DISCUSSION OF: BROWNIAN DISTANCE COVARIANCE ${ }^{1}$

By Michael R. Kosorok
University of North Carolina at Chapel Hill

Abstract

We discuss briefly the very interesting concept of Brownian distance covariance developed by Székely and Rizzo [Ann. Appl. Statist. (2009), to appear] and describe two possible extensions. The first extension is for high dimensional data that can be coerced into a Hilbert space, including certain high throughput screening and functional data settings. The second extension involves very simple modifications that may yield increased power in some settings. We commend Székely and Rizzo for their very interesting work and recognize that this general idea has potential to have a large impact on the way in which statisticians evaluate dependency in data.

1. Introduction and assessment. The Brownian distance covariance and correlation proposed by Székely and Rizzo (2009) (abbreviated SR hereafter) is a very useful and elegant alternative to the standard measures of correlation and is based on several deep and nontrivial theoretical calculations developed earlier in Székely, Rizzo and Bakirov (2007) (abbreviated SRB hereafter). We congratulate the group on this very original and elegant work. The main result is that a single, simple statistic $\mathcal{V}_{n}(X, Y)$ can be used to assess whether two random vectors X and Y, of possibly different respective dimensions p and q, are dependent based on an i.i.d. sample.

The proposed statistic $\mathcal{V}_{n}(X, Y)$ estimates an interesting population parameter $\mathcal{V}(X, Y)$ that the authors demonstrate can also be expressed as the covariance between independent Brownian motions W and W^{\prime}, with p and q dimensional indices, evaluated at X and Y, respectively. Specifically, let $W: \mathbb{R}^{p} \mapsto \mathbb{R}$ be a real valued, tight, mean-zero Gaussian process with covariance $|s|_{p}+|t|_{p}-|s-t|_{p}$, for $s, t \in \mathbb{R}^{p}$, where $|\cdot|_{r}$ is the standard Euclidean norm in \mathbb{R}^{r}. Let W^{\prime} be similarly defined but for indices $s, t \in \mathbb{R}^{q}$ and norm $|\cdot|_{q}$. It can be shown that $\mathcal{V}(X, Y)=E\left[W(X) W\left(X^{\prime}\right) W^{\prime}(Y) W^{\prime}\left(Y^{\prime}\right)\right]$, where (X^{\prime}, Y^{\prime}) is an independent copy of (X, Y), and where W and W^{\prime} are independent of both (X, Y) and (X^{\prime}, Y^{\prime}). This justifies the designation "Brownian distance covariance."

By replacing Brownian motion with other stochastic processes, a very wide array of alternative forms of correlation between vectors X and Y can be generated. In the special case where $p=q=1$ and the stochastic processes W and W^{\prime} are the nonrandom identify functions centered respectively at $E(X)$ and $E(Y)$,

[^0]$\mathcal{V}_{n}(X, Y)=E\left[W(X) W\left(X^{\prime}\right) W^{\prime}(Y) W^{\prime}\left(Y^{\prime}\right)\right]=\operatorname{Cov}^{2}(X, Y)$, which is the standard Pearson product-moment covariance squared. Thus, the results obtained by SR not only have a profound connection to Brownian motion, but also include traditional measures of dependence as special cases, while, at the same time, having the potential to generate many useful new measures of dependence through the use of other stochastic processes besides Brownian motion. This raises the very real possibility that a broadly applicable and unified theoretical and methodological framework for testing dependence could be developed.

The SR paper is therefore not only important for the specific results contained therein but also for the possibly far reaching consequences for future statistical research in both theory and applications. For the remainder of the paper, we describe two possible extensions of these results. The first extension is for high dimensional data that can be coerced into a Hilbert space, including certain high throughput screening and functional data settings. The second extension involves very simple modifications that may yield increased power in some settings. We first present some initial results and consequences of SR and SRB that will prove useful in later developments. We then present the Hilbert space extension with a few example applications. Some modifications leading to potential variations in power will then be described. The paper will then conclude with a brief discussion.
2. Some initial results. We now present a few initial results which will be useful in later sections. For a paired sample of size $n,\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, of realizations of (X, Y), where X and Y are random variables from arbitrary normed spaces with respective norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$, define, analogously to SR,

