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We propose a computationally intensive method, the random lasso
method, for variable selection in linear models. The method consists of two
major steps. In step 1, the lasso method is applied to many bootstrap samples,
each using a set of randomly selected covariates. A measure of importance is
yielded from this step for each covariate. In step 2, a similar procedure to the
first step is implemented with the exception that for each bootstrap sample,
a subset of covariates is randomly selected with unequal selection probabil-
ities determined by the covariates’ importance. Adaptive lasso may be used
in the second step with weights determined by the importance measures. The
final set of covariates and their coefficients are determined by averaging boot-
strap results obtained from step 2. The proposed method alleviates some of
the limitations of lasso, elastic-net and related methods noted especially in
the context of microarray data analysis: it tends to remove highly correlated
variables altogether or select them all, and maintains maximal flexibility in
estimating their coefficients, particularly with different signs; the number of
selected variables is no longer limited by the sample size; and the resulting
prediction accuracy is competitive or superior compared to the alternatives.
We illustrate the proposed method by extensive simulation studies. The pro-
posed method is also applied to a Glioblastoma microarray data analysis.

1. Introduction. Suppose the training data set consists of n observations
(x1, y1), . . . , (xi , yi), . . . , (xn, yn), where xi = (xi1, . . . , xip)′ is a p-dimensional
vector of predictors and yi is the response variable. We consider the following
linear model in this article:

yi = β1xi1 + · · · + βpxip + εi,(1.1)

where εi is the error term with mean zero. We assume that the response and the pre-
dictors are mean-corrected, so we can exclude the intercept term from model (1.1).

Our motivating application comes from the area of microarray data analysis
[Horvath et al. (2006)], which embodies some of the properties of the model (1.1)
in many modern applications:
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1. In a typical microarray study, the sample size n is usually on the order of 10s,
while the number of genes p is on the order of 1000s or even 10,000s. For example,
in the glioblastoma microarray gene expression study of Horvath et al. (2006), the
sample sizes of the two data sets are 55 and 65, respectively, while the number of
genes considered in their analysis is 3600.

2. Microarray data analysis typically combines predictive performance and
model interpretation as its goals: one seeks models which explain the phenotype
of interest well, but also identify genes, pathways, etc. that might be involved in
generating this phenotype.

Shrinkage in general, and variable selection in particular, feature prominently
in such applications. Significantly decreasing the number of variables used in the
model from the original 1000’s to a more manageable number by identifying the
most useful and predictive ones usually facilitates both improved accuracy and
interpretation.

Variable selection has been studied extensively in the literature; see Breiman
(1995), Tibshirani (1996), Fan and Li (2001), Zou and Hastie (2005) and Zou
(2006), among many others. In particular, the lasso method proposed by Tibshirani
(1996) has gained much attention in recent years.

The lasso criterion penalizes the L1-norm of the regression coefficients:

min
β

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj |,(1.2)

where λ is a nonnegative tuning parameter. Owing to the singularity of the deriva-
tive of L1-norm penalty at βj = 0, lasso continuously shrinks the estimated coef-
ficients toward zero, and some estimated coefficients will be exactly zero when λ

is sufficiently large.
Although lasso has shown success in many situations, it has two limitations in

practice [Zou and Hastie (2005)]:

1. When the model includes several highly correlated variables, all of which
are related to some extent to the response variable, lasso tends to pick only one
or a few of them and shrinks the rest to 0. This may not be a desirable feature.
For example, in microarray analysis, expression levels of genes that share one
common biological pathway are usually highly correlated, and these genes may
all contribute to the biological process, but lasso usually selects only one gene
from the group. An ideal method should be able to select all relevant genes, highly
correlated or not, while eliminating trivial genes.

2. When p > n, lasso can identify at most only n variables before it saturates.
This again may not be a desirable feature for many practical problems, particularly
microarray studies, for it is unlikely that only such a small number of genes are
involved in the development of a complex disease. A method that is able to identify
more than n variables should be more desirable for such problems.
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Several methods have been proposed recently to alleviate these two possible
limitations of lasso mentioned above, including the elastic-net [Zou and Hastie
(2005)], the adaptive lasso [Zou (2006)], the relaxed lasso [Meinshausen (2007)]
and VISA [Radchenko and James (2008)]. In particular, Zou and Hastie (2005)
proposed the elastic-net method, a penalized regression with the mixture of the
L1-norm and the L2-norm penalties of the coefficients:

min
β

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ1

p∑
j=1

|βj | + λ2

p∑
j=1

β2
j ,(1.3)

where λ1 and λ2 are two nonnegative tuning parameters. Similar to lasso, the
elastic-net method also simultaneously does automatic variable selection and con-
tinuous shrinkage. Due to the nature of the L2-norm penalty, that is, the ridge
regression penalty, the number of selected variables is no longer limited by the
sample size. However, the ridge penalty forces the estimated coefficients of highly
correlated predictors to be close to each other. This feature helps to select or re-
move highly correlated variables altogether if their coefficients are truly close to
each other, but it loses the ability of estimating coefficients of highly correlated
variables with different magnitudes, particularly with different signs, which is not
rare in practical problems. As a simple illustrative example, eggs are rich in both
protein and cholesterol that have quite different effects to human health. When
we consider the impact of egg consumption to human health, we have two highly
correlated variables with opposite effects. In this scenario, forcing the estimated
coefficients of protein and cholesterol to be the same will cause big biases, and is
not expected to have adequate prediction performance.

