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OPEN STATISTICAL ISSUES IN PARTICLE PHYSICS1

BY LOUIS LYONS

Oxford University

Many statistical issues arise in the analysis of Particle Physics experi-
ments. We give a brief introduction to Particle Physics, before describing the
techniques used by Particle Physicists for dealing with statistical problems,
and also some of the open statistical questions.

1. Introduction. Particle Physics tries to delve into the structure of matter at
its most basic level. It continues a tradition that dates back to the Greeks2 or even
earlier. In the early days of Chemistry, the smallest entities were atoms. Early in
the 20th century, the experiments of Rutherford demonstrated that atoms consisted
of a small nucleus, with the electrons circulating at distances of ∼ 10−10 metres.
Subsequently, the nucleus was found to be made of protons and neutrons. Many
other particles (known as hadrons) like protons and neutrons have subsequently
been discovered, but within the last 30 years, the quark model has brought under-
standing to the multitude of what used to be called “elementary particles.”

The entities that we currently believe are fundamental (i.e., they do not seem
to have any sub-structure) are the quarks and leptons shown in Table 1. There are
6 of each, and they appear to be arranged in 3 “generations” of increasing mass,
each containing quarks of electric charge +2/3 and −1/3 (in units where the elec-
tron’s charge is −1) and leptons of charge −1 and 0. The neutral leptons are called
neutrinos. Although charged leptons and neutrinos have been detected, quarks are
believed to be confined within hadrons. They have not been observed directly, but
their existence is inferred from the simplification they bring to the multitude of
hadrons, and to the way they explain many features of the way hadrons interact
with each other or with leptons.

In addition to these particles, there are also others responsible for mediating the
various fundamental forces. These include the massless photon γ , responsible for
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TABLE 1
The basic particles

Particle, charge Generations

1 2 3
Quark, +2/3 u (0.3) c (1.5) t (175)
Quark, −1/3 d (0.3) s (0.5) b (5)
Neutrino, 0 νe(< 3 ∗ 10−9) νμ(< 2 ∗ 10−4) ντ (< 0.02)

Lepton, −1 electron (5 ∗ 10−4) μ(0.1) τ (1.8)

Masses shown in brackets are in GeV/c2. In these units, the mass of the proton is 0.9.

the electro-magnetic force; the massive W and Z bosons which mediate the weak
force; and the gluons g responsible for the strong force. In addition, there is the still
to be detected graviton which mediates gravitational forces, and is usually denoted
by the symbol . Because the interacts so weakly it is hard to observe. Fi-
nally, there is the undiscovered Higgs boson, which is believed to be responsible
for the mass of the other particles, and which is the object of intense searches in
current experiments.

Of course, theoretical physicists are prolific at inventing models, and so there
are many other suggested particles.

Experiments in Particle Physics are usually conducted at large accelerators, for
example, at the European Centre for Nuclear Research (CERN) in Geneva, or at
Fermi National Accelerator Lab near Chicago. CERN’s soon-to-be-running Large
Hadron Collider (LHC) is in a tunnel about 100 metres below the surface and
27 kilometres in circumference, and which straddles the French–Swiss border.
Protons circulate in bunches in opposite directions around the ring, and collide
with each other at the center of large detectors. The bunches are about the width of
a human hair, and are ∼10 centimetres long. When they collide, new particles are
produced by converting the available kinetic energy into mass. The detectors are
designed to track the path of each particle, measure its curvature in the magnetic
field and hence determine the particle’s momentum, and also to give information
on the particle’s identity (e.g., whether it is an electron, muon, pion, kaon or pro-
ton).

Reactions between colliding protons will occur at a very high rate, but most
of them are fairly uninteresting. Thus, experiments are designed to have a trigger,
which makes a very fast decision as to whether the collision (called an “event”)
is likely to be interesting, and hence whether the data from the detector is worth
storing. Because of data read-out and storage constraints, only about 100 events
per second are recorded, and each may contain about a Megabyte of information.
Since the accelerator may run for 15 years, some 1010 events can be collected
by each experiment. In analyzing data, allowance must be made for the distorting
effect introduced by any selection bias of the trigger.



OPEN STATISTICAL ISSUES IN PARTICLE PHYSICS 889

This review attempts to present some interesting statistical issues in the analysis
of data collected in Particle Physics experiments. The items discussed below are
a mixture of current practice, ideals to which we aspire and some personal preju-
dices of the author. It is hoped that the approaches mentioned in this article will
be interesting or outrageous enough to provoke some Statisticians either to collab-
orate with Particle Physicists, or to provide them with suggestions for improving
their analyses. It is to be noted that the techniques described are simply those used
by Particle Physicists; no claim is made that they are necessarily optimal.

A Glossary of Particle Physics terminology appears in the supplementary mate-
rial [Lyons (2008)].

2. Particle Physics analyses. This section starts with two typical examples
of Particle Physics analyses, the first involving parameter determination, while the
second tests whether data is consistent with a null hypothesis H0, or whether an
alternative hypothesis H1 is favored. Further examples are described later. More
detailed descriptions can be found in the various papers of the PHYSTAT series
of Conferences [see James, Lyons and Perrin (2000), Cheung and Lyons (2000),
Whalley and Lyons (2002), Lyons, Mount and Reitmeyer (2003), Lyons and Ünel
(2005), Reid, Linnemann and Lyons (2006), Prosper, Lyons and De Roeck (2007)].
In particular, at the PHYSTAT-LHC meeting at CERN in 2007, the major exper-
iments at the LHC presented their statistical “wish-lists” [Gross (2007), Belikov
(2007), Xie (2007)].

2.1. Lifetimes. Here we estimate the lifetime of some specific particle. Thus,
we could have n independent observations t1 . . . ti . . . tn for the times between the
production and decay for this particle in the selected events. Then the mean life-
time τ could be determined by an unbinned likelihood fit to the probability density
τ−1 exp(−t/τ ). In real life we would have a more complicated expression, to allow
for a possible background with a different time dependence, experimental resolu-
tion on the determination of ti , and experimental acceptance of the detector and
the trigger, which depends on t .

The various steps in the data analysis include:

• Reconstruct tracks from the hits in the detector.
• Select wanted events that are enriched in the particle whose lifetime we wish to

measure.
• For each interaction, extract the decay time t from L and v, the distance the

particle travels and its speed. Typical values are picoseconds, mms and 99% of
the speed of light respectively.

• Model the signal, typically by an exponential time dependence probably
smeared by time resolution effects, and the background. Time-dependent ef-
ficiencies for collecting the data may also be relevant.

• Perform a likelihood fit, to determine τ and its statistical error σstat.
• Estimate the systematic error σsyst, and quote the result as τ ±σstat ±σsyst. These

systematics [Heinrich and Lyons (2007)] can arise from uncertainties in some of
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the extra parameters involved in modeling the data (e.g., the level of background
contaminating our signal), or from possible uncertainties in the theory (maybe
the expected exponential decay distribution is complicated by the existence of
two overlapping particles). Statisticians usually refer to the former as “nuisance
parameters.” In analyses involving enough data to achieve reasonable statistical
accuracy, considerably more effort is devoted to assessing the systematic error
than to determining the parameter of interest and its statistical error.

• Assess the goodness-of-fit between the data and the model, and ignore the esti-
mated value for the parameter if the fit is unsatisfactory.

2.2. Significant peak? Another type of analysis might consist of looking at
a mass spectrum (see Figure 1). In many situations we would expect to observe
a rather smooth and somewhat boring distribution, but sometimes there may be
a significant-looking peak at some mass position. This could correspond to the
exciting discovery of a new particle, to a boring statistical fluctuation of the smooth
background or to some unfortunately overlooked effect in the analysis.