$$
\begin{aligned}
& T_{1}=\frac{1}{n^{2}} \sum_{k, l=1}^{n}\left\|X_{k}-X_{l}\right\|_{X}\left\|Y_{k}-Y_{l}\right\|_{Y}, \\
& T_{2}=\frac{1}{n^{2}} \sum_{k, l=1}^{n}\left\|X_{k}-X_{l}\right\|_{X} \times \frac{1}{n^{2}} \sum_{k, l=1}^{n}\left\|Y_{k}-Y_{l}\right\|_{Y}, \\
& T_{3}=\frac{1}{n^{3}} \sum_{k=1}^{n} \sum_{l, m=1}^{n}\left\|X_{k}-X_{l}\right\|_{X}\left\|Y_{k}-Y_{m}\right\|_{Y},
\end{aligned}
$$

and $V_{n}(X, Y)=T_{1}+T_{2}-2 T_{3}$. Also define

$$
\begin{aligned}
& T_{10}=E\left[\left\|X_{1}-X_{2}\right\|_{X}\left\|Y_{1}-Y_{2}\right\|_{Y}\right], \\
& T_{20}=E\left[\left\|X_{1}-X_{2}\right\|_{X}\right] \times E\left[\left\|Y_{1}-Y_{2}\right\|_{Y}\right], \\
& T_{30}=E\left[\left\|X_{1}-X_{2}\right\|_{X}\left\|Y_{1}-Y_{3}\right\|_{Y}\right],
\end{aligned}
$$

and $V_{0}(X, Y)=T_{10}+T_{20}-2 T_{30}$. Also let $V_{n}(X)=V_{n}(X, X)$ and $V_{0}(X)=$ $V_{0}(X, X)$; and let $V_{n}(Y)=V_{n}(Y, Y)$ and $V_{0}(Y)=V_{0}(Y, Y)$. This allows us to define also $R_{n}(X, Y)=V_{n}(X, Y) / \sqrt{V_{n}(X) V_{n}(Y)}$ and $R_{0}(X, Y)=V_{0}(X, Y) /$
$\sqrt{V_{0}(X) V_{0}(Y)}$, provided the denominators are nonzero (and defined to be zero otherwise). The main distinction between this and the definitions in SR is the use of arbitrary normed spaces.

Because this has a standard U-statistic structure, we have the following general result, the proof of which follows from standard theory for U-statistics [see, e.g., Chapter 12 of van der Vaart (1998)]:

Lemma 1. Provided $E\|X\|_{X}^{4}<\infty$ and $E\|Y\|_{Y}^{4}<\infty$, then $V_{n}(X, Y) \xrightarrow{P}$ $V_{0}(X, Y), V_{n}(X) \xrightarrow{P} V_{0}(X)$ and $V_{n}(Y) \xrightarrow{P} V_{0}(Y)$.

REMARK 1. In the special case where X and Y are from finite-dimensional Euclidean spaces, we know from Theorems $1-4$ of SR that $V_{n}(X, Y), V_{n}(X)$, $V_{n}(Y), V_{0}(X, Y), V_{0}(X)$ and $V_{0}(Y)$ are all nonnegative; that $V_{n}(X, Y) \leq$ $\sqrt{V_{n}(X) V_{n}(Y)}$ and $V_{0}(X, Y) \leq \sqrt{V_{0}(X) V_{0}(Y)}$; that $V_{0}(X)=0$ or $V_{0}(Y)=0$ only when X or Y is trivial; that $V_{n}(X)=0$ or $V_{n}(Y)=0$ only when the X 's or Y 's in the sample are all identical; that $0 \leq R_{n}(X, Y), R_{0}(X, Y) \leq 1$; and that $V_{0}(X, Y)=0$ only when X and Y are independent.