Another modification of the lasso method is the adaptive lasso proposed by Zou
(2006), which penalizes the weighted L1-norm of the regression coefficients:

min
β

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

wj |βj |,(1.4)

where wj = |β̂ols
j |−r for a constant r > 0, and β̂ols

j is the classical ordinary least
squares (OLS) estimator for βj . Adaptive lasso possesses some nice asymptotic
properties that lasso does not have. When p is fixed, n tends to ∞ and λ ap-
proaches zero with a certain rate, Zou (2006) has shown that the adaptive lasso ap-
proach selects the true underlying model with probability tending to one, and the
corresponding estimated coefficients have the same asymptotic normal distribution
as they would have if the true underlying model were provided in advance. This is
called the “oracle” property by Fan and Li (2001), a property of super-efficiency.
Although adaptive lasso has nice asymptotic properties, its finite sample perfor-
mance does not always dominate lasso because it heavily depends on the precision
of the OLS estimation. In his Table 2, Zou [(2006), page 1424] presented that the
prediction performance of adaptive lasso can be worse than lasso when the OLS
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estimation is more variable. In practice, adaptive lasso suffers (sometimes more
severely than lasso) from the multicollinearity caused by large correlations among
covariates because OLS estimates are very unstable in this situation. In addition,
due to the intrinsic constraint of the L1-norm penalty, the number of variables
selected by adaptive lasso cannot exceed n.

In this article we propose a novel extension of the lasso method, which we
call the random lasso method. The proposed method can handle highly correlated
variables in a more flexible manner than elastic-net, especially when their effects
have different magnitudes and signs, and also can select more variables than the
sample size. Our experiments below demonstrate that the combination of variable
selection quality, estimation accuracy, and prediction quality offered by the random
lasso is consistently competitive with, and often significantly superior, to those of
all the approaches mentioned above. The main price one pays for using the random
lasso, however, is in significantly increased computational complexity.

The rest of the paper is organized as follows. We introduce the proposed random
lasso method in Section 2, and demonstrate the method using simulation studies
in Section 3. In Section 4 we analyze a real data example, and in Section 5 we
provide a summary of the proposed method.

2. Random lasso. As mentioned above, one of the limitations of lasso is that
it can select only one or a few of a set of highly correlated important variables.
If several independent data sets were generated from the same distribution, then
we would expect lasso to select nonidentical subsets of those highly correlated
important variables from different data sets, and our final collection may be most,
or perhaps even all, of those highly correlated important variables by taking a union
of selected variables from different data sets. Such a process may yield more than n

variables, overcoming the other limitation of lasso.
In practice, however, we have only a single data set at hand, and splitting the

available data set into small pieces is not an efficient way of using data. The boot-
strap may yield desirable perturbations similar to that of multiple data sets. Be-
cause each bootstrap sample may include only a subset of the highly correlated
variables, the bootstrap has the ability to break down some of the correlations.
Hence, for each bootstrap sample, we can randomly select q candidate variables,
with q ≤ p. This becomes the basic idea of the proposed random lasso approach
that has a similar flavor to the random forest method; see Breiman (2001). We
also acknowledge that Park and Hastie (2008) proposed using bootstrap to pro-
vide a measure of how likely the predictors were to be selected and examine what
other predictors could have been preferred. An obvious idea is to build on Park
and Hastie’s idea to construct a complete predictive modeling tool which may be
termed “Bagged Lasso.” Our algorithm may be considered a more evolved and
“adaptive” version of this idea. In the experiments below we discuss the effects of
this added complexity on performance.
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Our proposed algorithm is a two-step approach and is described below. In each
step, bootstrap samples are drawn to yield the desired perturbation similar to that
of multiple data sets. To give the method the most flexibility, we allow different
numbers of randomly selected variables to be included in the model, that is, q1
candidate variables are randomly selected in each bootstrap sample of the first
step, and q2 candidate variables are randomly selected in each bootstrap sample of
the second step, where q1 and q2 are treated as two tuning parameters that can be
chosen as large as p.

ALGORITHM (“Generate” and “Select”). Step 1. Generating importance mea-
sures for all coefficients:

1a. Draw B bootstrap samples with size n by sampling with replacement from
the original training data set.

