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A NESTED MIXTURE MODEL FOR PROTEIN IDENTIFICATION
USING MASS SPECTROMETRY
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Mass spectrometry provides a high-throughput way to identify proteins
in biological samples. In a typical experiment, proteins in a sample are first
broken into their constituent peptides. The resulting mixture of peptides is
then subjected to mass spectrometry, which generates thousands of spectra,
each characteristic of its generating peptide. Here we consider the problem
of inferring, from these spectra, which proteins and peptides are present in
the sample. We develop a statistical approach to the problem, based on a
nested mixture model. In contrast to commonly used two-stage approaches,
this model provides a one-stage solution that simultaneously identifies which
proteins are present, and which peptides are correctly identified. In this way
our model incorporates the evidence feedback between proteins and their
constituent peptides. Using simulated data and a yeast data set, we com-
pare and contrast our method with existing widely used approaches (Peptide-
Prophet/ProteinProphet) and with a recently published new approach, HSM.
For peptide identification, our single-stage approach yields consistently more
accurate results. For protein identification the methods have similar accuracy
in most settings, although we exhibit some scenarios in which the existing
methods perform poorly.

1. Introduction. Protein identification using tandem mass spectrometry (MS/
MS) is the most widely used tool for identifying proteins in complex biological
samples [Steen and Mann (2004)]. In a typical MS/MS experiment [Figure 1(a)],
proteins in a sample are first broken into short sequences, called peptides, and
the resulting mixture of peptides is subjected to mass spectrometry to generate
tandem mass spectra, which contains sequence information that is characteristic
of its generating peptide [Coon et al. (2005); Kinter and Sherman (2003)]. The
peptide that is most likely to generate each spectrum then is identified using some
computational methods, for example, by matching to a list of theoretical spectra
of peptide candidates. From these putative peptide identifications, the proteins that
are present in the mixture are then identified. The protein identification problem
is challenging, primarily because the matching of spectra to peptides is highly
error-prone: 80–90% of identified peptides may be incorrect identifications if no
filtering is applied [Keller, Nesvizhskii and Aebersold (2002, 2004)]. In particular,
to minimize errors in protein identifications, it is critical to assess, and take proper
account of, the strength of the evidence for each putative peptide identification.
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FIG. 1. (a) Protein identification using mass spectrometry. Proteins (left) are broken into con-
stituent peptides (center), which are then subjected to mass spectrometry to produce spectra (right).
The inference problem considered here is to infer which peptides, belonging to which proteins, gener-
ated the observed spectra. (b) Graphical representation of the nested relationship between spectra,
peptides and proteins. (c) Examples of putative protein identifications reconstructed from putative
peptide identifications. Proteins that are truly absent from the sample will contain all incorrectly
identified peptides (black). Proteins that are present in the sample will typically contain a mixture of
correctly (red) and incorrectly (black) identified peptides.

Here we develop a statistical approach to this problem, based on a nested mix-
ture model. Our method differs from most previous approaches to the problem in
that it is based on a single statistical model that incorporates latent variables in-
dicating which proteins are present, and which peptides are correctly identified.
Thus, instead of taking the more common sequential approach to the problem
(spectra → peptides → proteins), our model simultaneously estimates which pro-
teins are present, and which peptides are correctly identified, allowing for appro-
priate evidence feedback between proteins and their constituent peptides. This not
only provides the potential for more accurate identifications (particularly at the
peptide level), but, as we illustrate here, it also allows for better calibrated esti-
mates of uncertainty in which identifications are correct. As far as we are aware,
the only other published method that takes a single-stage approach to the problem
is that of Shen et al. (2008). Although Shen et al.’s model shares the goal of our
approach of allowing evidence feedback from proteins to peptides, the structure
of their model is quite different from ours (see Discussion for more details), and,
as we see in our comparisons, the empirical performance of the methods can also
differ substantially.

In general statistical terms this problem involves a nested structure of a form
that is encountered in other statistical inference problems (e.g., multilevel latent
class models [Vermunt (2003)] and hierarchical topic models [Blei et al. (2004)]).
These problems usually share two common features: (1) there exists a physical or
latent hierarchical relationship between lower-level and upper-level elements; and
(2) only the lowest-level elements in the hierarchy are typically observed. Here the
nested structure is due to the subsequent relationship between lower-level elements
(peptides) and upper-level elements (proteins) [Figure 1(b)]. The goals of inference
will, of course, vary depending on the application. In this case the primary goal
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is to infer the states (i.e., presence or absence in the mixture) of the upper-level
elements, though the states of the lower-level elements are also of interest.

The structure of the paper is as follows. Section 2 describes the problem in
more detail, reviews existing approaches, and describes our modeling approach.
Section 3 shows empirical comparisons of our method with different approaches
on both real and simulated data. In Section 5 we conclude and discuss potential
future enhancements.

2. Methods and models. The first step in analysis of MS/MS data is typi-
cally to identify, for each spectrum produced, the peptide that is most likely to
have generated the observed spectrum, and to assign each such identification a
score that reflects the strength of the evidence for the identification being correct.
Often this process is performed by searching a database of potential peptides, and
computing some measure of the similarity between the observed spectrum and a
theoretical “expected” spectrum for each peptide in the database [Sadygov, Co-
ciorva and Yates (2004)]. For each spectrum the highest-scoring peptide is then
reported, together with its score. Here we assume that this process has already
been performed, and tackle the protein identification problem: using the list of pu-
tative peptides, and scores, to infer a list of proteins that are likely to be present
in the mixture. Other important goals include accurately assessing confidence for
each protein identification, and inferring which of the initial putative peptide iden-
tifications are actually correct.

2.1. Existing approaches. Almost all current approaches to protein identifica-
tion follow a two-stage strategy:

1. The peptide identification scores are processed, together with other relevant in-
formation (e.g., sequence characteristics) on the identified peptide, to compute
a statistical measure of the strength of evidence for each peptide identification.
Although several methods exist [e.g., Sadygov and Yates (2003); Kall et al.
(2007)], by far the most widely used approach appears to be PeptideProphet
[Keller et al. (2002)], which uses a mixture model to cluster the identified pep-
tides into correct and incorrect identifications, and to assign a probability to
each peptide identification being correct.