We can make some numerical statement about the probability of obtaining a
statistical fluctuation at least as extreme as the one we have observed. In this situa-
tion, we are performing a “Goodness of Fit” test, that is, we are comparing our data
with the null hypothesis of a smooth distribution. Alternatively and probably more
sensitively, we could use our data to compare the two hypotheses—just smooth

FIG. 1. Mass histogram. This is for reactions producing a neutron (n), π+, K+ and K−. A his-
togram of the effective mass of the nK+ combination is plotted. If a particle decaying into a neutron
and a K+ is produced in these reactions, a narrow peak should appear in this histogram at the parti-
cle’s mass, but if not the distribution should be smooth. The curve is an attempt to deduce this smooth
background. Does the histogram provide evidence for a new particle, as opposed to there being a sta-
tistical fluctuation from the smooth background, and/or an incorrectly estimated background? A new
particle here would be very interesting, as it would not fit into the simple quark model, because it
would require a 5-quark structure.
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background or an interesting peak above the background; this is “Hypothesis Test-
ing.”

2.3. Bayes or frequentism? In many analyses the question arises whether to
use a Bayesian or a Neyman–Pearson Frequentist approach, or one which is neither
(e.g., χ2, likelihood, etc.). Particle Physicists tend to favor a frequentist method.
This is because we really do consider that our data are representative as samples
drawn according to the model we are using (decay time distributions often are ex-
ponential; the counts in repeated time intervals do follow a Poisson distribution,
etc.), and hence we want to use a statistical approach that allows the data “to speak
for themselves,” rather than our analysis being dominated by our assumptions and
beliefs, as embodied in Bayesian priors. The reluctance to use priors is strongest
in situations with several variables where multidimensional priors would be re-
quired, or in cases where very little is known about the relevant parameter—it may
be acceptable to use prior information about a parameter which is already well
measured, but more problematic to try to quantify prior ignorance.

However, in practice, it is very hard to use the Neyman frequentist construction
when more than two or three parameters are involved: software to perform a Ney-
man construction efficiently in several dimensions would be most welcome. The
choice of a useful ordering rule is also very important. Thus from a pragmatic point
of view, even ardent frequentists are prepared to use Bayesian techniques. Most of
them, however, would like to ensure that the technique they use provides parame-
ter intervals with reasonable frequentist coverage. There are even mixed methods
[Cousins and Highland (1992)] that use Bayesian priors for nuisance parameters,
but a frequentist method for the parameter of interest. The thinking here is that,
although such an approach cannot be justified from fundamentals, it provides a
practical method whose properties can be checked, and are often satisfactory. Par-
ticle Physicists would appreciate advice on how to construct priors for parameters
of interest, to be used in conjunction with information-based priors for nuisance
parameters, and which might give reasonable coverage [see Demortier (2005)].

3. Experimental design. Because experimental detectors are so expensive to
construct, the time-scale over which they are built and operated is so long, and
they have to operate under harsh radiation conditions, great care is devoted to their
design and construction. This differs from the traditional statistical approach for
the design of agricultural tests of different fertilisers, but instead starts with a list
of physics issues which the experiment hopes to address. The idea is to design a
detector which will provide answers to the physics questions, subject to the con-
straints imposed by the cost of the planned detectors, their physical and mechanical
limitations, and perhaps also the limited available space. Inevitably, compromises
in the design are required, and testing of any proposed scheme involves analysis
of the simulated “data” to see if the physics aims can indeed be achieved.
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Design is also involved when planning what technique is to be used to analyze
the experiment’s real data. This will be especially detailed if a blind analysis is to
be performed (see Section 8).

Another example is provided by the attempt to assess the systematic error on
an estimated parameter, caused by nuisance parameters. This often requires pro-
ducing simulations of the data with different values of the nuisance parameter,
and seeing how much the physics parameter’s value changes when the nuisance
parameter value is changed by its uncertainty (compare Sections 5.4 and 6.2 for
ways of incorporating nuisance parameters in upper limit and in p-value calcu-
lations respectively). When several nuisance parameters are involved, there is the
question of whether separate simulations should be produced, in each of which
only one of the nuisance parameters is changed from its optimal value by its un-
certainty; or whether it is better to generate simulations in each of which all nui-
sance parameters are simultaneously changed from their optimal values according
to their expected (possibly correlated) multivariate distribution. The two methods
are sometimes referred to unisim (or OFAT = One Factor At a Time) and mul-
tisim respectively. The question is which method requires less computing time to
achieve the same accuracy for the systematic error [Roe (2007)].

How to assess systematics was much discussed at the Banff meeting [Reid,
Linnemann and Lyons (2006)] and PHYSTAT-LHC [Read (2007), Neal (2007),
Linnemann (2007)].

4. Separating signal from background. Almost every Particle Physics
analysis uses some technique for separating signal from background. This is be-
cause only a fraction f of the complete set of stored events (which because of the
trigger can be a factor of 107 down on the total reaction rate) will contain interac-
tions of interest for the analysis being performed. Depending on the investigation
being undertaken, f could be as small as 10−8.

First some simple “cuts” are applied; these are generally loose selections on sin-
gle variables, which are designed to remove background while barely reducing the
signal. For example, the selected events could be required to have no more than
6 charged tracks. Then some more sophisticated analysis is performed, perhaps
using more complicated derived variables, for example, the mass of a possible par-
ticle decaying into a kaon and 3 charged pions. To separate signal from background
in the multi-dimensional space of the event observables, these analyses typically
use methods like Fisher discriminants, boosted decision trees, artificial neural net-
works (including Bayesian nets), support vector machines, etc. [Prosper (2002),
Friedman (2003, 2005)]. A description of the software available for implementing
some of these techniques can be found in Narsky (2006) and Höcker (2007).

If a large data sample is available to perform an accurate measurement of a prop-
erty of some particle, then it is not a disaster if there is some level of background in
the finally selected events, provided that it can be accurately assessed and allowed
for in the subsequent analysis. At the other extreme, the separation technique may
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be used to see if there is any evidence for the existence of some hypothesised parti-
cle (the potential signal), in the presence of background from well-known sources.
Then the actual data may in fact contain no observable signal.

These techniques are usually “taught” to recognize signal and background by
being given examples consisting of large numbers of events of each type. These
may be produced by Monte Carlo simulation, but then there is a problem of trying
to verify that the simulation is a sufficiently accurate representation of reality. It is
better to use real data, but the difficulty then is to obtain sufficiently pure samples
of background and signal. Indeed, for the search for a new particle, true data ex-
amples do not exist. However, it is the accurate representation of background that
is likely to pose a more serious problem.

The way that, for example, neural networks are trained is to present the software
with approximately equal numbers of signal and background events3, and then to
optimize the cost function C for the network. This is defined as C = �(zi − ti)

2,
where zi is the trained network’s output for the ith event; ti is the target output,
usually chosen as 1 for signal and zero for background; and the summation is
over all testing events presented to the network. The problem with this is that C

is not what we really want to optimize. For a search for a new particle, this could
be the sensitivity of the experimental upper limit in the absence of signal, while
for an analysis measuring the properties (such as mass or lifetime) of some well-
established particle, we would be interested in minimizing the error (including
systematic effects) on the result.

So the open questions are as follows:

• Is it possible to define what multivariate method will perform well in a given
class of problems?

• How can we check that our multi-dimensional training samples for signal and
background are reliable descriptions of reality?

