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Blakeley B. McShane and Abraham J. Wyner (hereafter, MW2011) find that,
under certain scenarios and using the LASSO to fit regression models, randomly
generated series are as predictive of past climate as the commonly used proxies
(MW2011, Figure 9). They conclude that “the proxies do not predict temperature
significantly better than random series generated independently of temperature,”
a claim that has already been reproduced in the popular press [The Wall Street Jour-
nal (2010)]. If this assertion is correct, then MW2011 have undermined all efforts
to reconstruct past climate, which are based on the fundamental assumption that
natural proxies are predictive of past climate. I disagree with MW2011’s conclu-
sion and provide an alternative explanation: the LASSO, as applied in MW2011,
is simply not an appropriate tool for reconstructing paleoclimate.

To shed light on the MW2011 results, I turn to an experiment with surrogate data
[Tingley (2011)]. The “target” time series, analogous to the Northern Hemisphere
mean temperature time series in MW2011, is the sum of a simple linear trend and
an AR(1) process, y(t) = 0.25 · t + ε(t), t = 1, . . . ,149. The AR(1) coefficient in
the ε process is 0.4, and the variance of the innovations is 1. I then generate 1138
“pseudo-proxy” time series by adding white noise to this target series. The signal
to noise ratio (SNR) of these pseudo-proxies, expressed as the ratio of the standard
deviation of the target time series to that of the additive white noise, will take on
a range of values (4,2,1,1/2,1/4,1/8). In order to compare the performance of
these pseudo-proxies to random series, I generate 1138 independent AR(1) time
series, each of length 149; the common AR(1) coefficient, α, for these random
series will take on a range of values (0, 0.2, 0.4, 0.6, 0.8, 1.0). Two regression
models are then fit using 119 of the 149 observations.

The first model, referred to as “composite regression,” involves averaging across
all predictor series and then using this composite series to predict the target via
ordinary least squares regression. The second model applies the LASSO to all
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1A more detailed version of this discussion is available at people.fas.harvard.edu/~tingley/.
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FIG. 1. Out-of-sample RMSE calculated using 30 values withheld from the end of each surrogate
data set. Left column: using pseudo-proxies as predictors. Right column: using independent AR(1) se-
ries as predictors. Top row: regression using the LASSO. Middle row: composite regression. Bottom
row: the ratio of the LASSO RMSE value to the composite regression RMSE.

predictor series, and is fit using the algorithm described in Friedman et al. (2007,
2010) and the glmnet package for Matlab (available at http://www-stat.stanford.
edu/~tibs/glmnet-matlab/). The LASSO penalization parameter (λ on page 13 of
MW2011) is set to be 0.05 times the smallest value of λ for which all coefficients
are zero; the LASSO penalization is thus very small.

Box plots of the out-of-sample RMSE are shown in Figure 1 for 1000 exper-
iments that calculate the RMSE using observations withheld from the end of the
data set; results are similar when observations are withheld from the interior. Com-
posite regression results in lower RMSE than the LASSO for all values of the
pseudo-proxy SNR (Figure 1, left column). For an SNR of 1/4, the LASSO RMSE
is about 7.5 times larger than the composite regression RMSE. This is a clear indi-
cation that the LASSO is not making effective use of the information contained in
the pseudo-proxies.

Applying the LASSO to AR(1) series with sufficiently high α values results in
lower out-of-sample RMSE values than applying the LASSO to the noisier pseudo-
proxies (compare the two top panels of Figure 1). This is the result discussed in
MW2011: the LASSO gives better results when applied to highly structured ran-
dom time series than when applied to noisy predictors that do in fact contain in-
formation about the target series. Note in addition that for values of α ≥ 0.8, the
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FIG. 2. Example fits from applying the LASSO to random walk predictors and composite regression
to white noise predictors. Shading indicates the portion of the data set withheld for validation.

LASSO on the AR(1) series results in lower RMSE than using composite regres-
sion on AR(1) series with α = 0 (the limiting case of an SNR of zero for the
pseudo-proxies). These results can be explained by the structure of the surrogate
data experiment, which sets the target series to be linear in time, with additive
AR(1) noise. The LASSO applied to AR(1) series with α = 1 results in nonzero
coefficients for only those predictor series that display strong, linear trends over
the calibration interval, and the expected value of a predictor series during the val-
idation interval is then the last value in the calibration interval. In contrast, as the
SNR → 0, composite regression on the pseudo-proxies approaches (in expecta-
tion) the intercept model. These features are illustrated in Figure 2.

MW2011 point out that highly structured random series (large α) are well suited
to interpolation, and to a lesser extent extrapolation, on short time scales. As the
variance of the white noise component of the pseudo-proxies increases, these pre-
dictors become both less informative of the target series, and less structured in
time. At a certain SNR, short-term interpolations or extrapolations based on inde-
pendent, but more temporally structured series, perform better. This threshold SNR
is a decreasing function of the length of the extrapolation/interpolation interval. As
the goal in a paleoclimate context is extrapolation on long timescales, composite
regression on extraordinarily noisy proxies will outperform the LASSO applied to
random walks.

The LASSO gives inferior results in situations where each of a large number of
predictors is only weakly correlated with the target series, but the mean across all
predictors is highly correlated with that target. It is well known that the LASSO is
the posterior mode which results from placing a common double exponential prior
on the regression coefficients [Park and Casella (2008)]. It is difficult to imagine
a scientifically defensible reason for specifying such a prior in the paleoclimate
context. A more scientifically reasonable approach is to modify the LASSO prior
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to shrink the regression coefficients not towards zero, but toward a common, data
determined value. Such a prior reflects the assumptions that (1) the regression coef-
ficients are likely to be similar to one another, and (2) all predictors are informative
of the target series. Within the paleoclimate context, where the expectation is that
each proxy is weakly correlated to the northern hemisphere mean (for two rea-
sons: proxies generally have a weak correlation with local climate, which in turn
is weakly correlated with a hemispheric average) the LASSO as used by MW2011
is simply not an appropriate tool. It throws away too much information.

More generally, MW2011 have perhaps missed a larger point. The presence of
a large number of correlated predictors is intrinsic to the paleoclimate reconstruc-
tion problem and has a geophysical basis. MW2011 state that, “it is unavoidable
that some type of dimensionality reduction is necessary, even if there is no princi-
pled way to achieve this.” This is simply not the case. A more scientifically sound
approach recognizes that the proxies are related to the local climate, which in turn
displays both spatial and temporal correlation. These ideas can be encoded in hi-
erarchical statistical models, which can combine the specification of a parametric
spatiotemporal covariance form for the target climate process (e.g., surface tem-
perature anomalies) with reasonable forward models that describe the conditional
distribution of the proxy observations given the climate process. Such approaches
naturally account for the p � n problem, and for the strong correlations between
the proxies. These models are derived from the rich development of Bayesian sta-
tistics over the past 20 years and are being adapted by the paleoclimate community.
See Tingley and Huybers (2010) for a specific example, and Tingley et al. (2010)
for a comprehensive discussion.

Acknowledgment. This manuscript benefited from discussions with Peter
Huybers.

SUPPLEMENTARY MATERIAL

Matlab code (DOI: 10.1214/10-AOAS398ESUPP; .zip). A set of Matlab files
that carry out the experiment described in the text, and generate the figures.
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