that βT �ββ = βT

RSββR

and γ T �γ γ = γ T
RSγ γ R (note that the fixed effects βF and γ F have zero rough-

ness penalty). By rewriting the model matrices of the smooth components as
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Xβ = (Xβ
F ,Xβ

R) and Xγ = (Xγ
F ,Xγ

R) and letting θ = (ψT ,βT
F ,γ T

F )T be the pa-
rameters of the fixed effects, and η = (UT ,βT

R,γ T
R)T be the random effects, we are

able to express the semiparametric model (2.3) as a linear mixed model (LMM):

Y = Xθ + Zη + ε,(2.4)

where the block-diagonal model matrices are defined as X = (T̃,diag(Xβ
F ,Xγ

F )),

Z = (Z̃,diag(Xβ
R,Xγ

R)); the random effects η ∼ N (0,�η), and random errors
ε ∼ N (0,R), with �η = diag(�u ⊗ Im,S−1

β ,S−1
γ ), and R = �ε ⊗ IN . From

a Bayesian perspective, under uniform and improper priors on the fixed effects
and Gaussian priors on the random effects with variance–covariance matrix �η,
the penalized likelihood estimates are simply the posterior modes. The variance–
covariance matrices S−1

β and S−1
γ of the random effects βR and γ R depend on

the smoothing parameters λ and ϕ, respectively, which can be treated as regular
variance components in the LMM.

In this LMM framework, the semiparametric mixed model can be fitted using
either ML or restricted maximum likelihood (REML) methods [see, e.g., Lin and
Zhang (1999)], with the smoothing parameters treated as regular variance com-
ponent parameters. Specifically, we write e = Zη + ε, and the variance compo-
nent parameter vector τ = (λT ,ϕT , ρ, δ, σ 2

1 , σ 2
2 , σ 2

ε )T . It then follows that (2.4) is
equivalent to

Y = Xθ + e, e ∼ N (0,V),(2.5)

where V = Z�ηZT + R is a function of the variance components τ . Hence, the
likelihood function given the observed response vector y becomes

L(θ ,τ ) = 1

(2π)N |V|1/2 exp
{
(y − Xθ)T V−1(y − Xθ)

}
.

Model estimation of (2.5) can be achieved by maximizing the above objective
function or the REML criterion �R(τ ) = log

∫
L(θ ,τ ) dθ . The latter has a closed-

form expression

�R(τ ) = −1
2

{
log |V| + log |XT V−1X| + (y − Xθ̃)T V−1(y − Xθ̃)

}
,

where θ̃ = (XT V−1X)−1XT V−1y is the generalized least-square estimate of the
fixed effects θ given V. Statistical inferences concerning the model parameters
in (2.5) can thus be conducted in this LMM framework.

We conclude this section with a brief comment on the correlation structure of
the random errors. In the above discussion we have assumed an independent er-
ror structure with variance–covariance matrix R = �ε ⊗ IN for convenience of
derivation. In some longitudinal applications, however, such a simple error struc-
ture may not be adequate. To accommodate more complex error processes, we can
let the variance matrix take a more general form, for example, R = R(δ, σ 2

ε ,φ),
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where φ is the correlation parameter vector. Serial correlation structures such as the
often used autoregressive-moving average (ARMA) can be embedded into the cur-
rent model framework with properly defined variance matrix R. If the longitudinal
measurements are not equally spaced due to design or missingness, a continuous
time error process may be adopted. For example, the continuous time autoregres-
sive (of order 1) structure is widely used in many applications [Jones (1993)] and
it assumes cor(ε(l)

ij , ε
(l)
ij ′ ) = φd, l = 1,2, with d denoting the time interval between

the two measurements and φ being the correlation parameter of unit time inter-
val. See Pinheiro and Bates [(2000), Section 5.3], for detailed discussion on model
specification of various error structures.