1b. For the b1th bootstrap sample, b1 ∈ {1, . . . ,B}, randomly select q1 can-
didate variables, and apply lasso to obtain estimators β̂

(b1)
j for βj , j = 1, . . . , p.

Estimators are zero for coefficients of those unselected variables, either outside the
subset of q1 variables, or excluded by lasso.

1c. Compute the importance measure of xj by Ij = |B−1 ∑B
b1=1 β̂

(b1)
j |.

Step 2. Selecting variables.

2a. Draw another set of B bootstrap samples with size n by sampling with
replacement from the original training data set.

2b. For the b2th bootstrap sample, b2 ∈ {1, . . . ,B}, randomly select q2 candi-
date variables with selection probability of xj proportional to its importance Ij

obtained in step 1c, and apply lasso (or adaptive lasso) to obtain estimators β̂
(b2)
j

for βj , j = 1, . . . , p. Estimators are zero for coefficients of those unselected vari-
ables, either outside the subset of q2 variables, or excluded by lasso.

2c. Compute the final estimator β̂j of βj by β̂j = B−1 ∑B
b2=1 β̂

(b2)
j .

In step 1c, we would like to generate an importance score for each predictor
to assist variable selection and coefficient estimation in the second step. The av-
erage coefficient for each predictor over all bootstrap samples is our choice as an
importance score. The intuition is that, for an unimportant variable, the estimated
coefficients in different bootstrap samples are likely to be small or even have dif-
ferent signs, so the corresponding average will typically be close to zero. For an
important variable, however, the estimated coefficients in different bootstrap sam-
ples are likely to be consistently large, and the corresponding average is also large.
Therefore, we choose the absolute value of the average as the importance score for
each predictor.

In step 2b, there are several choices of weights if adaptive lasso is applied, for
example,

wj = 1/|β̂ols
j |r , wj = 1/|β̂ridge

j |r or wj = 1/|β̂uni
j |r ,



RANDOM LASSO 473

where β̂ols
j is the OLS estimator (if p < n), β̂

ridge
j is the ridge regression estima-

tor, β̂uni
j is the univariate estimator, and r is a positive number. Instead, we use

importance measures obtained in step 1 as the weights for adaptive lasso in our
numerical examples and find it works well.

In practice, we need to choose the number of bootstrap samples B , the number
of candidate variables to be included in each bootstrap sample q1 and q2, and
the tuning parameter λ for (adaptive) lasso to each bootstrap sample. Based on
our experience, our algorithm performs similarly when B is large. One can take
B = 500 or B = 1000, for example. We can use cross-validation (CV) to select q1
and q2, and either CV or generalized cross-validation (GCV) to select λ. In the
following simulations, we use independent validation data sets.

3. Simulation studies. In this section we use simulations to demonstrate the
proposed random lasso method, and compare to a large collection of other meth-
ods. Data are generated from model (1.1) with xij ∼ N(0,1) and εi ∼ N(0, σ 2).

Five examples are considered. Examples 1 and 2 were used in the lasso paper by
Tibshirani (1996), the adaptive lasso paper by Zou (2006), and the elastic-net paper
by Zou and Hastie (2005). In Examples 3 and 4, the coefficients of some highly
correlated variables have different signs. In Example 5 the number of variables
with nonzero coefficients is larger than the sample size. The following are the
details of the five examples.

EXAMPLE 1. There are p = 8 variables. The pairwise correlation between xj1

and xj2 is set to be ρ(j1, j2) = 0.5|j1−j2|. We let

β = (3,1.5,0,0,2,0,0,0).

Following Zou (2006), we consider three values of σ : σ ∈ {1,3,6}. The corre-
sponding signal-to-noise ratios (SNR) are 21.3, 2.4 and 0.6, respectively, where
the SNR is defined as Var(X′β)/Var(ε).

EXAMPLE 2. We use the same model in Example 1 but with βj = 0.85 for
all j . We also consider the same three values of σ as in Example 1. The corre-
sponding signal-to-noise ratios (SNR) are 14.5, 1.6 and 0.4, respectively.

EXAMPLE 3. There are p = 40 variables. The first 10 coefficients are nonzero.
The correlation between each pair of the first 10 variables is set to be 0.9. The
remaining 30 variables are independent with each other, and also independent with
the first 10 variables. We let

β = (3,3,3,3,3,−2,−2,−2,−2,−2,0, . . . ,0),

and σ = 3. The SNR is about 3.2.
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EXAMPLE 4. There are p = 40 variables. The first six coefficients are
nonzero. The pairwise correlation between the first three variables is set to be 0.9,
and the same correlation structure is also set for the second three variables. The
remaining 34 variables are independent from each other. The first three variables,
the second three variables, and the remaining 34 variables are independent from
each other. We let

β = (3,3,−2,3,3,−2,0, . . . ,0),

and σ = 6. The SNR is about 0.9.

