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This paper presents an approach to estimating the health effects of an en-
vironmental hazard. The approach is general in nature, but is applied here to
the case of air pollution. It uses a computer model involving ambient pollution
and temperature input to simulate the exposures experienced by individuals
in an urban area, while incorporating the mechanisms that determine expo-
sures. The output from the model comprises a set of daily exposures for a
sample of individuals from the population of interest. These daily exposures
are approximated by parametric distributions so that the predictive exposure
distribution of a randomly selected individual can be generated. These distri-
butions are then incorporated into a hierarchical Bayesian framework (with
inference using Markov chain Monte Carlo simulation) in order to exam-
ine the relationship between short-term changes in exposures and health out-
comes, while making allowance for long-term trends, seasonality, the effect
of potential confounders and the possibility of ecological bias.

The paper applies this approach to particulate pollution (PM10) and res-
piratory mortality counts for seniors in greater London (≥65 years) during
1997. Within this substantive epidemiological study, the effects on health
of ambient concentrations and (estimated) personal exposures are compared.
The proposed model incorporates within day (or between individual) variabil-
ity in personal exposures, which is compared to the more traditional approach
of assuming a single pollution level applies to the entire population for each
day. Effects were estimated using single lags and distributed lag models, with
the highest relative risk, RR = 1.02 (1.01–1.04), being associated with a lag
of two days ambient concentrations of PM10. Individual exposures to PM10
for this group (seniors) were lower than the measured ambient concentrations
with the corresponding risk, RR = 1.05 (1.01–1.09), being higher than would
be suggested by the traditional approach using ambient concentrations.

1. Introduction. This paper addresses the differences between estimated as-
sociations observed in air pollution and human health studies, the nature and mag-
nitude of which will depend fundamentally on the nature of the study. Concentra-
tion response functions (CRFs) are estimated primarily through epidemiological
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studies, by relating changes in ambient concentrations of pollution to a specified
health outcome such as mortality [see Daniels et al. (2004), e.g.]. In contrast, ex-
posure response functions (ERFs) have been estimated through exposure chamber
studies, where the physiological reactions of healthy subjects are assessed at safe
levels of the pollutant [see Ozone (2006), e.g.]. However, ERFs cannot be ethi-
cally established in this way for the most susceptible populations, such as the very
old and very young, who are thought to be most adversely effected by pollution
exposure. This paper presents a method for estimating the ERF based on ambient
concentration measures.

We specifically consider the case of particulate air pollution, which has attained
great importance in both the health and regulatory contexts. For example, they are
listed in the USA as one of the so-called criteria pollutants that must be periodically
reviewed. Such a review by the US Environmental Protection Agency led to a
2006 revision of the US air quality standards [PM (2004)], which require that in
US urban areas daily ambient concentrations of PM10 (particles no larger than
10 microns in diameter) do not exceed 150 µg/m3 “more than once a year on
average over three years.” Concern for human health is a driving force behind these
standards, as the US Clean Air Act of 1970 states they must be set and periodically
reviewed to protect human health without consideration of cost while allowing for
a margin of error.

In this paper we develop a model that estimates the ERF by relating personal ex-
posures to daily health counts (aggregated over the entire population), and follows
on from work by Holloman et al. (2004) and Shaddick et al. (2005). In particular,
we investigate the potential of using the pCNEM exposure simulator [Zidek et al.
(2005)] to generate personal exposures, and compare the resulting associations
with the CRFs estimated using routinely collected ambient concentrations. A case
study is presented, in which relationships between (daily) respiratory mortality and
both ambient concentrations (CRF) and individual (simulated) exposures (ERF) of
particulate matter (PM10) are examined, for seniors (≥65 years) in Greater London
(for 1997). Throughout we adopt a Bayesian approach to modeling, with inference
using Markov chain Monte Carlo simulation. The remainder of the paper is orga-
nized as follows. Section 2 provides the background and motivation for this work,
while Section 3 describes the proposed model and Section 4 presents the case study
of data from Greater London. Section 5 provides a concluding discussion.

2. Background. The majority of studies relating air pollution with detrimen-
tal effects on health have focused on short-term relationships, using daily val-
ues of aggregate level (ecological) data from a fixed geographical region, such
as a city. Such relationships are typically estimated by regressing daily mortal-
ity counts y = (y1, . . . , yn)n×1 against air pollution concentrations and a vector
of q covariates, Z = (zT

1 , . . . , zT
n)T

n×q . These covariates typically include meteoro-
logical conditions such as temperature together with smooth functions of calen-
dar time, which model unmeasured risk factors that induce long-term trends, sea-
sonal variation, over-dispersion and temporal correlation into the mortality data.
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In general, only ambient pollution concentrations, xA
jt , measured by a network of

k fixed site monitors located across the study region are available. A daily average
xA
t = (1/k)

∑k
j=1 xA

jt is typically calculated across these k spatial observations,
which are assumed to represent population exposure. These ambient measures are
related to the mortality counts using Poisson linear or additive models. A Bayesian
implementation of the former is given by

yt |xA
t−l , β ∼ Poisson(μt ) for t = 1, . . . , n,

ln(μt ) = xA
t−lγ + zT

t α,(2.1)

β = (γ,α) ∼ N(μβ,�β),

where the Gaussian prior for β is typically vague. In this model the association
between ambient pollution concentrations (at lag l) and mortality is represented by
γ , and is of interest for regulatory purposes primarily because it is only ambient
pollution concentrations that are routinely measured. However, personal exposures
are based on indoor as well as outdoor sources, and are likely to be different from
ambient concentrations [see, e.g., Dockery and Spengler (1981) and Lioy et al.
(1990)] because the population spend a large proportion of their time indoors.
Therefore, to obtain more conclusive evidence of the human health impact of air
pollution via an ERF, exposures actually experienced by individuals as well as
any subsequent health events are required. Ideally, these would be obtained by
individual level studies conducted under strict conditions, such as in randomized
controlled trials, but issues of cost and adequate confounder control make them
relatively rare [a few examples are given by Neas, Schwartz and Dockery (1999),
Yu et al. (2000) and Hoek et al. (2002)].

