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Gridded estimated rainfall intensity values at very high spatial and tem-
poral resolution levels are needed as main inputs for weather prediction mod-
els to obtain accurate precipitation forecasts, and to verify the performance of
precipitation forecast models. These gridded rainfall fields are also the main
driver for hydrological models that forecast flash floods, and they are essen-
tial for disaster prediction associated with heavy rain. Rainfall information
can be obtained from rain gages that provide relatively accurate estimates of
the actual rainfall values at point-referenced locations, but they do not char-
acterize well enough the spatial and temporal structure of the rainfall fields.
Doppler radar data offer better spatial and temporal coverage, but Doppler
radar measures effective radar reflectivity (Ze) rather than rainfall rate (R).
Thus, rainfall estimates from radar data suffer from various uncertainties due
to their measuring principle and the conversion from Ze to R. We introduce
a framework to combine radar reflectivity and gage data, by writing the dif-
ferent sources of rainfall information in terms of an underlying unobservable
spatial temporal process with the true rainfall values. We use spatial logistic
regression to model the probability of rain for both sources of data in terms of
the latent true rainfall process. We characterize the different sources of bias
and error in the gage and radar data and we estimate the true rainfall intensity
with its posterior predictive distribution, conditioning on the observed data.
Our model allows for nonstationary and asymmetry in the spatio-temporal
dependency structure of the rainfall process, and allows the temporal evolu-
tion of the rainfall process to depend on the motions of rain fields, and the
spatial correlation to depend on geographic features. We apply our methods
to estimate rainfall intensity every 10 minutes, in a subdomain over South
Korea with a spatial resolution of 1 km by 1 km.

1. Introduction. Precipitation is a key component that links the atmosphere,
the ocean and the Earth’s surface through complex processes. Thus, accurate
knowledge of precipitation levels is a fundamental requirement for improving
the prediction of weather systems and of climate change. In particular, some of
the weather forecast models use data assimilation techniques that require accu-
rate precipitation estimates at high spatial and temporal resolutions. Accurate rain
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maps are also used to verify the performance of precipitation forecast models and
can pinpoint the shortcomings of numerical models. From a hydrological point of
view, the rainfall is a main driver in predicting stream flow. Accurate estimated
spatial and temporal structures of precipitation are the most important component
to understand and predict flash flood. Rain gages are widely used to measure rain-
fall accumulation, but the information they provide is limited by their spatial and
temporal resolution. In particular, the deployment of dense rain gage networks to
resolve detailed spatial structure of rain fields is costly and their maintenance is
time-consuming.

Remote sensing technology has improved significantly over the last few decades
and can now provide quantitative information on precipitation. Doppler radars es-
timate instant rainfall intensity or rate (R) at very high spatial and temporal reso-
lution (typically, 1 km by 1 km and in the order of minutes). However, a radar does
not measure rainfall rate directly but infers the rain rate from the measured effec-
tive radar reflectivity (Ze). The conversion from radar reflectivity Ze to rainfall R

is usually done with the transformation Ze = αRβ , where α = 200, β = 1.6 [e.g.,
Lee and Zawadzki (2005)]. This conversion function is typically derived from the
measured drop size distributions (DSDs). The DSDs vary with different micro-
physical and dynamical processes. There is no unique conversion equation that
satisfies all different processes, rather varies from storm to storm and within storm
[e.g., Lee and Zawadzki (2005)]. The error associated with the R–Ze conversion
is inherent. Thus, the main source of error of the radar rainfall estimates are as-
sociated with reflectivity measurement errors and R–Ze conversion errors. Many
studies have attempted to correct for these two types of errors [e.g., Zawadzki
(1984), Joss and Waldvogel (1990), Jordan, Seed and Austin (2000), Germann et
al. (2006), Lee and Zawadzki (2005), Bellon et al. (2006)].

Even when these conversion errors are corrected based on an understanding
of the physical processes and the Ze measurement errors are reduced, the radar
data are not directly comparable to rain gage measurements due to the differences
in sampling volumes between the two different sensors. A rain gage accumulates
rainfall at a point on the ground, while radar samples at a volume of approximately
1 km3 at some height above the ground. Rain gages are also relatively sparse across
space (in relation to the spatial resolution of the radar data), thus, it is difficult to
infer small scale rainfall spatial patterns from gages. Ideally, one would want to
combine both sources of rainfall data to obtain more accurate rainfall estimates.
This paper introduces a statistical framework for combining radar reflectivity and
gage measurements to obtain estimates of rainfall rate, taking into account the dif-
ferent sources of error and bias in both sources of data. We also introduce a sound
statistical framework to estimate the R–Ze conversion equation as a spatial func-
tion. In some of the previous work [e.g., Chumchean, Seed and Sharma (2004)] the
relation between radar and gage data is only modeled when it rains, eliminating
the zero-rain observations. In our framework, we use all available data, including



1150 M. FUENTES, B. REICH AND G. LEE

the zero-rain events. Furthermore, we use spatial logistic regression to model the
probability of zero-rain for gage and radar data as a spatial process.

Statistical models have been developed to estimate the distribution of the length
of wet and dry periods of rainfall patterns [Green (1964), Hughes and Guttorp
(1994), Sanso and Guenni (2000), Zhang and Switzer (2007)]. In particular, the
stochastic model introduced by Zhang and Switzer (2007) describes regional-scale,
ground-observed storms by using a Boolean random field of rain patches. How-
ever, mesoscale instantaneous rainfall patterns are very difficult to model using
statistical or physical models, in part due to lack of real-time weather stations
measuring rainfall intensity (the Korean network is quite unique in this regard),
and because of the spatial and temporal heterogeneity and the inherent variability
of rainfall process at high resolution in space and time. This study is aimed to de-
velop a statistical model that can be implemented in real time for the estimation of
rainfall intensity maps at high resolutions (1 km in space and 10 minutes in time).
Our model treats the true unobservable rainfall intensity as a latent process, and we
make inference about that process using a statistical framework that relates radar
and gage data and other weather and geographic covariates to the latent process.