EXAMPLE 5. There are p = 120 variables. The first 60 coefficients are
nonzero and drawn from N(3,0.5), and their values are then fixed for all simu-
lation runs. The remaining 60 coefficients are set to be zero. The covariate matrix
is generated from a multivariate normal distribution with zero mean and covariance
matrix as ⎛

⎜⎜⎜⎝
�0 0 0 0
0 �0 0.2J 0
0 0.2J �0 0
0 0 0 �0

⎞
⎟⎟⎟⎠ ,

where �0 is a 30 × 30 matrix with unit diagonal elements and off-diagonal ele-
ments of value 0.7, and J is a 30 × 30 matrix with all unit elements.

For Examples 1–4, we consider two sample sizes: n = 50 and n = 100. For
Example 5, since the purpose is to study the performance of methods under the
situation with p > n, we consider only sample size n = 50. For each example,
we also generate a validation data set with the same sample size as the training
data set. Models are fitted on training data only, and the validation data are used
for selecting the tuning parameters that minimize the prediction error within their
context respectively. Regarding the number of bootstrap samples, we used B =
200. We also tried B = 500; the results are similar to those of B = 200.

We calculate the relative model error (RME) given below to evaluate the pre-
diction performance of each predictive model. Suppose that the fitted coefficient
vector is β̂ and the true coefficient vector is β0, then the relative model error is
defined as follows:

Relative Model Error = (β̂ − β0)′�(β̂ − β0)/σ 2,

where � is the covariance matrix of the predictors, and σ is the standard deviation
of the error term in model (1.1).

We repeat the simulation 100 times and compute the average of RMEs and their
standard errors. We also record how frequently each variable is selected during the
100 simulations. For the variable selection of random lasso, since the final esti-
mator is the average over all bootstrap samples, it is very easy for a variable to
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have a nonzero coefficient if it has a nonzero coefficient in any particular boot-
strap sample. So it is a little unfair to use zero or nonzero as the variable selection
criterion for random lasso. In this paper we introduce a threshold tn, and con-
sider a variable xj to be selected, only if the corresponding coefficient |β̂j | > tn.
In the following simulation studies, we chose tn = 1/n, where n is the sample
size of the training data. We compare the performance in prediction accuracy and
variable selection frequency of random lasso with the following methods: OLS,
lasso, adaptive lasso, elastic-net and two other recently developed methods: re-
laxed lasso [(Meinshausen (2007)] and VISA [Redchenko and James (2008)]. In
Example 5, since n < p, the OLS estimator is not unique, so we fitted ridge regres-
sion, and used the inverse of the absolute value of the ridge regression estimator as
the weight for adaptive lasso. Results are summarized in Tables 1 and 2.

As we can see from Table 1, shrinkage methods perform much better than
OLS in most cases. This illustrates that some regularization is crucial in achieving
higher prediction accuracy. We also see that random lasso has competitive RMEs
with all other methods in Examples 1 and 2, except perhaps when compared to
elastic-net on Example 2. However, one should keep in mind that Example 2 repre-
sents the motivating setup for the elastic-net and, thus, this result is not surprising.
Random lasso has consistently smaller RMEs than all other regularization methods
in Examples 3–5. It also has the highest important variable selection frequency (see
Table 2). In fact, random lasso selects most of the important variables all the time.
It also has competitive performance in removing unimportant variables compared
to other methods in Examples 1, 3 and 4. In Example 5 random lasso selects more
unimportant variables than other methods, but it also selects almost all important
variables while other methods perform poorly on this aspect.

It is interesting to compare the elastic net and the random lasso in terms of the
signs of the estimated nonzero coefficients of the important variables in Exam-
ples 3 and 4. In these two examples, the important variables are highly correlated
but with different signs. The result is summarized in Tables 4 and 5. We can see
that random lasso has much better performance in estimating correct signs for truly
negative coefficients, and much smaller estimation bias than the elastic net method.

For random lasso, the q1 and q2 selection can be crucial. For Examples 1 and 2,
we select the optimal q1 and q2 based on the validation data set among values 2, 4,
6 and 8, for Examples 3 and 4, we select the optimal q1 and q2 among values 4, 8,
12, 16, 20, 24 and 28, and for Example 5, we select the optimal q1 and q2 among
values 5, 10, 15, 20 and 25. We also summarize the frequency for the selected
q1 and q2 in Examples 1 and 2 with sample size n = 50 (see Table 3). From the
last columns and the last rows of the six sub-tables, we can see that random lasso
prefers a smaller number of predictors in both the first stage and the second stage
of the algorithm, as σ becomes larger (correspondingly, the signal-to-noise ratio
is smaller). This illustrates that the random subset selection of variables in each
bootstrap sample can be helpful, when the signal-to-noise ratio is small.
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TABLE 1
1000× Average relative model errors of different methods for all five examples