3. Hypothesis testing.

3.1. Bootstrap test. An implicit assumption of the proposed model (2.1) is that
the nonparametric bivariate surface may interact with other independent variables.
In other words, the joint effects of the two continuous variables may vary across
different groups. In the context of the blood pressure study, an important scien-
tific question is whether the joint height–weight effects on blood pressure differ
among sex–ethnicity groups. In particular, we are primarily interested in testing
the following hypothesis in model (2.1):

H0 :f (1)
1 = · · · = f

(1)
G , f

(2)
1 = · · · = f

(2)
G vs. HA : otherwise.(3.1)

A likelihood ratio test could be constructed based on statistic � = �(̂θ , τ̂ ) −
�(̂θ0, τ̂ 0), where �(̂θ , τ̂ ) represents the value of the log-likelihood function evalu-
ated at the maximum likelihood (or REML) estimates from the unrestricted model
and �(̂θ0, τ̂ 0) represents the value of log-likelihood evaluated under the null hy-
pothesis. Zhang and Lin (2003) proposed to use a scaled χ2 distribution to test
the equivalence of two nonparametric functions in semiparametric additive mixed
models. The test they proposed considered unidimensional smooth functions for
two groups. It is much more difficult in comparing bivariate smooth functions from
multiple (G > 2) groups, especially if the supports of the bivariate functions are
not entirely overlapping, such as, in our application, boys and girls have different
ranges of height and weight. In the absence of theoretical development on the sam-
pling distribution of the likelihood-based test statistic � for paired outcomes, we
resort to resampling techniques for the approximation of the empirical distribution
of �. Similar techniques were proposed by Roca-Pardiñas et al. (2008) for testing
of factor-by-surface interactions in a logistic generalized additive model (GAM).
We herein extend this test to paired outcome data in a longitudinal setting.

The bootstrap testing procedure that we propose is carried out through the fol-
lowing steps:
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(1) For j = 1, . . . , ni and i = 1, . . . ,m, estimate (predict) the restricted mean
response μ̂ij , random subject effect Ûi and random error ε̂ij , from the fit-

ted model (2.1) under the null hypothesis, where μ̂ij = (μ̂
(1)
ij , μ̂

(2)
ij )T , Ûi =

(Û
(1)
i , Û

(2)
i )T , ε̂ij = (ε̂

(1)
ij , ε̂

(2)
ij )T ;

(2) Draw a bootstrap sample of the random subject effects Ũi = (Ũ
(1)
i , Ũ

(2)
i )T

from {Ûi}1≤i≤m with replacement;
(3) Let the bootstrap residuals be ε̃

(1)
ij = ε̂

(1)
ij ε

(1)
ij and ε̃

(2)
ij = ε̂

(2)
ij ε

(2)
ij , where ε

(1)
ij

and ε
(2)
ij are i.i.d. random variables which have equal probabilities 0.5 to be 1 or

−1;
(4) Generate a bootstrap sample of paired responses Ỹij = (Ỹ

(1)
ij , Ỹ

(2)
ij )T by

Ỹ
(1)
ij = Ũ

(1)
i + μ̂

(1)
ij + ε̃

(1)
ij and Ỹ

(2)
ij = Ũ

(2)
i + μ̂

(2)
ij + ε̃

(2)
ij , based on the bootstrap

samples from Steps 2 and 3;
(5) Fit the joint model (2.1) to the bootstrap data {Ỹij }1≤j≤ni ;1≤i≤m under the

null hypothesis and the unrestricted model, and calculate the bootstrap test statis-
tic �∗;

(6) Repeat Steps 2–5 for b = 1, . . . ,B times, to obtain a bootstrap sample of
the test statistic {�∗

b}1≤b≤B , which can be used as the nominal distribution of the
test statistic under the null hypothesis.

The p-value of the bootstrap testing is calculated as p = #{� > �∗
b}/B . It should

be noted that in Step 3, a wild bootstrap [see, e.g., Liu (1988), Mammen (1993)]
with the Rademacher distribution is used instead of the original version, as the
former has been shown to possess better finite-sample performance [Davidson
and Flachaire (2008)]. This bootstrap procedure is partly based on the best lin-
ear unbiased predictors (BLUPs) of the random effects, which may underestimate
the variability in the data and lead to biased inferences [although the results are
asymptotically unbiased, see Morris (2002)]. In our application, with a relatively
large sample size (m = 418 subjects with a median of 16 visits for each subject),
the bias associated with the test is likely to be negligible.

