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SPATIAL MODELS GENERATED BY NESTED STOCHASTIC
PARTIAL DIFFERENTIAL EQUATIONS, WITH AN APPLICATION

TO GLOBAL OZONE MAPPING

BY DAVID BOLIN AND FINN LINDGREN

Lund University

A new class of stochastic field models is constructed using nested sto-
chastic partial differential equations (SPDEs). The model class is computa-
tionally efficient, applicable to data on general smooth manifolds, and in-
cludes both the Gaussian Matérn fields and a wide family of fields with oscil-
lating covariance functions. Nonstationary covariance models are obtained by
spatially varying the parameters in the SPDEs, and the model parameters are
estimated using direct numerical optimization, which is more efficient than
standard Markov Chain Monte Carlo procedures. The model class is used to
estimate daily ozone maps using a large data set of spatially irregular global
total column ozone data.

1. Introduction. Building models for spatial environmental data is a chal-
lenging problem that has received much attention over the past years. Nonstation-
ary covariance models are often needed since the traditional stationary assumption
is too restrictive for capturing the covariance structure in many problems. Also,
many environmental data sets today contain massive amounts of measurements,
which makes computational efficiency another increasingly important model prop-
erty. One such data set, which will be analyzed in this work, is the the Total Ozone
Mapping Spectrometer (TOMS) atmospheric ozone data [McPeters et al. (1996)].
The data was collected by a TOMS instrument onboard the the near-polar, Sun-
synchronous orbiting satellite Nimbus-7, launched by NASA on October 24, 1978.
During the sunlit portions of the satellite’s orbit, the instrument collected data in
scans perpendicular to the orbital plane. A new scan was started every eight sec-
onds as the spacecraft moved from south to north. A number of recent papers in the
statistical literature [Cressie and Johannesson (2008), Jun and Stein (2008), Stein
(2007)] have studied the data, and it requires nonstationary covariance structures as
well as efficient computational techniques due to the large number of observations.

A covariance model that is popular in environmental statistics is the Matérn
family of covariance functions [Matérn (1960)]. The Matérn covariance function
has a shape parameter, ν, a scale parameter, κ , and a variance1 parameter, φ2, and
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1With this parametrization, the variance C(0) is φ2(4π)−d/2�(ν)�(ν + d/2)−1κ−2ν .
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can be parametrized as

C(h) = 21−νφ2

(4π)d/2�(ν + d/2)κ2ν
(κ‖h‖)νKν(κ‖h‖), h ∈ R

d,(1.1)

where Kν is a modified Bessel function of the second kind of order ν > 0. One
drawback with defining the model directly through a covariance function, such as
(1.1), is that it makes nonstationary extensions difficult. Another drawback is that,
unless the covariance function has compact support, the computational complex-
ity for calculating the Kriging predictor based on n measurements is O(n3). This
makes the Matérn covariance model computationally infeasible for many environ-
mental data sets.

Recently, Lindgren, Rue and Lindström (2010) derived a method for explicit,
and computationally efficient, Markov representations of the Matérn covariance
family. The method uses the fact that a random process on R

d with a Matérn co-
variance function is a solution to the stochastic partial differential equation (SPDE)

(κ2 − �)α/2X(s) = φW(s),(1.2)

where W (s) is Gaussian white noise, � is the Laplace operator, and α = ν + d/2
[Whittle (1963)]. Instead of defining Matérn fields through the covariance func-
tions (1.1), Lindgren, Rue and Lindström (2010) used the solution to the SPDE
(1.2) as a definition. This definition is valid not only on R

d but also on general
smooth manifolds, such as the sphere, and facilitates nonstationary extensions by
allowing the SPDE parameters κ2 and φ to vary with space. The Markov represen-
tations were obtained by considering approximate stochastic weak solutions to the
SPDE; see Section 3 for details.

In this paper we extend the work by Lindgren, Rue and Lindström (2010) and
construct a new flexible class of spatial models by considering a generalization of
(1.2). This model class contains a wide family of covariance functions, including
both the Matérn family and oscillating covariance functions, and it maintains all
desirable properties of the Markov approximated Matérn model, such as computa-
tional efficiency, easy nonstationary extensions and applicability to data on general
smooth manifolds.

The model class is introduced in Section 2, with derivations of some basic prop-
erties, examples of covariance functions that can be obtained from these mod-
els and a discussion on nonstationary extensions. Section 3 gives a review of the
Hilbert space approximation technique and shows how it can be extended to give
computationally efficient representations also for this new model class. In Sec-
tion 4 a numerical parameter estimation procedure for the nested SPDE models is
presented, and the section concludes with a discussion on computational complex-
ity for parameter estimation and Kriging prediction. In Section 5 the model class
is used to analyze the TOMS ozone data. In particular, all measurements available
from October 1st, 1988 in the spatially and temporally irregular “Level 2” version
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of the data set are used. This data set contains approximately 180,000 measure-
ments, and the nonstationary version of the model class is used to construct esti-
mates of the ozone field for that particular day. Finally, Section 6 contains some
concluding remarks and suggestions for further work.

2. Stationary nested SPDE models. A limitation with the Matérn covariance
family is that it does not contain any covariance functions with negative values,
such as oscillating covariance functions. One way of constructing a larger class of
stochastic fields is to consider a generalization of the SPDE (1.2):

L1X(s) = L2W (s),(2.1)

for some linear operators L1 and L2. If L1 and L2 are commutative operators,
(2.1) is equivalent to the following system of nested SPDEs:

L1X0(s) = W (s),
(2.2)

X(s) = L2X0(s).

This representation gives us an interpretation of the consequence of the additional
differential operator L2: X(s) is simply L2 applied to the solution one would get
to (2.1) if L2 was the identity operator. Equation (2.1) generates a large class of
random fields, even if the operators L1 and L2 are restricted to operators closely
related to (1.2). One of the simplest extensions of the Matérn model is to let L1 be
the same as in (1.2) and use L2 = (b + B�∇), where ∇ is the gradient, b ∈ R, and
B ∈ R

d . The equation then is

(κ2 − �)α/2X(s) = (b + B�∇)W(s),(2.3)

and X(s) is a weighted sum of a Matérn field and its directional derivative in the
direction determined by the vector B. This model is closely related to the models
introduced in Jun and Stein (2007) and Jun and Stein (2008), and the connection
is discussed later in Section 5. To get a larger class of models, the orders of the
operators L1 and L2 can be increased, and to get a class of stochastic fields that is
easy to work with, the operators are written as products, where each factor in the
product is equal to one of the operators in (2.3). Thus, let

L1 =
n1∏
i=1

(κ2
i − �)αi/2(2.4)

for αi ∈ N and κ2
i > 0, and use

L2 =
n2∏
i=1

(bi + B�
i ∇)(2.5)
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for bi ∈ R and Bi ∈ R
d . Hence, the SPDE generating the class of nested SPDE

models is (
n1∏
i=1

(κ2 − �)αi/2

)
X(s) =

(
n2∏
i=1

(bi + B�
i ∇)

)
W (s).(2.6)

There are several alternative equations one might consider; one could, for ex-
ample, let L2 be on the same form as L1, or allow for anisotropic operators on
the form (1 − ∇�A∇) for some positive definite matrix A. However, to limit our
scope, we will from now on only consider model (2.6).

2.1. Properties in R
d . In this section some basic properties of random fields

generated by (2.6), when s ∈ R
d , are given. First note that all Matérn fields with

shape parameters satisfying ν + d/2 ∈ N are contained in the class of stochastic
fields generated by (2.6) since (κ2 − �)α/2 can be written on the form (2.4) for
these values of ν. Also note that the order of the operator L2 cannot be larger
than the order of L1 if X(s) should be at least as “well behaved” as white noise;
hence, one must have

∑n1
i=1 αi ≥ n2. The smoothness of X(s) is determined by the

difference of the orders of the operators L1 and L2. In order to make a precise
statement about this, the spectral density of X(s) is needed.

PROPOSITION 2.1. The spectral density for X(s) defined by (2.6) is given by

S(k) = φ2

(2π)d

∏n2
j=1(b

2
j + k�Bj B�

j k)∏n1
j=1(κ

2
j + ‖k‖2)αj

.