An alternative approach is to obtain only individual level pollution exposures,
which can be related to routinely available (aggregated) health and confounder
data. However, such exposures are still prohibitively expensive to obtain for a large
sample of the population, and consequently, only a small amount of personal ex-
posure data has been collected [see, e.g., Lioy et al. (1990) and Ozkaynak et al.
(1996)]. As a result, few studies have estimated the association between personal
exposures and mortality, with one of the first being that of Dominici and Zeger
(2000) who analyze data from Baltimore. However, pollution exposures were not
available and instead five external data sets were used to estimate a linear rela-
tionship between ambient concentrations and average exposures. The samples of
personal exposures were small, which may lead to problems when assuming they
represent overall population exposure.

A recent innovation is to generate simulated exposures using models such
as SHEDS-PM [Burke, Zufall and Ozkaynak (2001)], APEX [Richmond et al.
(2001)] and pCNEM [Zidek et al. (2005)], which have played an important role
in formulating air quality criteria resulting in two important applications. The
first and most widely used is to evaluate abatement strategies (e.g., regulations
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and mandatory surveillance) by running the model before and after hypothetical
changes in policy [see Zidek et al. (2007)]. The Environmental Protection Agency
in the US has used such models to estimate carbon monoxide and ozone exposures
[pNEM, a fore-runner to pCNEM Law et al. (1997)], while particulate matter has
been modeled using SHEDS-PM. In addition, the latest ozone criterion document
[Ozone (2006)] made use of the APEX model, while Zidek et al. (2007) used
pCNEM to forecast personal exposures of PM10 after a theoretical “roll-back”
program. Although they differ in certain often fundamental respects, all of the
simulators have important conceptual elements in common. Namely, they estimate
the cumulative exposure experienced by individuals as they pass through different
micro-environments, such as a car, house, street, which is calculated from the dif-
ferent pollution levels in each of these environments. The second application that
is proposed in this paper has attracted far less attention, and uses exposure simula-
tors to generate more accurate estimates of population exposures. Holloman et al.
(2004) related simulated individual exposures to mortality data from North Car-
olina, using a deterministic simplification of the SHEDS-PM simulator [Burke,
Zufall and Ozkaynak (2001)], an approach also used more recently by Reich,
Fuentes and Burke (2008). In a forerunner to this work, Shaddick et al. (2005)
related simulated daily exposures to mortality counts in London, observing an in-
creased relative risk compared with ambient concentrations, but accompanied by
a widening of the 95% credible interval.

Although the studies of Dominici and Zeger (2000) and Holloman et al. (2004)
have related individual exposures to ecological mortality counts, the models used
have a number of limitations. Primarily, they summarize daily exposure distribu-
tions by a simple average while not allowing for the possibility of ecological bias
[Wakefield and Salway (2001)], which may arise when variation in the exposures
is ignored. When extending this simple average to allow for exposure variability,
both papers make a Gaussian assumption, which is likely to be inappropriate for
nonnegative environmental exposures of this type [see Ott (1990)].

3. Statistical modeling. Here we propose a two stage modeling strategy for
generating and relating personal exposures to mortality that differs from the “all
at once” approach adopted by Holloman et al. (2004). In the first stage, poste-
rior exposure distributions for the population of interest are generated by pCNEM,
a complex stochastic model, which is computationally expensive compared to the
deterministic approach used by Holloman et al. (2004). The output from this first
stage is a set of simulated personal exposures for each day of the study, which
provide an approximation to the true distribution of exposures. If time activities
were available for the entire population of interest and if it were possible to per-
form an infinite number of replicate runs of the exposure simulator, then the ex-
act distribution could be obtained. In the second stage, a Bayesian health model
relates this exposure information to the aggregated health counts. For each day,
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the samples are used to inform the parametric distribution assumed for the expo-
sures, the moments of which are treated as unknown parameters within the MCMC
simulation. An alternative would be a fully Bayesian approach that integrates the
exposure generation with the health model, thus allowing the uncertainty in the
exposure distribution to be directly propagated through the model. However, due
to the complexities of the stochastic exposure generation, it would be computa-
tionally infeasible to perform the exposure stage within each iteration of a fully
Bayesian model. In the following description, the first subsection describes the
pCNEM simulator, while the second proposes a model to relate these exposures to
aggregated mortality counts.