3.2. An ad hoc likelihood ratio test. Due to the large number of iterative fitting
of complex models, the implementation of the previously proposed resampling-
based test is computationally intensive. In this section we consider an ad hoc like-
lihood ratio test (LRT) based on the asymptotic χ2 distribution, as a computation-
ally more efficient alternative. Writing the semiparametric mixed model (2.1) as a
linear mixed model (LMM) as in (2.4), we could construct a LRT within the LMM
framework for hypothesis (3.1). However, as noted by Crainiceanu and Ruppert
(2004), the asymptotic properties of LRT based on χ2 distributions [Self and Liang
(1987)] are not always satisfactory when applied to penalized splines. Whereas, if
no roughness penalty is added to the smooth functions, statistical inferences (in-
cluding significance tests) will have more reasonable behaviors for unpenalized
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models [Wood (2006), page 195], at the price of overfitting. Additionally, LRT for
fixed effects based on standard χ2

ν distributions (with the degrees of freedom ν be-
ing the difference of the numbers of parameters between the null and unrestricted)
tends to be more “anticonservative” [Pinheiro and Bates (2000), see discussions
on pages 87–88]. To alleviate, we adopt a mixture of χ2

ν and χ2
ν+1 as the refer-

ence distribution suggested by Stram and Lee (1994), the empirical performance
of which is studied in Section 4. The adjusted LRT is conducted through the fol-
lowing steps:

(1) Fit model (2.1) using penalized splines based on ML to obtain the effective
degrees of freedom (EDF) for the penalized spline estimates;

(2) Refit (2.1) under the null and unrestricted models, respectively, by fixing the
degrees of freedom to be (approximately) the estimated EDF from Step 1 using the
unpenalized splines;

(3) Calculate the p-value based on 2 times the log-likelihood ratio from Step 2,
using 1

2χ2
ν + 1

2χ2
ν+1 as the nominal distribution.

This alternative LRT procedure significantly reduces the computational burden
of the aforementioned inference. The resampling-based testing procedure, on the
other hand, is methodologically better grounded and is more likely to have supe-
rior finite-sample performance. Nonetheless, despite the ad hoc nature of the LRT,
it might be able to provide quick testing results with reasonable accuracy. The jus-
tification of the LRT is entirely empirical. To that end, we conduct a Monte Carlo
study to assess the operational characteristics of the LRT (see Section 4). In prac-
tice, we recommend the use of the resampling-based testing procedure whenever
computing resources are available. In the absence of adequate computing power,
the LRT may provide a reasonable relief, but the test results should be interpreted
with caution, especially for borderline cases.

4. Monte Carlo study. To assess the performance of the likelihood ratio test
on the significance of factor-by-surface interaction in the semiparametric mixed
model, we conduct a Monte Carlo study. Simulation results are presented in this
section.

The simulated data are generated from two nonlinear bivariate test functions
f1 and f2, defined on [0,1] × [0,1]: f1(x, t) = 5x2 + log(0.5t + 1) + t +
3t0.5x+1, f2(x, t) = 1.5

√
x + 1.5t3 + 2.25xet . The two correlated outcome vari-

ables (Y
(1)
ij , Y

(2)
ij ) are generated for i = 1, . . . ,m and j = 1, . . . , n from⎧⎨⎩Y

(1)
ij = U

(1)
i + β0 + ziβ1 + f̄1(wij , hij ) + ε

(1)
ij ,

Y
(2)
ij = U

(2)
i + γ0 + ziγ1 + f̄2(wij , hij ) + ε

(2)
ij ,

where (U
(1)
ij ,U

(2)
ij )T ∼ N (0,�u) as in (2.2) with σ1 = 2, σ2 = 3, and ρ = 0.5;

(ε
(1)
ij , ε

(2)
ij )T ∼ N (0, σ 2

ε diag(1, δ2)), with σε = 2 and δ = 0.8; the first m/2 sub-
jects are labeled as group 1 and the remaining belonged to group 2, zi is the group



1872 H. LIU AND W. TU

TABLE 1
Simulation results for likelihood ratio tests, with nominal level 0.05.

The results were based on 500 replications

m n Distribution Size

50 20 χ2
ν 0.060

χ2
ν+1 0.048

1
2χ2

ν + 1
2χ2

ν+1 0.052

50 40 χ2
ν 0.052

χ2
ν+1 0.036

1
2χ2

ν + 1
2χ2

ν+1 0.042

100 20 χ2
ν 0.062

χ2
ν+1 0.044

1
2χ2

ν + 1
2χ2

ν+1 0.054

100 40 χ2
ν 0.056

χ2
ν+1 0.042

1
2χ2

ν + 1
2χ2

ν+1 0.046

indicator variable; the true bivariate covariate effects of (w,h) are assumed to
be homogeneous across groups with functional forms of f̄1 and f̄2 (f̄ denotes
corresponding smooth functions centered at the observed covariate values) for
the two outcomes respectively; but the two groups have different intercepts with
β0 = 10, β1 = 2, γ0 = 15, and γ1 = 4.