This proposition is easily proved using linear filtering theory [see, for example,
Yaglom (1987)]. Given the spectral density of X(s), the following proposition re-
garding the sample function regularity can be proved using Theorem 3.4.3 in Adler
(1981).

PROPOSITION 2.2. X(s) defined by (2.6) has almost surely continuous sam-
ple functions if 2

∑n1
i=1 αi − 2n2 > d .

Because the stochastic field X(s) is generated by the SPDE (2.6), the following
corollary regarding sample path differentiability is also easily proved using the fact
that the directional derivative of X(s) is in the class of nested SPDE models.

COROLLARY 2.3. Given that 2
∑n1

i=1 αi − 2n2 − d > m, the mth order di-
rectional derivative of X(s), (B�∇)mX(s), has almost surely continuous sample
functions.
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Hence, as 2
∑n1

i=1 αi − 2n2 increases, the sample paths become smoother, and
eventually become differentiable, twice differentiable, and so on. One could also
give a more precise characterization of the sample path regularity using the notion
of Hölder continuity. This is (more or less) straightforward using properties of
index-β random fields [Adler (1981)], but outside the scope of this article.

A closed-form expression for the covariance function is not that interesting
since none of the methods that are later presented for parameter estimation, spatial
prediction or model validation require an expression for the covariance function;
however, if one were to use some technique that requires the covariance function,
it can be derived. An expression for the general case is quite complicated, and will
not be presented here. Instead we present a recipe for calculating the covariance
function for given parameters of the SPDE, with explicit results for a few exam-
ples.

To calculate the covariance function of X(s), first calculate the covariance func-
tion, CX0(h), of X0(s), given by (2.2). Given this covariance function, the covari-
ance function for X(s) is obtained as

C(h) =
(

n2∏
i=1

(bi − ∇�BiB�
i ∇)

)
CX0(h).

The motivation for this expression is again directly from linear filter theory, and
the d-dimensional equivalent of the formula for the covariance function for a dif-
ferentiated stochastic process, rX′(τ ) = −r ′′

X(τ). To get an expression for CX0(h),
first use Proposition 2.1 with L2 = I to get the spectral density of X0(s). Using a
partial fraction decomposition, the spectral density can be written as

SX0(k) = φ2

(2π)d

n∑
i=1

αi∑
j=1

pi,j

(κ2
i + ‖k‖2)j

,(2.7)

where pi,j is a real constant which can be found using the Heaviside cover-up
method [see, for example, Thomas and Finney (1995), page 523]. Now, by taking
the inverse Fourier transform of (2.7), the covariance function for X0(s) is

CX0(h) =
n∑

i=1

αi∑
j=1

pi,jC
j
κi

(h),

where Cν
κ (h) denotes a Matérn covariance function with shape parameter ν, scale

parameter κ and variance parameter φ2. The final step is to use that the derivative
of a Matérn covariance function can be expressed using a Matérn covariance with
another shape parameter. More precisely, one has

∂

∂hi

Cν
κ (h) = − hi

2ν
Cν−1

κ (h),

where hi denotes the ith component of the vector h. Using these calculations,
one can obtain the covariance function for any field given by (2.6). We conclude
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FIG. 1. Covariance functions of random fields obtained from model (2.6) with parameters from
Example 1 (top left), Example 2 (top middle and right), Example 3 (bottom left and middle) and
Example 4 (bottom right).

this section by showing the covariance function for some simple cases in R
2. The

covariance functions for these examples are shown in Figure 1, and realizations of
Gaussian processes with these covariance functions are shown in Figure 2.

EXAMPLE 1. With L1 = (κ2 − �)α/2 and L2 as the identity operator, the
standard Matérn covariance function (1.1) is obtained, shown in the top left panel
of Figure 1.

EXAMPLE 2. The simplest nested SPDE model (2.3) has the covariance func-
tion

C(h) = bCν
κ (h) + B�B

2ν
Cν−1

κ (h) − h�BB�h
4ν(ν − 1)

Cν−2
κ (h).

A stochastic field with this covariance function is obtained as a weighted sum of
a Matérn field X0(s) and its directional derivative in the direction of B. The field
therefore has a Matérn-like behavior in the direction perpendicular to B and an
oscillating behavior in the direction of B. In the upper middle panel of Figure 1,
this covariance function is shown for B = (1,0)�, ν = 3, and b = 5. In the upper
right panel of Figure 1, it is shown for B = (1,0)�, ν = 3, and b = 0.

EXAMPLE 3. The number of zero crossings of the covariance function in the
direction of B is at most n2. In the previous example we had n2 = 1, and to obtain
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FIG. 2. Realizations of random fields obtained from model (2.6) with different parameters. The
realization in each panel corresponds to a stochastic field with the covariance function shown in the
corresponding panel in Figure 1.

a more oscillating covariance function, the order of L2 can be increased by one:

(κ2 − �)α/2X(s) = (b1 + B�
1 ∇)(b2 + B�

2 ∇)W (s).

This model has the covariance function

C(h) = b1b2C
ν
κ (h) + b2B�

1 B1 + b1B�
2 B2

2ν
Cν−1

κ (h)

+ 2(B�
2 B1)

2 + B�
1 B1B�

2 B2 − h�(b1B2B�
2 + b2B1B�

1 )h
22ν(ν − 1)

Cν−2
κ (h)

− h�(B1B�
2 B2B�

1 + 4B1B�
1 B2B�

2 + B2B�
1 B1B�

2 )h
23ν(ν − 1)(ν − 2)

Cν−3
κ (h)

+ (B�
1 hh�B2)

2

24ν(ν − 1)(ν − 2)(ν − 3)
Cν−4

κ (h).

In the bottom left panel of Figure 1 this covariance function is shown for ν = 5,
b1 = b2 = 0 and B1 = B2 = (1,0)�. With these parameters, the covariance func-
tion is similar to the covariance function in the previous example, but with one
more zero crossing in the direction of B. For this specific choice of parameters, the
expression for the covariance function can be simplified to

C(h) = 3γ2C
ν−2
κ (h) − 6γ3h

2
1C

ν−3
κ (h) + γ4h

4
1C

ν−4
κ (h),
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where γk = (2k
k−1
i=0 (ν − k))−1. In the bottom middle panel of Figure 1 the co-

variance function is shown for ν = 5, b1 = b2 = 0, B1 = (1,0)�, and B2 = (0,1)�.
Thus, the field X0(s) is differentiated in two different directions, and the covari-
ance function for X(s) therefore is oscillating in two directions. For these parame-
ters, the covariance function can be written as

C(h) = γ2C
ν−2
κ (h) − γ3h�hCν−3

κ (h) + γ4h1h2C
ν−4
κ (h).

EXAMPLE 4. The bottom right panel of Figure 1 shows a covariance function
for the nested SPDE

(κ2 − �)α/2X(s) = (b1 + B�
1 ∇)2(b2 + B�

2 ∇)2W(s).

As in the previous examples, the covariance function for a stochastic field gener-
ated by this SPDE can be calculated and written on the form

C(h) =
8∑

k=0

γkfk(h)Cν−k
κ (h),

where fk(h), k = 0, . . . ,8, are functions depending on h and the parameters in the
SPDE. Without any restrictions on the parameters, it is a rather tedious exercise
to calculate the functions fk(h), and we therefore only show them for the specific
set of parameters that are used in Figure 1: ν = 7, b1 = b2 = 0, B1 = (1,0)� and
B2 = (0,1)�. In this case f0(h) = f1(h) = f2(h) = 0, and the covariance function
is

C(h) = 9γ4C
ν−4
κ (h) − 18γ5h�hCν−5

κ (h) + 3γ6(h
4
1 + h4

2 + 12h2
1h

2
2)C

ν−6
κ (h)

− 6γ7h
2
1h

2
2h�hCν−7

κ (h) + γ8h
4
1h

4
2C

ν−8
κ (h).