Rainfall intensity changes rapidly across space and time, in particular, depend-
ing on the direction and intensity of the winds. Estimating complex spatial tem-
poral dependency structures can be computationally demanding, since it involves
fitting models that go beyond the standard assumptions of stationarity and full
symmetry of the geostatistical models. The assumption of stationarity and full
symmetry for spatial–temporal processes offers a simplified representation of any
variance–covariance matrix, and consequently, some remarkable computational
benefits. Suppose that {Z(s, t) : s ≡ (s1, s2, . . . , sd)′ ∈ D ⊂ R

d, t ∈ [0,∞)} denotes
a spatial–temporal process where s is a spatial location over a fixed domain D, R

d

is a d-dimensional Euclidean space and t indicates time. The covariance function is
defined as C(si −sj ; tk − tl|θ) ≡ covθ {Z(si , tk),Z(sj , tl)}, where si = (si

1, . . . , s
i
d)′

and C is positive-definite for all θ , vector of covariance parameters. Under the
assumption of stationarity, we have C(si − sj ; tk − tl|θ) ≡ C(h;u|θ), where
h ≡ (h1, . . . , hd)′ = si − sj and u = tk − tl . Nonstationary models have been intro-
duced by Sampson and Guttorp (1992), Higdon, Swall and Kern (1999), Nychka,
Wikle and Royle (2002) and Fuentes (2002), among others. Another assumption of
the commonly used spatial models is full symmetry. Under the assumption of full
symmetry [Gneiting (2002)] we have C(h;u|θ) = C(h;−u|θ) = C(−h;u|θ) =
C(−h;−u|θ). In the purely spatial context, this property is also known as ax-
ial symmetry [Scaccia and Martin (2005)] or reflection symmetry [Lu and Zim-
merman (2005)]. Stein (2005) introduced asymmetric models for spatial–temporal
data. Park and Fuentes (2008) have introduced this concept of lack symmetry in
a more general context for nonstationary space–time process and they have devel-
oped asymmetric space–time models. However, these nonstationary and asymmet-
ric models are computationally demanding. In our framework, we allow enough
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flexibility in the potentially nonstationary and asymmetric spatial–temporal evo-
lution of the rainfall process using a computationally efficient approach. We in-
troduce a latent displacement vector that explains the echo motion of the rainfall
intensity, we use motion field information to explain this shift of the rainfall across
space and time.

We apply our methods to estimate rainfall intensity at 4:20 am and 4:30 am on
July 12, 2006, for a domain over South Korea with a spatial resolution of 1 km
by 1 km. The temporal resolution is limited by the update of the radar data (every
10 minutes). At each given time we have 102 observations from the gage network
and 10,000 radar reflectivity data points.

This paper is organized as follows. In Section 2 we describe the data. In Sec-
tion 3 we introduce the statistical framework to combine radar and gage rainfall
data. In Section 4 we apply our model to rainfall data in South Korea. We conclude
in Section 5 with a discussion and some final remarks.

2. Data.

Radar data. The Korean Meteorological Administration (KMA) operates 11
Doppler weather radars (4 C-band and 7 S-band) and collects radar volume scans
every ten minutes. In this study we use 10 minutes radar data for July 12, 2006 over
a subdomain in South Korea at 4:20 am and 4:30 am. The constant altitude Plan
Position Indicators (CAPPI) of equivalent radar reflectivity is constructed from
each volume scan at 1.5 km height and a temporal and spatial resolution of 10
minutes and 1 km, respectively, after eliminating ground clutter (GC) and anom-
alous propagation (AP). The reflectivity composite is produced from individual
radar CAPPIs with an array of 901 by 1051 at the spatial and temporal resolutions
of 1 km and 10 minutes. The weather radars at short wavelengths such as the C-
band (∼5 cm) suffer from serious attenuation of signals due to strong precipitation
over a radar or along the path of the radar beams. In addition, radar measurements
are limited by the blockage of radar beams by complex terrain over the Korean
peninsula. The correction of the attenuation and beam blockage could be obtained
with complex algorithms that are very computationally demanding. Here, we use
a standard approach and we select the maximum value at the overlapping grids to
mitigate the attenuation and beam blockage.

The radar composite in South Korea is re-sampled at the smaller domain of
100 km by 100 km around Seoul, South Korea, with latitude ranging from 36.977
to 37.898 and longitude ranging from 126.173 to 127.33. This subdomain par-
ticularly provides a dense network of rain gages (see Figure 1). There are two
radar stations within this subdomain, at locations (37◦26′, 126◦57′) and (37◦27′,
126◦21′) (see Figure 4). The radar on the left-hand side in Figure 4 is C-band so
its measurements are affected by attenuation errors. Some of the radar data on the
right upper and lower areas of our subdomain are obtained from additional S-band
KMA radars located outside our geographic subdomain and, thus, are not shown
in Figure 4.
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FIG. 1. Radar reflectivity and gage data (mm/h) on July 12, 2006 at 4:20 am and 4:30 am. The
background color is the reflectivity, the gage values are represented with 3 different symbols: circle =
no rain, square = 0–20 mm/h, triangle=more than 20 mm/h.
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The radar precipitation map is typically generated by converting radar equiva-
lent reflectivity (Ze) into rainfall intensity [R, units = (mm/h)] using the relation-
ship Ze = αRβ , α is generally set to 200 and β to 1.6. The conversion can result in
some error associated with the variation of microphysical processes. The conver-
sion errors vary in time and space [Lee and Zawadzki (2005), Lee et al. (2007)].
In this paper we work directly with the reflectivity Ze and we estimate the values
of α and β , treating α as a spatial process.