3.1. Stage 1: Estimating average population exposure. The pCNEM simula-
tor is described in detail in Zidek et al. (2005) and Zidek et al. (2007). Described
simply, it generates a sequence of pollutant concentrations to which a randomly
selected individual is exposed over time. This sequence is termed the personal
exposure sequence. The generation is a fairly complex stochastic process that fol-
lows the randomly selected individual in their activities over the period of the
simulation. The individual is thought of as visiting one microenvironment (ME)
after another as activities change through time. MEs are classified as being either
“open” or “closed,” with the former containing MEs whose concentrations can be
well predicted by outdoor ambient concentrations and whose concentrations are
estimated by regression models, incorporating the possibility of uncertainty in the
coefficients. Closed MEs are more challenging in terms of data requirements since
their concentrations are modeled with a mass balance equation [see Law et al.
(1997) and Zidek et al. (2005)], but again the coefficients are allowed to exhibit
uncertainty by using prior distributions. The interaction between environment and
human behavior is represented by a catalog of behavior patterns obtained from
population surveys [e.g., National Human Activity Pattern Survey (NHAPS), a 24
hour recall survey, Robinson and Thomas (1991)]. Behavior conditional on in-
dividual and environmental stratification factors is simulated by sampling from
appropriate subsections of the catalogue. It is assumed that the behavior patterns
in NHAPS will reflect a whole variety of both measured factors that determine
behavior, such as temperature, and also unmeasured ones, such as possible disease
status. If it was thought that exposures were likely to be dependent on the presence
of certain diseases, then more detailed time activities would be required for that
particular group, but such data are not generally available.

The simulator has two major tasks: (i) to create estimates of the levels of pollu-
tion in each microenvironment over time and (ii) to generate an activity sequence
for a randomly selected individual. The individual’s cumulative level of exposure
is then calculated by tracking them through their different activity levels within
the microenvironments. The result is a sample of exposures for each day which
represent the posterior distribution. Details on the data required to run the pCNEM
simulator and how it can be accessed can be found in the supplementary material
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[Shaddick et al. (2008)] and further details of the sampling of behavior patterns
and of the different modeling techniques used for estimating exposures in open
and closed MEs can be found in Zidek et al. (2007).

3.2. Stage 2: Estimating the effects of exposure to health. We propose a model
that extends the standard approach of representing daily pollution concentrations
by a single value (e.g., the mean). Instead we assign a probability distribution to
the daily exposures, which allows for the possibility of ecological bias. Compre-
hensive reviews of the relationship between aggregate and individual models as
well as ecological bias are given by Richardson, Stucker and Hemon (1987) and
Wakefield and Salway (2001). For clarity, we present the remainder of this expla-
nation with lag, l = 0. Assuming the standard log-linear model as in (2.1), then
ecological bias can be modeled by considering the alternative mean function,

μt = EXt [exp{zT
t α + g(γXt)}]

(3.1)
= exp(zT

t α)EXt [exp(g(γXt))],
where Xt comes from the distribution of population exposure f (xt |λ) [Richardson,
Stucker and Hemon (1987)]. The exposure response function is represented by g,
and if we assume the common simplification g(x) = x, then the mean function
equals

μt = exp(zT
t α)EXt [exp(γXt)]

(3.2)
≈ exp(zT

t α) exp(γ λt ),

with the second line arising when making the additional simplification that Xt

can be represented by a single value, λt , such as the daily mean. In such cases,
the variability in exposures is not acknowledged and thus there may be ecological
bias. Richardson, Stucker and Hemon (1987) and Salway and Wakefield (2008)
model ecological bias parametrically in this context by incorporating higher order
moments (e.g., the variance) of the exposure distribution f (xt |λ) in the linear pre-
dictor, in addition to the mean. If Xt is normally distributed, Xt ∼ N(λ

(1)
t , λ

(2)
t ),

then the effects of exposure variability and ecological bias can be modeled exactly
by adopting the mean function

μt = exp(zT
t α) exp

(
γ λ

(1)
t + γ 2λ

(2)
t /2

)
.(3.3)

If the daily exposures do not follow a normal distribution equation, (3.3) will be
a second-order approximation to the true model, which is likely to be adequate,
provided the distribution of Xt is not heavily skewed. Ott (1990) has shown that
a log-normal distribution is appropriate for modeling exposures to pollution, be-
cause in addition to the desirable properties of right-skew and nonnegativity, there
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is justification in terms of the physical explanation of atmospheric chemistry. How-
ever, under the log-normal assumption, ecological bias cannot be modeled in this
way because the moment-generating function does not exist. Salway and Wake-
field (2008) suggest that if γ is small (which is likely the case in studies of this
type), a three term Taylor approximation,

μt ≈ exp(zT
t α) exp

(
γ λ

(1)
t + γ 2λ

(2)
t /2 + γ 3λ

(3)
t /6

)
,(3.4)

can be used to model ecological bias, where λ
(1)
t is the first moment and λ

(2)
t

and λ
(3)
t are the second and third central moments of the log-normal exposure

distribution, respectively, so here λ
(3)
t = λ

(2)
t /λ

(1)
t (λ

(2)
t /[λ(1)

t ]2 + 3).

3.2.1. Form of the exposure response function (ERF). The common simpli-
fication that g(x) = x may not be appropriate for air pollution studies, because
there must eventually be an upper bound on the effect that air pollution can have
on health. An alternative approach is to consider a general function g that satis-
fies the desirable requirements of: (i) boundedness; (ii) increasing monotonicity;
(iii) smoothness (thrice differentiability); and (iv) g(0) = 0. Note that these proper-
ties are not commonly enforced on CRFs estimated for ambient pollution concen-
trations using generalized additive models [see, e.g., Daniels et al. (2004)]. These
assumptions allow exp(g(γXt)) to be approximated using a three term Taylor ex-
pansion of the form

μt
.= exp(zT

t α)EXt [exp{g(γXt)}]
≈ exp(zT

t α) exp
(
g
(
γ λ

(1)
t

))

× (
1 + γ 2g(2)(γ λ

(1)
t

)
λ

(2)
t + γ 3g(3)(γ λ

(1)
t

)
λ

(3)
t

)
(3.5)