2.2. Nonstationary nested SPDE models. Nonstationarity can be introduced
in the nested SPDE models by allowing the parameters κi , bi and Bi to be spatially
varying: (

n1∏
i=1

(
κ2
i (s) − �

)αi/2
)
X0(s) = W (s),

(2.8)

X(s) =
(

n2∏
i=1

(
bi(s) + Bi (s)�∇))

X0(s).

If the parameters are spatially varying, the two operators are no longer commuta-
tive, and the solution to (2.8) is not necessarily equal to the solution of(

n1∏
i=1

(
κ2
i (s) − �

)αi/2
)
X(s) =

(
n2∏
i=1

(
bi(s) + Bi (s)�∇))

W(s).(2.9)
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For nonstationary models, we will from now on only study the system of nested
SPDEs (2.8), though it should be noted that the methods presented in the next
sections can be applied to (2.9) as well.

One could potentially use an approach where the spatially varying parameters
also are modeled as stochastic fields, but to be able to estimate the parameters
efficiently, it is easier to assume that each parameter can be written as a weighted
sum of some known regression functions. In Section 5 this approach is used for
a nested SPDE model on the sphere. In this case, one needs a regression basis
{ψj(s)} for the vector fields Bi (s) on the sphere. Explicit expressions for such a
basis are given in the Appendix.

3. Computationally efficient representations. In the previous section co-
variance functions for some examples of nested SPDE models were derived. Given
the covariance function, standard spatial statistics techniques can be used for pa-
rameter estimation, spatial prediction and model simulation. Many of these tech-
niques are, however, computationally infeasible for large data sets. Thus, in order
to use the model for large environmental data sets, such as the ozone data studied
in Section 5, a more computationally efficient representation of the model class
is needed. In this section the Hilbert space approximation technique by Lindgren,
Rue and Lindström (2010) is used to derive such a representation.

The key idea in Lindgren, Rue and Lindström (2010) is to approximate the solu-
tion to the SPDE L1X0(s) = W (s) in some approximation space spanned by basis
functions ϕ1(s), . . . , ϕn(s). The method is most efficient if these basis functions
have compact support, so, from now on, it is assumed that {ϕi} are local basis
functions. The weak solution of the SPDE with respect to the approximation space
can be written as x̃(s) = ∑n

i=1 wiϕi(s), where the stochastic weights {wi}ni=1 are
chosen such that the weak formulation of the SPDE is satisfied:

[〈ϕi, L1x̃〉�]i=1,...,n
D= [〈ϕi, W〉�]i=1,...,n.(3.1)

Here D= denotes equality in distribution, � is the manifold on which s is defined,
and 〈f,g〉� = ∫

� f (s)g(s)ds is the scalar product on �. As an illustrative example,
consider the first fundamental case L1 = κ2 − �. One has

〈ϕi, L1x̃〉� =
n∑

j=1

wj 〈ϕi, L1ϕj 〉�,

so by introducing a matrix K, with elements Ki,j = 〈ϕi, L1ϕj 〉�, and the vector
w = (w1, . . . ,wn)

�, the left-hand side of (3.1) can be written as Kw. Since

〈ϕi, L1ϕj 〉� = κ2〈ϕi, ϕj 〉� − 〈ϕi,�ϕj 〉�
= κ2〈ϕi, ϕj 〉� + 〈∇ϕi,∇ϕj 〉�,

the matrix K can be written as K = κ2C + G, where Ci,j = 〈ϕi, ϕj 〉� and
Gi,j = 〈∇ϕi,∇ϕj 〉�. The right-hand side of (3.1) can be shown to be Gaussian
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with mean zero and covariance C. For the Hilbert space approximations, it is nat-
ural to work with the canonical representation, x ∼ NC(b,Q), of the Gaussian
distribution. Here, the precision matrix Q is the inverse of the covariance matrix,
and the vector b is connected to the mean, μ, of the Gaussian distribution through
the relation μ = Q−1b. Thus, if K is invertible, one has

Kw ∼ NC(0,C−1) ⇐⇒ w ∼ NC(0,KC−1K).

For the second fundamental case, L1 = (κ2 −�)1/2, Lindgren, Rue and Lindström
(2010) show that w ∼ NC(0,K). Given these two fundamental cases, the weak
solution to L1X0(s) = W (s), for any operator on the form (2.4), can be obtained
recursively. If, for example, L1 = (κ2 − �)2, the solution is obtained by solving
(κ2 − �)X0(s) = x̃(s), where x̃ is the weak solution to the first fundamental case.

The iterative way of constructing solutions can be extended to calculate weak
solutions to (2.6) as well. Let x̃0 = ∑n

i=1 w0
i ϕi(s) be a weak solution to L1X0(s) =

W(s), and let QX0 denote the precision for the weights w0 = (w0
1, . . . ,w

0
n)

�. Sub-
stituting X0 with x̃0 in the second equation of (2.1), the weak formulation of the
equation is

[〈ϕi, x̃〉�]i=1,...,n
D= [〈ϕi, L2x̃0〉�]i=1,...,n

(3.2)

=
[

n∑
j=1

w0
j 〈ϕi, L2ϕj 〉�

]
i=1,...,n

.

First consider the case of an order-one operator L2 = b1 + B�
1 ∇ . By introducing

the matrix H1 with elements H1i,j = 〈ϕi, L2ϕj 〉�, the right-hand side of (3.2) can
be written as H1w0. Introducing the vector w = (w1, . . . ,wn)

�, the left-hand side
of (3.2) can be written as Cw, and one has

w = C−1H1w0 
⇒ w ∼ NC(0,CH−�
1 QX0H−1

1 C).

Now, if L2 is on the form (2.5), the procedure can be used recursively, in the same
way as when producing higher order Matérn fields. For example, if

L2 = (b1 + B�
1 ∇)(b2 + B�

2 ∇),

the solution is obtained by solving X(s) = (b2 + B�
2 ∇)x̃(s), where x̃ is the weak

solution to the previous example. Thus, when L2 is on the form (2.5), one has

w ∼ NC(0,H−�QX0H−1), H = C−1Hn2C−1Hn2−1 · · ·C−1H1,

where each factor Hi corresponds to the H-matrix obtained in the ith step in the
recursion.
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3.1. Nonstationary fields. As mentioned in Lindgren, Rue and Lindström
(2010), the Hilbert space approximation technique can also be used for nonsta-
tionary models, and the technique extends to the nested SPDE models as well.
One again begins by finding the weak solution of the first part of the system,
L1(s)X0(s) = W(s). The iterative procedure is used for obtaining approximations
of high-order operators, so the fundamental step is to find the weak solution to the
equation when L1 = (κ2(s) − �). Consider the weak formulation

[〈
ϕi,

(
κ2(s) − �

)
x̃
〉
�

]
i=1,...,n

D= [〈ϕi, W〉�]i=1,...,n,(3.3)

and note that the right-hand side of the equation is the same as in the stationary
case, NC(0,C−1). Now, using that

〈
ϕi,

(
κ2(s) − �

)
x̃
〉
� = 〈ϕi, κ

2(s)x̃〉� − 〈ϕi,�x̃〉�
= 〈ϕi, κ

2(s)x̃〉� + 〈∇ϕi,∇x̃〉�,

the left-hand side of (3.3) can be written as (C̃ + G)w0, where G and w0 are the
same as in the stationary case and C̃ is a matrix with elements

C̃i,j = 〈ϕi, κ
2(s)ϕj 〉� =

∫
�

κ2(s)ϕi(s)ϕj (s)ds

(3.4)

≈ κ2(sj )

∫
�

ϕi(s)ϕj (s)ds = κ2(sj )Ci,j .

Since {ϕi} is assumed to be a local basis, such as B-spline wavelets or some other
functions with compact support, the locations sj can, for example, be chosen as
the centers of the basis functions ϕj (s). The error in the approximation of C̃ is
then small if κ2(s) varies slowly compared to the spacing of the basis functions
ϕj . From equation (3.4), one has C̃ = Cκ , where κ is a diagonal matrix with
elements κj,j = κ2(sj ). Finally, with K = κC + G, one has

Kw0 ∼ NC(0,C−1) 
⇒ w0 ∼ NC(0,KC−1K).