Station data. The Korean automatic weather stations (AWS) measure the
precipitation accumulation, the east–west component of the wind vector (m/s)
(u wind component), the north–south component of the wind vector (m/s) (v wind
component), temperature (◦C) and relative humidity (%) every minute. The bucket
size of rain gage is 0.5 mm and the number of tips is recorded every minute from
which the 1-minute rainfall intensity (mm/h) is derived using a standard approach
called the Tropical Rainfall Measuring Mission (TRMM)/Gauge Data Software
Package (GSP) algorithm [Wang, Fisher and Wolf (2008)]. This algorithm first
identifies the rain event by checking the time interval between two tips and fills
the gap between two tips by adding a half-tip. Then, the cumulative distribution
of the amount of rain is derived as a function of time (using cubic splines) and
the 1-minute rainfall intensity is obtained from the slope of this function. To mini-
mize the random measurement noise, a 10-minutes moving average centered at the
given time is applied, and then the averaged values at the radar measurement time
are re-sampled. Zero values represent no-rain but they can also occur by malfunc-
tioning gages. The obtained values are point measurements so representative errors
need be characterized. In this study we use the weather stations over a subdomain
in South Korea with latitude values ranging from 36.977 to 37.898 and longitude
values from 126.173 to 127.33, for July 12, 2006. The total number of weather
stations in our subdomain is 102. The climate weather stations in the U.S. record
rainfall accumulation every hour and there are only few stations very sparse across
space that record real-time meteorological data. Some special stations transmit
high temporal resolution in real time. However, all station data used in this study
are transmitted every minute in real time. The average spatial resolution is about 13
km and even higher around large cities (few kilometers in some parts of our sub-
domain). In addition, the weather system in South Korea has complex mesoscale
features due to interactions with mountains and oceans. Thus, these station data
provide a unique opportunity to explore the small scale structure of rain fields.

Elevation data. Geographical data are useful to understand the modulation of
precipitation systems by surface conditions, in particular, in Korea where weather
systems interact with complex geography. In this study we use Digital Elevation
Model (DEM) data. The DEM elevation data (in meters above sea level) have
resolution of 1 km and are available from the US Geological Survey. The elevation
increases as we move west-to-east in the eastern part of our subdomain. Thus, this
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phenomenon could lead to more beam blockage for the radar data in these areas,
which is compensated by selecting maximum values for the overlapping radar data.

3. Model description. Let R̂(s, t) be the continuous spatial temporal process
with the observed precipitation values at location s and time t as measured by the
rain gages, and R̃i(t) the radar reflectivity data for grid cell i and time t . Ri(t)

represents the continuous component (when it rains) of the underlying true instant
rainfall process at time t averaged within grid cell i. We model the latent rainfall
process Ri(t) in the natural logarithm scale, and we denote Yi(t) = log(Ri(t)). The
logarithm transformation is preferred since in the original scale too much attention
is given to strong rainfall rates [Lee and Zawadzki (2005)].

In our framework we have 2 main stages. This framework is fitted using a fully
Bayesian approach. In stage 1 we model the different sources of data in terms of an
underlying latent rainfall process, and in stage 2 we describe the model for the la-
tent process given some weather covariates. We add a stage 0 to model the weather
covariates; this stage is implemented outside the fully Bayesian framework for
computational convenience.

Stage 0.

Covariates. In our framework the weather variables, such as temperature, rela-
tive humidity, and wind fields are important covariates to explain the latent rainfall
process and its temporal evolution. However, these weather covariates are not ob-
served at all locations of interest for rainfall prediction within our 1 km by 1 km
resolution gridded domain. Therefore, we do spatial interpolation using thin plate
splines. The number of basis is chosen using generalized cross-validation (GCV)
[Craven and Wahba (1979)].

Stage 1.

Gage data model. We model the gage data in terms of an underlying true
rainfall process (averaged within each grid cell) with some error, and we model
the probability of zero-rain for the gage data as a spatial process πg(s, t) also in
terms of the latent rainfall process. We call this model a zero-inflated log-Gaussian
process (LGP). Thus, we have

R̂(s, t) =
{ 0, πg(s, t),

exp
{
Yi(s)(t) + εg(s, t)

}
, 1 − πg(s, t),

with πg(s, t) the probability of zero rain at location s and time t for the rain gage
data. The subindex i(s) for the process Y with the log rainfall values refers to the
grid cell containing s. The component εg(s, t) characterizes the variations in the
gage data with respect to the truth at location s and time t , due to measurement er-
ror and also due in part to the temporal and spatial misalignment (different scales)
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of the gage data and the truth. The misalignment is a consequence of the temporal
averaging of the gage data to obtain R̂(s, t) and the spatial averaging of the truth.
This variation is expected to be proportional to the precipitation levels that is why
we have multiplicative errors in the original scale.

The logits of the unknown π(s, t) probabilities (i.e., the logarithms of the odds)
are modeled as a linear function of the rainfall values (log scale) Yi(s)(t), using a
spatial logistic regression model,

logit(πg(s, t)) = ag + bgYi(s)(t),

where ag and bg are unknown coefficients.
In our zero-inflated LGP we model the probability of zero rain in terms of the

continuous component of the rainfall, Yi(s)(t), and thus, it differs from most zero-
inflated models that treat the probability of zero and the continuous part inde-
pendently. This is an important feature of our model that allows to smooth some
unrealistic nonzero values (due to measurement error) in the middle of a storm.