We then conducted the proposed likelihood ratio tests based on the unpenal-
ized spline estimates and mixture χ2 distribution. We examined two levels of
m = 50,100 and two levels of n = 20,40. The size of the test in each scenario
was based on 500 replications and summarized in Table 1, which was observed to
be very close to its nominal level 0.05 in each case.

5. Analysis of blood pressure data.

5.1. A childhood blood pressure development study. Children from local
schools were recruited for participation in a prospective cohort study. Those with
known cardiovascular disease, hypertension, kidney disease, and those on blood
pressure altering medications were excluded. Blood pressure, height, weight and
heart rate are measured semi-annually. The study is currently ongoing. In this
analysis, we use a subset of m = 418 children that have at least ten (≥10) semi-
annual assessments. The data set includes 154 white boys (sex–ethnicity group 1,
or group 1 for short and henceforth), 136 white girls (group 2), 70 black boys
(group 3) and 58 black girls (group 4). Figure 1 shows the marginal effects



SEMIPARAMETRIC MODEL FOR PAIRED LONGITUDINAL OUTCOMES 1873

FIG. 1. Marginal effects of weight and height on blood pressure using a LOWESS smoother.

of height and weight on systolic and diastolic blood pressure using scatterplot
smoothing [Cleveland (1979)], for each of the sex–ethnicity combinations. Exam-
ining the estimated marginal effects, we see clear indications of nonlinear weight
effect and different patterns of height and weight effects in boys and girls of dif-
ferent ethnicity.

To accommodate these data features, we perform an analysis using the proposed
semiparametric mixed model that simultaneously assesses the height and weight
effects on systolic and diastolic blood pressure. We present bivariate effect surfaces
in colored contour plots for the examination of the joint height–weight effects.
We also perform resampling-based and LRT-based inferences for the detection of
possible gender and ethnicity differences in these bivariate surfaces.

5.2. Model specification. The following model is used to examine the joint
height–weight effects on diastolic and systolic blood pressure in children:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
DBPij = Ud

i + pijψd +
4∑

g=1

f d
g (wij , hij )zig + εd

ij ,

SBPij = Us
i + pijψs +

4∑
g=1

f s
g (wij , hij )zig + εs

ij ,

(5.1)
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where DBPij , SBPij , pij , wij and hij , respectively, represent the diastolic and sys-
tolic blood pressure, heart rate (or pulse, which is used as a surrogate marker for
cardiac output), weight and height measured from the ith subject at the j th visit;
Ud

i and Us
i are the random subject effects; ψd and ψs are the regression coeffi-

cient parameters of heart rate on diastolic and systolic blood pressure respectively;
f d

g and f s
g are the unknown bivariate smooth functions to depict the joint weight

and height effects on diastolic and systolic blood pressure, respectively, in the four
sex–ethnicity groups (g = 1, . . . ,4); and zig is the corresponding group indicator.
Note that the intercept terms (β10, . . . , β40) and (γ10, . . . , γ40) representing, re-
spectively, the population average diastolic and systolic blood pressure in different
sex–ethnicity groups are absorbed into the corresponding group-specific smooth
components. The effects of heart rate were found to be linear in preliminary analy-
ses. Hence, they are included in the model as linear components for ease of clinical
interpretation. The random subject effects are assumed to have the same distribu-
tion as specified in model (2.1).

Since the outcomes are measured repeatedly for each subject during the follow-
up, possible serial correlations may exist. According to the study protocol, enrolled
subjects were asked to return every six months for measurements after the baseline
screening. However, the longitudinal data collection was not exactly evenly spaced
due to delayed or even missed clinic visits. To accommodate, we incorporate a
continuous time autoregressive structure into the within-subject errors. To be more
exact, we assume that cor(εd

ij , ε
d
ij ′) = cor(εs

ij , ε
s
ij ′) = φ

|ageij−ageij ′ |, for 1 ≤ j 	=
j ′ ≤ ni , i = 1, . . . ,m, where ageij denotes the age (in years) of subject i at the j th
visit and φ is the autocorrelation parameter of unit time interval.