We now wish to generalize the above results in the finite-dimensional context to a class of norms more broad than Euclidean norms. These results will be useful for later sections. Let A and B be respectively $p \times p$ and $q \times q$ symmetric, positive definite matrices. Let a "tilde" placed over $T_{1}, T_{2}, T_{3}, V_{n}, V_{0}$, etc., denote the quantity obtained by replacing $|x|_{p}$ with $\|x\|_{A, p}=\sqrt{x^{\prime} A x}$ and $|y|_{q}$ with $\|y\|_{B, q}=$ $\sqrt{y^{\prime} B y}$ in V_{n}, V_{0}, etc. For example, $\tilde{T}_{1}=n^{-2} \sum_{k, l=1}^{n}\left\|X_{k}-X_{l}\right\|_{A, p}\left\|Y_{k}-Y_{l}\right\|_{B, q}$. We now have the following very simple extension:

Lemma 2. Let A and B be symmetric and positive definite. Then $\tilde{V}_{n}(X, Y)$, $\tilde{V}_{n}(X), \tilde{V}_{n}(Y), \tilde{V}_{0}(X, Y), \tilde{V}_{0}(X)$ and $\tilde{V}_{0}(Y)$ are all nonnegative; and all of the other results in Remark 1 remain true with a "tilde" placed over the given quantities. Moreover, $\tilde{V}_{0}(X, Y)=0$ if and only if $V_{0}(X, Y)=0$.

Proof. For a symmetric, positive definite matrix C, let $C^{1 / 2}$ denote the symmetric square root of C, that is, $C^{1 / 2} C^{1 / 2}=C$. Note that such a square root always exists and, moreover, is always positive definite. Now define $U=A^{1 / 2} X$ and $V=B^{1 / 2} Y$, and note that $|U|_{p}=\|X\|_{A, p}$ and $|V|_{q}=\|Y\|_{B, q}$. Now replace X and Y in the quantities listed in Remark 1 with U and V. By the symmetry properties of these norms, the first part of the lemma up to just before the last sentence is proved. The last sentence follows from the simple observation that U and V are independent if and only if X and Y are independent by the positive definiteness of $A^{1 / 2}$ and $B^{1 / 2}$. Since $V_{0}(X, Y)=0$ if and only if X and Y are independent, we now conclude that $\tilde{V}_{0}(X, Y)=0$ if and only if X and Y are independent. The entire lemma now follows.

The third initial result involves some nontrivial properties of independent components in the finite dimensional setting. Suppose for $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}^{q}$, where $p=p_{1}+p_{2}$ and $q=q_{1}+q_{2}$, we have

$$
X=\binom{X^{(1)}+X^{(2)}}{X^{(3)}} \quad \text { and } \quad Y=\binom{Y^{(1)}+Y^{(2)}}{Y^{(3)}}
$$

where $X^{(1)}, X^{(2)} \in \mathbb{R}^{p_{1}}, X^{(3)} \in \mathbb{R}^{p_{2}}, Y^{(1)}, Y^{(2)} \in \mathbb{R}^{q_{1}}, y^{(3)} \in \mathbb{R}^{q_{2}}$; and suppose also that the two vectors $\tilde{X}=\left(\left[X^{(2)}\right]^{T},\left[X^{(3)}\right]^{T}\right)^{T}$ and $\tilde{Y}=\left(\left[Y^{(2)}\right]^{T},\left[Y^{(3)}\right]^{T}\right)^{T}$ are mutually independent and also independent of $X^{(1)}$ and $Y^{(1)}$. We have the following somewhat surprising result:

Lemma 3. $\quad V_{0}(X, Y)=V_{0}\left(X^{(1)}, Y^{(1)}\right)$.
Proof. For any $t \in \mathbb{R}^{p}$ and $s \in \mathbb{R}^{q}$, with $t=\left(t_{1}^{T}, t_{2}^{T}\right)^{T}, s=\left(s_{1}^{T}, s_{2}^{T}\right)^{T}, t_{1} \in$ $\mathbb{R}^{p_{1}}, t_{2} \in \mathbb{R}^{p_{2}}, s_{1} \in \mathbb{R}^{q_{1}}$, and $s_{2} \in \mathbb{R}^{q_{2}}$, the independence assumptions and standard characteristic function properties yield