OLS Lasso ALasso Enet Relaxo VISA RLasso

Example 1
n = 50 σ = 1 212 131 92 132 88 91 82

(13) (9) (8) (9) (7) (8) (7)
σ = 3 219 146 141 140 101 97 105

(11) (9) (9) (9) (7) (7) (7)
σ = 6 201 119 131 104 117 115 96

(11) (6) (7) (6) (7) (7) (6)
n = 100 σ = 1 89 59 37 59 35 36 34

(6) (4) (3) (4) (3) (3) (3)
σ = 3 90 59 48 58 38 39 43

(5) (4) (4) (4) (3) (3) (3)
σ = 6 89 56 59 49 50 50 42

(5) (5) (5) (4) (5) (5) (3)
Example 2
n = 50 σ = 1 218 211 229 181 – 210 217

(13) (12) (13) (10) – (12) (12)
σ = 3 202 171 200 140 – 180 167

(10) (8) (10) (8) – (9) (8)
σ = 6 203 127 158 111 – 144 112

(12) (5) (7) (6) – (7) (4)
n = 100 σ = 1 82 84 90 77 – 81 88

(4) (4) (4) (4) – (4) (4)
σ = 3 91 87 92 74 – 95 81

(5) (5) (5) (4) – (6) (7)
σ = 6 87 69 85 58 – 73 112

(4) (4) (5) (4) – (4) (4)
Example 3
n = 50 5259 666 613 562 608 610 299

(313) (15) (17) (12) (13) (16) (11)
n = 100 680 505 313 471 487 487 132

(20) (11) (11) (10) (11) (11) (6)
Example 4
n = 50 4913 233 216 203 155 152 126

(323) (11) (12) (10) (9) (9) (5)
n = 100 706 144 122 115 100 98 70

(25) (6) (5) (5) (5) (5) (36)
Example 5
n = 50 174 394 470 241 395 421 227

(9) (12) 11 (11) (11) (12) (11)

Notes: ALasso—the adaptive lasso estimator; Enet—elastic net; RLasso—random lasso. The num-
bers in the parentheses are the corresponding 1000× standard errors. In each row, we mark the best
performing method in bold and the second best in italics.
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TABLE 2
Variable selection frequencies (%) of different methods for all five examples

Lasso ALasso Enet Relaxo VISA RLasso

Example 1
n = 50

IV (σ = 1) (100, 100, 100) (100, 100, 100) (100, 100, 100) (100, 100, 100) (100, 100, 100) (100, 100, 100)
UV (σ = 1) (46, 58, 64) (23, 27, 38) (46, 59, 64) (10, 15, 19) (11, 17, 20) (28, 33, 44)
IV (σ = 3) (99, 100, 100) (95, 99, 100) (100, 100, 100) (93, 100, 100) (97, 100, 100) (99, 100, 100)
UV (σ = 3) (48, 55, 61) (33, 40, 48) (44, 55, 69) (11, 18, 21) (15, 21, 24) (45, 57, 68)
IV (σ = 6) (76, 85, 99) (62, 76, 96) (85, 92, 100) (60, 70, 98) (61, 72, 98) (92, 94, 100)
UV (σ = 6) (47, 49, 53) (32, 36, 38) (43, 51, 70) (15, 19, 21) (15, 19, 24) (40, 48, 58)

n = 100
IV (σ = 1) (100, 100, 100) (100, 100, 100) (100, 100, 100) (100, 100, 100) (100, 100, 100) (100, 100, 100)
UV (σ = 1) (54, 59, 64) (27, 27, 32) (53, 60, 63) (13, 16, 25) (14, 20, 25) (19, 29, 38)
IV (σ = 3) (100, 100, 100) (100, 100, 100) (100, 100, 100) (100, 100, 100) (100, 100, 100) (100, 100, 100)
UV (σ = 3) (45, 51, 57) (22, 30, 32) (44, 55, 67) (6, 13, 17) (13, 18, 19) (36, 47, 56)
IV (σ = 6) (96, 99, 100) (86, 99, 100) (99, 99, 100) (90, 93, 100) (90, 93, 100) (100, 100, 100)
UV (σ = 6) (47, 57, 63) (36, 40, 47) (42, 63, 68) (11, 23, 25) (11, 25, 27) (37, 54, 61)