Now given the weak solution, x̃0, to L1(s)X0(s) = W (s), substitute X0 with x̃0 in
the second equation of (2.2) and consider the weak formulation of the equation.
Since the solution to the full operator again can be found recursively, only the
fundamental case L2 = b(s) + B(s)�∇ is considered. The weak formulation is the
same as (3.2), and one has

〈ϕi, x̃〉� D= 〈ϕi, L2x̃0〉� = 〈
ϕi,

(
b(s) + B(s)�∇)

x̃0
〉
�

= 〈ϕi, b(s)x̃0〉� + 〈ϕi,B(s)�∇x̃0〉�.
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Thus, the right-hand side of (3.2) can be written as (Ĉ + Ĥ)w0, where

Ĉi,j = 〈ϕi, b(s)ϕj 〉� =
∫
�

b(s)ϕi(s)ϕj (s)ds ≈ b(sj )Ci,j ,

Ĥi,j = 〈ϕi,B(s)�∇ϕj 〉� =
∫
�

ϕi(s)B(s)�∇ϕj (s)ds

≈ B(s̃j )
�

∫
�

ϕi(s)∇ϕj (s)ds.

Here, similar approximations as in equation (3.4) are used, so the expressions
are accurate if the coefficients vary slowly compared to the spacing of the ba-
sis functions ϕj . The left-hand side of (3.2) can again be written as Cw, so with
H1 = Ĉ + Ĥ, one has w ∼ NC(0,CH−�

1 QX0H−1
1 C).

3.2. Practical considerations. The integrals that must be calculated to get ex-
plicit expressions for the matrices C, G and H are∫

�
ϕi(s)ϕj (s)ds,

∫
�
(∇ϕi(s))�∇ϕj (s)ds and

∫
�

ϕi(s)∇ϕj (s)ds.

In Section 5 a basis of piecewise linear functions induced by a triangulation of
the Earth is used; see Figure 4. In this case, ϕi(s) is a linear function on each
triangle, and ∇ϕi(s) is constant on each triangle. The integrals, therefore, have
simple analytic expressions in this case, and more generally for all piecewise linear
bases induced by triangulated 2-manifolds.

Bases induced by triangulations have many desirable properties, such as the
simple analytic expression for the integrals and compact support. They are, how-
ever, not orthogonal, which causes C−1 to be dense. The weights w, therefore,
have a dense precision matrix, unless C−1 is approximated with some sparse ma-
trix. This issue is addressed in Lindgren, Rue and Lindström (2010) by lowering
the integration order of 〈ϕi, ϕj 〉, which results in an approximate, diagonal C ma-
trix, C̄, with diagonal elements C̄ii = ∑n

k=1 Cik . Bolin and Lindgren (2009) per-
form numerical studies on how this approximation affects the resulting covariance
function of the process, and it is shown that the error is small if the approxima-
tion is used for piecewise linear bases. We will, therefore, from now on use the
approximate C matrix in all places where C is used.

A natural question is how many basis functions one should use in order to get a
good approximation of the solution. The answer will depend on the chosen basis,
and, more importantly, on the specific parameters of the SPDE model. Bolin and
Lindgren (2009) study the approximation error in the Matérn case in R and R

2

for different bases, and in this case the spacing of the basis functions compared to
the range of the covariance function for X(s) determines the approximation error:
For a process with long range, fewer basis functions have to be used than for a
process with short range to obtain the same approximation error. For more com-
plicated, possibly nonstationary, nested SPDE models, there is no easy answer to
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how the number of basis functions should be chosen. Increasing the number of ba-
sis functions will decrease the approximation error but increase the computational
complexity for the approximate model, so there is a trade-off between accuracy
and computational cost. However, as long as the parameters vary slowly com-
pared to the spacing of the basis functions, the approximation error will likely be
much smaller than the error obtained from using a model that does not fit the data
perfectly and from estimating the parameters from the data. Thus, for practical
applications, the error in covariance induced by the Hilbert space approximation
technique will likely not matter much. A more important consequence for practical
applications when the piecewise linear basis is used is that the Kriging estimation
of the field between two nodes in the triangulation is a linear interpolation of the
values at the nodes. Thus, variations on a scale smaller than the spacing between
the basis functions will not be captured correctly in the Kriging prediction. For
practical applications, it is therefore often best to choose the number of basis func-
tions depending on the scale one is interested in the Kriging prediction on.

For the ozone data in Section 5, the goal is to estimate daily maps of global
ozone. As we are not interested in modeling small scale variations, we choose the
number of basis functions so that the mean distance between basis functions is
about 258 km. For this basis, the smallest distance between two basis functions is
222 km, and the largest distance is about 342 km.

Estimating the model parameters using different numbers of basis functions will
give different estimates, as the parameters are estimated to maximize the likelihood
for the approximate model instead of the exact SPDE. An example of this can be
seen in Figure 3 where the estimates of the covariance parameters for model F’
(see Section 5 for a model description) for the ozone data are shown for varying
numbers of basis functions. Instead of showing the actual parameter estimates, the
figure shows the differences between the estimates and the estimate when using the
basis shown in Figure 4, which has 9002 basis functions. Increasing the number
of basis functions further, the estimates will finally converge to the estimates one
would get using the exact SPDE representation. The curve that has not converged
corresponds to the dominating parameter in the vector field. Together with κ , this
parameter controls the correlation range of the ozone field.

4. Parameter estimation. In this section a parameter estimation procedure
for the nested SPDE models is presented. One alternative would be to use a
Metropolis–Hastings algorithm, which is easy to implement, but computationally
inefficient. A better alternative is to use direct numerical optimization to estimate
the parameters.

Let Y(s) be an observation of the latent field, X(s), given by (2.6) or (2.8), under
mean zero Gaussian measurement noise, E (s), with variance σ 2:

Y(s) = X(s) + E (s).(4.1)
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FIG. 3. Parameter estimates for the covariance parameters in model F′ for the ozone data as
functions of the number of basis functions in the Hilbert space approximations.

Using the approximation procedure from Section 3, and assuming a regression
model for the latent field’s mean value function, μ(s), the measurement equation
can then be written as

Y = Mμ + �w + ε,

where M is a matrix with the regression basis functions evaluated at the measure-
ment locations, and μ is a vector containing the regression coefficients that have to
be estimated. The matrix � contains the basis functions for the Hilbert space ap-
proximation procedure evaluated at the measurement locations, and w is the vector
with the stochastic weights. In Section 3 it was shown that the vector w is Gaussian
with mean zero and covariance matrix HQ−1

X0
H�. Both QX0 and H are sparse ma-

trices, but neither the covariance matrix nor the precision matrix for w is sparse.
Thus, it would seem as if one had to work with a dense covariance matrix, which
would make maximum likelihood parameter estimation computationally infeasible
for large data sets. However, because of the product form of the covariance matrix,
one has that w = Hw0, where w0 ∼ NC(0,QX0). Hence, the observation equation
can be rewritten as

Y = Mμ + �Hw0 + ε.(4.2)

Interpreting � = �H as an observation matrix that depends on some of the para-
meters in the model, Y − Mμ can now be seen as noisy observations of w0, which
has a sparse precision matrix. The advantage with using (4.2) is that one then is in
the setting of having observations of a latent Gaussian Markov random field, which
facilitates the usage of sparse matrix techniques in the parameter estimation.

Let ψ denote all parameters in the model except for μ. Assuming that μ and ψ
are a priori independent, the posterior density can be written as

π(w0,μ,ψ |Y) ∝ π(Y|w0, σ
2)π(w0|μ,ψ)π(μ)π(ψ).

Using a Gaussian prior distribution with mean μ and precision Qμ for the mean
parameters, the posterior distribution can be reformulated as

π(w0,μ,ψ |Y) ∝ π(w0|μ,ψ,Y)π(μ|ψ,Y)π(ψ |Y),(4.3)
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where w0|μ,ψ,Y ∼ NC(b, Q̂), μ|ψ,Y ∼ NC(bμ, Q̂μ), and

b = 1

σ 2 ��(Y − Mμ), bμ = Qμmμ + M�Y
σ 2 − M��Q̂−1��Y

σ 4 ,

Q̂ = Qw0 + 1

σ 2 ���, Q̂μ = Qμ + M�M
σ 2 − M��Q̂−1��M

σ 4 .