≈ exp(zT
t α) exp

(
g
(
γ λ

(1)
t

) + γ 2g(2)(γ λ
(1)
t

)
λ

(2)
t

+ γ 3g(3)(γ λ
(1)
t

)
λ

(3)
t

)
,

where again λ
(1)
t is the first moment and λ

(2)
t and λ

(3)
t represent the second and

third central moments of the log-normal exposure distribution, respectively. Ide-
ally, the values of the parameters g(r) would be estimated within the MCMC sim-
ulation, although, in practice, it is unlikely that there would be enough information
to allow this. Our preliminary analysis suggests the first term g(γ λ

(1)
t ) can be well

approximated by g(γ λ
(1)
t ) = γ λ

(1)
t , and the lack of information to accurately esti-

mate the derivatives of g leads us to use the values in (3.4): g(2)(γ λ
(1)
t ) = 1/2 and

g(3)(γ λ
(1)
t ) = 1/6. Note that the effect of the latter two terms of this approximation

is likely to be small given the expected small values of γ .
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3.2.2. Health-exposure model. We assume the daily exposure distributions are
log-normal and adopt the ecological bias correction from (3.4), thus extending the
models of Dominici and Zeger (2000) and Holloman et al. (2004). The model for
relating aggregate mortality counts to a sample of personal pollution exposures at
a single lag l is given by

yt |{xit }, β ∼ Poisson(μt ) for t = 1, . . . , n,

ln(μt ) = λ
(1)
t−lγ + λ

(2)
t−lγ

2/2 + λ
(3)
t−lγ

3/6 + zT
t α,

β = (γ,α) ∼ N(μβ,�β),

xit |λ(1)
t , λ

(2)
t ∼ Log-Normal

(
λ

(1)
t , λ

(2)
t

)
for i = 1, . . . , kt ,

(3.6)
λ

(1)
t |σ 2 ∼ N(ξ, σ 2),

λ
(2)
t |τ 2 ∼ N(s2, τ 2)

I [λ(2)
t >0],

σ 2 ∼ Inverse-Gamma(0.001,0.001),

τ 2 ∼ Inverse-Gamma(0.001,0.001),

where xit denotes the exposure experienced by individual i on day t . The first
two central moments of the daily exposure distribution are treated as unknown and
assigned Gaussian priors based on prior knowledge of the mean values. Theoreti-
cally, different prior means could be assigned to each day [i.e. λ

(1)
t ∼ N(ξt , σ

2)],
but as the information required to sensibly choose values for these is unlikely to be
available, we use a common underlying mean for all days. The exposure variance
λ

(2)
t is assigned a truncated Gaussian prior because its expected value can be di-

rectly specified as a parameter, which would not be the case for standard variance
priors such as inverse-gamma.

In such a model, the value of the lag l is typically chosen to be one or two
[Dominici, Samet and Zeger (2000)], however, the latency over which the health
effects manifest themselves is unknown and so the choice of a single lag can be
problematic. A possible approach would be to include multiple lags in (3.6) so
that the mean function on day t will contain a vector of lagged values, Xt =
(Xt ,Xt−1, . . . ,Xt−L), with a corresponding vector of effects, γ = (γ0, . . . , γL).
However, this mean function is likely to be unsatisfactory due to the high correla-
tion among the lagged exposures. This problem of collinearity can be reduced by
using distributed lag models [DLM, Zanobetti et al. (2000)]. Here, we adapt the
DLM approach of Zanobetti et al. (2000) by constraining the coefficients using a
Bayesian penalized spline [Lang and Brezger (2004)], with a variance term con-
trolling the amount of smoothing across lags. Details of the extension of equation
[3.6] to incorporate multiple and distributed lag models are provided in the supple-
mentary material [Shaddick et al. (2008)]. As DLMs allow the effects of multiple
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lags to be fitted simultaneously, they can be used to assess the possibility of mor-
tality displacement by examining the patterns of effects over short periods of time
[Zanobetti et al. (2000)].

4. Case study. In this section we present a case study of data from Greater
London and are motivated by three aims: (i) demonstrate the potential of the pC-
NEM exposure simulator for generating individual exposures for use in air pol-
lution and mortality studies; (ii) investigate the differences between the effects of
ambient pollution and personal exposures on mortality; (iii) compare the perfor-
mance of the log-normal model (3.6) against simpler alternatives that have previ-
ously been adopted.

4.1. Description of the data. The data used in this study relate to daily obser-
vations from the Greater London area during the period 2nd January 1997 until
30th December 1997. The health data comprise daily counts of respiratory mor-
tality for seniors (≥65 years) drawn from the population living within Greater
London, and were obtained from the national mortality database. The pollution
data relate to concentrations of particulate matter measured as PM10, and the pC-
NEM exposure simulator uses ambient concentrations measured at eight spatial
locations throughout Greater London. The median distance between the monitor-
ing sites was 20 km (IQR, 13–25 km), and further details of the sites and their
locations can be found in Shaddick and Wakefield (2002).

When using the simpler models, average ambient pollution concentrations are
calculated as the mean level over the eight monitoring sites. This spatial aver-
age is likely to introduce minimal exposure error because PM10 concentrations in
London during this period exhibit little spatial variation. When fitting the spatio-
temporal model suggested in Shaddick and Wakefield (2002), the components of
variability attributable to the temporal, spatial and measurement error components
account for 80%, 10% and 10% of the total variability, respectively. Hence, the
spatial variation in the ambient measurements is much smaller in comparison to
that due to temporal variability. Where there is evidence of strong spatial variabil-
ity, it may be appropriate to explicitly model the spatial variation in exposure with
relation to the health outcome, however, in this case the count data were only avail-
able in the form of a single (daily) count for the entire area and so a direct spatial
link would not have been possible. Meteorological data (measured at Heathrow
airport) were also available for Greater London, including indices of temperature,
rainfall, wind speed and sunshine.