2. The statistical measures of support for each peptide identification are taken as
input to a protein inference procedure. These procedures infer the presence or
absence of each protein, either by simple ad hoc thresholding rules, for exam-
ple, identifying proteins as present if they contain two or more peptides with
strong support, or by more sophisticated means (ProteinProphet [Nesvizhskii
et al. (2003)], Prot_Probe [Sadygov, Liu and Yates (2004)] and EBP [Price et
al. (2007)]). The basic idea of ProteinProphet [Nesvizhskii et al. (2003)], which
is the most widely used of these methods, will be described below.
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This two-stage approach, although widely used, is sub-optimal. In particular, it
does not allow for evidence to feed back, from the presence/absence status of a
protein to the status of its constituent peptides, as it should due to the nested rela-
tionship between a protein and its peptides. Shen et al. (2008) also note this prob-
lem with the two-stage approach, and propose an alternative one-stage approach
using a latent-variable-based model. Their model differs from ours in several as-
pects (see discussion), and performs less well than our approach in the limited
empirical comparisons we consider here (see results).

2.2. A nested mixture model. The data consist of a large number of putative
peptide identifications, each corresponding to a single MS/MS spectrum, and each
having a score that relates to the strength of the evidence for the identification
being correct (higher scores corresponding to stronger evidence). From this list
of putative peptides, it is straightforward to (deterministically) create a list of pu-
tative protein identifications. Specifically, for each putative peptide identification
it is straightforward to determine, from a protein database, which proteins contain
that peptide. The information available can thus be arranged in a hierarchical struc-
ture: a list of N putative protein identifications, with the information on protein k

being a list of nk putative peptide identifications, with a corresponding vector of
scores xk = (xk,1, . . . , xk,nk

). Here xk,j is a scalar score that reflects how well the
spectrum associated with peptide j in protein k matches a theoretical expectation
under the assumption that it was indeed generated by that peptide. (Typically there
are also other pieces of information that are relevant in assessing the evidence for
peptide j having generated the spectrum, but we defer consideration of these to
Section 2.5 below.) In general, correct peptide identifications have higher scores
than incorrect ones, and proteins that are present tend to have more high-scoring
peptide identifications than the ones that are not present. Our goal is to use this
information to determine which assembled proteins are present in the sample and
which peptides are correctly identified.

Note that, in the above formulation, if a peptide is contained in multiple pro-
teins, then the data for that peptide is included multiple times. This is clearly sub-
optimal, particularly as we will treat the data on different proteins as independent.
The practical effect is that if one peptide has a very high score, and belongs to
multiple proteins, then all these proteins will likely be identified as being present,
even though only one of them may actually be present. This complication, where
one peptide maps to multiple proteins, is referred to as “degeneracy” [Keller et al.
(2002)]. We refer to our current treatment of degeneracy as the “nondegeneracy
assumption” for the rest of the text. We view extension of our method to deal more
thoroughly with degeneracy as an important area for future work.

We use indicators Tk to represent whether a protein k is present (Tk = 1) or ab-
sent (Tk = 0) in the sample, and indicators Pk,i to represent whether a peptide i on
the protein k is correctly identified (Pk,i = 1) or incorrectly identified (Pk,i = 0).
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We let π∗
0 and π∗

1 = 1 − π∗
0 denote the proportions of absent and present proteins

respectively:

Pr(Tk = j) = π∗
j (k = 1, . . . ,N; j = 0,1).(2.1)

If a protein is absent, we assume that all its constituent peptides must be incorrectly
identified; in contrast, if a protein is present, then we allow that some of its con-
stituent peptides may be correctly identified, and others incorrectly [Figure 1(c)].
Specifically, we assume that given the protein indicators the peptide indicators are
independent and identically distributed, with

Pr(Pk,i = 0|Tk = 0) = 1,(2.2)

Pr(Pk,i = 0|Tk = 1) = π1,(2.3)

where π1 denotes the proportion of incorrect peptides on proteins that are present.
Given the peptide and protein indicators, we assume that the number of pep-

tides mapping to a present (resp., absent) protein has distribution h1 (resp., h0),
and that the scores for correctly (resp., incorrectly) identified peptides are indepen-
dent draws from a distribution f1 (resp., f0). Since present proteins will typically
have more peptides mapping to them, h1 should be stochastically larger than h0.
Similarly, since correctly-identified peptides will typically have higher scores, f1
should be stochastically larger than f0. The details on the choice of functional
form for these distributions are discussed in Section 2.3 for fj and in Section 2.4
for hj .

Let � denote all the parameters in the above model, which include (π∗
0 , π∗

1 , π1)

as well as any parameters in the distributions h0, h1, f0 and f1. We will use X,n
to denote the observed data, where X = (x1, . . . ,xN), and n = (n1, . . . , nN). The
above assumptions lead to the following nested mixture model:

L(�) = p(X,n;�) =
N∏

k=1

[π∗
0 g0(xk)h0(nk) + π∗

1 g1(xk)h1(nk)],(2.4)

where

g0(xk) ≡ p(xk|nk, Tk = 0) =
nk∏
i=1

f0(xk,i),(2.5)

g1(xk) ≡ p(xk|nk, Tk = 1) =
nk∏
i=1

[π1f0(xk,i) + (1 − π1)f1(xk,i)].(2.6)

Given the parameters � , the probability that protein k is present in the sample
can be computed as

Pr(Tk = j |xk, nk;�) = π∗
j gj (xk)hj (nk)∑

j=0,1 π∗
j gj (xk)hj (nk)

.(2.7)



A NESTED MIXTURE MODEL FOR PROTEIN IDENTIFICATION 967

Similarly, the classification probabilities for peptides on the proteins that are
present are

Pr(Pk,i = 1|xk,i, Tk = 1;�) = π1f1(xk,i)

π1f0(xk,i) + (1 − π1)f1(xk,i)
.(2.8)

As an absent protein only contains incorrect peptide identifications, that is,
Pr(Pk,i = 1|xk, Tk = 0) = 0, the marginal peptide probability is

Pr(Pk,i = 1|xk) = Pr(Pk,i = 1|xk, Tk = 1)Pr(Tk = 1|xk).(2.9)

This expression emphasizes how each peptide’s classification probability is af-
fected by the classification probability of its parent protein. We estimate values for
these classification probabilities by estimating the parameters � by maximizing
the likelihood, (2.4), and substituting these estimates into the above formulas.

The idea of modeling the scores of putative peptide identifications using a mix-
ture model is also the basis of PeptideProphet [Keller et al. (2002)]. Our approach
here extends this to a nested mixture model, modeling the overall sample as a mix-
ture of present and absent proteins. By simultaneously modeling the peptide and
protein classifications, we obtain natural formulas, (2.7) and (2.9), for the proba-
bility that each protein is present, and each peptide correctly identified.