The calculations are omitted here since these expressions are calculated similarly
to the posterior reformulation in Lindström and Lindgren (2008), which gives
more computational details. Finally, the marginal posterior density π(ψ |Y) can
be shown to be

π(ψ |Y) ∝ |Qw0 |1/2π(ψ)

|Q̂|1/2|Q̂μ|1/2|σ I| exp
(

1

2σ 2 Y�
(

�Q̂−1��

σ 2 − I
)

Y + b�
μQ̂−1

μ bμ

2

)
.

By rewriting the posterior as (4.3), it can be integrated with respect to w0 and
μ, and instead of optimizing the full posterior with respect to w0, μ and ψ , only
the marginal posterior π(ψ |Y) has to be optimized with respect to ψ . This is a
lower dimensional optimization problem, which substantially decreases the com-
putational complexity. Given the optimum, ψopt = argmaxψ π(ψ |Y), μopt is then

given by μopt = Q̂−1
μ bμ. In practice, the numerical optimization is carried out on

logπ(ψ |Y).

4.1. Estimating the parameter uncertainty. There are several ways one could
estimate the uncertainty in the parameter estimates obtained by the parameter es-
timation procedure above. The simplest estimate of the uncertainty is obtained by
numerically estimating the Hessian of the marginal posterior evaluated at the es-
timated parameters. The diagonal elements of the inverse of the Hessian can then
be seen as estimates of the variance for the parameter estimates.

Another method for obtaining more reliable uncertainty estimates is to use a
Metropolis–Hastings based MCMC algorithm with proposal kernel similar to the
one used in Lindström and Lindgren (2008). A quite efficient algorithm is obtained
by using random walk proposals for the parameters, where the correlation matrix
for the proposal distribution is taken as a rescaled version of the inverse of the
Hessian matrix [Gelman, Roberts and Gilks (1996)].

Finally, a third method for estimating the uncertainties is to use the INLA
framework [Rue, Martino and Chopin (2009)], available as an R package (http:
//www.r-inla.org/). In settings with latent Gaussian Markov random fields, inte-
grated nested Laplace approximations (INLA) provide close approximations to
posterior densities for a fraction of the cost of MCMC. For models with Gaussian
data, the calculated densities are for practical purposes exact. In the current imple-
mentation of the INLA package, handling the full nested SPDE structure is cum-
bersome, so further enhancements are needed before one can take full advantage
of the INLA method for these models.

http://www.r-inla.org/
http://www.r-inla.org/


538 D. BOLIN AND F. LINDGREN

4.2. Computational complexity. In this section some details on the computa-
tional complexity for the parameter estimation and Kriging estimation are given.

The most widely used method for spatial prediction is linear Kriging. In the
Bayesian setting, the Kriging predictor simply is the posterior expectation of the
latent field X given data and the estimated parameters. This expectation can be
written as

E(X|ψ,μ,Y) = Mμ + �HE(w0) = Mμ + �HQ̂−1b.

The computationally demanding part of this expression is to calculate Q̂−1b. Since
the n×n matrix Q is positive definite, this is most efficiently done using Cholesky
factorization, forward substitution and back substitution: Calculate the Cholesky
triangle L such that Q̂ = LL�, and given L, solve the linear system Lx = b. Fi-
nally, given x, solve L�y = x, where now y satisfies y = Q̂−1b. Solving the for-
ward substitution and back substitution are much less computationally demanding
than calculating the Cholesky triangle. Hence, the computational cost for calculat-
ing the Kriging prediction is determined by the cost for calculating L.

The computational complexity for the parameter estimation is determined by
the optimization method that is used and the computational complexity for evalu-
ating the marginal log-posterior logπ(ψ |Y). The most computationally demand-
ing terms in logπ(ψ |Y) are the two log-determinants log |Qw0 | and log |Q̂| and
the quadratic form Y��Q̂−1�Y, which are also most efficiently calculated using
Cholesky factorization. Given the Cholesky triangle L, the quadratic form can be
obtained as x�x, where x is the solution to Lx = �Y, and the log-determinant
log |Q̂| is simply the sum2 2

∑n
i=1 log Lii . Thus, the computational cost for one

evaluation of the marginal posterior is also determined by the cost for calculat-
ing L. Because of the sparsity structure of Q̂, this computational cost is O(n),
O(n3/2) and O(n2) for problems in one, two and three dimensions respectively
[see Rue and Held (2005) for more details].

The computational complexity for the parameter estimation is highly dependent
on the optimization method. If a Broyden–Fletcher–Goldfarb-Shanno (BFGS) pro-
cedure is used without an analytic expression for the gradients, the marginal pos-
terior has to be evaluated p times for each step in the optimization, where p is the
number of covariance parameters in the model. Thus, if p is large and the initial
value for the optimization is chosen far from the optimal value, many thousand
evaluations of the marginal posterior may be needed in the optimization.

2Since only the difference between the log-determinants is needed, one should implement the

calculation as 2
∑n

i=1(logL
w0
(i)

− log L̂(i)), where L
w0
(i)

and L̂(i) are the diagonal elements of the
Cholesky factors, sorted in ascending order, and the sum is ordered by increasing absolute values of
the differences. This reduces numerical issues.
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5. Application: Ozone data. On October 24, 1978, NASA launched the
near-polar, Sun-synchronous orbiting satellite Nimbus-7. The satellite carried a
TOMS instrument with the purpose of obtaining high-resolution global maps of
atmospheric ozone [McPeters et al. (1996)]. The instrument measured backscat-
tered solar ultraviolet radiation at 35 sample points along a line perpendicular to
the orbital plane at 3-degree intervals from 51 degrees on the right side of space-
craft to 51 degrees on the left. A new scan was started every eight seconds, and
as the measurements required sunlight, the measurements were made during the
sunlit portions of the orbit as the spacecraft moved from south to north. The data
measured by the satellite has been calibrated and preprocessed into a “Level 2”
data set of spatially and temporally irregular Total Column Ozone (TCO) mea-
surements following the satellite orbit. There is also a daily “Level 3” data set with
values processed into a regular latitude-longitude grid. Both Level 2 and Level 3
data have been analyzed in recent papers in the statistical literature [Cressie and
Johannesson (2008), Jun and Stein (2008), Stein (2007)].

In what follows, the nested SPDE models are used to obtain statistical estimates
of a daily ozone map using a part of the Level 2 data. In particular, all data available
for October 1st, 1988 is used, which is the same data set that was used by Cressie
and Johannesson (2008).

5.1. Statistical model. The measurement model (4.1) is used for the ozone
data. That is, the measurements, Y(s), are assumed to be observations of a latent
field of TCO ozone, X(s), under Gaussian measurement noise E (s) with a constant
variance σ 2. We let X(s) have some mean value function, μ(s), and let the covari-
ance structure be determined by a nested SPDE model. Inspired by Jun and Stein
(2008), who proposed using differentiated Matérn fields for modeling TCO ozone,
we use the simplest nested SPDE model. Thus, Z(s) = X(s) − μ(s) is generated
by the system (

κ2(s) − �
)
Z0(s) = W (s)

Z(s) = (
b(s) + B(s)�∇)

Z0(s),

where W (s) is Gaussian white noise on the sphere. If κ(s) is assumed to be con-
stant, the ozone is modeled as a Gaussian field with a covariance structure that
is obtained by applying the differential operator (b(s) + B(s)�∇) to a stationary
Matérn field, which is similar to the model by Jun and Stein (2008). If, on the
other hand, κ is spatially varying, the range of the Matérn-like covariance function
can vary with location. As in Stein (2007) and Jun and Stein (2008), the mean can
be modeled using a regression basis of spherical harmonics; however, since the
data set only contains measurements from one specific day, it is not possible to
identify which part of the variation in the data that comes from a varying mean
and which part that can be explained by the variance–covariance structure of the
latent field. To avoid this identifiability problem, μ(s) is assumed to be unknown
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but constant. The parameter κ2(s) has to be positive, and for identifiability reasons,
we also require b(s) to be positive. We, therefore, let logκ2(s) = ∑

k,m κk,mYk,m(s)
and logb(s) = ∑

k,m bk,mYk,m(s), where Yk,m is the spherical harmonic of order k

and mode m. Finally, the vector field B(s) is modeled using the vector spherical
harmonics basis functions ϒ1

k,m and ϒ2
k,m, presented in Appendix:

B(s) = ∑
k,m

(
B1

k,mϒ1
k,m(s) + B2

k,mϒ2
k,m(s)

)
.