Example 2
n = 50

IV (σ = 1) (100, 100, 100) (100, 100, 100) (100, 100, 100) – (100, 100, 100) (100, 100, 100)
IV (σ = 3) (89, 92, 96) (88, 90, 96) (92, 96, 99) – (83, 88, 90) (98, 99, 99)
IV (σ = 6) (69, 72, 76) (55, 60, 68) (72, 78, 88) – (50, 54, 65) (83, 89, 95)

n = 100
IV (σ = 1) (100, 100, 100) (100, 100, 100) (100, 100, 100) – (100, 100, 100) (100, 100, 100)
IV (σ = 3) (95, 97, 100) (96, 97, 100) (98, 99, 100) – (92, 95, 97) (99, 100, 100)
IV (σ = 6) (81, 86, 89) (78, 81, 85) (72, 78, 88) – (50, 55, 65) (83, 89, 95)
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(Continued)

Lasso ALasso Enet Relaxo VISA RLasso

Example 3
n = 50

IV (4, 35, 70) (19, 38, 62) (20, 60, 95) (3, 29, 61) (2, 28, 60) (93, 98, 100)
UV (14, 20, 30) (6, 11, 18) (6, 13, 18) (7, 9, 15) (4, 7, 14) (10, 17, 24)

n = 100
IV (45, 69, 95) (68, 82, 93) (51, 76, 99) (39, 62, 88) (38, 62, 88) (98, 99, 99)
UV (43, 52, 55) (15, 21, 31) (29, 35, 40) (27, 36, 42) (27, 37, 43) (22, 30, 37)

Example 4
n = 50

IV (11, 70, 77) (16, 49, 59) (63, 92, 96) (4, 63, 70) (4, 62, 73) (84, 96, 97)
UV (12, 17, 25) (4, 8, 14) (9, 17, 23) (0, 4, 9) (1, 3, 8) (11, 21, 30)

n = 100
IV (8, 84, 88) (17, 62, 72) (70, 98, 99) (3, 75, 84) (3, 76, 85) (89, 99, 99)
UV (12, 22, 31) (4, 10, 14) (7, 14, 21) (1, 3, 8) (1, 4, 9) (8, 14, 21)

Example 5
IV (19, 30, 40) (15, 25, 35) (40, 50, 61) (14, 23, 34) (16, 27, 35) (76, 86, 95)
UV (3, 8, 14) (0, 7, 11) (1, 5, 8) (0, 3, 8) (0, 2, 8) (18, 29, 38)

Notes: Since OLS always includes all variables, it is excluded from the comparison. IV—important variables; UV—unimportant variables. The three
numbers in each pair of parentheses are the min, median, and max of selection frequencies among all important or unimportant variables, respectively.
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TABLE 3
Frequencies (%) of the selected q1 and q2 for Examples 1 and 2

q2 = 2 q2 = 4 q2 = 6 q2 = 8 Total

Example 1: n = 50
σ = 1

q1 = 2 0 0 3 9 12
q1 = 4 0 2 3 8 13
q1 = 6 0 2 8 9 19
q1 = 8 0 7 21 28 56
Total 0 11 35 54 100

σ = 3
q1 = 2 0 9 11 18 38
q1 = 4 0 2 10 10 22
q1 = 6 0 0 7 5 12
q1 = 8 0 1 12 15 28
Total 0 12 40 48 100

σ = 6
q1 = 2 8 22 15 17 62
q1 = 4 2 1 5 7 15
q1 = 6 0 1 6 6 13
q1 = 8 0 0 5 5 10
Total 10 24 31 35 100

Example 2: n = 50
σ = 1

q1 = 2 0 0 4 39 43
q1 = 4 0 0 1 30 31
q1 = 6 0 0 0 15 15
q1 = 8 0 0 1 10 11
Total 0 0 6 94 100

σ = 3
q1 = 2 0 10 24 28 62
q1 = 4 0 1 2 11 14
q1 = 6 0 0 0 12 12
q1 = 8 0 0 1 11 12
Total 0 11 27 62 100

σ = 6
q1 = 2 2 23 27 18 70
q1 = 4 0 1 2 5 8
q1 = 6 0 0 4 8 12
q1 = 8 0 0 4 6 10
Total 2 24 37 37 100

It should be noted that we also experimented with “Bagged Lasso” (that is, a
1-step bootstrap approach with q = p) on all simulations. The results were reason-
able and, in fact, very similar to the elastic net results on all setups. However, since
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TABLE 4
Coefficient and coefficient sign estimation of elastic net and random lasso for Example 3

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

True coef. 3 3 3 3 3 −2 −2 −2 −2 −2

Enet (n = 50)
Ave. of est. 1.03 1.06 0.91 1.04 0.98 −0.05 −0.03 −0.03 0.01 0.04

(0.07) (0.07) (0.06) (0.08) (0.07) (0.06) (0.04) (0.05) (0.03) (0.02)
Freq. (%) of pos. sgn. 94 91 92 95 91 23 16 17 19 27
Freq. (%) of neg. sgn. 0 0 0 0 0 5 6 3 4 1

RLasso (n = 50)
Ave. of est. 1.84 2.01 1.75 1.81 1.84 −0.84 −0.89 −0.88 −0.91 −0.83