It is helpful to contrast this approach with the PeptideProphet/ProteinProphet
two-stage strategy, which we now describe in more detail. First PeptideProphet
models the overall sample as a mixture of present and absent peptides, ignor-
ing the information on which peptides map to which proteins. This leads natu-
rally to a formula for the probability for each peptide being correctly identified,
Pr(Pk,i = 1|X), and these probabilities are output by PeptideProphet. To translate
these probabilities into a measure of the strength of evidence that each protein is
present, ProteinProphet essentially uses the formula

Pr
prod

(Tk = 1|X) = 1 − ∏
i

Pr(Pk,i = 0|X),(2.10)

which we refer to as the “product rule” in the remainder of this text. This for-
mula is motivated by the idea that a protein should be called as present only if not
all peptides mapping to it are incorrectly identified, and by treating the incorrect
identification of each peptide as independent (leading to the product).

There are two problems with this approach. The first is that the probabilities
output by PeptideProphet ignore relevant information on the nested structure re-
lating peptides and proteins. Indeed, Nesvizhskii et al. (2003) recognize this prob-
lem, and ProteinProphet actually makes an ad hoc adjustment to the probabilities
output by PeptideProphet, using the expected number of other correctly-identified
peptides on the same protein, before applying the product rule. We will refer to this
procedure as the “adjusted product rule.” The second, more fundamental, problem
is that the independence assumption underlying the product rule does not hold in
practice. Indeed, there is a strong correlation among the correct/incorrect statuses
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of peptides on the same protein. For example, if a protein is absent, then (ignoring
degeneracy) all its constituent peptides must be incorrectly identified. In contrast,
our approach makes a very different independence assumption, which we view as
more reasonable. Specifically, it assumes that, conditional on the correct/incorrect
status of different peptides, the scores for different peptides are independent.

Empirically, it seems that, despite these issues, ProteinProphet is typically quite
effective at identifying which proteins are most likely to be present. However, as
we show later, probabilities output by the product rule are not well calibrated, and
there are settings in which it can perform poorly.

2.3. Choice of scores and distributions f0, f1. Recall that f0 and f1 denote
the distribution of scores for peptides that are incorrectly and correctly identified.
Appropriate choice of these distributions may depend on the method used to com-
pute scores [Choi and Nesvizhskii (2008)]. To facilitate comparisons with Peptide-
Prophet, we used the discriminant summary used by PeptideProphet, fval, as our
score. Of course, it is possible that other choices may give better performance.

Similar to ProteinProphet, when a single peptide is matched to multiple spectra,
each match producing a different score, we summarized these data using the high-
est score. (ProteinProphet keeps the one with the highest PeptideProphet probabil-
ity, which is usually, but not always, the one with the highest score.) An alternative
would be to model all scores, and treat them as independent, as in [Shen et al.
(2008)]. However, in preliminary empirical assessments we found using the maxi-
mum produces better results, presumably because the independence assumption is
poor (scores of spectra matching to the same peptide are usually highly correlated
[Keller et al. (2002)]).

We chose to use a normal distribution, and shifted gamma distribution, for f0
and f1:

f0(x) = N(x;μ,σ 2),

f1(x) = Gamma(x;α,β, γ ),

where μ and σ 2 are the mean and variance of the normal distribution, and α, β and
γ are the shape parameter, the scale parameter and the shift of the Gamma distrib-
ution. These choices were made based on the shapes of the empirical observations
[Figure 3(a)], the density ratio at the tails of the distributions, and the goodness of
fit between the distributions and the data, for example, BIC [Schwarz (1978)]. See
Li (2008) for further details. In particular, to assign peptide labels properly in the
mixture model, we require f0/f1 > 1 for the left tail of f0, and f1/f0 > 1 for the
right tail of f1.

Note that these distribution choices differ from PeptideProphet, which mod-
els f0 as shifted Gamma and f1 as Normal. The distributions chosen by Pep-
tideProphet do not satisfy the requirement of f0/f1 above and can pathologically
assign observations with low scores into the component with higher mean. The
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selected distributions fit our data well and also the data in Shen et al., who chose
the same distributions as ours after fitting a two-component mixture model to the
PeptideProphet discriminant summary of their data. However, alternative distribu-
tions may be needed based on the empirical data, which may depend on the choice
of method for assigning scores.

In this setting it is common to allow peptides with different charge states to
have different distributions of scores. This would be straightforward, for example,
by estimating the parameters of f0 and f1 separately for different charge states.
However, in all the results reported here we do not distinguish charge states, be-
cause in empirical comparisons we found that, once the ancillary information in
Section 2.5 was included, distinguishing charge states made little difference to
either the discriminating power or the probability calibration. A similar result is
reported in Kall et al. (2007).

2.4. Choice of h: incorporating protein length. Recall that h0 and h1 denote
the distributions for nk , the number of putative identified peptides on protein k,
according to whether protein k is absent or present. It is known that long proteins
tend to have more identified peptides than short proteins (Figure 2), because of
their potential to generate more peptides in the experimental procedure, and the
higher chance to be randomly matched by incorrect peptide identifications. We
therefore allow the distribution of nk to depend on the protein length lk . Length
correction, though of a different sort, has been reported useful for reducing false
identifications of long absent proteins that are mapped by many incorrect identifi-
cations [Price et al. (2007)].

FIG. 2. Number of unique peptide hits and protein length in a yeast data set. (a) The relationship
between number of peptide hits (Y-axis) and protein length (X-axis). Red dots are decoy proteins,
which approximate absent proteins; black dots are target proteins, which contain both present pro-
teins and absent proteins. (b) Verification of the Poisson model for absent proteins, approximated by
decoy proteins, by mean–variance relationship. Proteins are binned by length with each bin contain-
ing 1% of data. Mean and variance of the number of sequences are calculated for the observations
in each bin.
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It might be expected that the rate of incorrect peptide identification in a fixed
protein length is roughly uniform across all the proteins in the database. Thus, we
choose h0 to be Poisson with mean c0lk , where c0 represents the average number
of incorrect peptide identifications in a unit protein length and is constant for all
the absent proteins. The mean–variance relationship of nk for absent proteins in a
real data set [Figure 2(b)] confirms that the Poisson model is a reasonable fit.