Radar reflectivity model. For the radar reflectivity data we have a similar
model, except for the fact that we add multiplicative and additive bias components
to the reflectivity–rainfall conversion model,

R̃i(t) =
{

0, πr(i, t),
exp{c1(i) + c2Yi(t) + εr(i, t)}, 1 − πr(i, t),

with πr(i, t) the probability of zero-rain for the radar data at time t and grid cell
i. The above relationship [when R̃i(t) > 0] is the reflectivity–rainfall conversion
function,

log(R̃i(t)) = c1(i) + c2 log(Ri(t)) + εr(i, t),

with the parameter c1 a spatial function (additive bias term), c2 a multiplicative
bias term and εr a random error component. We tried to model the parameter
c2 as a spatial function too, but that led to a lack of identifiability problem. The
reflectivity–rainfall conversion function is modeled in the natural logarithm scale,
because the error component is thought to increase with the precipitation values,
and in the original scale too much weight is given to high rainfall rates [Lee and Za-
wadzki (2005), Germann and Zawadzki (2002)]. The logits of the unknown πr(i, t)

probabilities are modeled as a linear function of the Yi(t),

logit(πr(i, t)) = ar + brYi(t),

where ar and br are unknown coefficients. Modeling the probability of zero rain
in terms of the rainfall continuous component becomes very relevant for the radar
measurements, since in many occasions we obtain isolated zero-rain events due to
radar measurement error in the middle of a storm (see zero-rain radar data in the
middle of our geographic domain in Figure 1).
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Stage 2.

Latent rainfall process. The latent rainfall process (log scale) Yi(t) is modeled
as a spatio-temporal Gaussian Markov random field. The process at the first time
point Y(1) = (Y1(t), . . . , Yn(t))

′ has a conditionally autoregressive prior (CAR)
prior. The CAR prior for Y(1) is a multivariate normal with a mean X(1)β ,
for X(1) = (X1(1), . . . ,Xn(1))′, that is a linear function of temperature, rela-
tive humidity and elevation at time 1, and with inverse covariance τ 2

Y QY , where
τ 2
Y ∼ Gamma(0.5,0.005) is an unknown precision, and QY = (I − ρY DW),

where ρY ∈ (0,1), I is a diagonal matrix with Iii = 1, Wik = wik ≥ 0 for i 
= k

and Wii = wi+ = ∑
k 
=i Wik , and D = Diag(1/wi+) is a diagonal matrix with

Dii = 1/wi+. An attractive feature of this prior is that the full conditional prior
Yi(1)|Yk(1), k 
= i, is normal with mean ρY (

∑
k 
=i

wik

wi+ (Yk(1) + Xi(1)β)) and vari-

ance 1/(τ 2wi+). We assume the weights wjk are known and equal to wjk = I (j ∼
k), where I (j ∼ k) indicates whether cells j and k are adjacent.

Temporal evolution of the latent rainfall process. Successive values of Yi(t)

are modeled using a dynamic linear model [Gelfand, Banerjee and Gamerman
(2005)]. The usual dynamic linear model smoothes Yj (t) toward the cell j ’s pre-
vious value, Yj (t − 1), that is,

Yi(t) = ρYi(t − 1) + Xi(t)β + εi(t),(1)

where ρ ∈ (0,1) controls the amount of temporal smoothing, εi(t) is a multivariate
normal vector with CAR prior, and with inverse covariance τ 2

ε(t)Qε(t) [similar to
the CAR model for Y(1), but with mean zero], Xi is a vector with the following
covariates: elevation and the temporal gradients of temperature and relative hu-
midity. However, this is inappropriate for rain data because the storm moves over
time. To correctly model the storm dynamics, we introduce a displacement vector
�i(t) that explains the echo motion at the grid point i. The model then becomes

Yi(t) = ρYi+�i(t)(t − 1) + Xi(t)β + εi(t),(2)

if the shift � at a given time is not a function of space that would impose one
constant translation vector, and it would not allow for rotation. To allow enough
flexibility in the temporal evolution of the rainfall process, we model � as a spatial
categorical process and we use the wind field information (u and v components)
(Figure 2) as relevant covariates to explain the shift. We write Wu,i(t) and Wv,i(t)

to denote the u and v components of the wind at time t and location i. S(t) rep-
resents a spatial spline basis function at time t [number of basis components is
chosen using DIC (deviance information criterion), Speigelhalter et al. (2002)] at
time t , and α, β1 and β2 are unknown coefficients. The basis function for S(t) are
the tensor product of two 1-dimensional cubic B-spline basis functions. This type
of basis functions was chosen for computational convenience, while still providing
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FIG. 2. Wind fields on July 12, 2006 at 4:20 am. The arrow points in the direction the wind is
moving toward and the length of the stem of the arrow is proportional to wind speed.

enough smoothing for the term S(t). We used information criteria for the selection
of number of basis and we ran sensitivity analysis.

We have

�i(t) = ([δ1,i(t)], [δ2,i(t)]),
where [x] rounds to the nearest integer to x, and

δ1,i(t) = αWu,i(t) + S(t)β1

and

δ2,i(t) = αWv,i(t) + S(t)β1.

We introduce a spline basis function to characterize the behavior of the storm mo-
tion not explained by the wind fields. The wind fields (Figure 2) can be very noisy
at this high spatial–temporal resolution, so additional smoothing is needed and that
is the role of the spline basis functions.

We estimate the rainfall intensity, Ri(t), and the probabilities of zero-rain for
the gage and radar data, πg(s, t) and πr(i, t), with their predictive posterior distri-
bution summaries. We fit this framework using a fully Bayesian approach. MCMC
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sampling is carried out using the software R [R Development Core Team (2006)].
Metropolis sampling is used for all parameters. The standard deviations of the
Gaussian candidates are tuned to give acceptance probabilities near 0.40. Conver-
gence is monitored by inspecting trace plots of the deviance and several represen-
tative model parameters.