To choose the number of basis functions for the parameters κ2(s), b(s) and B(s),
some model selection technique has to be used. Model selection for this model
class is difficult since the models can have both nonstationary mean value functions
and nonstationary covariance structures. This makes standard variogram tech-
niques inadequate in general, and we instead base the model selection on Akaike’s
Information Criterion (AIC) and the Bayesian Information Criterion (BIC) [Hastie,
Tibshirani and Friedman (2001)], which are suitable model selection tools for the
nested SPDE models since the likelihood for the data can be evaluated efficiently.

We estimate 13 models with different numbers of covariance parameters, pre-
sented in Table 1. The simplest model is a stationary Matérn model, with four
parameters to estimate, and the most complicated model has 100 parameters to
estimate, including the mean and the measurement noise variance. There are three
different types of models in Table 1: In the first type (models B, E, G and J), κ2 and
b are spatially varying and the vector field B is assumed to be zero. In the second
type (models C, F, I and L), b and B are spatially varying and κ2 is assumed to
be constant. Finally, in the third type (model D, H, K and M), all parameters are
spatially varying.

A basis of 9002 piecewise linear functions induced by a triangulation of the
Earth (see Figure 4) is used in the approximation procedure from Section 3 to get
efficient representations of each model, and the parameters are estimated using the
procedure from Section 4. The computational cost for the parameter estimation

TABLE 1
Maximal orders of the spherical harmonics used in the bases for the different parameters and total

number of covariance parameters in the different models for X(s)

A B C D E F G H I J K L M

κ2(s) 0 1 0 1 2 0 3 2 0 4 3 0 4
b(s) 0 1 1 1 2 2 3 2 3 4 3 4 4
B(s) 0 0 1 1 0 2 0 2 3 0 3 4 4

Total 2 8 11 14 18 26 32 34 47 50 62 75 98

Notes: The actual number of basis functions for κ2(s) and b(s) are given by (ord + 1)2, and for B(s),
the actual number is 2(ord + 1)2 − 2, where ord is the maximal order indicated in the table.
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FIG. 4. The left part shows the triangulation of the Earth used to define the piecewise linear basis
functions in the Hilbert space approximation for ozone data. Each basis function is one at a node
in the triangulation, and decreases linearly to zero at the neighboring nodes. The right part of the
figure shows one of these functions.

only depends on the number of basis functions in the Hilbert space approximation,
and not on the number of data points, which makes inference efficient even for this
large data set.

AIC and BIC for each of the fitted models can be seen in Figure 5. The figure
contains one panel for each of the three model types and one panel where AIC and
BIC are shown for all models at once. The major improvement in AIC and BIC
occurs when the orders of the basis functions are increased from one to two. For
the first model type, with spatially varying κ2 and b, the figure indicates that the
results could be improved by increasing the orders of the basis functions further.
However, for a given order of the basis functions, the other two model types have
much lower AIC and BIC. Also, by comparing AIC and BIC for the second and
third model types, one finds that there is not much gain in letting κ2 be spatially
varying. We therefore conclude that a model with spatially varying b and B is most
appropriate for this data.

The estimated parameters b(s) and the length of the vectors B(s) for model F
are shown in Figure 6. One thing to note in this figure is that the two parameters
are fairly constant with respect to longitude, which indicates that the latent field
could be axially symmetric, an assumption that was made by both Stein (2007)
and Jun and Stein (2008). If the latent field indeed was axially symmetric, one
would only need the basis functions that are constant with respect to longitude in
the parameter bases. Since there is only one axially symmetric spherical harmonic
for each order, this assumption drastically reduces the number of parameters for
the models in Table 1. Let A′–M′ denote the axially symmetric versions of models
A–M. For these models, the number of basis functions for both κ2(s) and b(s) is
ord + 1, and the number of basis functions for B(s) is 2(ord + 1) − 2, where ord
is the maximal order indicated in Table 1. The dashed lines in Figure 5 show AIC
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FIG. 5. AIC (squares) and BIC (circles) for the models A–M (solid lines) and the axially symmetric
models A′–M′ (dashed lines), scaled by a factor 10−5. Note that the major improvement in AIC
and BIC occurs when the orders of the basis functions are increased from one to two, and that the
model type with spatially varying b and B seems to be most appropriate for this data. Also note
that the axially symmetric model F′ is surprisingly good considering that it only has 8 covariance
parameters.

and BIC calculated for these models. Among the axially symmetric models, model
F′ is surprisingly good considering that it only has 8 covariance parameters.

The Kriging estimate and its standard error for model F′ are shown in Figures 7
and 8 respectively. The oscillating behavior near the equator for the standard error
is explained by the fact that the satellite tracks are furthest apart there, which results
in sparser measurements between the different tracks. Because the measurements
are collected using backscattered sunlight, the variance close to the north pole is
high, as there are no measurements there. As seen in Figure 9, there is not much
spatial correlation in the residuals X̂ − Y, which indicates a good model fit. In Fig-
ure 10, estimates of the local mean and variance of the residuals are shown. The
mean is fairly constant across the globe, but there is a slight tendency for higher
variance closer to the poles. This is due to the fact that the data really is space–time
data, as the measurements are collected during a 24-hour period. Since the different
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FIG. 6. Estimated variance-scaling parameter, b(s), and the the norm of the vectors in the es-
timated vector field B(s) for model F. Note that the estimates are fairly constant with respect to
longitude, which indicates that the latent field could be axially symmetric.

satellite tracks are closest near the poles, the temporal variation of the data is most
prominent here, and especially near the international date line where data is col-
lected both at the first satellite track of the day and at the last track, 24 hours later.
The area with high residual variance is one of those places where measurements
are taken both at the beginning and the end of the time period, and where the ozone
concentration has changed during the time period between the measurements. One
could include this effect by allowing the variance of the measurement noise to be
spatially varying; however, one should really use a spatio-temporal model for the
data to correctly account for the effect, which is outside the scope of this article.

To see how much the temporal structure near the international date line influ-
ences the model fit, the parameters in model F′ are re-estimated without using the
first satellite track of the day and without using the last track of the day. The es-
timated parameters can be seen in Table 2 and, as expected, the estimate of the
measurement noise variance is much lower when not using all date line data. The
estimates of the covariance parameters for the latent field also change somewhat,
but the large scale structure of the nonstationarity is preserved.

FIG. 7. Kriging estimate of TCO ozone in Dobson units using model F′.
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FIG. 8. Standard error in Dobson units for the Kriging estimate. The color bar in the left part of
the figure has been truncated at 6 Dobson units. The behavior near the north pole can be seen in the
right part of the figure.

To study how sensitive the Kriging estimates are to the model choice, the ra-
tio between the Kriging estimates for the simple model F′ and the large model M,
and the ratio between the corresponding Kriging standard errors, are shown in Fig-
ure 11. There is not much difference between the two Kriging estimates, whereas
there is a clear difference between the corresponding standard errors. Thus, if one
only is interested in the Kriging estimate, it does not matter much which model is
used, but if one also is interested in the standard error of the estimate, the model
choice greatly influences the results.

FIG. 9. Estimated covariance function for the Kriging residuals using model F′.