$$
\begin{aligned}
& \left|E \exp \left(i\left[t^{T} X+s^{T} Y\right]\right)-E \exp \left(i t^{T} X\right) E \exp \left(i s^{T} Y\right)\right| \\
& \quad=\mid f_{\tilde{X}}(t) f_{\tilde{Y}}(s)\left\{E \exp \left(i\left[t_{1}^{T} X^{(1)}+s_{1}^{T} Y^{(1)}\right]\right)\right. \\
& \left.\quad-E \exp \left(i t_{1}^{T} X^{(1)}\right) E \exp \left(i s_{1}^{T} Y^{(1)}\right)\right\} \mid \\
& \quad=\left|E \exp \left(i\left[t_{1}^{T} X^{(1)}+s_{1}^{T} Y^{(1)}\right]\right)-E \exp \left(i t_{1}^{T} X^{(1)}\right) E \exp \left(i s_{1}^{T} Y^{(1)}\right)\right| \\
& \quad=\left|f_{X^{(1)}, Y^{(1)}}\left(t_{1}, s_{1}\right)-f_{X^{(1)}}\left(t_{1}\right) f_{Y^{(1)}}\left(s_{1}\right)\right| .
\end{aligned}
$$

Combining this with Theorems 1 and 2 of SR, we obtain that

$$
V_{0}(X, Y)=\frac{1}{c_{p} c_{q}} \int_{\mathbb{R}^{p+q}} \frac{\left|f_{X^{(1)}, Y^{(1)}}\left(t_{1}, s_{1}\right)-f_{X^{(1)}}\left(t_{1}\right) f_{Y^{(1)}}\left(s_{1}\right)\right|^{2}}{|t|_{p}^{p+1}|s|_{q}^{q+1}} d t d s
$$

Note that the right-hand side is invariant with respect to the distributions of \tilde{X} and \tilde{Y} and, thus, we can replace \tilde{X} and \tilde{Y} with degenerate random variables fixed at zero. Doing the same on the left-hand side yields the desired result.
3. High dimensional extensions. The basic idea we propose is to extend the results to Hilbert spaces which can be approximated by sequences of finitedimensional Euclidean spaces. We will give a few examples shortly. First, we give the conditions for our results. Assume X is a random variable in a Hilbert space H_{X} with inner produce $\langle\cdot, \cdot\rangle_{X}$ and norm $\|\cdot\|_{X}$. A superscript $*$ will be used to denote adjoint. Say that X is "finitely approximable" if there exists a sequence $X_{m} \in H_{X}$ such that for each $m \geq 1$, there exists a linear map $M_{m}: H_{x} \mapsto \mathbb{R}^{p_{m}}$ for which $M_{m}^{*} M_{m}$ is symmetric and positive definite on $\mathbb{R}^{p_{m}}, p_{m}$ is nondecreasing, $X_{m}=M_{m}\left(U_{m}\right)$ for some sequence of Euclidean random variables U_{m}, and that
$E\left\|X_{m}-X\right\|_{X}^{2} \rightarrow 0$ as $m \rightarrow \infty$. Note that we can assume that $M_{m}^{*} M_{m}$ is the identity without loss of generality. This follows since we can always replace U_{m} with $\tilde{U}_{m}=A_{m} U_{m}$ and M_{m} with $\tilde{M}_{m}=M_{m} A_{m}^{-1}$, where $A_{m}=\left(M_{m}^{*} M_{m}\right)^{1 / 2}$, to yield $X_{m}=\tilde{M}_{m} \tilde{U}_{m}$ with $\tilde{M}_{m}^{*} \tilde{M}_{m}=A_{m}^{-1}\left(M_{m}^{*} M_{m}\right) A_{m}^{-1}$ being the identity.

EXAmple 1. Let X be functional data with realizations that are functions in the Hilbert space $H_{X}=L_{2}[0,1]$ consisting of functions $f:[0,1] \mapsto \mathbb{R}$ satisfying $\|f\|_{X}^{2}=\int_{0}^{1} f^{2}(t) d t<\infty$. Specifically, we will assume that

$$
\begin{equation*}
X(t)=\sum_{i=1}^{\infty} \lambda_{i} Z_{i} \phi_{i}(t) \tag{1}
\end{equation*}
$$

where Z_{1}, Z_{2}, \ldots are independent random variables with mean zero and variance $1, \phi_{1}, \phi_{2}, \ldots$ form an orthonormal basis in $L_{2}[0,1]$, and $\lambda_{1}, \lambda_{2}, \ldots$ are fixed constants satisfying $\sum_{i=1}^{n} \lambda_{i}^{2}<\infty$. This formulation can yield a large variety of tight stochastic processes and can be a realistic model for some kinds of functional data.