• How many events are required for training?
• How should they be divided between signal and background, especially when

there are several different sources of background?
• What is the best way of allowing for nuisance parameters in the models of the

signal and/or background?
• Are there easy ways of optimizing on what is really of interest?

5. Upper limits. Most searches for new phenomena have not found any ev-
idence for exciting new physics. Recent examples from Particle Physics include
searches for the Higgs boson, supersymmetric particles, dark matter, etc.; attempts
to find substructure of quarks or leptons; looking for extra spatial dimensions; mea-
suring the mass of a neutrino; etc. Rather than just saying that nothing was found,

3For searches for rare processes, it is clearly inappropriate to use the actual fractions expected in the
data to determine the ratio of signal to background Monte Carlo events in the training sample, because
the network could achieve an excellent score simply by classifying everything as background.
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it is more useful to quote an upper limit on the sought-for effect, as this could
be useful in ruling out some theories. An example of this was the experiment by
Michelson and Morley in 1887 which attempted to measure the speed of the Earth
with respect to the aether. No effect was seen, but the experiment was sensitive
enough to lead to the demise of the aether theory.

A simple scenario is a counting experiment where a background b is expected
from conventional sources, together with the possibility of an interesting signal s.
The number of counts n observed is expected to be Poisson distributed with a mean
μ = ε ∗ s + b, where ε is a factor for converting the basic physics parameter s into
the number of signal events expected in our particular experiment; it thus allows for
experimental inefficiency, the experiment’s running time, etc. Then given a value
of n which is comparable to the expected background, what can we say about s?
The true value of s is constrained to be non-negative. The problem is interesting
enough if b and ε are known exactly; it becomes more complicated when only
estimates with uncertainties σb and σε are available.

Even without the nuisance parameters, a variety of methods is available. These
include likelihood, χ2, Bayesian with various priors for s, frequentist Neyman con-
structions with a variety of ordering rules for n, and various ad hoc approaches.
The methods give different upper limits for the same data.4 A comparison of sev-
eral methods can be found in Narsky (2000). The largest discrepancies arise when
the observed n is less than the expected background b, presumably because of a
downward statistical fluctuation. The following different behaviors of the upper
limit (when n < b) can be obtained:

• Frequentist methods can give empty intervals for s, that is, there are no values
of s for which the data are likely. Particle Physicists tend to be unhappy when
their years of work result in an empty interval for the parameter of interest, and
it is little consolation to hear that frequentist statisticians are satisfied with this
feature, as it does not lead to undercoverage.

When n is not quite small enough to result in an empty interval, the upper
limit might be very small. This could confuse people into thinking that the
experiment was much more sensitive than it really was.5

• The Feldman–Cousins frequentist method [Feldman and Cousins (1998)] that
employs a likelihood-ratio ordering rule gives upper limits which decrease as
n gets smaller at constant b. (This can also occur in other frequentist meth-
ods.) A related effect is the growth of the limit as b decreases at constant n.
Thus, if no events are observed (n = 0), the upper limit for a 90% interval is

4By coincidence, the values obtained by the Bayesian approach with an (improper) flat prior for s

and by the Neyman construction for upper limits agree when b = 0.
5Bayesian methods that use priors with part of the probability density being a δ-function at s = 0

can result in a posterior with an enhanced δ-function at zero, such that the upper limit contains only
the single point s = 0.
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1.08 for b = 3.0, but 2.44 for b = 0. This is sometimes presented as a para-
dox, in that if a bright graduate student worked hard and discovered how to
eliminate the expected background, they would be “rewarded” by obtaining a
weaker upper limit.6 An answer is that although the actual limit had increased,
the sensitivity of the experiment with the smaller background was better. There
are other situations—for example, various random choices of measuring instru-
ments [Cox (1958)]—where a measurement with better sensitivity can on occa-
sion give a less-precise result.

• In the Bayesian approach, the dependence of the limit on b is weaker. Indeed,
when n = 0, the limit does not depend on b.

• Sen et al. (2008) consider a related problem, of a physical non-negative parame-
ter λ producing a measurement x, which is distributed about λ as a Gaussian of
variance σ 2. As the observable x becomes more and more negative, the upper
limit on λ increases, because it is deduced that σ must in fact be larger than its
originally quoted value.

In trying to assess which of the methods is best, one first needs a list of desirable
properties. These include:

• Coverage: Even most Bayesian Particle Physicists would like the coverage of
their intervals to match their quoted credibility, at least approximately. Because
the data in counting experiments are discrete, it is impossible in any sensible
way to achieve exact coverage for all μ. However, it is not completely obvi-
ous that even Frequentists need coverage for every possible value of μ, since
different experiments will have different values of b and of ε. Thus, even for
a constant value of the physical parameter s, different experiments will have
different μ = ε ∗ s + b. Thus, it would appear that, if coverage in some aver-
age (over μ) sense were satisfactory, the frequentist requirement for intervals to
contain the true value at the requisite rate would be maintained. This, however,
is not the generally accepted view by Particle Physicists, who would like not to
undercover for any μ.

• Not too much overcoverage: Because coverage varies with μ, for methods that
aim not to undercover anywhere, some overcoverage is inevitable. This corre-
sponds to having some upper limits which are high, and this leads to undesirable
loss of power in rejecting alternative hypotheses about the parameter’s value.

• Short and empty intervals: These can be obtained for certain values of the ob-
servable, without resulting in undercoverage. They are generally regarded as
undesirable for the reasons explained above.

6The n = 0 situation is perhaps a special case, as the number of observed events cannot decrease
as further selections are imposed to reduce the expected background. For nonzero observed events, if
n decreases with the tighter cuts (as expected for reduced background), the upper limit is likely to go
down, in agreement with intuition. But if n stays constant, that could be because the observed events
contain signal, so it is perhaps not surprising that the upper limit increases.
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It is not obvious how to incorporate the above desiderata on interval length into an
algorithm that would be useful for choosing between different methods for setting
limits.

5.1. Two-sided intervals. An alternative to giving upper limits is to quote two-
sided intervals. For example, a 68% confidence interval for the mass of the top
quark might be 169 to 173 GeV/c2, as opposed to its 90% upper limit being
174 GeV/c2. Most of the difficulties and ambiguities mentioned above apply in
this case too, together with some extra possibilities. Thus, while it is clear which
of two possible upper limits is tighter, this is not necessarily so for two-sided in-
tervals, where which is shorter may be metric dependent; the first of two intervals
for a particle’s lifetime τ may be shorter, but the second may be shorter when the
ranges are quoted for decay rate (= 1/τ ). Also, there is more scope for choice of
ordering rule for the frequentist Neyman construction, or for choosing the interval
from the Bayesian posterior probability density.7

It has been pointed out by Feldman and Cousins (1998) that an apparently in-
nocuous procedure for choosing what result to quote may lead to undercoverage.
Many physicists would quote an upper limit on any possible signal if their observa-
tion was not more than three standard deviations above the expected background,
but a two-sided interval if their result was above this. With each type of inter-
val constructed to give 90% coverage, there are some values of the parameter for
which the coverage for this mixed procedure drops to 85%; Feldman and Cousins
refer to this as “flip-flop.” They circumvent the problem by using a “unified” ap-
proach, in which the method automatically yields upper limits for small values
of the data, but two-sided intervals for larger measurements, while maintaining
correct coverage for all possible true values of the signal.