The core model fitting procedure is based on the gamm (generalized additive
mixed model) routine in R package mgcv [Wood (2010)]. We have made nec-
essary extensions to accommodate the complex model features (e.g., correlation
structure of paired longitudinal outcomes) and visualization of the results. The
confidence intervals of the model parameters are derived from the observed infor-
mation matrix in the LMM framework. The estimated bivariate smooth functions
of weight and height in each sex–ethnicity group are presented and compared using
colored image plots and contour lines. A detailed description of the model-fitting
algorithms can be found in Section A of the supplementary materials [Liu and Tu
(2012)], together with model diagnostics for model assumption verification and
goodness-of-fit assessment in Section B.

5.3. Analytical results. From the REML estimates (which are very close to
the ML estimates) of the semiparametric mixed model (5.1) based on 6867 pairs
of blood pressure assessments from 418 subjects, we note a substantial correla-
tion (ρ̂ = 0.52 with 95% confidence interval (CI) [0.42,0.61]) between the dias-
tolic and systolic blood pressure within the same subject. Systolic blood pressure
has slightly greater variability (σ̂2 = 5.29; 95% CI: [4.88,5.73]) than diastolic
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TABLE 2
Estimates of the parameters of the semiparametric joint blood pressure model with 95% lower

(confidence) bound (LB) and upper (confidence) bound (UB)

Parameter Sex–ethnicity group Estimate Std. Dev. 95% LB 95% UB

β10 White male 64.99 0.98 63.03 66.95
β20 White female 66.02 0.99 64.04 68.00
β30 Black male 65.98 1.09 63.80 68.16
β40 Black female 65.76 1.21 63.34 68.18
γ10 White male 100.41 0.92 98.57 102.25
γ20 White female 97.51 0.93 95.65 99.37
γ30 Black male 99.93 1.05 97.83 102.03
γ40 Black female 98.27 1.17 95.93 100.61

measurements (σ̂1 = 4.57; 95% CI: [4.18,4.99]), but the difference is not statis-
tically significant. However, the random error associated with systolic blood pres-
sure (within the same subject) has a significantly smaller variance, as reflected
by the magnitude and corresponding confidence interval of the scaling parameter
(δ̂ = 0.87; 95% CI: [0.85,0.90]). Such an observation is consistent with the pre-
viously published data on pediatric blood pressure measurements [Falkner et al.
(2006)], and it may in part reflect the difficulty in clearly pinpointing the start of
the fifth Korotkoff sound in diastolic measurement [Pickering et al. (2005)]. The
estimated variance of the random error is σ̂ε = 7.39; 95% CI: [7.26,7.53]. We also
detected slight autocorrelation in within-subject errors, with φ̂ = 0.014; 95% CI:
[0.010,0.020]. The estimates of the average diastolic and systolic blood pressure
in different gender and ethnicity groups in model (5.1) are listed in Table 2. Heart
rate has a negative effect on the diastolic blood pressure with ψd = −0.04 [stan-
dard deviation (SD) = 0.01], whereas it is positively associated with systolic blood
pressure ψs = 0.07 (SD = 0.01). The finding is not surprising because heart rate
directly reflects cardiac output, which typically increases with pulse pressure (sys-
tolic minus diastolic blood pressure). With pulse pressure relating systolic posi-
tively and diastolic negatively, one would expect systolic blood pressure to increase
with heart rate and diastolic blood pressure to decrease with heart rate.

The estimated bivariate smooth functions of weight and height in the four sex–
ethnicity groups are plotted in Figures 2 and 3.

Both the adjusted likelihood ratio (LR) test [2 logLR = 217.6 with reference
distribution (χ2

84 + χ2
85)/2, p < 0.001] and the bootstrap test (Figure 4 with

B = 1000 replications) suggest significantly different joint height–weight influ-
ences on blood pressure across the four sex and ethnicity groups. Aside from the
significant test results of the bivariate height–weight effect surfaces, the most in-
teresting observation from this analysis is the apparently different shape of these
bivariate functions: (1) While blood pressure generally increases with weight as
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FIG. 2. Bivariate smooth function estimates of the joint height–weight effects on diastolic blood
pressure [defined in equation (5.1)] in boys and girls of different ethnicity.