For present proteins, we choose h1 to be Poisson with mean c1lk , where c1 is
a constant that is bigger than c0 to take account of the correct peptide identifica-
tions additional to the incorrect ones. Similar Poisson assumptions, though with
different parameterization, were also made elsewhere [Price et al. (2007)].

Because constructed proteins are assembled from one or more identified pep-
tides (i.e., nk > 0), we truncate both Poisson distributions at 0, that is,

hj (nk|lk) = exp(−cj lk)(cj lk)
nk

nk!(1 − exp(−cj lk))
(nk = 1,2, . . . ; j = 0,1).(2.11)

2.5. Incorporating ancillary information. In addition to the scores on each
peptide identification based on the spectra, other aspects of identified peptide se-
quences, such as the number of tryptic termini (NTT) and the number of miss-
ing cleavage (NMC), are informative for the correctness of peptide identifications
[Kall et al. (2007); Keller et al. (2002); Choi and Nesvizhskii (2008)]. Because
NTT ∈ {0,1,2} [Figure 3(b)], we model it using a multinomial distribution. We
discretize NMC, which usually ranges from 0 to 10, into states (0, 1 and 2+) [Fig-
ure 3(c)], and also model it as a multinomial distribution. These treatments are
similar to PeptideProphet.

Peptide identification scores and features on peptide sequences have been
shown to be conditionally independent given the status of peptide identifica-
tion [Keller et al. (2002); Choi and Nesvizhskii (2008)]. Thus, we may incor-
porate the ancillary information by replacing fj (Xk,i) in (2.5) and (2.6) with
fj (Xk,i)f

NTT
j (NTTk,i)f

NMC
j (NMCk,i) (j = 0,1). Further pieces of relevant in-

formation could be incorporated in a similar way.

FIG. 3. The empirical distribution of features from peptide identification in a yeast data set. Bor-
der histogram: real peptides, which are a mixture of correct and incorrect identifications. Solid his-
togram: decoy peptides, whose distribution approximates the distribution of the incorrect identifica-
tions. (a) Summary score X. (b) Number of tryptic termini. (c) Number of missing cleavages.
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2.6. Parameter estimation and initialization. We use an expectation-maximi-
zation (EM) algorithm [Dempster, Laird and Rubin (1977)] to estimate the para-
meters in our model and infer the statuses of peptides and proteins, with the sta-
tuses of proteins (Tk) and peptides (Pk,i) as latent variables. The augmented data
for protein k take the form of Yk ≡ (Xk, nk, Tk,Pk,1, . . . ,Pk,nk

). The details of the
EM algorithm can be found in the Appendix.

To select a reasonable starting point for the EM algorithm, in the real
data set, we initialize the parameters related to incorrect peptide identification
(f0, f

NTT
0 , f NMC

0 and c0) using estimates obtained from the decoy database (see
Section 3.3 for details). For f1, we initialize the shift γ (0) = mink,i(xk,i) − ε,
where ε is a small positive number to ensure xk,i − γ (0) > 0 for all identified pep-
tides (in both real and decoy databases), and estimate α and β using the sample
mean and sample variance of the scores. We initialize f NTT

1 and f NMC
1 using the

peptides that are identified in the real database and are scored in the upper 90% of
the identifications to the real database. As c1 > c0, we choose c1 = bc0, where b is
a random number in [1.5,3]. The starting values of π∗

0 and π1 are chosen randomly
from (0,1). For each inference, we run the EM algorithm from 10 random starting
points and report the results from the run converging to the highest likelihood.

3. Results.

3.1. Simulation studies. We first use simulation studies to examine the perfor-
mance of our approach, and particularly to assess the potential for it to improve
on the types of 2-stage approach used by PeptideProphet and ProteinProphet. Our
simulations are generated based on our nested mixture model, and ignore many of
the complications of real data (e.g., degeneracy). Thus, their primary goal is not to
provide evidence that our approach is actually superior in practice. Rather, the aim
is to provide insight into the kind of gains in performance that might be achievable
in practice, to illustrate settings where the product rule used by ProteinProphet may
perform particularly badly, and to check for robustness of our method to one of its
underlying assumptions (specifically the assumption that the expected proportion
of incorrect peptides is the same for all present proteins). In addition, they provide
a helpful check on the correctness of our EM algorithm implementation.

At the peptide level, we compare results from our model with the peptide proba-
bilities computed by PeptideProphet, and the PeptideProphet probabilities adjusted
by ProteinProphet (see Section 2.2). At the protein level, we compare results from
our model with three methods: the classical deterministic rule that calls a pro-
tein present if it has two or more high-scored peptides (which we call the “two-
peptide rule”) and the two product rules (adjusted and unadjusted; see Section 2.2).
Because the product rule is the basis of ProteinProphet, the comparison with the
product rule focuses attention on the fundamental differences between our method
and ProteinProphet, rather than on the complications of degeneracy handling and
other heuristic adjustments that are made by the ProteinProphet software.
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TABLE 1
Simulation parameters and parameter estimation in the simulation studies. The simulation
parameters are estimated from a yeast data set. π0 is the proportion of incorrect peptides

on the absent proteins in the simulated data

π∗
0 c0 c1 π0 π1 f0 f1

S1 True parameter 0.88 0.018 0.033 1 0.58 G(86.46,0.093,−8.18) N(3.63,2.072)

Estimated values 0.87 0.018 0.032 – 0.58 G(86.24,0.093,−8.18) N(3.57,2.052)

S2 True parameter 0.5 0.018 0.033 0.998 0.58 G(86.46,0.093,−8.18) N(3.63,2.072)

Estimated values 0.55 0.018 0.034 – 0.56 G(83.78,0.096,−8.18) N(3.71,2.082)

S3 True parameter 0.88 0.018 0.033 1 Unif(0,0.8) G(86.46,0.093,−8.18) N(3.63,2.072)

Estimated values 0.88 0.018 0.034 – 0.40 G(85.74,0.094,−8.18) N(3.68,2.052)

As PeptideProphet uses Gamma for f0 and Normal for f1, we follow this prac-
tice in the simulations (both for simulating the data and fitting the model). In an
attempt to generate realistic simulations, we first estimated parameters from a yeast
data set [Kall et al. (2007)] using the model in Section 2, except for this change of
f0 and f1, then simulated proteins from the estimated parameters (Table 1).

We performed three simulations, S1, S2 and S3, as follows:

S1. This simulation was designed to demonstrate performance when the data
are generated from the same nested mixture model we use for estimation.
Data were simulated from the mixture model, using the parameters esti-
mated from the real yeast data set considered below. The resulting data con-
tained 12% present proteins and 88% absent proteins, where protein length
lk ∼ exp(1/500).