Let $p_{m}=m, U_{m}=\left(\lambda_{1} Z_{1}, \ldots, \lambda_{m} Z_{m}\right)^{T}$, and, for any vector $a \in \mathbb{R}^{p_{m}}, M_{m}(a)=$ $\sum_{i=1}^{m} a_{i} \phi_{i}(t)$. Clearly, $X_{m}=M_{m}\left(U_{m}\right)$ is in H_{X} almost surely, since $\left\|X_{m}\right\|_{X}=$ $\sum_{i=1}^{m} \lambda_{i}^{2} Z_{i}^{2}$ is bounded almost surely. Moreover, for any $f \in L_{2}[0,1]$, it can be shown that

$$
M_{m}^{*}(f)=\left(\begin{array}{c}
\int_{0}^{1} \phi_{1}(s) f(s) d s \\
\vdots \\
\int_{0}^{1} \phi_{m}(s) f(s) d s
\end{array}\right)
$$

and, thus, $M_{m}^{*} M_{m}$ is the identity by the orthonormality of the basis and is therefore positive definite. Since $\sum_{i=1}^{\infty} \lambda_{i}^{2}<\infty$,

$$
\begin{aligned}
E\left\|X-X_{m}\right\|_{X}^{2} & =E\left\|\sum_{i=m+1}^{\infty} \lambda_{i} Z_{i} \phi_{i}(t)\right\|_{X}^{2} \\
& =\sum_{i=m+1}^{\infty} \lambda_{i}^{2} \\
& \rightarrow 0
\end{aligned}
$$

as $m \rightarrow \infty$. Thus, X is finitely approximable.
Example 2. This is basically the same as Example 1, except that we will not require the basis functions to be orthogonal. Specifically, let $X(t)$ be as given in (1), with the basis functions satisfying $\int_{0}^{1} \phi_{i}^{2}(s) d s=1$, for all $i \geq 1$, but not necessary being mutually orthogonal. Let $a_{i, j}=\int_{0}^{1} \phi_{i}(s) \phi_{j}(s) d s$, for $i, j \geq 1$, and define A_{m} to be the $m \times m$ matrix with entry $a_{i, j}$ for row i and column j for
$1 \leq i, j \leq m$. Assume that A_{M} is positive definite for each $m \geq 1$ and also assume that $\lim _{m \rightarrow \infty} \sum_{i, j=m+1}^{\infty} \lambda_{i} \lambda_{j} a_{i, j}=0$. If we now follow parallel calculations to those done in Example 1, we can readily deduce that with $X_{m}=\sum_{i=1}^{m} \lambda_{i} Z_{i} \phi_{i}(t)$, we have M_{m} and M_{m}^{*} defined as before, but with $M_{m}^{*} M_{m}=A_{m}$ instead of the identity, while $E\left\|X-X_{m}\right\|_{X}^{2} \rightarrow 0$ also as before. The increased flexibility enlarges the scope of stochastic processes achievable to include, for example, Brownian motion.

Example 3. Let $X=\left(X^{(1)}, X^{(2)}, \ldots\right)^{T}$ be an infinitely long Euclidean vector in ℓ_{2}, that is, $\sum_{i=1}^{\infty}\left[X^{(i)}\right]^{2}<\infty$ almost surely; and assume that, after permuting the indices if necessary,

$$
\sum_{i=m+1}^{\infty} E\left[X^{(i)}\right]^{2} \rightarrow 0
$$

as $m \rightarrow \infty$. It is fairly easy to see that if we let X_{m} be a vector with the first m elements being identical to the first m elements of X but with all remaining elements equal to zero, then $E\left\|X-X_{m}\right\|_{X}^{2} \rightarrow 0$, as $m \rightarrow \infty$, and all of the remaining conditions for finite approximability are satisfied. This example may be applicable to certain high throughput screening settings where the vector of measurements may be arbitrarily high-dimensional.

The following lemma tells us that the range-related properties of Brownian distance covariance are preserved for finitely approximable random variables:

Lemma 4. Assume that X and Y are both finitely approximable random variables in Hilbert spaces. Then $V_{n}(X, Y), V_{n}(X), V_{n}(Y), V_{0}(X, Y)$, $V_{0}(X)$ and $V_{0}(Y)$ are all nonnegative, $V_{n}(X, Y) \leq \sqrt{V_{n}(X) V_{n}(Y)}, V_{0}(X, Y) \leq$ $\sqrt{V_{0}(X) V_{0}(Y)}$, and $0 \leq R_{n}(X, Y), R_{0}(X, Y) \leq 1$.