well as height, weight clearly has a much greater overall influence on blood pres-
sure. In fact, at a given weight level, the height effects are often minimal, as in-
dicated by the (nearly) vertical contour lines. (2) Among the heavier boys (those
with weight greater than 120 kg, e.g.), blacks appear to have higher systolic blood
pressure than whites. The reverse is true for girls. From the fitted effect surfaces,
we see that heavier white girls appear to have higher systolic blood pressure than
their black counterparts. (3) For diastolic blood pressure, while weight is still
the dominant influence, height does have an effect. The more intriguing obser-
vation is perhaps the clear difference between black and white boys. For example,
when weight is about 80 kg, taller black boys have lower diastolic blood pres-
sure. While one would be attempted to attribute this to the lower corresponding
BMI values, the opposite is true for white boys. These more complex pictures
of height and weight influences on blood pressure point to possible existence
of distinct physiology of blood pressure development in black and white chil-
dren.
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FIG. 3. Bivariate smooth function estimates of the joint height–weight effects on systolic blood
pressure [defined in equation (5.1)] in boys and girls of different ethnicity.

6. Discussion. In summary, we have presented a joint model for paired out-
comes with bivariate effect surfaces of two continuous independent variables. This
model extends previous work by accommodating longitudinally measured out-
come pairs, as well as bivariate covariate effect surfaces. With the introduction of
factor-by-surface interactions, it also allows for the incorporation of group-specific
surfaces (i.e., group-height–weight interactions). For implementation, we have de-
veloped necessary computational procedures. Resampling-based and LRT-based
inferences concerning the group-specific bivariate effects are discussed. Simula-
tion study indicates adequate performances in the proposed adjusted LRT proce-
dure.

Using the proposed method, we examined the influences of height and weight
on blood pressure in children undergoing the pubertal growth process. For adults,
there is a generally accepted notion that body weight has a predominant influence
on blood pressure. For children that undergo the pubertal growth process, height
and weight are known to increase concurrently with age, and both height and
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FIG. 4. Empirical distribution of log-likelihood ratio based on bootstrap technique with B = 1000
replications.

weight are positively related to blood pressure. Few studies have directly examined
the relative contributions of height and weight, partly due to the lack of appropriate
analytical tools to discern these simultaneous effects. With the newly developed
statistical method, we examined the influences of height and weight on longitu-
dinally measured blood pressure. We found that in children, just like in adults,
weight tended to have a noticeably stronger impact on blood pressure, even during
a period of vigorous linear growth. The study finding provides direct evidence that
adiposity, as reflected by weight, is the primary driver of the blood pressure devel-
opment in children. The finding is consistent with the latest pediatric literature on
the connection between adiposity and blood pressure. Clinically, our finding high-
lights the importance of weight management in overweight and obese children:
excessive weight gain could significantly increase the hypertension risk in children
[Tu et al. (2011), Falkner and Gidding (2011)]. Mechanistically, weight-mediated
blood pressure elevation in young and healthy children points to the need for stud-
ies focusing on including adipose-derived hormones. Animal and human studies
suggested one of such hormones, leptin, could act upon the sympathetic nervous
system (SNS), which contributes to the elevation of blood pressure. More recently,
investigators have proposed mouse models describing new signaling pathways in
the pathogenesis of obesity hypertension through leptin [Purkayastha, Zhang and
Cai (2011), Humphreys (2011)]. Interestingly, in a separate investigation, our re-
search team has also discovered dramatically increased leptin levels and heart rate
(as an indicator for a more activated SNS) in overweight and obese children, cor-
responding to the elevated blood pressure [Tu et al. (2011)]. The findings from
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the current study certainly gives more credence to this hypothesized pathway be-
tween adiposity and blood pressure. We are currently investigating the possibility
of adiposity acting upon blood pressure through alternative pathways, such as the
renin-angiotensin-aldosterone system.

A limitation of this research is that we only included children who had ten or
more longitudinal assessments in this methodological development, following a
condition stipulated by our current data use agreement. While such a restriction
could potentially limit the generalizability of the study finding, we note that the
number of assessments is not related to the study subjects’ behaviors but to the
timing of their school’s participation into the original study. As a result, children
who had fewer assessments (and thus were excluded from the current analysis)
are unlikely to be systematically different from those who contributed more obser-
vations. Notwithstanding this limitation, our research does provide an important
analytical tool that may significantly enhance mechanistic and epidemiologic in-
vestigations concerning blood pressure development in children.
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SUPPLEMENTARY MATERIAL

Detailed model-fitting algorithm and model diagnostics (DOI: 10.1214/12-
AOAS567SUPP; .pdf). We provide the computational details of the model-fitting
algorithm with sample R code and an R function to visualize the predicted bivariate
surfaces. Some model diagnostics plots are also provided.
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