S2. Here simulation parameters were chosen to illustrate a scenario where the
product rule performs particularly poorly. Data were simulated as in S1, ex-
cept for (i) the proportion of present proteins was increased to 50% (π∗

0 =
0.5); (ii) the distribution of protein length was modified so that all present
proteins were short (lk ∈ [100,200]) and absent proteins were long (lk ∈
[1000,2000]); and (iii) we allowed that absent proteins may have occasional
high-scoring incorrect peptide identifications (0.2% of peptide scores on ab-
sent proteins were drawn from f1 instead of f0).

S3. A simulation to assess sensitivity of our method to deviations from the as-
sumption that the proportion of incorrect peptides is the same for all present
proteins. Data were simulated as for S1, except π1 ∼ Unif(0,0.8) indepen-
dently for each present protein.

In each simulation, 2000 proteins were simulated. We forced all present proteins
to have at least one correctly identified peptide. For simplicity, only one identifi-
cation score was simulated for each peptide, and the ancillary features for all the
peptides (NMC = 0 and NTT = 2) were set identical. We ran the EM procedure
from several random initializations close to the simulation parameters. We deemed
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convergence to be achieved when the log-likelihood increased <0.001 in an itera-
tion. PeptideProphet (TPP version 3.2) and ProteinProphet (TPP version 3.2) were
run using their default values.

Parameter estimation. In all the simulations, the parameters estimated from
our models are close to the true parameters (Table 1). Even when absent proteins
contain a small proportion of high-scored peptides (S2) or the assumption of a
fixed π1 is violated (S3), our method still produces reasonable parameter estima-
tions.

Tradeoff between true calls and false calls. We compared the performances of
different methods by the tradeoff between the number of correct and incorrect calls
made at various probability thresholds. As a small number of false calls is desired
in practice, the comparison focuses on the performance in this region.

At the peptide level, our model consistently identifies substantially more (>100
in all cases) true peptides than PeptideProphet at any controlled number of false
peptides in the range of 0–200 [Figure 4 (S1) left and (S2) left], in all the simula-
tions. This gain illustrates the potential for our one-stage model to provide effective
feedback of information from the protein level to peptide level, to improve peptide
identification accuracy.

At the protein level, our model consistently identifies more true proteins than
the adjusted product rule at any controlled number of false proteins in the range
of 0–50, in all simulations [Figure 4 (S1) right and (S2) right]. In S2 the product
rules perform less well than the other two simulations. This poor performance is
anticipated in this setting, due to its assumption that correctness of peptides on
the same proteins is independent. In particular, when absent proteins with big nk

contain a single high-scored incorrect peptide, the product rule tends to call them
present. When present proteins with small nk contain one or two correct peptides
with mediocre scores besides incorrect ones, the product rule tends to call them
absent. The examination of individual cases confirms that most mistakes made by
the product rule belong to either of the two cases above.

It is interesting that although the adjusted product rule improves peptide identi-
fication accuracy compared with the unadjusted rule, it also worsens the accuracy
of protein identification (at least in S1 and S3). This illustrates a common pitfall
of ad hoc approaches: fixing one problem may unintentionally introduce others.

Calibration of probabilities. Methods for identifying proteins and peptides
should, ideally, produce approximately calibrated probabilities, so that the es-
timated posterior probabilities can be used as a way to assess the uncertainty
of the identifications. In all the three simulations the peptide probabilities from
our method are reasonably well calibrated, whereas the PeptideProphet prob-
abilities are not, being substantially smaller than the actual probabilities [Fig-
ure 5(a)]. Our method seems to be better calibrated than the adjusted product
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FIG. 4. The number of correct and incorrect calls made at various thresholds in simulation studies.
Incorrect calls: the number of incorrect peptides or absent proteins assigned posterior probabilities
exceeding the thresholds; correct calls: the number of correct peptides or present proteins assigned
posterior probabilities exceeding the thresholds.

rule at the protein level [Figure 5(b)]. However, very few proteins are assigned
probabilities ∈ [0.2,0.9], so larger samples would be needed to confirm this.

3.2. A standard mixture. Mixtures of standard proteins have been used for
assessing the performance of identifications. Although these mixtures are known
to be too simple to reflect the complexity of the realistic samples and may contain
many unknown impurities [Elias, Faherty and Gygi (2005)], they can nonetheless
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FIG. 5. Calibration of posterior probabilities in a simulation study S1. The observations are binned
by the assigned probabilities. For each bin, the assigned probabilities (X-axis) are compared with the
proportion of identifications that are actually correct (Y-axis). (a) peptide probabilities, (b) protein
probabilities. Black: PeptideProphet [in (a)] or adjusted product rule [in (b)]; Red: our method. The
size of the points represents the number of observations in each bin. Other simulations have similar
results.

be helpful as a way to assess whether a method can effectively identify the known
components.

We applied our method on a standard protein mixture [Purvine, Picone and
Kolker (2004)] used in Shen et al. (2008). This data set consists of the MS/MS
spectra generated from a sample composed of 23 stand-alone peptides and trypsin
digest of 12 proteins. It contains three replicates with a total of 9057 spectra. The
experimental procedures are described in Purvine, Picone and Kolker (2004). We
used Sequest [Eng, McCormack and Yates (1994)] to search, with nontryptic pep-
tides allowed, a database composed of the 35 peptides/proteins, typical sample
contaminants and the proteins from Shewanella oneidensis, which are known to be
not present in the sample and serve as negative controls. After matching spectra to
peptides, we obtained 7935 unique putative peptide identifications. We applied our
methods to these putative peptide identifications, and compared results, at both the
protein and peptide levels, with results from the same standard mixture reported
by Shen et al. for both their own method (“Hierarchical Statistical Method”; HSM)
and for PeptideProphet/ProteinProphet. Note that in assessing each method’s per-
formance we make the assumption, standard in this context, that a protein iden-
tification is correct if and only if it involves a known component of the standard
mixture, and a peptide identification is correct if and only if it involves a pep-
tide whose sequence is a subsequence of a constituent protein (or is one of the 23
stand-alone peptides).