3.1. Covariance function of the rainfall intensity. It is of interest to calculate
the spatial–temporal covariance of the latent rainfall process, as a measure of the
dependency structure and variability across time and space of the true underlying
rainfall process. The process Y(1) has inverse covariance τ 2

Y QY (defined in the
previous section). Conditioning on the shift vector, the covariance of Y (log of the
rainfall intensity) is

cov
(
Yi(t), Yi+h(t + τ)

)

= ρ2t+τ τ−2
Y Q

(−1)
Y

(
i +

t∑
k=2

�i1
k
(k); i + h

t+τ∑
k′=2

�i2
k′ (k

′)
)

+
t∑

j=2

ρ2t−2j+2+τ τ−2
ε(j−1)Q

(−1)
ε(j−1)

(
i +

t∑
k=j

�i1
k
(k); i + h +

t+τ∑
k′=j

�i2
k′ (k

′)
)

+ ρτ τ−2
ε(t)Q

(−1)
ε(t)

(
i; i + h +

t+τ∑
k′=t+1

�i2
k′ (k

′)
)
,

where ρ is the smoothing parameter used in equation (2), Q(−1)(i, j) denotes the
(i, j) element (row i, column j ) of the inverse matrix of Q, and the subindexes i2

k

and i1
k for �(k) are functions of the location i and values of � at other time points

than k. When the shift is constant across space, the covariance above becomes
a mixture of CAR covariance models. However, by allowing the shift to change
across space depending on the wind fields and geographic features, the covariance
becomes space-dependent and shows different patterns across space (nonstation-
arity).

Thus, by using latent processes, we allow the spatial dependency of the log
instant rainfall process, Yi , to depend on location, rather than just being modeled
as a function of distances between grid cells (stationarity assumption). From the
previous expression for the covariance of the process Yi , we see that the temporal
evolution of the rainfall process at different locations is a function of the shift
vector with the wind fields, allowing for the lack of full symmetry in the space–
time covariance.

4. Application. The relatively dense spatial coverage of the Korean automatic
weather stations with 1-minute weather measurements, combined with the high
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spatial resolution of the Doppler radar data from KMA, provide a unique op-
portunity to study the radar reflectivity–rainfall conversion function, and to de-
velop frameworks for spatial temporal mesoscale modeling of rainfall intensity.
Lee, Seed and Zawadzki (2007) modeled the spatial/temporal variability of the
conversion errors by using reflectivity and rainfall rate measurements at a fixed
location. In the work by Lee, Seed and Zawadzki (2007) the conversion errors
were not modeled across space and time due to the limited observations. In the
work presented here we introduce a statistical model that can capture the com-
plex and heterogeneous spatial temporal structure of mesoscale rainfall intensity
combining gage and radar reflectivity data with a resolution of 10 minutes (time)
and 1 km ×1 km (space). Figure 1(a) presents the radar reflectivity (Ze) and gage
rainfall rate (R in mm/h) on July 12, 2006 at 4:20 am. The empirical Pearson cor-
relation between log radar reflectivity and log gage data is 0.5. There is an overall
agreement between both sources of information in terms of capturing the large
scale structure. However, there are discrepancies at some given locations. Similar
empirical correlations are obtained at other time points.

Figure 1(b) presents both sources of information on July 12, 2006 at 4:30 am
(the next time point). There is a storm moving from the south-western to the north-
eastern part of our domain, and both sources of data seem to capture that phenom-
enon, showing, however, small scale disagreements in the intensity of the rainfall.
We use the statistical framework introduced in this paper to combine radar reflec-
tivity and gage data to estimate rainfall intensity.

To determine and justify the need of the more complex model proposed in this
paper, in which we introduce a spatially varying bias function (c1), and a spatially
varying shift vector (�), we compare 5 different models that assume different spa-
tial structure for the additive bias and the shift vector. In Model 1 we present a
simple model, where the shift and bias are constant functions across space. In
Model 2 the shift is varying spatially (using the model in Section 3) and the ad-
ditive bias is constant across space. In Model 3 the shift is constant across space
and the bias is varying spatially. In Model 4 the shift and bias are varying spatially
this is the general model presented in Section 3, using 9 basis components for the
cubic B-spline function (tensor product of two 1-dimensional cubic B-spline basis
functions). Model 5 is the same as Model 4 but with a different number of com-
ponents for the spline function (25 basis components). In Table 1 we present some
model comparisons.

We use the DIC [deviance information criterion, Speigelhalter et al. (2002)]
to compare model performance. PD indicates the estimated effective number of
parameters. Model 3 has larger PD than Model 4, even if Model 4 is a more com-
plicated model. The reason for that is that Model 4 has a spatially-varying shift,
while Model 3 does not, and adding a small number of shift parameters aligns
the two time points in a way that allows for more temporal smoothing and thus
fewer effective random effects. Model 4 has the smallest DIC, and we give next a
summary of the results for that model.
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TABLE 1
We present the DIC value, the posterior expectation of the deviance (D̄) and the estimated effective
number of parameters pD , for 5 different models. Model 1: shift and bias constant across space.
Model 2: shift varying spatially and bias constant across space. Model 3: shift constant across

space and bias varying spatially. Model 4: shift and bias varying spatially (9 spline basis
components). Model 5: shift and bias varying spatially (25 spline basis components)

Model DIC D̄ pD

1 18700 13092 5607
2 18223 12535 5688
3 19247 13377 5870
4 17722 12020 5702
5 18813 12436 6377

The prior used for the multiplicative bias (parameter c2 in the reflectivity–
rainfall conversion equation) is a Gamma(1,1). The posterior median (95% in-
terval) for this multiplicative bias is 1.05 (1.08, 1.13), which seems to indicate that
the recommended 1.6 value for the multiplicative bias (obtained based on regres-
sion analysis) might not be always appropriate. In Figure 3 we plot the rainfall
gage data versus the reflectivity radar data for our subdomain on July 12,2006 at
4:20 am and 4:30 am, eliminating the no-rain events; we also show the standard
conversion curve (Ze = 200R1.6). The plot of the spatial posterior median for the
spatial bias [parameter exp(c1)] is presented in Figure 4. The bias is larger in the
south-eastern part of our subdomain, where there seems to be more disagreement
between radar and gage data. This figure also shows the location of the two radar
stations. There is not much relationship between the location of the radar stations
and the magnitude of bias for the radar data. It is true that as the radar beams prop-
agate through the range of coverage of the Doppler radar, the sampling volume
and measurement heights increase. In addition, at larger distances from the station
the radar beams can intercept the melting layer of the stratiform rain. Intercepting
the melting layer could result in high values of radar reflectivity, mainly due to the
increase of the dielectric constant while maintaining the size of the individual pre-
cipitation particles. This phenomenon could increase the radar bias at locations that
are further away from the station. However, the current storm is mostly a convec-
tive system, where the increase of reflectivity in the melting layer is less significant
or it is not present. Thus, a larger bias is not expected further away from the radar
stations.