Proof. Let X_{m} and Y_{m} be sequences such that $E\left\|X-X_{m}\right\|_{X}^{2} \rightarrow 0$ and $E\left\|Y-Y_{m}\right\|_{Y}^{2} \rightarrow 0$ as $m \rightarrow \infty$. Using simple algebra, we can verify that $V_{0}\left(X_{m}, Y_{m}\right) \rightarrow V_{0}(X, Y)$ which implies $V_{0}(X, Y) \geq 0$. Similar arguments verify the desired results for $V_{0}(X), V_{0}(Y)$ and $R_{0}(X, Y)$. Now, for a sample of size n, $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, we can create a sequence of samples $\left(X_{1 m}, Y_{1 m}\right), \ldots$, $\left(X_{n m}, Y_{n m}\right)$, such that $\sum_{i=1}^{n}\left(E\left\|X_{i}-X_{i m}\right\|_{X}^{2}+E\left\|Y_{i}-Y_{i m}\right\|_{Y}^{2}\right) \rightarrow 0$ by finite approximability. Let $V_{n}^{(m)}(X, Y)$ be the same as $V_{n}(X, Y)$ but with the m th approximating sample replacing the sample observations. Since convergence in mean implies convergence in probability, we can apply basic algebra to verify that $V_{n}^{(m)}(X, Y) \xrightarrow{P} V_{n}(X, Y)$ as $m \rightarrow \infty$. Similar arguments verify the desired results for $V_{n}(X), V_{n}(Y)$ and $R_{n}(X, Y)$, and this completes the proof.

Our ultimate goal in this section, however, is to show that $R_{0}(X, Y)$ has the same implications for assessing dependence for finitely approximable Hilbert spaces as
it does for finite dimensional settings. This is actually quite challenging, and we are only able to achieve part of the goal in this paper. The following is our first result in this direction:

Lemma 5. Suppose X and Y are random variables in finitely approximable Hilbert spaces. Then $R_{0}(X, Y)>0$ implies that X and Y are dependent.

Proof. Assume that $R_{0}(X, Y)>0$ but that X and Y are independent. By finite approximability, there exists a sequence of paired random variables $\left(X_{m}, Y_{m}\right)$ such that X_{m} and Y_{m} are independent for each $m \geq 0, E\left\|X-X_{m}\right\|_{X}^{2} \rightarrow 0$, and $E\left\|Y-Y_{m}\right\|_{Y}^{2} \rightarrow 0$. This implies that $R_{0}\left(X_{m}, Y_{m}\right)=0$ for all $m \geq 0$. Since also $R_{0}\left(X_{m}, Y_{m}\right) \rightarrow R_{0}(X, Y)$, we have a contradiction. Hence, X and Y are dependent.

If we could also show that $R_{0}(X, Y)=0$ implies independence, we would have essentially full homology with the finite dimensional case. It is unclear how to show this in general, and it may not even be true in general. However, it is certainly true for an interesting special case which we now present.

Let X and Y be random variables in finitely approximable Hilbert spaces. Suppose there exists linear maps $M: H_{X} \mapsto H_{X}$ and $N: H_{Y} \mapsto H_{Y}$ with adjoints for which both $M^{*} M$ and $N^{*} N$ are identities, and that $M X=X_{1}+X_{2}$ and $N Y=Y_{1}+Y_{2}$, where $X_{1} \in H_{X}^{(1)}$ and $Y_{1} \in H_{Y}^{(1)}, H_{X}^{(1)}$ and $H_{Y}^{(2)}$ are finitedimensional subspaces of H_{X} and H_{Y}, respectively, and that X_{2} and Y_{2} are mutually independent and independent of $\left(X_{1}, Y_{1}\right)$. We will call a random pair (X, Y) that satisfies these conditions "at most finitely dependent." For example, paired functional data (X, Y) could be at most finitely dependent if all possible dependencies between the two populations X and Y are attributable to at most a few principle functions (or principle components) in each population and that the remaining components are independent noise.