(0.12) (0.12) (0.12) (0.11) (0.11) (0.09) (0.07) (0.07) (0.07) (0.07)
Freq. (%) of pos. sgn. 98 99 96 98 100 9 4 4 7 2
Freq. (%) of neg. sgn. 2 0 2 2 0 88 95 93 93 97

Enet (n = 100)
Ave. of est. 1.42 1.54 1.47 1.43 1.61 −0.53 −0.52 −0.47 −0.38 −0.52

(0.10) (0.09) (0.10) (0.09) (0.11) (0.09) (0.09) (0.09) (0.07) (0.09)
Freq. (%) of pos. sgn. 98 99 98 97 98 15 20 17 17 19
Freq. (%) of neg. sgn. 0 0 0 0 0 37 34 33 34 35

RLasso (n = 100)
Ave. of est. 2.33 2.51 2.45 2.31 2.48 −1.51 −1.35 −1.46 −1.33 −1.41

(0.09) (0.09) (0.09) (0.08) (0.09) (0.07) (0.06) (0.07) (0.06) (0.07)
Freq. (%) of pos. sgn. 99 99 99 98 99 1 0 1 1 0
Freq. (%) of neg. sgn. 0 0 0 0 0 98 99 98 98 99
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TABLE 5
Coefficient and coefficient sign estimation of elastic net and random lasso for Example 4

β1 β2 β3 β4 β5 β6

True coef. 3 3 −2 3 3 −2

Enet (n = 50)
Ave. of est. 1.30 1.44 0.51 1.75 1.47 0.74

(0.07) (0.08) (0.06) (0.09) (0.07) (0.07)
No. of pos. sgn. 92 94 63 96 92 70
No. of neg. sgn. 0 0 0 0 0 1

RLasso (n = 50)
Ave. of est. 1.85 1.68 −0.17 2.01 1.89 −0.17

(0.12) (0.13) (0.07) (0.14) (0.13) (0.09)
No. of pos. sgn. 98 90 33 91 96 38
No. of neg. sgn. 1 7 65 5 2 57

Enet (n = 100)
Ave. of est. 1.57 1.57 0.54 1.69 1.67 0.61

(0.06) (0.07) (0.05) (0.06) (0.06) (0.05)
No. of pos. sgn. 97 98 69 98 99 72
No. of neg. sgn. 0 0 0 0 0 0

RLasso (n = 100)
Ave. of est. 2.25 1.91 −0.57 2.28 2.08 −0.55

(0.06) (0.07) (0.05) (0.06) (0.06) (0.05)
No. of pos. sgn. 99 97 17 100 99 15
No. of neg. sgn. 0 2 81 0 0 83

these results are clearly inferior overall to the random lasso, we chose to eliminate
them to avoid clutter.

4. Glioblastoma gene expression data analysis. We analyze the data from a
glioblastoma microarray gene expression study conducted by Horvath et al. (2006)
by using the proposed random lasso method and compare with the lasso, adaptive
lasso, relaxed lasso, elastic-net and VISA methods.

Glioblastoma is the most common primary malignant brain tumor of adults and
one of the most lethal of all cancers. Patients with this disease have a median
survival of 15 months from the time of diagnosis despite surgery, radiation, and
chemotherapy. Global gene expression data from two independent sets of clinical
tumor samples of n = 55 and n = 65 are obtained by high-density Affymetrix
arrays. Expression values of 3600 genes are available. Among the first set of 55
patients, five were alive at the last followup and four were alive in the second set.
In our analysis, we exclude these nine censored subjects, and use the logarithm of
time to death as the response variable. The first data set is used as the training set
and the second data set as the test set.
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We first assess each of the 3600 genes by running simple linear regression on
the training set, and then select 1000 genes with the smallest p-values. Starting
with these 1000 genes, we fit a linear regression model by the proposed random
lasso method on the training set, and select 58 genes. Table 7 lists the gene symbol
and estimated coefficient for each of these 58 genes. The model with these selected
58 genes is then used to predict the log-survival times for subjects in the test set.
We also analyze the data using other lasso-related methods starting with the same
1000 genes on the training set and evaluate obtained models using the test set.

Table 6 shows the number of genes selected by each of these six methods in the
training set and corresponding mean prediction error in the test set. We can see
that random lasso has the smallest prediction error. It also selects more genes than
the other five methods. Among the 58 genes selected by random lasso, 7 genes
are also selected by lasso, adaptive lasso, relaxed lasso, VISA and elastic-net (for
adaptive lasso, the adaptive weights were calculated using ridge regression).