4.2. Models. The pCNEM simulator was run with ambient PM10 data from
the eight monitoring sites described above, together with maximum daily temper-
atures, further details of which can be found in Zidek et al. (2005). The model
generated 100 sets of daily exposures for each of the eight exposure districts (de-
fined as areas around each of the monitoring sites), giving a total of 800 sam-
ples for each day. These distributions of estimates (for each day) are shown in
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FIG. 1. Panel (a) shows boxplots of the 800 personal exposures by day. For clarity, only every
second day is shown and the “whisker” component is removed. Panel (b) shows the relationship
between mean ambient concentrations and mean daily exposure. In both, personal exposures and
ambient concentrations of PM10 are measured in µg/m3.

panel (a) of Figure 1, while a comparison with ambient concentrations is presented
in panel (b). These empirical exposure distributions are then modeled parametri-
cally in the Bayesian hierarchical framework using the following models:

(i) The standard Poisson regression model [equation (2.1)] where the daily pol-
lution exposure is fixed at a single value (either the mean of ambient concen-
trations or the estimated personal exposures).

(ii) The normal exposure model [as in Holloman et al. (2004)] where daily expo-
sures are assumed to follow a normal distribution.
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(iii) The log-normal exposure model [as in equation (3.6)] where daily exposures
follow a log-normal distribution.

We fitted model (i) to the ambient concentrations and models (i), (ii) and (iii)
to the simulated personal exposures. We also investigate possible different effects
related to indoor and outdoor sources of pollution exposure by running the models
on these separate components of personal exposures. To assess the sensitivity of
our results to our prior assumptions, we apply the log-normal exposure model (3.6)
with a range of different priors for (σ 2, τ 2). We adopt an inverse-gamma(ε, ε)
prior with a range of ε values and compare this to using a flat prior on the standard
deviation scale, as suggested by Gelman (2006). The results were insensitive to
these choice of priors.

4.3. Inference. Inference is implemented in two stages. In the first, simulated
exposures are generated using pCNEM, while in the second these values are used
to estimate their association with the mortality counts using the models described
in Section 3. The pCNEM exposure simulator generated 800 personal exposures
for each of the 363 days in the study, which takes close to an hour to run. In the two
stage approach used here this only has to be performed once, rather than within
each iteration if a fully Bayesian model was used. In comparison, the Bayesian
second stage (health model) is relatively computational inexpensive, taking only
a few hours to produce a sizeable number of iterations. This was implemented
using MCMC simulation from the joint posterior distribution of all parameters
conditional on the exposure data generated at stage one, using a mixture of Gibbs
sampling steps and block Metropolis–Hastings moves based on random walk pro-
posals. In each case inference about the posterior distribution is based on 20,000
iterations from two Markov chains, initialized from dispersed locations in the sam-
ple space (in all cases the starting distributions are an overdispersed version of the
prior). Both chains are burned in for 20,000 iterations, by which point convergence
was assessed to have been reached using the diagnostic methods of Gelman et al.
(2003).

4.4. Modeling covariate risk factors. The covariates (zT
t α) are used to model

any trend, seasonal variation and temporal correlation present in the respiratory
mortality series, and are chosen using a fully Bayesian model building process.
The mortality data (not shown) exhibit a pronounced yearly cycle, with much less
prominent cycles at periods of a half, quarter and eighth of a year. As the most
prominent feature is the yearly cycle, we began by modeling y with daily mean
temperature, because it also has a yearly cycle. We added temperature to the model
as either a linear term or a smooth function for a number of different lags and
moving averages. The smooth function was implemented with variable degrees of
freedom using a natural cubic spline, the latter being chosen because its parametric
nature makes it less cumbersome to implement in our Bayesian framework than
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nonparametric alternatives. The fit to the data was compared using the deviance
information criterion [DIC, Spiegelalter et al. (2002)] and examining plots of the
standardized residuals, and a smooth function of the same days temperature with
two degrees of freedom was chosen. Meteorological indices of rainfall, wind speed
and sunshine were also included in the model, but they exhibited no relationship
with mortality at any lag.

After including temperature in the model, the residuals still exhibited cyclical
trends, which are typically modeled by functions of calendar time such as smooth
functions or pairs of sine and cosine terms. In this study we adopt a smooth func-
tion specification, because it is more flexible than sinusoidal terms and has become
the method of choice in most recent studies [see, e.g., Daniels et al. (2004)]. In
common with the temperature covariate, we choose the degrees of freedom using
the DIC criterion and examining plots of the standardized residuals and selected
11 degrees of freedom. The covariates were therefore

zT
t α = α1 + S(t |11,α2) + S(temperaturet |2,α3),

where S(var|df ,αj ) denotes a natural cubic spline of the variable var with df de-
grees of freedom.

The adequacy of the chosen covariates can be assessed by examining the poste-
rior predictive distributions for the daily residuals [Gelman et al. (2003)], as well as
their autocorrelation sequence, both of which are shown in Figure 2. The residual
distributions in Figure 2(a) show no clear pattern and the standardized residuals in
Figure 2(b) exhibit little or no correlation, suggesting that the covariates are likely
to have adequately removed the trends and structure in the mortality data.