5.2. Sensitivity. We have already mentioned the idea of quoting the sensitivity
of a procedure, as well as the actual upper limit as derived from the observed
data.8 For upper limits or for uncertainties on measurements, this can be defined
as the median value that would be obtained if the procedure was repeated a large
number of times. Using the median is preferable to the mean because (a) it is
metric independent (i.e., the median lifetime upper limit would be the reciprocal
of the median decay rate lower limit); and (b) it is much less sensitive to a few
anomalously large upper limits or error estimates.

Punzi (2003) has drawn attention to the fact that this choice of definition for
sensitivity has some undesirable features. Thus, minimizing the median upper limit
for a search provides a different optimization from maximizing the median number
of standard deviations for the significance of a discovery. Also, there is only a 50%

7A Bayesian statistician would be happy with the posterior as the final result. Particle Physicists
like to quote an interval as a convenient summary.

8The sensitivity on its own will not do, because it is independent of the data.
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chance of achieving the median result or better. Instead, for pre-defined levels α

and CL, Punzi determines at what signal strength there is a probability of at least
CL for establishing a discovery at a significance level α. This is what he quotes as
the sensitivity, and is the signal strength at which we are sure to be able to claim
a discovery or to exclude its existence. Below this, the presence or otherwise of a
signal makes too little difference, and we may remain uncertain (see Figure 2).

5.3. CLs . This is a technique [Read (2000, 2004)] which is used for situa-
tions in which a discovery is not made, and instead various parameter values are
excluded. For example, the Standard Model Higgs boson is such that, even before

FIG. 2. Punzi definition of sensitivity. Expected distributions for a statistic t (which in simple cases
could be simply the observed number of events n), for H0 = background only (solid curves) and
for H1 = background plus signal (dashed curves). In (a), the signal strength is very weak, and it is
impossible to choose between H0 and H1. As shown in (b), which is for moderate signal strength,
p0 is the probability according to H0 of t being equal to or larger than the observed t0. To claim
a discovery, p0 should be smaller than some pre-set level α, usually taken to correspond to 5σ ;
tcrit is the minimum value of t for this to be so. Then the power function 1 − β [equivalent to
p1 in Figure 3(b)] is the probability according to the alternative hypothesis that t will exceed tcrit.
According to Punzi, the sensitivity should be defined as the expected production strength of the signal
such that 1 − β exceeds another predefined level CL, for example, 95%. The exclusion region in (b)
corresponds to t0 in the 5% lower tail of H1, while the discovery region has t0 in the 5σ upper tail of
H0; there is a “No decision” region in between, as the signal strength in (b) is below the sensitivity
value. The sensitivity is thus the signal strength above which there is a 95% chance of making a 5σ

discovery. That is, the distributions for H0 and H1 are sufficiently separated that, apart possibly for
the 5σ upper tail of H0 and the 5% lower tail of H1, they do not overlap. In (c) the signal strength is
so large that there is no ambiguity in choosing between the hypotheses.
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it is discovered, everything about it is well defined by theory except for its mass.
The rate at which it is produced in a given experiment does depend on its mass.
The failure to observe it can be converted into a mass range for the Higgs which is
excluded (at some confidence level).

Figure 3 illustrates the expected distributions for some suitably chosen test sta-
tistic under two different hypotheses: the null H0 in which there is only standard
known physics, and H1 which also includes some specific new particle, such as
the Higgs boson. In the simplest case, the statistic could be simply the observed
number of events n in some selected region. In Figure 3(c), the new particle is
produced prolificly, and an experimental observation of n should fall in one peak
or the other, and easily distinguish between the two hypotheses. In contrast, Fig-
ure 3(a) corresponds to very weak production of the new particle and it is almost
impossible to know whether the new particle is being produced or not. The conven-
tional method of claiming new particle production would be if n fell well above
the main peak of the H0 distribution; typically a p0 value corresponding to 5σ

FIG. 3. The CLs method. The expected distributions for a data statistic n are shown: (i) for the
null hypothesis H0 of background only (solid curve); and (ii) for H1 (dashed curve), where there is
also some exciting new physics, which tends to result in larger n. In (b), the tail areas of H0 above
the observed n0 and of H1 below n0 are indicated by arrows; they correspond to probabilities p0
and 1 − p1 respectively. Figure (c) shows a situation where the new physics is strongly produced,
and H0 and H1 are well separated. Thus, n0 would result in H1 being excluded, while n1 would
be taken as evidence in favour of new physics. In (a), production is very weak, and the H0 and H1
curves are barely distinguishable. In order to protect against a downward fluctuation (statistic = n0)
in a situation like (a) resulting in an exclusion of H1 when the curves are essentially identical, CLs

is defined as (1 − p1)/(1 − p0).
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would be required. In a similar way, new particle production would be excluded
if n were below the main part of the H1 distribution. Typically, a 95% exclusion
region would be chosen (i.e., 1 − p1 ≤ 0.05). The CLs method aims to provide
protection against a downward fluctuation of n in Figure 3(a), resulting in a claim
of exclusion in a situation where the experiment has no sensitivity to the produc-
tion of the new particle; this could happen in 5% of experiments. It achieves this
by defining9

CLs = (1 − p1)/(1 − p0),(1)

and requiring CLs to be below 0.05. From the definition, it is clear that CLs can-
not be smaller than 1 − p1, and hence is a conservative version of the frequentist
quantity 1 − p1. It tends to 1 − p1 when n lies above the H0 distribution, and to
unity when H0 and H1 are very similar.

Statisticians may find CLs , which is the ratio of two p-values, to be lacking in
formal justification. Its appeal to Particle Physicists is the protection it provides
against excluding particles from data which have no sensitivity to them. We thus
regard it as a conservative frequentist approach.

5.4. Nuisance parameters. For calculating upper limits in the simple counting
experiment described in Section 5, the nuisance parameters arise from the uncer-
tainties in the background rate b and the acceptance ε. These uncertainties are
usually quoted as σb and σε (e.g., b = 3.1 ± 0.5), and the question arises of what
these errors mean. Sometimes they encapsulate the results of a subsidiary mea-
surement, performed to estimate b or ε, and then they would express the width
of the Bayesian posterior or of the frequentist interval obtained for the nuisance
parameters. However, in many situations, the errors may be based on a series of
subsidiary measurements; they may involve Monte Carlo simulations, which have
systematic uncertainties (e.g., related to how well the simulation describes the real
data) as well as statistical errors; or they may reflect uncertainties or ambiguities
in theoretical calculations required to derive b and/or ε. In the absence of fur-
ther information the posterior is often assumed to be a Gaussian, usually truncated
so as to exclude unphysical (e.g., negative) values. This may be at best only ap-
proximately true, and deviations are likely to be most serious in the tails of the
distribution.

There are many methods for incorporating nuisance parameters in upper limit
calculations. These include:

• Profile likelihood. The likelihood, based on the data from the main and from the
subsidiary measurements, is a function of the parameter of interest s and of the
nuisance parameters. The profile likelihood Lprof(s) is simply the full likelihood

9Given the fact that CLs is essentially the ratio of two p-values, the choice of symbol CLs (stand-
ing for “confidence level of signal”) is confusing.
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L(s, bbest(s), εbest(s)), evaluated at the values of the nuisance parameters that
maximize the likelihood at each s. Then the profile likelihood is simply used to
extract the limits on s, much as the ordinary likelihood could be used for the
case when there are no nuisance parameters.

Rolke et al. (2005) have studied the behavior of the profile likelihood method
for limits. Heinrich (2003a) had shown that the likelihood approach for estimat-
ing a Poisson parameter (in the absence of both background and of nuisance
parameters) can have poor coverage at low values of the Poisson parameter.
However, the profile likelihood seems to do better, probably because the nui-
sance parameters have the effect of smoothing away the fluctuating coverage
observed by Heinrich.

