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LOCALIZATION FOR MOBILE ROBOTS1

BY ANITA ARANEDA1, STEPHEN E. FIENBERG2 AND ALVARO SOTO1

Pontificia Universidad Católica de Chile, Carnegie Mellon University and
Pontificia Universidad Católica de Chile

Mobile robots require basic information to navigate through an environ-
ment: they need to know where they are (localization) and they need to know
where they are going. For the latter, robots need a map of the environment.
Using sensors of a variety of forms, robots gather information as they move
through an environment in order to build a map. In this paper we present
a novel sampling algorithm to solving the simultaneous mapping and local-
ization (SLAM) problem in indoor environments. We approach the problem
from a Bayesian statistics perspective. The data correspond to a set of range
finder and odometer measurements, obtained at discrete time instants. We fo-
cus on the estimation of the posterior distribution over the space of possible
maps given the data. By exploiting different factorizations of this distribu-
tion, we derive three sampling algorithms based on importance sampling. We
illustrate the results of our approach by testing the algorithms with two real
data sets obtained through robot navigation inside office buildings at Carnegie
Mellon University and the Pontificia Universidad Catolica de Chile.

1. Introduction. Mobile robots require basic information to navigate through
an environment: they need to know where they are (localization) and they need
to know where they are going. For the latter, robots need a map of the envi-
ronment. Using sensors of a variety of forms, robots gather information as they
move through an environment in order to build a map. There are many algorithmic
approaches to deal with this problem; for example, see the discussion in [4]. In
this paper we examine data gathered by two mobile robots, executing a traversal
through two different office environments, using an odometer and a simple set of
laser readings from sensors. In the past, the processing of such data has benefited
enormously from a probabilistic approach that attempts to use the data to form
estimates and density functions of the basic quantities of interest [4, 10, 24, 26].

The literature on “probabilistic robotics” has focused heavily on the problems
of localization, knowing precisely where the robot is, and of mapping the envi-
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ronment. These are intertwined, that is, to build a map of an environment, the
robot needs to know the locations it has visited, but knowing the locations require
knowledge of a map. Therefore, the probabilistic robotics problem involves the
performance of these dual tasks and is known as Simultaneous Mapping and Local-
ization (SLAM) [16]. It is natural to think of addressing SLAM using a Bayesian
approach which puts a posterior distribution over the space of all possible maps
and then updates the distribution using the information that the robot acquires as it
moves through the environment. This Bayesian solution in some sense maximizes
the information available for SLAM [5]. Most of the robotics literature on SLAM
utilizes a variety of approximations that allow for real-time calculations and up-
dating and thus, of necessity, simplifies this Bayesian conceptual formulation of
the SLAM problem.

Our first data set comes from an experiment conducted with a mobile robot,
Pearl, at Carnegie Mellon University in Wean Hall (see Figure 1). Our second data
set comes from a second robot, this one navigating inside the Computer Science
Department at the Pontificia Universidad Catolica de Chile. Both data sets con-
sist of a set of noisy measurements obtained by an odometer and a laser range
finder mounted on the robot. Odometer readings convey information about the ro-
bot’s relative location. They correspond to rotational and translational measures
of the robot movements. Laser readings convey information about the location of
landmarks, with respect to the robot’s location. They correspond to a set of scalar
quantities indicating the distances from the robot to the nearest obstacle in a set of
previously specified directions.

Using this type of data, we propose a complete probabilistic representation of
the SLAM problem and obtain a Bayesian solution. We formalize the problem of

FIG. 1. The mobile robot Pearl gazing down the corridor of Wean Hall, Carnegie Mellon Univer-
sity. Courtesy of Sebastian Thrun from a video available at http:// robots.stanford.edu/videos.html.

http://robots.stanford.edu/videos.html
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mapping as the problem of learning the posterior distribution of the map given the
data. Our key idea is based on noting that the posterior distribution of the map is
determined by the posterior joint distribution of the locations visited by the robot
and the distances to the obstacles from those locations. We derive expressions for
this posterior joint distribution of locations and distances and show that there is
no closed form for it. By exploiting different factorizations of this distribution, we
derive three sampling algorithms based on importance sampling.

The outline of the paper is as follows. In Section 2 we discuss previous research
in SLAM and compare this literature with our approach. In Section 3 we describe
in detail the dependencies and models that define our probabilistic approach. In
Section 4 we explore the posterior distribution of maps and develop three sampling
algorithms. In Section 5 we apply these algorithms to the data sets collected in
Wean Hall Building at Carnegie Mellon University, and in the Computer Science
Department at the Pontificia Universidad Catolica de Chile. Finally, in Section 6
we discuss briefly extensions of our model and methodology, in order to allow for
both real time implementation and more elaborate forms of data input.