The estimated values of c2 were very similar for the other 4 models, which
seems to indicate that this parameter is robust to the structure imposed on the
additive bias and the shift parameter. The number of basis components for the
spline surface is 9 for both the additive bias and also for the shift vector. Models
with a different number of spline basis components had higher DIC values (see,
e.g., Model 5).
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FIG. 3. Plot of the rainfall data from rain gages, versus radar reflectivity, eliminating the zero-rain
events, and using data from July 12, 2006 at 4:20 am and 4:30 am. The solid curve corresponds to
the standard transformation Ze = 200R1.6. This scatterplot is generated in the natural logarithmic
scale for both variables (log of rainfall versus log of reflectivity), presenting the reflectivity radar and
gage data on the original scale on the axes.

We present in Figure 5 the vector that shows the storm motions (�i(t)). The
values presented are the mean of the posterior distribution of the storm direction.
We can appreciate in this graph the flexibility offered by our statistical framework
to characterize nonstationary and complex patterns in this motion. The estimated
displacement vector shows the dominant south–west to north–east direction of the
storm, but it also captures some small scales phenomena, such as the west–east
shift in the lower left corner of our domain. The average shift is about 11 m/s.
The median (95% interval) for the coefficient α that measures the effect of the
smoothed wind fields on the shift is 0.39 (0.22, 0.55), which indicates that the
smoothed wind plays an important role explaining the storm motion (Figure 5).
This might be expected, since storm systems move along the wind fields at steering
levels (around 700 to 500 hPa). However, it is also true that the surface winds
(Figure 2) are highly affected by local effects such as terrain and local heating. On
the other hand, the smoothed version of the wind fields used in this application
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FIG. 4. Spatial bias surface for the reflectivity radar data at 4.20 am on July 12, 2006 [exp(c1)

parameter]. The two × marks in the plot indicate the locations of the radar stations within our
subdomain.

should attenuate the impact of those local phenomena, and be a better predictor of
the shift.

It is also of interest to study the probability of rain for both gage and radar data.
We used vague normal prior distributions for the logistic parameters, N(0,1/0.01),
where 0.01 is the precision. The median (95% intervals) for the logistic parame-
ters that explain the probability of zero-rain for the radar data are −2.81 (−3.08,
−2.61) for the intercept parameter, and −1.69 (−1.83, −1.58) for the slope para-
meter. For the gage data, we obtain for the intercept −0.23 (−0.68, 0.40), and for
the slope parameter −0.17 (−0.41, 0.06). Both slopes are negative, since higher
rain corresponds to less probability of no rain. There are many less gage obser-
vations than radar data, so the gage intervals are much wider. In fact, the 95%
interval for the slope covers one. Figures 6(a) and (b) show the probabilities of no
rain for the radar and gage data. As expected, in the center of our domain near
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FIG. 5. The mean of the posterior distribution of the shift vector on July 12, 2006 at 4:30 am.

the center of the storm the probability of rain is very high, but there are other
areas with high probability in the north-western part of our domain. The prob-
ability of no-rain varies much less across space for the gage data; this may be
caused by a higher rate of erroneous zero rain values in the gage data than in
the radar data. The probability maps illustrate one of the main features of our
model, which is the ability to correctly estimate the probability of zero-rain, de-
spite some incorrect zero-rain measurements in radar and gage data in the middle
of the storm.

We present our rainfall maps in Figures 7(a) and (b). These figures present the
mean of the predictive posterior distribution (ppd) of the rainfall intensity, Zi(t),
on July 12, 2006 at 4:20 am and at 4:30 am, respectively. These graphs, overall,
present smoother surfaces but with similar rain patterns as the radar reflectivity
images (Figure 1), except for the areas with larger bias (see bias function in Fig-
ure 4). However, the scale is different, the estimated reflectivity–rainfall function
provides the change of scale equation.

We redid the analysis setting the gage values that were thought to be erroneous
as missing rather than zero, which is the default value assigned by the recording
instrumentation at the gages. An empirical standard approach was used to iden-
tify erroneous gage values based on ad-hoc comparison of the gage data with the
9 closest radar pixels. When the number of nonzero rain-value pixels was greater
or equal than 3, then the zero-rain gage value was replaced with a missing la-
bel. The obtained additive bias, shift vectors, and predictive rainfall values [see
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FIG. 6. Graphs (a) and (b) present the estimated probabilities of no-rain for the rain gage and
radar data on July 12, 2006 at 4:20 am.

Figure 7(c) and (d)] were very similar to the ones obtained using the potentially
erroneous values. This is due to the fact that in our model we characterize the un-
certainty in the gage measurements, and we combine radar and gage data, so clear
erroneous values should be detected in our model, which is one of the nice features
of our proposed approach.