• Full Bayes. When there is a subsidiary measurement, a prior is chosen for b

(or ε), the data is used to extract the likelihood, and then Bayes’ theorem is used
to deduce the posterior for the nuisance parameter. This posterior from the sub-
sidiary measurement is then used as the prior for the nuisance parameter in the
main measurement (this prior could alternatively come from information other
than a subsidiary experiment); together with the prior for s and the likelihood
for the main measurement, the overall joint posterior for s and the nuisance pa-
rameter(s) is derived.10 This is then integrated over the nuisance parameter(s) to
determine the posterior for s, from which an upper limit can be derived. Numer-
ical examples of upper limits can be found in Heinrich et al. (2004), where the
method is discussed in detail. Thus, for precisely determined backgrounds, the
effect of a 10% uncertainty in ε can be seen for various measured values of n in
Table 2. A plot of the coverage when the uncertainty in ε is 20% is reproduced
in Figure 4.

It is not universally appreciated that the choice for the main measurement of
a truncated Gaussian prior for ε and an (improper) constant prior for nonnega-
tive s results in a posterior for s which diverges. Thus, numerical estimates of
the relevant integrals are meaningless. Another problem comes from the diffi-
culty of choosing sensible multi-dimensional priors. Heinrich has pointed out
the problems that can arise for the above Poisson counting experiment, when it
is extended to deal with several data channels simultaneously [Heinrich (2005)].

• Fully frequentist. In principle, the fully frequentist approach to setting limits
when provided with data from the main and from subsidiary measurements is
straightforward: the Neyman construction is performed in the multidimensional
space where the parameters are s and the nuisance parameters, and the data
are from all the relevant measurements. Then the region in parameter space for
which the observed data were likely is projected onto the s-axis, to obtain the
confidence region for s.

10This is usually equivalent to starting with a prior for s and the nuisance parameters, and the
likelihood for the data from the main and the subsidiary experiments together, to obtain the joint
posterior.
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TABLE 2
90% confidence level upper limits for the production rate s as a function of n,

the observed number of events

n b = 0.0 b = 3.0

0 2.35 (2.30) 2.35 (2.30)

3 6.87 (6.68) 4.46 (4.36)

6 10.88 (10.53) 7.80 (7.60)

9 14.71 (14.21) 11.56 (11.21)

20 28.27 (27.05) 25.05 (24.05)

The Poisson parameter μ = ε ∗ s + b, where the expected background b is either 0.0 or
3.0, and is precisely known; and ε, whose true values is 1.0, is estimated in a subsidiary
measurement with 10% accuracy. The numbers in brackets are the corresponding upper
limits when ε is known precisely. At large n, the limits for b = 3.0 are 3 units lower
than those for b = 0.0; the latter are approximately n + 1.28

√
n at large n. The effect

of the uncertainty in ε is to increase the limits, and by a larger amount at large n. For
n = 0, the Bayesian limits are independent of the expected background b.

In practice, there are severe difficulties in writing a program to do this in a
reasonable amount of time. To date, the largest number of parameters used is
three [Nicola and Signorelli (2002)]. Another problem is that, unless a clever
ordering rule is used for producing the acceptance region in data space for fixed
values of the parameters, the projection phase leads to overcoverage, which can

FIG. 4. The coverage C for the estimated 90% confidence level upper limit as a function of the
true parameter strue. The background b = 3.0 is assumed to be known exactly, while the subsidiary
measurement for ε gives a 20% accuracy. The discontinuities are a result of the discrete (integer)
nature of the measurements. There appears to be no undercoverage.
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become larger as the number of nuisance parameters increases. Good ordering
rules have been found for a version of the Poisson counting experiment [Punzi
(2005)], and for the ratio of Poisson means [Cousins (1998)], where the confi-
dence intervals are tighter than those obtained by conditioning on the sum of the
numbers of counts in the two observations.

For the fully frequentist method, it is guaranteed that there will be no un-
dercoverage for any combination of parameter true values. This is not so for
any other method, and so most Particle Physicists would like assurance that the
technique used does indeed provide reasonable coverage, at least for s. There is
usually lively debate between frequentist and Bayesians as to whether coverage
is desirable for all values of the nuisance parameter(s), or whether one should
be happy with no or little undercoverage when experiments are averaged over
the nuisance parameter true values.

• Mixed. Because of the difficulty of performing a fully frequentist analysis in
all but the simplest problems, an alternative approach [Cousins and Highland
(1992)] is to use Bayesian averaging over the nuisance parameters, but then
to employ a frequentist approach for s. The hope is that for most experiments
setting upper limits, the statistical errors on the data are relatively large and so,
provided the uncertainties in the nuisance parameters are not too large, the effect
of the systematics on the upper limits will be small, and hence an approximate
method of dealing with them may be justified.

5.5. Banff challenge. Given the large number of techniques available for ex-
tracting upper limits from data, especially in the presence of nuisance parameters,
it was decided at the Banff meeting [Reid, Linnemann and Lyons (2006)] that
it would be useful to compare the properties of the different approaches under
comparable conditions. This led to the setting up of the “Banff Challege,” which
consisted of providing common data sets for anyone to calculate their upper lim-
its. This was organized by Joel Heinrich, who reported on the performance of the
various methods at the PHYSTAT-LHC meeting [Heinrich (2007)].

6. Discovery issues. Searches for new particles are an exciting endeavor, and
will play an even bigger role with the start-up of the LHC at CERN, expected in
2008. The 2007 PHYSTAT Workshop at CERN [Prosper, Lyons and De Roeck
(2007)] was devoted to statistical issues that arise in discovery-oriented analyses.

6.1. p-values. In order to quantify the chance of the observed effect being
due to an uninteresting statistical fluctuation, some statistic is chosen for the data.
The simplest case would be the observed number n0 of interesting events. Then
the p-value is calculated, which is simply the probability that, given the expected
background rate b from known sources, the observed number of events would
fluctuate up to n0 or larger. A small value of p indicates that the data are not
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very compatible with the theory (which may be because we do not understand our
detector, rather than the theory being wrong).

Particle physicists usually convert p into the number of standard deviations σ

of a Gaussian distribution, beyond which the one-sided tail area corresponds to p.
Thus, 5σ corresponds to a p-value of 3 ∗ 10−7. This is done simply because it
provides a number which is easier to remember, and not because Gaussians are
relevant for every situation.

Unfortunately, p-values are often misinterpreted as the probability of the theory
being true, given the data. It sometimes helps colleagues clarify the difference be-
tween p(A|B) and p(B|A) by reminding them that the probability of being preg-
nant, given the fact that you are female, is considerably smaller than the probability
of being female, given the fact that you are pregnant.

6.2. Nuisance parameters. The calculation of p-values is complicated in prac-
tice by the existence of nuisance parameters. For example, for the simple situation
described above, there could be some uncertainty in the estimated background.
Although pivots are not generally used, there are numerous ways of incorporating
nuisance parameters. These include:

• Conditioning: In simple cases with a single nuisance parameter, it may be pos-
sible to condition on the sum of the number of counts in the main and the
subsidiary experiments, and then to use the binomial distribution to obtain the
p-value.

• Plug-in p-value: The best estimate of the nuisance parameters is used to calcu-
late p.

• Prior predictive p-value: The p-values are averaged over the nuisance parame-
ters, weighted by their prior distributions.

• Posterior predictive p-value: This time, the posterior distributions of the nui-
sance parameters are used for weighting.