2. Previous SLAM approaches. Although there is an extensive robotics re-
search literature dealing with mapping or localization for mobile robots (e.g.,
see [2, 8, 24, 26]) the SLAM problem is a relatively newer research area, where
most efforts have been made over the last couple of decades. An important family
of approaches to SLAM is based on versions of the Kalman filter. The pioneer-
ing development in this area was the paper by Smith et al. [22] which proposed a
basic version of the Hidden Markov Model (HMM) approach widely used today,
and then used the Kalman filter to address the problem of estimating topological
maps. They assumed a fixed number of landmarks in the environment where these
landmarks can be identified by their cartesian coordinates. At a fixed point in time,
the set of landmarks coordinates and the location of the robot are assumed to be
unobservable or latent variables. As in the Kalman filter, the main assumption is
that the posterior distributions of all these variables are Gaussian and that the ob-
servations, given the latent variables, can be described by a linear function and a
white noise term.

These two assumptions, Gaussian variables and linearity, are somewhat restric-
tive. The Gaussian assumption makes this approach unsuitable for multimodal dis-
tributions that arise when the location of the robot is ambiguous. The linearity
assumption is not met in general, since the relation between odometry and loca-
tions involves trigonometric functions. The Extended Kalman Filter (EKF) [7, 15]
partially handles nonlinearity using a Taylor series approximation.

For the non-Gaussian case, Thrun et al. [25] outlined a general approach that can
be used with general distribution functions. Under this approach, however, max-
imum likelihood estimation is too expensive computationally. As an alternative,
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Thrun [24] presented an application of the Expectation–Maximization (EM) algo-
rithm [6] applied to mapping. He treated the map as the parameter to be estimated
and the locations as part of an HMM, maximizing the expected log likelihood of
the observations and the locations, given the map.

A more recent and successful approach to the SLAM problem is the FastSLAM
algorithm [17]. This approach applies to topological maps, and is based on a fac-
torization of the posterior distribution of maps and locations. For full details on
both the models and their algorithmic implementation, see [18]. The key factoriza-
tion of maps and locations is not part of the model we present here and should be
thought of as an approximation which allows for real-time implementation.

Hähnel et al. [13] present an approach that is also based on the description
in [24], but this one applied to occupancy grids. This approach finds locations
iteratively over time. At each point in time, the algorithm estimates the location
visited by the robot as the location that maximizes the probability of the current
data, given past data and previous location estimates. The next step finds the map,
as the map that maximizes the posterior probability of the estimated locations and
the observed data.

Our mapping approach applies to occupancy grid maps of static environments.
Our formulation of the problem is based on the approach initially described in
Thrun et al. [25]. We build a graphical representation of that formulation where the
locations are considered unobservable variables determining the observed odome-
ter readings and, together with the map, determining the observed laser readings.
The probability model for the entire process is determined by motion and percep-
tion models and a prior distribution for the map.

In contrast with most of these other approaches, we provide a formal proba-
bilistic description of the entire process and develop a Bayesian solution with the
goal of estimating the posterior distribution of the map using simulation. The fact
that our approach uses a more general motion model than the one used by the
Kalman filter and EKF approaches makes it applicable to a wider set of problems.
The advantage of this method is that it does not provide a single estimate of the
map, as the EM-based solution, but it produces multiple maps showing the notion
of variability from the expected posterior map. For localization, we obtain a sim-
ulation of the locations visited by the robot from their posterior distribution, as an
intermediate step while simulating maps.

3. Formalization of the problem. Figure 2 provides a graphical representa-
tion of the SLAM problem, where nonobservable variables have been circled for
clarity. This representation forms the basis of our model and has some similari-
ties to a suggested representation in an earlier paper by Murphy [19], as well as
to probabilistic graphs of the sort we could formulate related to Kalman filter ap-
proaches. Our representation was developed in earlier unpublished work and has
been implicitly adopted in [26].
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FIG. 2. Graphical representation of the robotics SLAM problem. In our application at Carnegie
Mellon University the robot obtains a total of T = 3354 readings.

In Figure 2 time increases as we go down in the figure. The robot starts at
location Z0, and moves to its final location ZT . In the figure Ut correspond to
odometer data recorded at time t , expressed as differences between locations at
times t and t −1. The vector Zt corresponds to the true location visited by the robot
at time t . Two consecutive locations, Zt and Zt−1, induce an odometer translation
reading, Ut .