4.5. Relationships between pollution and mortality. Table 1 gives the esti-
mated relationships between mortality and both personal exposure to and ambient
concentrations of PM10 for a series of different lags and for two distributed lag
models, representing different levels of smoothing. For the separate lags, results
are presented on the relative risk scale for an increase in 10 µg/m3 together with
95% credible intervals. For the DLMs, the total overall risk over a period of eight
days is presented. For ambient concentrations, the largest increases in risk were ob-
served with 1 and 2 day lagged ambient concentrations [RR = 1.015 (1.01–1.02)
and RR = 1.02 (1.01–1.04), resp.]. For the distributed lag models, DL1 represents
a low level of smoothing over the previous eight days and gives an overall risk
of 1.03 (1.00–1.07). The second DL2 has a higher amount of smoothing and has
a correspondingly smaller overall relative risk of 1.02 (1.00–1.05), reflecting the
fact that the increased smoothing has essentially averaged the risk at each lag to
a single value, resulting in attenuation to the null. Due to the remaining problems
of collinearity when using DL1, the credible intervals are wider than when using
DL2. For DL1 the highest risks were observed at lags 1 and 2, after which they
flattened off toward the null, and, in particular, did not exhibit a shape indicative
of mortality displacement (not shown).
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FIG. 2. Posterior predictive distributions used for model checking. Panel (a) shows the standardized
residuals. For clarity only every second day’s distribution is shown and the “whisker” component
is omitted. Panel (b) shows the autocorrelation sequence. The numbers denote the median values,
multiplied by 100 for ease of presentation.

Table 1 shows that for personal exposures the log-normal and fixed exposure
models give similar results, estimating higher risks than those observed when using
the ambient concentrations. For example, a 10 µg/m3 increase in lag 2 PM10 gives
a relative risk of 1.05 (1.01–1.09), compared with 1.02 (1.01–1.04) for ambient
concentrations. The distributed lag models also show correspondingly higher val-
ues, with the total overall risk being 1.07 (1.00–1.16) and 1.05 (1.01–1.10) when
using low and high smoothing, respectively. The distributed lag models exhibited
the same patterns as with the ambient concentrations, and were again not indicative
of mortality displacement.



1262 G. SHADDICK ET AL.

TABLE 1
Summary of the posterior relative risks for an increase in 10 µg/m3, together with 95% credible

intervals and quartiles of the posterior distribution. Results are given for models with lags of 0, 1, 2
and 3 days and two distributed lag models: DL1 and DL2, which respectively have low and high

smoothing of the lagged effects over the previous eight days
.

Data Lag 2.5% 25% 50% 75% 97.5%

0 0.993 1.003 1.009 1.014 1.024
Ambient 1 0.999 1.010 1.015 1.020 1.030
model (i) 2 1.007 1.017 1.022 1.027 1.037

3 0.993 1.003 1.008 1.014 1.024
DL1 0.995 1.016 1.027 1.040 1.068
DL2 0.990 1.005 1.018 1.031 1.048

0 0.987 1.013 1.026 1.039 1.064
Personal 1 1.003 1.027 1.040 1.052 1.078
exposures 2 1.013 1.039 1.052 1.065 1.091
model (i) 3 0.980 1.004 1.017 1.030 1.057

DL1 0.994 1.046 1.074 1.102 1.159
DL2 1.021 1.047 1.059 1.070 1.086

0 0.993 1.022 1.037 1.053 1.088
Personal 1 1.007 1.036 1.054 1.071 1.105
exposures 2 1.023 1.054 1.070 1.086 1.118
model (ii) 3 0.981 1.010 1.025 1.040 1.075

DL1 0.989 1.015 1.104 1.136 1.197
DL2 0.993 1.041 1.063 1.098 1.152

0 0.988 1.014 1.027 1.039 1.065
Personal 1 1.003 1.026 1.039 1.052 1.077
exposure 2 1.013 1.038 1.051 1.065 1.090
model (iii) 3 0.978 1.004 1.018 1.031 1.059

DL1 1.001 1.045 1.071 1.101 1.156
DL2 1.011 1.027 1.053 1.075 1.090

0 0.986 1.008 1.021 1.034 1.058
Personal 1 1.000 1.021 1.033 1.046 1.069
exposure 2 1.012 1.035 1.047 1.059 1.083
outdoor only 3 0.981 1.006 1.018 1.029 1.053

0 0.417 0.828 1.187 1.716 3.487
Personal 1 0.211 0.415 0.597 0.839 1.649
exposure 2 0.371 0.729 1.033 1.474 2.924
indoor only 3 0.349 0.664 0.910 1.256 2.346

The normal exposure model estimates a higher relative risk than the other mod-
els at all single and distributed lags, with, for example, a relative risk of 1.07
(1.02–1.12) for lag 2, which is at odds with the corresponding estimates of 1.05.
It also does not capture the shape of the exposure distribution across the popu-
lation, a point which is illustrated in Figure 3. This shows the empirical distrib-
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FIG. 3. Personal exposure distribution for 11th April 1997. The dashed black line represents the
empirical distribution, the dashed grey line is the single fixed exposure, the solid black line assumes
a normal exposure, while the solid grey line is the log-normal exposure model.