4.1. Calibration. Data from 10% of the gage observations on July 12, 2006
between 4:20 am and 4:30 am are left out for validation. These observations are
left out throughout the model fitting. Similarly, 10% of the radar reflectivity data
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FIG. 7. Graphs (a) and (b) present the mean of the predictive posterior distribution of the rainfall
intensity (mm/h) on July 12, 2006 at 4:20 am and 4:30 am, respectively. Graphs (c) and (d) also
present the mean of the predictive posterior distribution of the rainfall intensity (mm/h) on July 12,
2006 at 4:20 am and 4:30 am, but, treating what were thought to be erroneous zero-rain gage values
as missing rather than zero.

on July 12, 2006 between 4:20 am and 4:30 am are left out for validation. We
repeat this calibration analysis 10 times. Thus, we randomly remove 10% of the
observations ten separate times and compute the coverage probabilities of the 95%
prediction intervals for each of the ten analyses.
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FIG. 8. Validation plot at randomly selected across space and time hold-out radar data locations
on July 12, 2006 between 4:20 and 4:30 am. We hold-out 10% of the radar data. The radar reflectivity
data (log scale) versus the predicted values (median of the posterior predictive distribution for log
rainfall) are plotted as points, the 95% prediction intervals are plotted as solid-lines. The predictive
reflectivity radar values are 97.4% of the time within the 95% prediction bands. The values in the
natural logarithm scale are truncated at −2. The zero rain values for the observed data are plotted
as −2.

Figure 8 shows the validation plot for the radar data, for one of the 10 analyses
conducted. The predictive reflectivity radar values are 97.4% of the time within
the 95% prediction bands. Similar results were obtained for the other 10 analyses.
Pooling over all ten analyses, the coverage probabilities are 96% for the radar data
and 94% (196/208) for the gage data. We conclude our model is well calibrated.

5. Discussion. In this work we introduce a framework to combine radar re-
flectivity and gage data to obtain instant rainfall maps. We model the gage and
reflectivity data using a zero-inflated log-Gaussian process, with the probability of
zero being a function of the latent rainfall process. Most of the previous empirical
analyses to study the reflectivity–rainfall conversion equation ignore the zero-rain
values. In this work we use the zero-rain values, furthermore, we determine the
probability of zero-rain at any given location using a spatial logistic model, taking
into account the values of the rainfall process in a neighborhood of the location
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of interest. The underlying rainfall process has a nonstationary and asymmetric
covariance that explains the spatial temporal complex dependency structures.

The dataset used for our analysis seem to indicate that the standard values of the
parameters in the reflectivity–rainfall conversion equation might not be appropriate
for every storm and geographic domain, and that there is need to allow the additive
bias to change across space. The main differences between the approach presented
here and previous analyses are the treatment of the zero values, the characterization
of the storm motions, and the fact that the additive bias is allowed to change across
space. Our model comparisons seem to indicate that these are all important features
that lead to a better and more accurate rainfall estimated surfaces.

In this paper we have made an effort to deal with the various problems of the
rainfall data sources, but there is always more that could be done. We discuss here
some forward-looking issues to illustrate some of the challenges in making the best
use of these data. In our modeling framework we have tried to characterize the un-
certainty in radar and gage data and in the R–Ze conversion equation. However, it
would be helpful to conduct different sub-analysis to study and understand better
the different sources of error that contribute to the overall uncertainty, in particu-
lar, regarding radar mis-calibration and attenuation errors, and errors in the R–Ze

conversion due to microphysical processes. Radar mis-calibration errors tend to
provide a constant bias within the radar coverage range, while errors due to at-
tenuation show high correlation along the path, so it could be possible to separate
both sources of error. In addition, R–Ze conversion errors should be a function
of different microphysical processes. Thus, a new formulation that separates these
various errors merits a new exploration. This would provide a better understanding
of error sources and a way of mitigating them.

The understanding of error structures and its use in hydrological and meteoro-
logical models have enormous potential. Obvious applications are its use in prob-
abilistic verification of the precipitation forecast from numerical models, and of
the precipitation estimates from various remote sensing instruments such as the
space-based radiometers. From our analysis we can obtain probability maps of
exceeding a certain threshold. This information could be used to improve the pre-
diction of the stream flow of extreme hydrological events, and that would aid in
the preparation for extreme events. We have shown here the mean of the predic-
tive posterior distributions which shows a central tendency of each predictive field.
Numerous predictive fields can be simulated from that distribution and could be
used as inputs to generate a hydrological and meteorological ensemble forecast.
Since hydrological and meteorological models are nonlinear, the response to the
small variation of initial inputs is highly unpredictable. Thus, an ensemble forecast
based on some initial predictive fields (as obtained in this paper) that characterize
the rainfall variability is essential to characterize extreme events.

Acknowledgments. The authors greatly appreciate the Korean Meteorologi-
cal Administration, in particular, Dr. HyoKyung Kim and Mr. KyungYeup Nam for



1168 M. FUENTES, B. REICH AND G. LEE

providing the radar and surface station data. The National Center for Atmospheric
Research is sponsored by the National Science Foundation.

REFERENCES

BELLON, A., LEE, G. W., KILAMBI, A. and ZAWADZKI, I. (2006). Real-time comparisons of
VPR-corrected daily rainfall estimates with a gauge mesonet. J. Appl. Meteorology Climatology
46 726–741.

CHUMCHEAN, S., SEED, A. and SHARMA, A. (2004). Application of scaling in radar reflectiv-
ity for correcting range-dependent bias in climatological radar rainfall estimates. J. Atmospheric
Oceanic Technology 21 1545–1556.

CRAVEN, P. and WAHBA, G. (1979). Smoothing noisy data with spline functions: Estimating the
correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31
377–403. MR0516581

FUENTES, M. (2002). Periodogram and other spectral methods for nonstationary spatial processes.
Biometrika 89 197–210. MR1888368

GELFAND, A. E., BANERJEE, S. and GAMERMAN, D. (2005). Spatial process modelling for uni-
variate and multivariate dynamic spatial data. Environmetrics 16 465–479. MR2147537

GERMANN, U., GALLI, G., BOSCACCI, M. and BOLLIGER, M. (2006). Radar precipitation mea-
surement in a mountainous region. Quarterly J. Roy. Meteorology Society 132 1669–1692.