TABLE 2
Estimates of the covariance parameters in model F′ using all data but the first track (Yf ), all data

but the last track (Yl ), and all data (Y )

κ σ b1 b2 b3 B1 B2 B3 B4

Yf 0.74 25.60 5.85 0.045 0.34 1.05 2.59 −6.84 −0.84
Yl 0.73 25.56 5.82 0.033 0.34 0.90 2.38 −7.01 −0.82
Y 0.67 34.09 5.75 0.054 0.36 0.70 2.48 −7.10 −0.68
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FIG. 10. Estimates of the local mean (left) and standard deviation (right) for the Kriging residuals
using model F′. The mean is fairly constant across the globe, whereas the standard deviation is
higher close to the poles and at the international date line because of the temporal structure in the
data.

FIG. 11. The ratio between the kriging estimates using model F′ and model M (left), and the ratio
between the corresponding kriging standard errors (right). Note that there is not much difference be-
tween the Kriging estimates, whereas there is a clear difference between the corresponding standard
errors.

5.2. Discussion. Before the nested SPDE models were used on the ozone data,
several tests were performed on simulated data to verify that the model parame-
ters in fact could be estimated using the estimation procedure in Section 4. These
tests showed that the estimation procedure is robust given that the initial values
for the parameters are not chosen too far from the true values. However, for non-
stationary models with many covariance parameters, it is not easy to choose the
initial values. To reduce this problem, the optimization is done in several steps.
A stationary Matérn model (model A) is estimated to get initial values for κ0,0,
b0,0 and σ 2. To estimate model B, all parameters are set to zero initially, except
for the parameters that were estimated in model A. Another layer of spherical har-
monics is added to the bases for κ2(s) and b(s) for estimating model E using the
model B parameters as initial values. This step-wise procedure of adding layers
of spherical harmonics to the bases is then repeated to estimate the larger models.
Numerical studies showed that this optimization procedure is quite robust even for
large models; however, as in most other numerical optimization problems, there
are no guarantees that the true optimal values have been found for all models for
the ozone data.



546 D. BOLIN AND F. LINDGREN

The application of the nested SPDE models to ozone data was inspired by Jun
and Stein (2008), who proposed using differentiated Matérn fields for modeling
TCO ozone, and we conclude this section with some remarks on the similarities
and differences between the nested SPDEs and their models. The most general
model in Jun and Stein (2008) is on the form

X(s) = P1(l2)X0(s) +
(
P2(l2)

∂

∂l2
+ P3(l2)

∂

∂l1

)
X1(s)

(5.1)

+ P4(l2)
∂

∂l1
X2(s),

where Xi, i = 0,1,2, are i.i.d. Matérn fields in R
3, Pi, i = 1,2,3,4, are nonran-

dom functions depending on latitude, l1 denoted longitude and l2 denoted latitude.
This model is similar to the model used here, but there are some important dif-
ferences. First of all, (5.1) contains a sum of three independent fields, which we
cannot represent since the approximation procedure in Section 3 in this case loses
its computational benefits. To get a model more similar to the nested SPDE model,
one would have to let P4(l2) ≡ 0, and X0(s) = X1(s). Using X0 = X1 or X0 and
X1 as i.i.d. copies of a Matérn field gives different covariance functions, and with-
out testing both cases it is hard to determine what is more appropriate for ozone
data.

Another important conceptual difference is how the methods deal with the
spherical topology. The Matérn fields in Jun and Stein (2008) are stochastic fields
on R

3, evaluated on the embedded sphere, which is equivalent to using chordal
distance as the metric in a regular Matérn covariance function. One might instead
attempt to evaluate the covariance function using the arc-length distance, which is
a more natural metric on the sphere. However, Theorem 2 from Gneiting (1998)
shows that for Matérn covariances with ν ≥ 1, this procedure does not generate
positive definite covariance functions. This means that the arc-length method can-
not be used for any differentiable Matérn fields. On the other hand, the nested
SPDEs are directly defined on the sphere, and therefore inherently use the arc-
length distance.

There is, in theory, no difference between writing the directional derivative of
X(s) as (P2(l2)

∂
∂l2

+ P3(l2)
∂

∂l1
)X1(s) or B(s)�∇X(s), but the latter is easier to

work with in practice. If a vector field basis is used to model B(s), the process will
not have any singularities as long as the basis functions are nonsingular, which is
the case for the basis used in this paper. If, on the other hand, P2(l2) and P3(l2)

are modeled separately, the process will be singular at the poles unless certain
restrictions on the two functions are met. This fact is indeed noted by Jun and
Stein (2008), but the authors do not seem to take the restrictions into account in the
parameter estimation, which causes all their estimated models to have singularities
at the poles.
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Finally, the nested SPDE models are computationally efficient also for spatially
irregular data, which allowed us to work with the TOMS Level 2 data instead of
the gridded Level 3 data.

6. Concluding remarks. There is a need for computationally efficient sto-
chastic models for environmental data. Lindgren, Rue and Lindström (2010) in-
troduced an efficient procedure for obtaining Markov approximations of, possibly
nonstationary, Matérn fields by considering Hilbert space approximations of the
SPDE (

κ(s)2 − �
)α/2

X(s) = φ(s)W (s).

In this work, the class of nonstationary nested SPDE models generated by (2.8) was
introduced, and it was shown how the approximation methods in Lindgren, Rue
and Lindström (2010) can be extended to this larger class of models. This model
class contains a wider family of covariance models, including both Matérn-like
covariance functions and various oscillating covariance functions. Because of the
additional differential operator L2, the Hilbert space approximations for the nested
SPDE models do not have the Markov structure the model in Lindgren, Rue and
Lindström (2010) has, but all computational benefits from the Markov properties
are preserved for the nested SPDE models using the procedure in Section 4. This
allows us to fit complicated models with over 100 parameters to data sets with
several hundred thousand measurements using only a standard personal computer.

By choosing L2 = b + B�∇ , one obtains a model similar to what Jun and Stein
(2008) used to analyze TOMS Level 3 ozone data, and we used this restricted
nested SPDE model to analyze the global spatially irregular TOMS Level 2 data.
This application illustrates the ability to use the model class to produce nonstation-
ary covariance models on general smooth manifolds which efficiently can be used
to study large spatially irregular data sets.

The most important next step in this work is to make a spatio-temporal extension
of the model class. This would allow us to produce not only spatial but also spatio-
temporal ozone models and increase the applicability of the model class to other
environmental modeling problems where time dependence is a necessary model
component.

APPENDIX: VECTOR SPHERICAL HARMONICS

When using the nonstationary model (2.8) in practice, we assume that the para-
meters in the model can be expressed in terms of some basis functions. If working
on the sphere, spherical harmonics is a convenient basis for the parameters taking
values in R. On real form, the spherical harmonic Yk,m(s) of order k ∈ N0 and
mode m = −k, . . . , k is defined as

Yk,m(s) =
√

2k + 1

4π
· (k − |m|)!
(k + |m|)! ·

⎧⎪⎨
⎪⎩

√
2 sin(ml1)Pk,−m(sin l2), −k ≤ m < 0,

Pk,0(sin l2), m = 0,√
2 cos(ml1)Pk,m(sin l2), 0 < m ≤ k,
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where l2 is the latitude, l1 is the longitude, and Pk,m(·) are associated Legendre
functions. We, however, also need a basis for the vector fields Bi (s), determining
the direction and magnitude of differentiation. Since the vector fields in each point
on the sphere must lie in the tangent space of S

2, the basis functions also must
satisfy this. A basis with this property is obtained by using a subset of the vector
spherical harmonics [Hill (1954)]. For each spherical harmonic Yk,m(s), k > 0,
define the two vector spherical harmonics

ϒ1
k,m(s) = ∇S2Yk,m(s),

ϒ2
k,m(s) = ∇S2Yk,m(s) × s.

Here × denotes the cross product in R
3 and ∇S2 is the gradient on S

2. By defining
the basis in this way, all basis functions in ϒ1 = {ϒ1

k,m} and ϒ2 = {ϒ2
k,m} will

obviously lie in the tangent space of S
2. It is also easy to see that the basis is

orthogonal in the sense that for any k, l > 0, −k ≤ m ≤ k, and −l ≤ n ≤ l, one has

〈ϒ1
k,m,ϒ2

l,n〉S2 = 0,

〈ϒ1
k,m,ϒ1

l,n〉S2 = k(k + 1)δk−lδm−n,

〈ϒ2
k,m,ϒ2

l,n〉S2 = k(k + 1)δk−lδm−n.