• Supremum p-value: The largest p-value for any possible value of the nuisance
parameter is used. This is likely to be useful only when the nuisance parameter
is forced to be within some range; or when there is only a finite number of
possible alternative theoretical interpretations.

• Confidence interval: A confidence region of size 1 − γ is used for the nuisance
parameter(s), and then the adjusted p-value is pmax + γ , where pmax is the
largest p-value as the nuisance parameters are varied over their confidence re-
gion. Clearly, if it is desired to establish a discovery from p-values around 10−7

or smaller, then γ should be chosen at least an order of magnitude below this.

The properties of these and other methods are compared by Demortier (2007),
while Cranmer (2007) has discussed some of them in the context of searches at the
LHC, where the distributions in the tails of the probability distributions for data
can be very relevant. Again, any experience of Statisticians about incorporating
nuisance parameters could result in useful advice.
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The role of systematic effects is likely to be more serious here than for upper
limits discussed in Section 5.4. This is because in upper limit situations the number
of events is usually small, and so statistical errors dominate. In contrast, discovery
claims have p-values of 3 ∗ 10−7 or smaller, and so tails of distributions are likely
to be important.

6.3. Why 5σ? Unfortunately the usually accepted ideal for claiming a discov-
ery in Particle Physics is that p should correspond to at least 5σ . Statisticians
almost invariably ask why we use such a stringent level. One answer is past ex-
perience: we have all too often seen interesting effects at the 3σ or 4σ level go
away as more data are collected. Another is the multiple comparison problem, or
“look elsewhere” effect. While the chance of obtaining a 5σ effect in one bin of
a particular histogram is really small, it is to be remembered that histograms have
many bins,11 they could be plotted with different selection criteria and different
binning,12 and there are very many other histograms that were or could have been
looked at in the course of the experiment.13 Thus, the chance of a 5σ fluctuation
occurring somewhere in the data is much larger than might at first appear. Finally,
physicists subconsciously incorporate Bayes’ priors in assessing how likely they
feel that they have discovered something new, and hence, whether they should
claim a discovery. Thus, in deciding between the possibilities of a new discovery
or of an undetected systematic effect, our priors might favor the latter, and hence,
strong evidence for discovery is required from the data.

It is not necessarily equitable to use a uniform standard for large general-
purpose experiments and for small ones with a specific aim; or for looking for a
process which is expected, as compared with a very speculative search. But physi-
cists and journal editors do like a defined rule rather than a flexible criterion, so
this bolsters the 5σ standard. The general attitude is that, in the absence of a case
for special pleading, 5σ is a reasonable requirement. In any case, it is largely a se-
mantic issue, in that physicists finding a 4.5σ effect would clearly report it, using
judiciously chosen wording to describe the status of their observation.

11In calculating a p-value in such a case, it is very desirable to take into account the number of
chances for a statistical fluctuation to occur anywhere in the histogram. At very least, it should be
made clear what the basis of the calculated p-value is.

12If a blind analysis is performed, such decisions are made before looking at the data, and so this
aspect of the “look elsewhere” effect is reduced.

13The extent to which other people’s searches should be included in an allowance for the “look
elsewhere” effect depends subtly on the implied question being addressed. Thus are we considering
the chance of obtaining a statistical fluctuation in any of the analyses we have performed; or by
anyone analysing data in our experiment; or by any Particle Physicist this year? Anyone observing a
possible Higgs signal at the LHC would be very unhappy about having to reduce the significance of
their result because of the statistical fluctuations that could occur in speculative searches performed
elsewhere.
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Statisticians also ask whether we really believe our models out into the extreme
tails of the distributions. In general, this may be so—counting experiments are
expected to follow Poisson distributions, with small corrections for possible long
time-scale drifts in detector calibrations; and particle decays usually are described
by exponential distributions in time. However, the situation is much less clear for
nuisance parameters, where error estimates may be less rigorous, and their distri-
bution is often assumed to be Gaussian (or truncated Gaussian) by default. The
effect of these uncertainties on very small p-values needs to be investigated case-
by-case.

We also have to remember that p-values merely test the null hypothesis. A more
sensitive way to look for new physics is via the likelihood ratio or the differences
in χ2 for the two hypotheses, that is, with and without the new effect. Thus, a very
small p-value on its own is usually not enough to make a convincing case for
discovery.

6.4. Repetitions in time. A typical experiment at a large accelerator may col-
lect data over 10–15 years. The same search for a new effect will typically be
repeated once or twice each year as more data is collected. Does this constitute
another factor of ≈20 in the number of opportunities for a statistical fluctuation to
appear? Our reply is “No.” If there had been a 6σ signal with half the data (which
resulted in a claim for discovery), which then became only 3σ with more data, this
would be grounds for downplaying the earlier discovery claim. Thus, at any time,
there is only one set of data (everything) that is relevant.

6.5. Combining p-values. In looking for a given new effect, there may be sev-
eral separate and uncorrelated analyses which are relevant. These could correspond
to different decay possibilities for the new particle or different experiments look-
ing for the same signal. Thus, if the p-values for the null hypothesis (i.e., no new
physics) for the separate analyses were 10−6 and 0.1, what is the corresponding
p-value for the pair of results14?

The unambiguous answer is that there is no unique recipe for combining them
[CDF (2007), Cousins (2007)]. There is no single way of taking a uniform distrib-
ution in two variables, and finding a transformation pcomb(p1,p2) that converts it
into a uniform distribution of the single variable pcomb.

Two popular recipes involve asking what is the probability that the smaller
p-value will be 10−6 or smaller or that the product is below p1 ∗p2 = 10−7. None
of the possible methods has the property that in combining 3 p-values, the same
answer is obtained if p1 is first combined with p2, and then the result is combined
with p3; or whether some different ordering is used. Clearly, it is important to de-
cide what combination method should be used, without reference to the specific
data.

14Rather than combining p-values, it is of course better to use the complete sets of original data (if
available) for obtaining the combined result.
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6.6. Peak above smooth background. When comparing two hypotheses with
our data, we can use the numerical values of the two χ2 quantities. For example,
we may be fitting a smooth distribution by a power series, and wonder whether we
need a quadratic term, or whether a linear expression would suffice. Alternatively,
we may want to assess whether a mass spectrum favors the existence of a peak
on top of a smooth background, as compared with just the smooth background.
Qualitatively, if the extra term(s) are unnecessary, they will result in a relatively
small reduction in χ2, while if they really are required, the reduction could be
larger.

It is sometimes possible to be quantitative about the expected reduction when
the extra terms are not needed [Wilks (1938)]. If we are in the asymptotic regime,
and if the hypotheses are nested, and if the extra parameters of the larger hypothesis
are defined under the smaller one, and in that case do not lie on the boundary of
their allowed region, then the difference in χ2 should itself be distributed as a χ2,
with the number of degrees of freedom equal to the number of extra parameters.

An example that satisfies this is provided by the different order polynomials.
Provided we have a large amount of data, we expect the difference in χ2 to have
one degree of freedom, so a value larger than around 5 would be unlikely.

A contrast is provided by a smooth background C(x) compared with a back-
ground plus peak, C(x) + A exp[−0.5 ∗ (x − x0)

2/σ 2]. The extra parameters for
the peak are its amplitude, position and width: A, x0 and σ respectively. Again,
the hypotheses are nested, in that C(x) is just a special case of the peak plus back-
ground, with A = 0. However, although A is defined in the background only case,
x0 and σ are not, as their values become completely irrelevant when A = 0. Fur-
thermore, unless the peak plus background fit allows A to be negative, zero is on
the boundary of its allowed region. We thus should not expect the difference of
the χ2 quantities itself to be distributed as a χ2 [Protassov et al. (2002), Demor-
tier (2006)]. To assess the significance of a particular χ2 difference, this unfor-
tunately means that we have to obtain its distribution ourselves, presumably by
Monte Carlo. If we want to find out probabilities of statistical fluctuations at the
10−6 level, this requires a lot of simulation, and probably needs us to use some-
thing better than brute force.