ution of the personal exposures for a randomly selected day (11th April 1997),
and compares that to the estimated posterior predictive distributions from the
proposed models. The empirical distribution is shown by a black dashed line,
an illustration of using a single value rather than a distribution is depicted by
a dashed grey line, while the solid lines represent posterior predictive estimates
from the log-normal (grey) and normal (black) exposure models, respectively.
The graph shows that the log-normal exposure model produces a distribution
that is very close to that of the data, suggesting that the model adequately char-
acterizes the daily exposures. In contrast, the normal exposure model is a poor
approximation to the data, having a larger variance and some posterior predic-
tive probability below zero. Additionally, Holloman et al. (2004) allow only the
daily exposure variance to be uncertain, with their model having the general form
ln(μt ) = λt−lγ + zT

t α, λt ∼ N(xt , σ
2), σ 2 ∼ Uniform(0,25). The posterior esti-

mates of σ 2 are not informative because the Markov chains for this parameter
moved quickly between the prior limits and did not converge. This lack of con-
vergence was also observed by the authors and is likely to be caused by their
condensing of the simulated daily exposures into a single mean value, so that the
model is trying to estimate the variation around that single value.
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Table 1 also shows the relative risks separately for the indoor and outdoor
sources of pollution, which were estimated by running the pCNEM model with
one of the exposure sources turned off. From these separate simulations, the mean
daily proportions attributable to indoor and outdoor sources were estimated to be
ca. 15% and 85%, respectively. For clarity and computational reasons, due mainly
to instability in the estimates when using the small proportion of exposures as-
sociated with indoor, the association between indoor exposures and mortality was
estimated using the standard regression model (ii) with single lags. The table shows
that the relative risk and confidence interval (and thus significance) associated with
outdoor sources only is very similar to that observed with both sources combined,
which is not surprising given they make up ca. 85% of total exposure. The risk in
relation to indoor sources only is smaller and nonsignificant, which may be at least
partly due to the reasons mentioned above.

4.6. The relationship between ambient concentrations and personal exposures.
In this paper the implementation of the pCNEM exposure simulator allows us to
relate personal exposures to mortality, in addition to the standard use of ambient
concentrations. For clarity, in the following example, the results from models using
a single lag of 2 days are discussed. Table 1 shows that the median relative risk
from exposure to ambient concentrations is 1.02, less than half that obtained when
personal exposures are used. The difference in the effects of personal exposures
and ambient concentrations can be seen in Figure 4, which shows P(RR > c) for
various values of c, where panel (a) relates to a relative risk for an increase in
10 µg/m3, where as for panel (b) it is 50. The plots show clearly that P(RR > c)

is bigger when using personal exposures than ambient concentrations, except for
the case when c = 1 (both probabilities are close to one) or when c is very large

FIG. 4. Probabilities that the relative risk exceeds certain values. The solid line refers to the model
using ambient concentrations, while the dotted line relates to modeled personal exposures. Panels (a)
and (b) show the results for 10 µg/m3 and 50 µg/m3 changes in PM10, respectively.
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(both probabilities are close to 0). For example, from panel (a) P(RR > 1.02) =
60.0% using ambient concentrations, compared with P(RR > 1.02) = 94.3% for
personal exposures. This result is not surprising as the population spend a large
proportion of time indoors (and away from the major outdoor sources of pollution),
meaning that ambient concentrations are likely to be larger than personal exposures
leading to different relative risks with mortality, a point which is now discussed in
more detail.

The daily averages (means) of ambient concentrations and personal exposures
from Greater London appear to be linearly related [see Figure 1 panel (b)], with the
latter being smaller by a factor of about 2.4 in this example. The same set of mor-
tality data are used to model both pollution measures, meaning that the combined
pollution-effect component of the regression model, λt−lγ , should remain constant
regardless of the exposure size. This relationship between the γ regression coeffi-
cients for the ambient and personal pollution exposures holds more generally with
linearly related covariates. Let (xA

t , xP
t ) denote ambient and personal exposures,

respectively, and consider the log linear models

E[yt ] = exp(xA
t−lγ + zT

t α),(4.1)

E[yt ] = exp(xP
t−lγ

∗ + zT
t α∗)(4.2)

used here, where (γ, γ ∗) are the parameters relating mortality to ambient con-
centrations and personal exposures, respectively. Assuming the two measures of
pollution are linearly related, that is, xP

t = θ + φxA
t , the model with personal ex-

posures [equation (4.2)] can be re-written as

E[yt ] = exp(xA
t−lφγ ∗ + θγ ∗ + zT

t α∗),
an alternative representation of the ambient model [equation (4.1)]. Equating the
coefficients of the ambient pollution level xA

t , we see that (γ, γ ∗) are related as
γ = φγ ∗. Therefore, if the ambient concentrations and personal exposures are
highly correlated, then the estimated regression coefficient of the former can be
determined from the latter (and vice versa) just by calculating their linear regres-
sion equation. For the Greater London data analyzed here, xP

t ≈ 0.83 + 0.40xA
t ,

meaning that γ ≈ 0.4γ ∗, which can be verified by comparing the posterior medi-
ans from Table 1. Similar relationships are also observed by Dominici and Zeger
(2000), who estimate linear regressions of mean personal exposure against mean
ambient concentrations for PM10 from five studies. They report estimates of φ

ranging from 0.33 to 0.72, with a pooled estimate of 0.53. Recently, McBride,
Williams and Creason (2007) used a Bayesian hierarchical model to characterize
the relationship between personal exposures and ambient concentrations of PM2.5
for a small group of seniors in Baltimore. They also observed that using ambient
concentrations would result in overestimates of personal exposure, with a mean
attenuation of 0.6 (albeit with a large range). These estimates are in line with the
value of 0.4 observed here, suggesting that the simulated exposures generated by
the pCNEM simulator are likely to be of the correct size relative to ambient con-
centrations.
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5. Discussion. This paper presents a two stage approach to constructing ex-
posure response functions (ERFs) relating to the health effects of an environmen-
tal hazard monitored over time and space. The first component uses a computer
model involving ambient pollution and temperature inputs to simulate the expo-
sure to that hazard experienced by individuals in an urban area. The model incor-
porates the mechanisms that determine the level of such exposures, such as the
activities of individuals in different locations which will lead to differing expo-
sures. The outputs from the model take the form of a set of exposures experienced
by a random sample of individuals from the population of interest for each day
of the study. These daily samples can be approximated by a parametric distribu-
tion, so that the predictive exposure distribution of a randomly selected individual
can be determined. The second component incorporates these distributions into
a hierarchical Bayesian framework that jointly models the relationship between
the daily exposure distributions (incorporating the within-day between individ-
ual variation) and health outcomes, while modeling potential confounders using
splines.