At the protein level all of the methods we compare here identify all 12 proteins
with probabilities close to 1 before identifying any false proteins. Our method
provides a bigger separation between the constituent proteins and the false pro-
teins, with the highest probability assigned to a false protein as 0.013 for our
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FIG. 6. Peptide identification on a standard protein mixture. (a) ROC curves for peptide identi-
fication on a standard protein/peptide mixture. (b) Calibration of the FDR estimates for peptide
identifications on a standard protein/peptide mixture. The straight line represents a perfect estimate.

method and above 0.8 for ProteinProphet and HSM. At the peptide level, our
model shows better discriminating power than all the other methods [Figure 6(a)].
Again, we ascribe this better performance at the peptide level to the ability of our
model to effectively feedback information from the protein level to the peptide
level.

To assess calibration of the different methods for peptide identification, we com-
pare the empirical FDR and the estimated FDR [Figure 6(a)], where the estimated
FDR is computed as the average posterior probabilities to be absent from the sam-
ple for the identifications [Efron et al. (2001); Newton et al. (2004)]. None of the
methods is particularly well-calibrated for these data: our method is conservative
in its estimated FDR, whereas the other methods tend to underestimate FDR at low
FDRs. Our conservative estimate of FDR in this case partly reflects the simplic-
ity of this artificial problem. Indeed, our method effectively separates out the real
and not real peptides almost perfectly in this case: 99% of peptide identifications
are assigned probability either >0.99 (all of which are real) or <0.01 (less than
one percent of which are real). Thus, for both these groups our method is effec-
tively calibrated. The conservative calibration apparent in Figure 6(b) reflects the
fact that the remaining 1% of peptides that are assigned intermediate probabilities
(between 0.01 and 0.99) are all real.

We emphasise that this standard mixture inevitably provides only a very limited
comparison of the performance of different methods. Indeed, the fact that in this
case all methods effectively correctly identify all the real proteins, with no false
positives, suggests that this standard mixture, unsurprisingly, provides nothing like
the complexity of most real data problems. On the other hand, it is reassuring to see
our method perform well on this problem, and the results in Figure 6(a) do provide
a nice illustration of the potential benefits of effective feedback of information
from the protein to peptide level.
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3.3. Application on a yeast data set. To provide comparisons on more real-
istic data, we also compared methods using a yeast data set [Kall et al. (2007)].
Because the true protein composition of this data set is unknown, the comparisons
were done by use of a decoy database of artificial proteins, which is a commonly
used device in this setting [Elias and Gygi (2007)]. Specifically, in the initial step
of matching spectra to peptides, each spectrum was searched against a combined
database, containing both target (i.e., real) proteins and decoy (i.e., nonexistent)
proteins created by permuting the sequences in the target database. This search
was done using Sequest [Eng, McCormack and Yates (1994)]. The methods are
then applied to the results of this search, and they assign probabilities to both tar-
get and decoy proteins. Since the decoy proteins cannot be present in the sample,
and assuming that their statistical behavior is similar to real proteins that are ab-
sent from the sample, a false discovery rate for any given probability threshold
can be estimated by counting the number of decoy proteins assigned a probability
exceeding the threshold.

The data set contains 140,366 spectra. After matching spectra to peptides (us-
ing Sequest [Eng, McCormack and Yates (1994)]), we obtained 116,264 unique
putative peptide identifications. We used DTASelect [Tabb, McDonald and Yates
(2002)] to map these peptides back to 12,602 distinct proteins (the proteins were
found using DTASelect [Tabb, McDonald and Yates (2002)]).

We compared our algorithm with PeptideProphet for peptide inferences and
actual ProteinProphet for protein inferences on this data set. The HSM method,
whose computational cost and memory requirement are proportional to the facto-
rial of the maximum protein group size, encountered computation difficulties on
this data set and failed to run, because this data set contains several large protein
groups. We initialized our algorithm using the approach described in Section 2.6,
and stopped the EM algorithm when the change of log-likelihood is smaller than
0.001. PeptideProphet and ProteinProphet were run with their default settings.

In this case the comparison is complicated by the presence of peptides belonging
to multiple proteins, that is, degeneracy, which occurs in about 10% of proteins in
yeast. Unlike our approach, ProteinProphet has routines to handle degenerate pep-
tides. In brief, it shares each such peptide among all its corresponding proteins,
and estimates an ad hoc weight that each degenerate peptide contributes to each
protein parent. In reporting results, it groups together proteins with many shared
peptide identifications, such as homologs, and reports a probability for each group
(as one minus the product of the probabilities assigned to each of the individual
proteins being absent). In practice, this has the effect of upweighting the probabil-
ities assigned to large groups containing many proteins.

To make our comparison, we first applied our model ignoring the degeneracy
issue to compute a probability for each protein being present, and then used these
to assign a probability to each group defined by ProteinProphet. We treated pro-
teins that were not in a group as a group containing one protein. For our method,
we assigned to each group the maximum probability assigned to any protein in the
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group. This also has a tendency to upweight probabilities to large groups, but not
by as much as the ProteinProphet calculation.

Note that the tendency of both methods to upweight probabilities assigned to
large groups, although a reasonable thing to do, makes reliably estimating the FDR
more difficult. This is because, unlike the real proteins, the decoy proteins do not
fall into homologous groups (i.e., each is in a group by itself), and so the statistical
behavior of the decoy groups will not exactly match those of the absent real pro-
tein groups. The net effect will be that, for both methods, the estimates of the FDR
based on the decoy comparison will likely underestimate the true FDR. Further, we
suspect that the amount of underestimation of the FDR will be stronger for Pro-
teinProphet than for our method, because ProteinProphet more strongly upweights
probabilities assigned to large groups. As a result, comparing the estimated FDRs
from each method, as we do here, may give a slight unfair advantage to Protein-
Prophet. In any case, this rather subtle issue illustrates the severe challenges of
reliably comparing different approaches to this problem.

We assessed the methods by comparing the number of target and decoy pro-
tein groups assigned probabilities exceeding various thresholds. We also compared
the number of decoy and target peptides assigned probabilities exceeding various
thresholds. The results are shown in Figure 7.

At a given number of decoy peptide identifications, our model identified sub-
stantially more target peptides than PeptideProphet [Figure 7(a)]. Among these,
our method identified most of the target peptides identified by PeptideProphet, in
addition to many more not identified by PeptideProphet. For example, at FDR = 0
(i.e., no decoy peptides identified), our method identified 5362 peptides out of
5394 peptides that PeptideProphet identified, and an additional 3709 peptides that
PeptideProphet did not identify.