Another example of comparing hypotheses by their χ2 values is given in Sec-
tion 11.3.

The problem of nonstandard limiting distributions for χ2 tests has a substantial
statistical literature [see, e.g., Self and Liang (1987) and Drton (2007)].

7. Goodness-of-fit. With sparse data, the unbinned likelihood method is a
good one for estimating parameters of a model. In order to understand whether
these estimates of the parameters are meaningful, we need to know whether the
model provides an adequate description of the data. Unfortunately, as emphasised
by Heinrich (2003b), maximum likelihood is often insensitive to whether or not
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the data agree with the model. It would be very useful to have a way of utilizing
the unbinned likelihood so that it does provide a measure of the goodness-of-fit.

The standard method loved by Particle Physicists is χ2. This, however, is only
applicable to binned data (i.e., in a one or more dimensional histogram). Further-
more, it loses its attractive feature that its distribution is model-independent when
there are not enough data, which is likely to be so in the multi-dimensional case.

An alternative that is used for sparse one-dimensional data is the Kolmogorov–
Smirnov (KS) approach or one of its variants. However, in the presence of fitted
parameters, simulation is again required to determine the expected distribution of
the KS-distance. Also because of the problem of how to order the data, it is not
used by Particle Physicists in multi-dimensional situations.

Aslan and Zech (2004, 2005) have described a method that can be used with
sparse multi-dimensional data.15 It compares two separate sets of events, which
could be data and simulation based on a theoretical model or two sets of data taken
under slightly different conditions, etc. The first set of points are assigned positive
electric charges, and the second set negative ones, and then the “electrostatic en-
ergy” of the system is calculated as E = ��qi ∗qj ∗f (dij ), where the summation
extends over all pairs of observations; qi is the charge of the ith observation; and
f (dij ) is a function of the distance dij between observations i and j . For real elec-
trostatics in 3 dimensions, f (d) is proportional to 1/d , but here it can be chosen
to give desirable behavior; Aslan and Zech favor − ln(d + ε), where ε is a small
constant to avoid problems as d tends to zero. This method requires the choice of
a metric for each of the observables, and it also needs simulation to determine the
expected distribution of E assuming the two distributions are identical. Aslan and
Zech find that their method compares favorably with other approaches (e.g, χ2, KS
and its variants, etc.) in rejecting alternative hypotheses in various one-dimensional
problems.

8. Blind analyses. These are becoming increasingly popular in Particle
Physics, as a means of avoiding personal bias affecting the result. They involve
keeping part of the data unseen by the physicists, until the data selection procedure
and the analysis method have been completely defined, all correction procedures
specified, etc.

The original suggestion to use a blind analysis for a Particle Physics experiment
was due to Luis Alvarez. An experiment at Stanford had looked for quarks, by
measuring the residual charge on small spheres that were levitated in a supercon-
ducting magnet. If a single free quark was present in a sphere, the residual charge
would be a third or two-thirds of the electron’s charge. Several of the balls tested
indeed yielded such values. A potential problem was that large corrections had to

15A similar approach can be found in the statistics literature [Cuadras, Fortiana and Oliva (1997,
2003)].
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be applied to the raw data in order to extract the final result for the charge. The
suspicion was that maybe the experimenters were (subconsciously) applying cor-
rections until the value turned out to be “satisfactory.” The blind approach would
involve the computer adding a random number to the raw value of the charge,
which would then be corrected until the experimentalists were satisfied, and only
then would the computer subtract the random number to reveal the final answer for
that sphere.16

There are various methods of performing blind analyses [Klein and Roodman
(2005)], most of which aim to allow the experimentalists to look at some of the
real data, in order to perform checks that nothing is terribly wrong. Some of these
are as follows:

• The computer adds a random number to the data, which is only subtracted after
all corrections are applied. This was the method suggested by Alvarez.

• Use only Monte Carlo to define the procedure. This completely avoids the dan-
ger of allowing the data to determine the procedure to be used, but suffers from
the drawback that the data cannot be compared with the Monte Carlo, to check
that the latter is reasonable.

• Use only a fraction of the data for defining the procedure. Then this is held fixed
for the remainder of the data. In principle, an optimization can be employed to
determine the fraction to be kept open, but, in practice, this is often decided by
choosing a semi-arbitrary time after which the future data is kept blind.

• The signal region is defined as a certain part of multi-dimensional space, and
this is kept hidden, but all other regions, including those adjacent to the signal,
are available for inspection.

• Keep the Monte Carlo parameters hidden. This is a technique used by the
TWIST experiment in their high statistics precision determination of parame-
ters associated with muon decay. The procedure involves comparing the data
with various simulated sets, generated with a series of different parameter val-
ues. The data and the simulations are both visible, but the parameter values used
to generate the simulations are kept hidden.

• Keep visible only a fraction of the contents of each bin of a histogram. This is
used by the MINOS experiment searching for neutrino oscillations; these would
affect the energy distribution of the observed events. By keeping visible different
unknown fractions of the data in each bin, the energy spectral shape cannot be
determined from the visible part of the data.

If several different groups within the same collaboration are performing simi-
lar analyses for extracting some specific parameter, then it is desirable to fix the
procedure for selecting which result to present, or alternatively how to combine

16This suggestion was implemented, but in fact no subsequent results were published. The current
consensus is that this “discovery” of free quarks is probably spurious.
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the separate results. This should be done before the results are seen, and is worth
doing even if the individual analyses were not “blind.”

A question that arises with blind analyses is whether it should be permitted to
modify the analysis after the data had been unblinded. It is generally agreed that
this should not be done. . . unless everyone would regard it as ridiculous not to do
so. For example, if a search for rare events yielded 10 candidates over the course
of a year’s run, and it was found that all of these occurred on Sunday mornings
at precisely 1:17 a.m., it would be prudent to do some further investigation before
publishing. If “post-unblinding” modification of the procedure is performed, this
should be made clear in any publication.

9. Combining results. A commonly used procedure is to combine N differ-
ent uncorrelated measurements ai ± σi of the same physical quantity a. When the
measurements are believed to be Gaussian distributed about the true value atrue,
the well-known result is that the best estimate abest ± σbest is given by

abest = �ai ∗ wi/�wi, σbest = 1/
√

�wi,(2)

where the weights are defined as wi = 1/σ 2
i . This is readily derived from mini-

mizing with respect to a a weighted sum of squared deviations17

S(a) = �(ai − a)2/σ 2
i .(3)

The extension to the case where the individual measurements are correlated
(as is often the case for analyses using different techniques on the same data) is
straightforward: S becomes ��(ai − a) ∗ Hij ∗ (aj − a), where H is the inverse
error matrix.

There are, however, practical details that complicate its application. For exam-
ple, in the above formula, the σi are supposed to be the true accuracies of the mea-
surements. Often, all that we have available are estimates of their values. Problems
arise in situations where the error estimate depends on the measured value ai . For
example, in counting experiments with Poisson statistics, it is typical to set the er-
ror as the square root of the observed number. Then a downward fluctuation in the
observation results in an overestimated weight, and abest is biassed downward. If
instead the error is estimated as the square root of the expected number a, the com-
bined result is biassed upward—the increased error reduces S at larger a. A way
round this difficulty has been suggested by Lyons, Martin and Saxon (1990).