These are indeed desirable properties for a vector field basis, but for the basis to
be of any use in practice, a method for calculating the basis functions explicitly is
needed. Such explicit expressions are given in the following proposition.

PROPOSITION A.1. With s = (x, y, z)�, ϒ1
k,m(s) and ϒ2

k,m(s) can be written
as

ϒ1
k,m(s) = 1

1 − z2

⎡
⎣−myYk,−m(s) − ck,mxzYk−1,m(s) + kxz2Yk,m(s)

mxYk,−m(s) − ck,myzYk−1,m(s) + kyz2Yk,m(s)
ck,m(1 − z2)Yk−1,m(s) − (1 − z2)kzYk,m(s)

⎤
⎦ ,

ϒ2
k,m(s) = 1

1 − z2

⎡
⎣ kzyYk,m(s) − ck,myYk−1,m(s) + mzxYk,−m(s)

−kxzYk,m(s) + ck,mxYk−1,m(s) + myzYk,−m(s)
−m(1 − z2)Yk,−m(s)

⎤
⎦ ,

where

ck,m =
√

(2k + 1)(k2 − |m|2)
2k − 1

.

PROOF. One has that ∇S2Yk,m = PS2(∇R3Yk,m), that is, the gradient on S
2

can be obtained by first calculating the gradient in R
3 and then projecting the

result onto S
2. If cm

k denotes the normalization constant for the spherical harmonic
Yk,m(s), and the recursive relation

(1 − z2)
∂

∂z
Pk,m(z) = kzPk,m(z) − (k + m)Pk−1,m(z)
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is used, one has that

∂

∂z
Yk,m(s) = 1

1 − z2

(
kzYk,m(s) − (k + |m|) cm

k

cm
k−1

Yk−1,m(s)
)
.

Now, using that tan(l1) = x−1y, one has

∂l1

∂x
= − cos2(l1)

y

x2 = − y

1 − z2 ,

∂l1

∂y
= cos2(l1)

1

x
= x

1 − z2 ,

where the last equalities hold on S
2. Using these relations gives

∂

∂x
Yk,m(s) = − my

1 − z2 Yk,−m(s),
∂

∂y
Yk,m(s) = mx

1 − z2 Yk,−m(s).

Thus, with

ck,m � (k + |m|) cm
k

cm
k−1

=
√

(2k + 1)(k2 − |m|2)
2k − 1

,

one has that

∇R3Yk,m(s) = 1

1 − z2

⎡
⎣ −myYk,−m(s)

mxYk,−m(s)
kzYk,m(s) − ck,mYk−1,m(s)

⎤
⎦ .

Finally, the desired result is obtained by calculating

ϒ1
k,m = ∇S2Yk,m = PS2∇R3Yk,m,

ϒ2
k,m = ϒ1

k,m × s = S×ϒ1
k,m,

where

PS2 = (I − ss�) =
⎡
⎣ 1 − x2 −xy −xz

−xy 1 − y2 −yz

−xz −yz 1 − z2

⎤
⎦ , S× =

⎡
⎣ 0 −z y

z 0 −x

−y x 0

⎤
⎦ .

�

REFERENCES

ADLER, R. J. (1981). The Geometry of Random Fields. Wiley, New York. MR0611857
BOLIN, D. and LINDGREN, F. (2009). Wavelet Markov approximations as efficient alternatives to

tapering and convolution fields (submitted). Preprints in Math. Sci. 2009:13, Lund Univ.
CRESSIE, N. and JOHANNESSON, G. (2008). Fixed rank kriging for very large spatial data sets.

J. R. Stat. Soc. Ser. B Stat. Methodol. 70 209–226. MR2412639
GELMAN, A., ROBERTS, G. O. and GILKS, W. R. (1996). Efficient Metropolis jumping rules.

Bayesian Stat. 5 599–607. MR1425429

http://www.ams.org/mathscinet-getitem?mr=0611857
http://www.ams.org/mathscinet-getitem?mr=2412639
http://www.ams.org/mathscinet-getitem?mr=1425429


550 D. BOLIN AND F. LINDGREN

GNEITING, T. (1998). Simple tests for the validity of correlation function models on the circle.
Statist. Probab. Lett. 39 119–122. MR1652540

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. H. (2001). The Elements of Statistical Learning.
Springer, New York. MR1851606

HILL, E. L. (1954). The theory of vector spherical harmonics. Amer. J. Phys. 22 211–214.
MR0061226

JUN, M. and STEIN, M. L. (2007). An approach to producing space–time covariance functions on
spheres. Technometrics 49 468–479. MR2394558

JUN, M. and STEIN, M. L. (2008). Nonstationary covariance models for global data. Ann. Appl.
Statist. 2 1271–1289.

LINDGREN, F., RUE, H. and LINDSTRÖM, J. (2010). An explicit link between Gaussian fields and
Gaussian Markov random fields, The SPDE approach (submitted). Preprints in Math. Sci. 2010:3,
Lund Univ.

LINDSTRÖM, J. and LINDGREN, F. (2008). A Gaussian Markov random field model for total yearly
precipitation over the African Sahel. Preprints in Math. Sci. 2008:8, Lund Univ.

MATÉRN, B. (1960). Spatial Variation. Meddelanden från statens skogsforskningsinstitut, Stock-
holm.

MCPETERS, R. D., BHARTIA, P. K., KRUEGER, A. J., HERMAN, J. R., SCHLESINGER, B.,
WELLEMEYER, C. G., SEFTOR, C. J., JAROSS, G., TAYLOR, S. L., SWISSLER, T., TOR-
RES, O., LABOW, G., BYERLY, W. and CEBULA, R. P. (1996). Nimbus-7 Total Ozone Mapping
Spectrometer (TOMS) data products user’s guide. NASA Reference Publication 1384.

RUE, H. and HELD, L. (2005). Gaussian Markov Random Fields. Chapman & Hall/CRC, Boca
Raton, FL. MR2130347

RUE, H., MARTINO, S. and CHOPIN, N. (2009). Approximate Bayesian inference for latent
Gaussian models using integrated nested laplace approximations (with discussion). J. R. Stat.
Soc. Ser. B Stat. Methodol. 71 319–392.

STEIN, M. L. (2007). Spatial variation of total column ozone on a global scale. Ann. Appl. Statist. 1
191–210. MR2393847

THOMAS, G. B. and FINNEY, R. L. (1995). Calculus and Analytic Geometry, 9 ed. Addison Wesley,
New York.

WHITTLE, P. (1963). Stochastic processes in several dimensions. Bull. Inst. Internat. Statist. 40
974–994. MR0173287

YAGLOM, A. M. (1987). Correlation Theory of Stationary and Related Random Functions 1.
Springer, New York.

MATHEMATICAL STATISTICS

CENTRE FOR MATHEMATICAL SCIENCES

LUND UNIVERSITY, BOX 118
SE-22100 LUND

SWEDEN

E-MAIL: bolin@maths.lth.se
finn@maths.lth.se

http://www.ams.org/mathscinet-getitem?mr=1652540
http://www.ams.org/mathscinet-getitem?mr=1851606
http://www.ams.org/mathscinet-getitem?mr=0061226
http://www.ams.org/mathscinet-getitem?mr=2394558
http://www.ams.org/mathscinet-getitem?mr=2130347
http://www.ams.org/mathscinet-getitem?mr=2393847
http://www.ams.org/mathscinet-getitem?mr=0173287
mailto:bolin@maths.lth.se
mailto:finn@maths.lth.se

	Introduction
	Stationary nested SPDE models
	Properties in Rd
	Nonstationary nested SPDE models

	Computationally efficient representations
	Nonstationary fields
	Practical considerations

	Parameter estimation
	Estimating the parameter uncertainty
	Computational complexity

	Application: Ozone data
	Statistical model
	Discussion

	Concluding remarks
	Appendix: Vector spherical harmonics
	References
	Author's Addresses