FIG. 7. The number of decoy and target peptides (a) or protein groups (b) assigned probabilities
exceeding various thresholds in a yeast data set. Decoy calls: the number of decoy peptides or protein
groups assigned a probability exceeding the threshold. Target calls: the number of target peptides or
protein groups assigned a probability exceeding the threshold. (a) Peptide inference. (b) Protein
inference.
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For the protein idenfication, the methods identified similar numbers of real pro-
tein groups at small FDRs (<10 decoy proteins identified). At slightly larger FDRs
(>10 decoy proteins identified) ProteinProphet identified more real protein groups
(<100) than our method. This apparent slightly superior performance of Protein-
Prophet may be due, at least in part, to issues noted above regarding likely under-
estimation of the FDR in these experiments.

4. Comparison with HSM on another yeast data set. To provide compar-
isons with HSM method on a realistic data set, we compared our method with
HSM on another yeast data set, which was original published in Elias, Faherty and
Gygi (2005) and analyzed by Shen et al. (2008). We were unable to obtain the
data from the original publication; instead, we obtained a processed version from
Shen, which produces the results in Shen et al. (2008). Because the processed data
lacks several key features for processing by PeptideProphet and ProteinProphet,
we were unable to compare with PeptideProphet and ProteinProphet on this data
set.

This data set was generated by searching a yeast sample against a sequence data-
base composed of 6473 entries of yeast (Saccharomyces cerevisiae) and 22,437
entries of C. elegans (Caenorhabditis elegans). In total, 9272 MS/MS spectra
were assigned to 4148 unique peptides. Following Shen et al. (2008), we ex-
clude 13 charge +1 peptides and fit peptides with different charge states separately
(charge +2: 6869 and charge +3: 2363). The rest of the 4135 peptides consists of
3516 yeast peptides and 696 C. elegans peptides. These peptides map to 1011 yeast
proteins and 876 C. elegans proteins. Among all the peptides, 468 (11.3%) are
shared by more than one protein and 77 peptides are in common between the two
species. Due to peptide sharing between species, 163 C. elegans proteins contain
only peptides that are in common with yeast proteins. These proteins and peptides
shared between species are removed at performance evaluation for all methods of
comparison.

We compare the performance of our method with Shen’s method for both pep-
tide inferences and protein inferences in Figure 8. Similar to the previous sec-
tion, a false discovery rate for any given probability threshold can be estimated
by counting the number of C. elegans proteins assigned a probability exceeding
the threshold, since the C. elegans peptides or proteins that do not share common
sequences with Yeast peptides or proteins cannot be present in the sample. We as-
sessed the methods by comparing the number of yeast and C. elegans peptides or
proteins assigned probabilities exceeding various thresholds. The results are shown
in Figure 8.

At a given number of C. elegans peptide identifications, our model identified
substantially more yeast peptide identifications than HSM at small FDR (<100 C.
elegans peptides). For example, at FDR = 0, our method identifies 516 peptides
out of 522 peptides that are identified by HSM and an additional 2116 peptides that
HSM did not identify. The methods identified similar numbers of yeast peptides
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FIG. 8. The number of C. elegans and Yeast peptides (a) or proteins (b) assigned probabilities
exceeding various thresholds in the yeast sample in Shen’s paper.

at higher FDR (>100 C. elegans peptides). For the protein identification, in the
range of FDR that we studied, our method consistently identifies over 80 more
yeast proteins than HSM at a given number of C. elegans protein identifications, in
addition to the majority (e.g., 96.5% at FDR = 0) of the yeast proteins identified
by HSM.

Although ProteinProphet results reported by Shen et al. (Table 1 in Shen et al.)
appear to identify more yeast proteins than our method at a given number of C. ele-
gans proteins in the range they studied, without access to the raw data, it is difficult
to gain insights into the differences. For example, the information on whether the
reported ProteinProphet identifications are proteins or protein groups and which
proteins are grouped together by ProteinProphet are unavailable from the data we
worked on. However, they are critical for making comparisons on the same basis.
The comparison with proper handling of these issues (e.g., grouping our protein
identifications as in Section 3.3) may lead to conclusions different from a naive
comparison.

5. Discussion. We have presented a new statistical method for assessing ev-
idence for presence of proteins and constituent peptides identified from mass
spectra. Our approach is, in essence, a model-based clustering method that simul-
taneously identifies which proteins are present, and which peptides are correctly
identified. We illustrated the potential for this approach to improve accuracy of
protein and peptide identification in both simulated and real data.

A key feature of our nested mixture model is its ability to incorporate evidence
feedback from proteins to the peptides nested on them. This evidence feedback
helps distinguish peptides that are correctly identified but with weak scores, from
those that are incorrectly identified but with higher scores. The use of a coherent
statistical framework also avoids problems with what we have called the “product
rule,” which is adopted in several protein identification approaches [Nesvizhskii
et al. (2003); Price et al. (2007)], but is based on an inappropriate assumption
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of independence of the presence and absence of different peptides. It has been
noted [e.g., Sadygov, Liu and Yates (2004); Feng, Naiman and Cooper (2007)]
that the product rule tends to wrongly identify as present long proteins with occa-
sional high-scored incorrect peptides; our simulation results [Figure 4(S2)] illus-
trate this problem, and demonstrate that our approach does not misbehave in this
way.

In recent work Shen et al. (2008) also introduced a nested latent-variable-based
model (HSM) for jointly identifying peptides and proteins from MS/MS data.
However, although HSM shares with our model the goal of simultaneous mod-
eling of peptides and proteins, the structure of their model is different, and their
approach also differs in several details. Among these differences, the following
seem to us most important:

1. HSM accounts for degeneracy, whereas ours does not. We comment further on
this below.

2. HSM includes all the scores for those peptides that match more than one spec-
trum, whereas our model uses only the maximum score as a summary of the
evidence. Modeling all scores is obviously preferable in principle, but, in prac-
tice, it is possible that it could actually decrease identification accuracy. We note
two particular issues here: (a) Shen et al. assume that, conditional on a peptide’s
presence/absence status, multiple scores for the same peptide are independent.
This independence assumption will not hold in practice, and the costs of such
modeling errors could outweigh the benefits of using multiple scores; (b) HSM
appears to condition on the number of spectra matched to each peptide, rather
than treating this number as an informative piece of data. As a result of this
conditioning, additional low-scoring hits to a peptide will always decrease the
probability assigned to that peptide. This contrasts with our intuition that ad-
ditional hits to a peptide could, in some cases, increase confidence that it is
present, even if these hits have low scores.