Several genes identified by the proposed method are of interest. VSNL1, RGS3
and S100A4 are identified to be negatively associated with the patients’ survival.
VSNL1 is a member of the visinin/recoverin subfamily of neuronal calcium sen-
sor proteins. The encoded protein is strongly expressed in granule cells of the
cerebellum where it associates with membranes in a calcium-dependent manner
and modulates intracellular signaling pathways of the central nervous system by
directly or indirectly regulating the activity of adenylyl cyclase. A previous study
[Xie et al. (2007)] has demonstrated that VSNL1 plays a very important role in
neuroblastoma metastasis, and VSNL1 mRNA in highly invasive cells is signif-
icantly higher than that in lowly invasive cells. RGS3 encodes a member of the
regulator of the G-protein signaling (RGS) family. This protein is a GTP-ase acti-
vating protein which inhibits G-protein mediated signal transduction. Tatenhorst et
al. (2004) demonstrated that glioma cell clones overexpressing RGS3 showed an
increase of both adhesion and migration. S100A4 encodes a member of the S100
family of proteins, which are localized in the cytoplasm and/or nucleus of a wide
range of cells, and involved in the regulation of a number of cellular processes
such as cell cycle progression and differentiation. It is conjectured that the pro-
tein encoded by S100A4 may function in motility, invasion, and metastasis [Zou

TABLE 6
Analysis of the glioblastoma data set

Method No. of genes selected Mean prediction error

Lasso 29 1.118 (0.205)
Adaptive lasso 33 1.143 (0.211)
Relaxed lasso 23 1.054 (0.194)
Elastic-net 28 1.113 (0.204)
VISA 15 0.997 (0.188)
Random lasso 58 0.950 (0.210)
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TABLE 7
Gene symbol and estimated coefficient for each of the 58 genes selected by random lasso based on

50 subjects in the training set

Gene symbol Estimated coefficients Gene symbol Estimated coefficients

VSNL1 −3.839 KIAA0194 −0.039
SNAP25 −1.561 MOBP −0.033
UBE2D3 −0.382 PTGDS −0.028
ARF4 −0.341 KIF5A −0.024
CSNK1A1 −0.319 GORASP2 −0.021
C13orf11 −0.312 ME2 −0.019
CHGA −0.310 CGI-141 −0.019
C11orf24 −0.223 p25 −0.017
OPTN −0.221 UGT8 −0.016
UNC84B −0.176 CKMT1 −0.014
S100A1 −0.157 KIF1A −0.013
KCNS1 −0.155 KCNAB2 −0.012
NPY −0.124 C3orf4 −0.011
TIP-1 −0.107 DNASE1L1 −0.011
FAIM2 −0.086 RNF44 0.011
FSTL3 −0.074 ATP6V1B2 0.012
NEFH −0.072 POLR3E 0.012
CTSK −0.071 LIN7C 0.014
RGS3 −0.071 GBP2 0.015
PGCP −0.070 CSF1R 0.018
FLJ20254 −0.059 JIK 0.019
ANXA2 −0.053 — 0.019
FLJ11155 −0.052 C1S 0.026
P2RX4 −0.049 ARHGAP15 0.040
GPNMB −0.044 PPM1H 0.063
ICAM5 −0.043 MARK4 0.071
ADIPOR1 −0.043 HPCAL4 0.196
BSCL2 −0.042 SULT4A1 0.785
AMBP −0.042 BSN 2.662

et al. (2005)]. VSNL1, RGS3 and S100A4 were also identified to be related to
the poor survival of brain tumor patients in Freije et al. (2004). BSN is identified
to be positively associated with the patients’ survival. This gene is expressed pri-
marily in neurons in the brain, and the protein encoded by this gene is thought to
be a scaffolding protein involved in organizing the presynaptic cytoskeleton. Ad-
ditional studies will be required to establish the direct relationships between the
expression of these genes and the Glioblastoma tumor behavior.

It is also interesting to observe that estimated coefficients of VSNL1 and BSN
(−3.839 and 2.662, resp.) have different signs, but the correlation between the
expression levels for these two genes in the training set is very high (ρ = 0.96).
Neither lasso nor elastic-net picked up these two genes. It is worth conducting



484 WANG ET AL.

more detailed experiments to further explore the connection between VSNL1 and
BSN, and their relations to the Glioblastoma tumor behavior.

5. Conclusion. We have proposed the random lasso method for variable se-
lection. The idea of random lasso is mimicking the random forest method [Breiman
(2001)] for linear regression models. By drawing bootstrap samples from the orig-
inal training set and randomly selecting candidate variables, the average of the
predictive models based on multiple bootstrap samples alleviates two possible lim-
itations of lasso. It tends to select or remove highly correlated variables more effi-
ciently and has more flexibility in estimating their coefficients than the elastic-net
method. The number of variables selected by random lasso is not limited by the
sample size. Simulation studies show that the proposed random lasso method has
good prediction performance compared to a large set of competitor approaches,
and the analysis of Glioblastoma microarray data set demonstrates the usefulness
of the proposed method in practice.
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