GERMANN, U. and ZAWADZKI, I. (2002). Scale-dependence of the predictability of precipitation
from continental radar images. Part I: Description of the methodology. Monthly Weather Review
130 2859–2873.

GNEITING, T. (2002). Nonseparable, stationary covariance functions for space–time data. J. Amer.
Statist. Assoc. 97 590–600. MR1941475

GREEN, J. R. (1964). A model for rainfall occurrence. J. Roy. Statist. Soc. Ser. B 26 345–353.
MR0171366

HIGDON, D., SWALL, J. and KERN, J. (1999). Non-stationary spatial modeling. In Bayesian Statis-
tics 6 (J. M. Bernardo et al., eds.) 761–768. Oxford Univ. Press.

HUGHES, J. P. and GUTTORP, P. (1994). Incorporating spatial dependence and atmospheric data in
a model of precipitation. American Meteorological Society 33 1503–1515.

JORDAN, P. W., SEED, A. W. and AUSTIN, G. L. (2000). Sampling errors in radar estimates rainfall.
J. Geophysical Research 105 2247–2257.

JOSS, J. and WALDVOGEL, A. (1990). Precipitation measurement and hydrology. Radar in Meteo-
rology. In American Meteorological Society (D. Atlas, ed.) 577–606.

LEE, G. W. and ZAWADZKI, I. (2005). Variability of drop size distributions: Time scale dependence
of the variability and its effects on rain estimation. J. Appl. Meteorology 44 241–255.

LEE, G. W., SEED, A. W. and ZAWADZKI, I. (2007). Modeling the variability of drop size distrib-
utions in space and time. J. Appl. Meteorology and Climatology 46 742–756.

LU, N. and ZIMMERMAN, D. L. (2005). Testing for directional symmetry in spatial dependence
using the periodogram. J. Statist. Plann. Inference 129 369–385. MR2126855

NYCHKA, D., WIKLE, C. K. and ROYLE, J. A. (2002). Multiresolution models for nonstationary
spatial covariance functions. Stat. Modell. 2 315–331. MR1951588

PARK, M. S. and FUENTES, M. (2008). Testing lack of symmetry in spatial–temporal processes.
J. Statist. Plann. Inference. To appear.

R DEVELOPMENT CORE TEAM (2006). R: A language and environment for statistical computing.
Available at http://www.R-project.org.

SANSO, B. and GUENNI, L. (2000). A nonstationary multisite model for rainfall. J. Amer. Statist.
Assoc. 95 1089–1100. MR1821717

http://www.ams.org/mathscinet-getitem?mr=0516581
http://www.ams.org/mathscinet-getitem?mr=1888368
http://www.ams.org/mathscinet-getitem?mr=2147537
http://www.ams.org/mathscinet-getitem?mr=1941475
http://www.ams.org/mathscinet-getitem?mr=0171366
http://www.ams.org/mathscinet-getitem?mr=2126855
http://www.ams.org/mathscinet-getitem?mr=1951588
http://www.R-project.org
http://www.ams.org/mathscinet-getitem?mr=1821717


SPATIAL–TEMPORAL MESOSCALE MODELING OF RAINFALL INTENSITY 1169

SAMPSON, P. D. and GUTTORP, P. (1992). Nonparametric estimation of nonstationary spatial co-
variance structure. J. Amer. Statist. Assoc. 87 108–119.

SCACCIA, L. and MARTIN, R. J. (2005). Testing axial symmetry in separability in lattice processes.
J. Statist. Plann. Inference 131 19–39. MR2136004

SPIEGELHALTER, D. J., BEST, N. G., CARLIN, B. P. and VAN DER LINDE, A. (2002). Bayesian
measures of model complexity and fit (with discussion). J. Roy. Statist. Soc. Ser. B 64 583–639.
MR1979380

STEIN, M. L. (2005). Space–time covariance functions. J. Amer. Statist. Assoc. 100 310–321.
MR2156840

WANG, J., FISHER, B. L. and WOLF, D. B. (2008). Estimating rain rates from tipping-bucket rain
gauge measurements. J. Atmospheric and Oceanic Technology. To appear.

ZAWADZKI, I. (1984). Factors affecting the precision of radar measurements of rain. In 22nd Con-
ference on Radar Meteorology, Zurich. American Meteorological Society 251–256.

ZHANG, Z. and SWITZER, P. (2007). Stochastic space–time regional rainfall modeling adapted to
historical rain gauge data. Water Resources Research 43 W03441. DOI:10.1029/2005WR004654.

M. FUENTES

B. REICH

DEPARTMENT OF STATISTICS

NORTH CAROLINA STATE UNIVERSITY

RALEIGH, NORTH CAROLINA 27695
USA
E-MAIL: fuentes@stat.ncsu.edu

reich@stat.ncsu.edu

G. LEE

DEPARTMENT OF ASTRONOMY AND

ATMOSPHERIC SCIENCES

KYUNGPOOK NATIONAL UNIVERSITY

1370 SANGYEOK-DONG

BUKGU, DAEGU, 702-701
KOREA (ROK)
E-MAIL: gyuwon@knu.ac.kr

http://www.ams.org/mathscinet-getitem?mr=2136004
http://www.ams.org/mathscinet-getitem?mr=1979380
http://www.ams.org/mathscinet-getitem?mr=2156840
http://dx.doi.org/10.1029/2005WR004654
mailto:fuentes@stat.ncsu.edu
mailto:reich@stat.ncsu.edu
mailto:gyuwon@knu.ac.kr

	Introduction
	Data
	Radar data
	Station data
	Elevation data

	Model description
	Stage 0
	Covariates

	Stage 1
	Gage data model
	Radar reflectivity model

	Stage 2
	Latent rainfall process
	Temporal evolution of the latent rainfall process

	Covariance function of the rainfall intensity

	Application
	Calibration

	Discussion
	Acknowledgments
	References
	Author's Addresses