Another problem arises when the individual measurements are very correlated.
When the correlation coefficient of two uncertainties is larger than σ1/σ2 (where
σ1 is the smaller error), abest lies outside the range of the two measurements. As the

17A problem arises if the measurements are discrepant. If S is much larger than N − 1, then some
serious problem exists, and it is probably unwise to combine the results. But for S/(N −1) somewhat
larger than unity, a commonly adopted procedure [Particle Data Group (2006)] is to scale up the
uncertainty on the weighted average by the square root of this factor.
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correlation coefficient tends to +1, the extrapolation becomes larger, and is very
sensitive to the exact value assumed for the correlation coefficient. The situation
is aggravated by the fact that σbest tends to zero. This is usually dealt with by
selecting one of the two analyses, rather than trying to combine them.

Another extension of this procedure is for combining N pairs of correlated mea-
surements (e.g., the gradient and intercept of a straight line fit to several sets of
data). The prescription to be adopted for scaling the errors when the individual
measurements are somewhat discrepant has complications.

10. Accuracy of answer. Sometimes a result appears to be more accurate
than is justified. This can arise when an upper limit is much lower than the sen-
sitivity of the procedure (e.g., when the observed number of events in a counting
experiment is smaller than the expected background) or when by chance individual
observations happen to lie close to each other. This can cause problems in deciding
which measurement is “better.” This can be relevant in choosing which of several
competing analyses on the same data to quote as the result of the experiment; or in
combining different results (see previous section).

In the former situation, if the estimated error increases with the estimated value,
choosing the result with the smallest estimated error can produce a downward
bias. On the other hand, using the smallest expected error can cause us to ignore
an analysis which had a particularly favorable statistical fluctuation, which pro-
duced a result that was genuinely more precise than expected.18 How to deal with
this situation in general is an open question. It has features in common with the
problem of measuring a voltage by choosing at random a voltmeter from a cup-
board containing meters of different sensitivities [Cox (1958)].

11. Recent improvements in understanding. In this section we list a few of
the issues on which Particle Physicists have recently improved their understanding
of statistical issues. To those can be added a few already discussed above (see
Section 6.6 and the remarks about unbinned likelihoods in the first paragraph of
Section 7).

11.1. Number of degrees of freedom. If we construct the weighted sum of
squares S between a predicted theoretical curve and some data in the form of a
histogram, provided the Poisson distribution of the data can be approximated by
a Gaussian (and the theory is correct, the data are unbiassed, the error estimates
are correct, etc.), asymptotically19 S will be distributed as χ2 with the number of

18For example, the ALEPH experiment at LEP produced a tighter-than-expected upper limit on
the mass of ντ because they happened to observe a decay configuration producing ντ which was
particularly sensitive for determining its mass.

19The examples in this section are independent of the requirement that we need enough events for
the Poisson distribution to be well approximated by a Gaussian.
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degrees of freedom ν = n − f , where n is the number of data points and f is the
number of free parameters whose values are determined in the fit.

The relevance of the asymptotic requirement can be seen by imagining fitting a
more or less flat distribution by the expression N(1+10−6 cos(x −x0)), where the
free parameters are the normalization N and the phase x0. It is clear that, although
x0 is left free in the fit, because of the 10−6 factor, it will have a negligible effect
on the fitted curve, and hence will not result in the typical reduction in S associated
with having an extra free parameter. Of course, with an enormous amount of data,
we would have sensitivity to x0, and so asymptotically it does reduce ν by one
unit, but not for smaller amounts of data.

Another example involves the search for neutrino oscillations. The neutrino en-
ergy spectrum is fitted by a survival probability P of the form

P = 1 − A sin2(C ∗ �m2),(4)

where C is a known function of the neutrino energy and the length of its flight
path, A is a parameter which depends on the neutrino mixing angle, and �m2 is
the difference in mass squared of the relevant neutrino species. For small values of
C ∗ �m2,

P ≈ 1 − A(C ∗ �m2)2.(5)

Thus, the survival probability depends only on the two parameters in the combina-
tion A (�m2)2. Because this combination is all that we can hope to determine, we
effectively have only one free parameter rather than two. Of course, an enormous
amount of data can manage to distinguish between sin(C ∗ �m2) and C ∗ �m2,
and so asymptotically we have two free parameters as expected.

It would be useful to have some indication of when data are near enough to
asymptopia, so as to avoid the necessity for Monte Carlo calculations of the ex-
pected distribution of S.

11.2. �(lnL) = 0.5 rule. In the maximum likelihood approach to parameter
determination, the best value λ0 of a parameter is determined by finding where
the likelihood maximizes; and its error σλ is estimated by finding how much the
parameter must be changed in order for the logarithm of the likelihood to decrease
by 0.5 as compared with the maximum.20 From a frequentist viewpoint, this should
ideally result in the range from λ0 − σλ to λ0 + σλ having 68% coverage.

If the measurement is distributed about the true value as a Gaussian with a con-
stant width, then exact coverage is obtained, but in general this is not so. For exam-
ple, Heinrich (2003a) has investigated the properties of the likelihood approach to
estimate μ, the mean of a Poisson, when nobs events are observed. Because nobs is

20If there is more than just one parameter, the likelihood must be remaximized with respect to all
the other parameters when looking for the �(lnL) = 0.5 points.
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a discrete variable, the coverage is a discontinuous function of μ, and varies from
100% at μ = 0 down to 30% at μ ≈ 0.5.21

11.3. Comparing two hypotheses via χ2. Assume we have a histogram with
100 bins, and that we are using a χ2 method for fitting it with a function with one
free parameter. We expect to obtain a χ2 value of 99 ± 14. Thus, if p0, the best
value of the parameter, yields a χ2 of 85, we would regard that as very satisfactory.
However, a theoretical colleague has a model which predicts that the parameter
should have a different value p1, and wants to know what the data has to say about
that. We test this by calculating the χ2 for that p1 and obtain a value of 110. We
appear to have two contradictory conclusions:

• p1 is satisfactory: This is based on the fact that the relevant χ2 of 110 is well
within the expected range of 99 ± 14.

• p1 is ruled out: The uncertainty on p is estimated by seeing how much it must
change from its optimum value in order to make χ2 increase by 1 unit. For this
data, χ2(p1) is 25 units larger than χ2(p0), and so, assuming that the behavior
of χ2 in the neighborhood of the minimum is parabolic, p1 is ruled out at the 5
standard deviation level.

Unfortunately, many physicists, over-impressed by the fact that χ2(p1) appears
to be satisfactory, are reluctant to accept that p0 is strongly favored by the data.

A similar argument applies to comparing a given set of data with 2 separate
hypotheses, for example, fitting a histogram with an exponential or a straight line.
Again the difference between the χ2 quantities provides better discrimination be-
tween the hypotheses than do the individual χ2 [Lyons (1999)].

There are of course other ways of comparing two hypotheses e.g. likelihood
ratio, Bayes factor, Bayesian information criterion, etc. Trotta (2008) has discussed
their application in cosmology.

12. Conclusions. It is clear that there are many practical issues to be resolved
in Particle Physics. Some of these may be of interest to Statisticians. With analyses
becoming more and more complex, we would welcome more active involvement
that would lead to improved analyses of our data. Any suggestions regarding im-
provements in the approaches outlined in this review would also be appreciated.
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may not display optimal properties for μ ≈ 0.
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