EXAMPLE 4. Suppose that we are interested in determining whether X and Y are independent, where X is either a functional observation or some other very high dimensional observation and Y is a continuous outcome of interest such as a time to an event. Suppose also that X is finitely approximable and that any potential dependence of Y on X is solely due to a latent set of finite principle components of X. Such a pair (X, Y) would be at most finitely dependent.

The following lemma on finitely dependent data is the final result of this section:
Lemma 6. Suppose that X and Y are finitely approximable random variables in Hilbert spaces and that (X, Y) is at most finitely dependent. Then $R_{0}(X, Y) \geq 0$ and the inequality is strict if and only if X and Y are dependent.

Proof. Note first that $\|M X\|_{X}^{2}=\langle M X, M X\rangle_{X}=\left\langle M^{*} M X, X\right\rangle_{X}=\langle X$, $X\rangle_{X}=\|X\|_{X}^{2}$ and, similarly, $\|N Y\|_{Y}=\|Y\|_{Y}$. Since $R_{0}(X, Y)$ is a function involving only the norms of X and Y, we can assume without loss of generality that N and M are identities. Thus, we will simply assume that $X=X_{1}+X_{2}$ and $Y=Y_{1}+Y_{2}$ hereafter. Let $\left(X_{2 m}, Y_{2 m}\right)$ be a sequence of paired random variables in $H_{X} \times H_{Y}$ such that $E\left\|X_{2}-X_{2 m}\right\|_{X}^{2} \rightarrow 0$ and $E\left\|Y_{2}-Y_{2 m}\right\|_{Y}^{2} \rightarrow 0$, and where, for each $m \geq 1, X_{2 m}$ and $Y_{2 m}$ are mutually independent and also independent of $\left(X_{1}, Y_{1}\right)$.

Now let $\hat{X}_{m}=X_{1}+X_{2 m}$ and $\hat{Y}_{m}=Y_{1}+Y_{2 m}$, and note that both \hat{X}_{m} and \hat{Y}_{m} are finite dimensional with $R_{0}\left(\hat{X}_{m}, \hat{Y}_{m}\right) \rightarrow R_{0}(X, Y)$. Let p_{1} and q_{1} be the respective dimensions of X_{1} and $Y_{1}, p_{2 m}$ and $q_{2 m}$ be the respective dimensions of $X_{2 m}$ and $Y_{2 m}$, and let $p_{m}=p_{1}+p_{2 m}$ and $q_{m}=q_{1}+q_{2 m}$. Let $X_{2 m}^{(1)}$ be the projection of $X_{2 m}$ onto $H_{X}^{(1)}, Y_{2 m}^{(1)}$ be the projection of $Y_{2 m}$ onto $H_{Y}^{(1)}$, and let $X_{2 m}^{(2)}=X_{2 m}-X_{2 m}^{(1)}$ and $Y_{2 m}^{(2)}=Y_{2 m}-Y_{2 m}^{(1)}$. By the finite-dimensionality of $X_{1}, X_{2 m}, Y_{1}$ and $Y_{2 m}$, there exists linear maps $A_{1}: \mathbb{R}^{p_{1}} \mapsto H_{X}^{(1)}, A_{2 m}: \mathbb{R}^{p_{2 m}} \mapsto H_{X}, B_{1}: \mathbb{R}^{q_{1}} \mapsto H_{Y}^{(1)}$, and $B_{2 m}: \mathbb{R}^{q 2 m} \mapsto H_{Y}$, such that $A_{1}^{*} A_{1}, A_{2 m}^{*} A_{2 m}, B_{1}^{*} B_{1}$ and $B_{2 m}^{*} B_{2 m}$ are all identities and that $X_{1}=A_{1} U_{1}, X_{2 m}^{(1)}=A_{1} U_{2 m}^{(1)}, X_{2 m}^{(2)}=A_{2 m} U_{2 m}^{(2)}, Y_{1}=B_{1} Z_{1}$, $Y_{2 m}^{(1)}=B_{1} Z_{2 m}^{(1)}$, and $Y_{2 m}^{(2)}=B_{2 m} Z_{2 m}^{(2)}$, for random vectors $U_{1}, U_{2 m}^{(1)} \in \mathbb{R}^{p_{1}}, U_{2 m}^{(2)} \in$ $\mathbb{R}^{p_{2 m}}, Z_{1}, Z_{2 m}^{(1)} \in \mathbb{R}^{q_{1}}$, and $Z_{2 m}^{(2)} \in \mathbb{R}^{q_{2 m}}$, where $U_{2 m}=\left(\left[U_{2 m}^{(1)}\right]^{T},\left[U_{2 m}^{(2)}\right]^{T}\right)^{T}$ and $Z_{2 m}=\left(\left[Z_{2 m}^{(1)}\right]^{T},\left[Z_{2 m}^{(2)}\right]^{T}\right)^{T}$ are mutually independent and independent of $\left(U_{1}, Z_{1}\right)$.