The approach was applied to a study of the association between particulate pol-
lution (PM10) and respiratory mortality in seniors (in London, 1997). Models using
ambient concentrations and (estimated) personal exposures were compared, with
the latter being represented by a single measure of pollution for each day, as well
as modeling the inherent variability using both log-normal and Gaussian distribu-
tions. The use of a log-normal distribution to represent daily variability in personal
exposures is more satisfactory than the Gaussian alternative, both in a statistical
sense and in term of the physical properties of the processes that might determine
concentrations. In this application the terms intended to allow for ecological bias
proved to be negligible, meaning the health effects model was essentially log-linear
and there was little difference in incorporating an appropriate parametric distribu-
tion for daily exposures and using a single summary measure. As such, in this case
a simpler model could have been used, although this could not have been known
a priori and may not be true for other environmental hazards. Using the computer
simulation model showed that personal exposures to PM10 are likely to be signif-
icantly lower (ca. 40%) than measured ambient concentrations used in regulatory
standards. This implies that their relative risk (of personal exposures) is higher
than the ambient analysis would suggest (ca. 2.5 times). The relative risk associ-
ated with (lag two) ambient concentrations to PM10 was RR = 1.02 (1.01–1.04),
with the corresponding risk associated with personal exposures being RR = 1.05
(1.01–1.09). Similar increases between risk estimates when using (estimated) per-
sonal exposures are observed for all lags.

This increase in observed risk is in a large part due to the fact that the popula-
tion spend a large amount of their time indoors, meaning that personal exposures
(which come from indoor sources such as cooking with gas, as well as a proportion
of outdoor sources determined by factors such as the air exchange rate) are likely
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to be lower than ambient concentrations [Zidek et al. (2007)]. In terms of pub-
lic policy, it is ambient concentrations that may be controlled rather than personal
exposures per se, and so the risks associated with ambient concentrations are of in-
terest in their own right, in addition to the risk associated with personal exposures
explored here. Of course, one aim of policies that reduce ambient concentrations
would be a reduction in exposures experienced by individuals. One potentially very
useful facility which pCNEM offers is the ability to assess the effect of such reduc-
tions in ambient concentrations on personal exposures [see Zidek et al. (2005) for
an example]. Ambient source exposures are derived from the outdoor environment
and are thus shared among the population, whereas nonambient exposures come
from individual environments that are not shared [Sheppard (2005)]. As such, care-
ful interpretation of the meaning of the relative risk is required when comparing
studies using personal exposures and ambient exposures [Sheppard et al. (2005)].
The traditional time series approach relies on the assumption that it is the (rela-
tively) short-term temporal changes in ambient concentrations that determine the
relative risk coefficients (RRCs), and not the spatial variation in exposure to indoor
sources captured by the ERF. As such, the ERF’s RRCs will be (largely) deter-
mined by the ambient concentrations (Lianne Sheppard, personal communication
with the third author, and also observed for the Greater London data analyzed here;
see Table 1). In fact, the RRCs in the CRF and ERF differ only in that the latter
compensates for the lower level of predicted exposures compared with the ambi-
ent concentrations [observed for the simulated exposures generated here, the five
small scale studies documented by Dominici and Zeger (2000) and the study of
McBride, Williams and Creason (2007)]. For example, if exposures were 50% of
ambient concentrations, the RRC for the ERF will have to be twice as large (since
the disease effect function is roughly linear) to predict the same observed numbers
of health outcomes.

This disattenuation of the RRC could be done entirely with the help of statis-
tical models [Sheppard et al. (2005)]. However, there will be difficulties in esti-
mating the necessary parameters required for an entirely statistical approach, that
is, the relationship between ambient concentrations and personal exposures for
a specific sub-population, such as seniors. The attempt to incorporate the mech-
anisms of how individuals are exposed rather than adopting a purely statistical
approach also helps provide a more scientific basis for setting standards and ana-
lyzing health effects even when in some cases the results may turn out to be sim-
ilar. The use of the computer simulation model to estimate individual exposures,
and thus the ERF, therefore appears to have great potential in cases such as this,
especially where the (potentially suspectable) sub-group being studied might not
be expected to be well represented by using (overall) ambient concentrations of
pollution.

Acknowledgments. Much of the work was done while James V. Zidek was
a visitor at the University of Bath, funded by BICS. The authors would like to



1268 G. SHADDICK ET AL.

thank Paul Switzer, Thomas McCurdy and Kate Calder for their comments and
the Editor, Associate Editor and referee for suggesting improvements to the pa-
per.

SUPPLEMENTARY MATERIAL

Supplementary Material for “Estimating exposure response functions
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.pdf). This file contains information regarding:

1. Using the pCNEM exposure simulator.
2. Modeling the effects of multiple lags.
3. Data for London, 1997, used in the paper.
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