3. HSM incorporates only whether the number of hits to peptides in a protein ex-
ceeds some threshold, h (which is set to 1 in their applications). In contrast, our
model incorporates the actual number of (distinct) peptides hitting a protein us-
ing a Poisson model. In this way our model uses more available information,
and accounts for variations in protein length. Note that modeling only whether
the number of hits exceeds h has some undesirable consequences, similar to
those noted above for conditioning on the number of hits to a peptide. For ex-
ample, if h = 1, then a protein that has two hits, each with low scores, will be
assigned a higher identification probability than a protein that is hit more than
twice with low scores.

4. HSM conditions on the number of specific cleavages (NTT in our development
here) in each putative peptide. Specifically, their parameter πij (α) is the proba-
bility of a particular cleavage event occurring, conditional on NTT. In contrast,
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our model treats the NTT for each peptide hit as observed data. This may im-
prove identification accuracy because the distribution of NTT differs greatly for
correct and incorrect identifications (Figure 3).

We expect that some of these differences in detail, perhaps in addition to other
differences not noted here, explain the different performances of our method and
that of Shen et al. on the standard mixture data and the yeast data used in Shen
et al. (2008). On the other hand, we agree with Shen et al. that comparisons
like these are less definitive, and harder to interpret, than one would like, be-
cause of the absence of good gold-standard realistic data sets where the truth is
known.

We emphasize that, despite its promise, we view the model we present here as
only a starting point toward the development of more accurate protein and peptide
identification software. Not only is the development of robust fast user-friendly
software a considerable task in itself, but there are also important aspects of real
data—specifically degeneracy, which is prevalent in high-level organisms—that
are not properly accounted for by our model. Currently, most existing approaches
to handle degeneracy are based on heuristics. For example, ProteinProphet groups
the proteins with shared peptides and assigns weights to degenerate peptides using
heuristics. An exception is Shen et al.’s model [Shen et al. (2008)], which attempts
to provide a coherent statistical solution to the problem by allowing that a peptide
will be present in the digested sample if any one of the proteins containing that
peptide generates it, and assuming that these generation events are independent
[their equation (2)]. However, because their model computes all the possible com-
binations of protein parents, which increases in the order of factorials, it is compu-
tationally prohibitive to apply their method on data with a moderate or high degree
of degeneracy. It should be possible to extend our model to allow for degeneracy in
a similar way. However, there are some steps that may not be straightforward. For
example, we noted above that our model uses NTT as observed data. But under
degeneracy, NTT for each peptide is not directly observed, because it depends on
which protein generated each peptide. Similarly, the number of distinct peptides
identified on each protein depends on which protein generated each peptide. While
it should be possible to solve these issues by introducing appropriate latent vari-
ables, some care may be necessary to ensure that, when degeneracy is accounted
for, identification accuracy improves as it should.

APPENDIX

Here we describe an EM algorithm for the estimation of � = (π∗
0 , π0, π1,μ,σ,

α,β, γ, c0, c1)
T and the protein statuses and the peptide statuses. To proceed, we

use Tk and (Pk,1, . . . ,Pk,nk
) as latent variables, then the complete log-likelihood
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for the augmented data Yk ≡ (Xk, nk, Tk, Pk,1, . . . , Pk,nk
) is

lC(�|Y)

=
N∑

k=1

{
(1 − Tk)

[
logπ∗

0 + logh0(nk|lk, nk > 0)

+
nk∑
i=1

(1 − Pk,i) log(π0f0(xk,i))

+
nk∑
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Pk,i log
(
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)]}
(A.1)

+
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[
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+
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E-step:

Q
(
�,�(t)) ≡ E

(
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=
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logπ∗
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+
nk∑
i=1

P(Pk,i = 0|Tk = 0) log(π0f0(xk,i))

+
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+
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Then
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M-step: Now we need maximize Q(�,�(t)). Since the mixing proportions and
the distribution parameters can be factorized into independent terms, we can opti-
mize them separately. The MLE of the mixing proportion π∗

0 is

π
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,(A.6)
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If incorporating ancillary features of peptides, we replace fj (xki
) with fj (xki

)×
f nmc

j (nmck,i)f
ntt
j (nttk,i) as in Section 2.5, where xki

is the identification score,
nmck,i is the number of missed cleavage and nttk,i is the number of tryptic termini
(with values s = 0,1,2). As described in Section 2.3, f0 = N(μ,σ 2) and f1 =
Gamma(α,β, γ ). We can obtain closed form estimators for f0 as follows, and
estimate f1 using the numerical optimizer optimize(·) in R:
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As described in Section 2.5, we discretize NMC, which usually ranges from 0
to 10, into states s = 0,1,2, with s = 2 representing all values ≥ 2. So the MLE of
f nmc

0 is

f nmc
0 (nmck,i) = w

(t)
s∑2

s=0 w
(t)
s

,(A.11)

where

w(t)
s =

N∑
k=1

nk∑
i=1

(
1 − T̂

(t)
k

)(
1 − Î

(t)
0 (Pk,i)

)
1(nmck,i = s)

(A.12)

+
N∑

k=1

nk∑
i=1

T̂
(t)
k

(
1 − Î

(t)
1 (Pk,i)

)
1(nmck,i = s).

Similarly, the MLE of f nmc
1 is

f nmc
1 (nmck,i) = v

(t)
s∑2

s=0 v
(t)
s

,(A.13)

where

v(t)
s =

N∑
k=1

nk∑
i=1

(
1 − T̂

(t)
k

)
Î

(t)
0 (Pk,i)1(nmck,i = s)

(A.14)

+
N∑

k=1

nk∑
i=1

T̂
(t)
k Î

(t)
1 (Pk,i)1(nmck,i = s).

The MLE of f ntt
j takes the similar form as f nmc

j , j = 0,1, with states s = 0,1,2.
For h0 and h1, the terms related to h0 and h1 in Q(�,�t) are

N∑
k=1

(1 − T̂k) logh0(nk) =
N∑

k=1

(1 − T̂k) log
exp(−c0lk)(c0lk)

nk

nk!(1 − exp(−c0lk))
,(A.15)

N∑
k=1

T̂k logh1(nk) =
N∑

k=1

T̂k log
exp(−c1lk)(c1lk)

nk

nk!(1 − exp(−c1lk))
.(A.16)

The MLE of the above does not have a close form, so we estimate c0 and c1 using
optimize(·) in R.
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