If we let $\hat{U}_{m}=\left(\left[U_{1}+U_{2 m}^{(1)}\right]^{T},\left[U_{2 m}^{(2)}\right]^{T}\right)^{T}$ and $\hat{Z}_{m}=\left(\left[Z_{1}+Z_{2 m}^{(1)}\right]^{T},\left[Z_{2 m}^{(2)}\right]^{T}\right)^{T}$, the above formulation yields that $\left\|\hat{X}_{m}\right\|_{X}=\left|\hat{U}_{m}\right|_{p_{m}}$ and $\left\|\hat{Y}_{m}\right\|_{Y}=\left|\hat{Z}_{m}\right|_{q_{m}}$. By Lemma 3, we now have that $R_{0}\left(\hat{U}_{m}, \hat{Z}_{m}\right)=R_{0}\left(U_{1}, Z_{1}\right)$ which does not depend on m. Since $A_{1}^{*} A_{1}$ and $B_{1}^{*} B_{1}$ are both identities, we also have that $R_{0}\left(U_{1}, Z_{1}\right)=$ $R_{0}\left(X_{1}, Y_{1}\right)$ and, thus, $R_{0}\left(\hat{X}_{m}, \hat{Y}_{m}\right)=R_{0}\left(\hat{U}_{m}, \hat{Z}_{m}\right) \rightarrow R_{0}\left(X_{1}, Y_{1}\right)$, as $m \rightarrow \infty$. This now implies that $R_{0}(X, Y)=R_{0}\left(X_{1}, Y_{1}\right)$, which yields the desired result.
4. Increasing power. We now briefly discuss the issue of power of tests based on $R_{n}(X, Y)$. By Lemma 2, we observe that there are many different versions of the statistic $R_{n}(X, Y)$, based on different choices of matrices A and B in the norms $\|\cdot\|_{A, p}$ and $\|\cdot\|_{B, q}$, that all have the ability to assess general dependence. Is it possible to choose A and B in a way that provides optimal power for certain fixed or contiguous alternatives? The answer should be yes since it appears that A and B could potentially be selected to emphasize dependence for certain subcomponents of X and Y while de-emphasizing dependence for other subcomponents. The answer to this question, unfortunately, seems to be very hard to pin down rigorously. We do not pursue this further here, but it does seem to be a potentially important issue that deserves further attention.
5. Discussion. We have briefly proposed two generalizations of the Brownian distance covariance, one based on alternative norms to Euclidean norms, and the other based on infinite dimensional data. The first generalization raises the possibility of fine-tuning the statistics proposed in SR to increase power, and the second generalization opens the door for applicability of the results in SR to a broader array of data types, including infinite dimensional data and data with dimension increasing with sample size. However, for both of these generalizations, there remain many open questions that could lead to important further improvements. In either case, the results of SR are very important both practically and theoretically and should result in many important future developments in both the application and theory of statistics.

REFERENCES

Székely, G. J. and Rizzo, M. L. (2009). Brownian distance covariance. Ann. Appl. Statist. 3 1236-1265.
Székely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. Ann. Statist. 35 2769-2794. MR2382665
van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Univ. Press, New York. MR1652247

DEPARTMENT OF BIOSTATISTICS AND
Department of Statistics and
Operations Research
University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27599
USA
E-MAIL: kosorok@unc.edu

[^0]: ${ }^{1}$ Supported in part by U.S. National Institutes of Health Grant CA075142.
 Key words and phrases. Brownian distance covariance, correlation, Hilbert spaces, U-statistics.