The random variable M = {Mij , (i, j) ∈ I} represents the map of the environ-
ment, where Mij takes the value “1

¯
,” if the location (i, j) is occupied by an obsta-

cle, and “0
¯
” otherwise, and I is a suitable set of locations. At each point in time, the

map M and a given location of the robot, Zt , determine the distances to obstacles,
θt . Finally, these distances determine the distribution of the laser readings Vt .

According to Figure 2, the distribution of the process is determined by three
models. A motion model [23] describes the dependency of the current location,
Zt , on the previous one and the current odometer reading, Zt−1 and Ut , respec-
tively. We adopt a Gaussian motion model. A perception model [23] describes the
dependency of laser readings Vt on the true distances to obstacles, θt . We use a
truncated Gaussian distribution, with standard deviation σ where the limits of the
distribution correspond to 0 and dmax, the maximum range of the laser device. Fi-
nally, for our prior distribution for the map, M , we assume that cells in the map are
independent, each having the same probability, p, of being occupied. Araneda [1]
discusses these models in greater detail.
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In what follows we use U , V , Z and θ to denote the sets of odometer reading
differences, laser readings, locations and distances to obstacles, from time 1 to T ,
respectively.

4. Importance sampling for map inference. In this section we explore the
posterior distribution of maps given the data and derive sampling strategies based
on Importance Sampling (IS) [11]. We note that the posterior distribution over
the space of possible maps, M , is completely determined by the joint posterior
distribution of locations and distances to obstacles, Z and θ . Thus, our approaches
are intended to explore this last posterior distribution, and they mainly differ in the
particular factorization used, this last one being either

P(Z, θ |U ,V ) = P(Z|U ,V )P (θ |Z,U ,V ),(4.1)

or

P(Z, θ |U ,V ) = P(θ |U ,V )P (Z|θ ,U ,V ).(4.2)

Our first algorithm, based on factorization (4.1), approximates the posterior dis-
tribution of the locations by discarding laser readings. From the application of this
algorithm to the Wean Hall data set, we learn that odometry alone does not help
the robot to recover from odometry error.

Our second algorithm, based on factorization (4.2), approximates the posterior
distribution of distances to obstacles by discarding odometer readings. The appli-
cation of this algorithm brings upfront the problem posed by the many restrictions
of the sampling space. We are not able to handle these restrictions analytically and,
thus, we sample over broader sampling spaces.

Our main algorithm, also based on factorization (4.2), corresponds to a partially
probabilistic algorithm, where the restrictions of the sampling space are relaxed,
allowing observations to lie outside the restrictive domain of the distributions. This
algorithm is successful in recovering from odometry error by using all odometer
and laser information when sampling locations.

In the next sections we describe the derivation of the algorithms. The first algo-
rithm is described briefly, and the details of this derivation are shown in the Ap-
pendix. As the second algorithm corresponds to the basis of our main algorithm,
we show its derivation in more detail. We finally refer to our main algorithm. The
results we mention above are based on the application of the algorithms that we
describe in Section 5.

4.1. Derivation of the first algorithm. The main feature of the first algorithm is
the approximation of the posterior distribution of the locations by the distribution
implied by the motion model. In other words, this approach considers odometry
information only, when sampling locations, and discards the information about the
locations that is contained in laser readings. In particular, consider the factorization
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in (4.1). We approximate the first term in this product, P(Z|U ,V ), by the motion
model, P(Z|U).

For the second term in the factorization, P(θ |Z,U ,V ), we find that we need
to focus on terms of the form P(θtk|Z,V , θ t−1), where θtk corresponds to the
distance to the obstacle located in the direction of the kth beam of the laser device
at time t , and θ t−1 denotes the matrix containing all distances up to time t − 1.
Working this expression, and under a Gaussian perception model, we obtain

P(θtk|Z,V , θ t−1)

∝ φ((Vtk − θtk)/σ )

�((dmax − θtk)/σ ) − �(−θtk/σ )
P

(
θtk|Z, θ t−1,V (tk)

)
(4.3)

×I (0 < Vtk < dmax)I (θtk > 0),

where the term V (tk) corresponds to the set of all laser readings except for read-
ing Vtk . The functions φ and � correspond to the density and cumulative function
of the standard Gaussian distribution, respectively (see the Appendix for details).

Equation (4.3) implies that we can implement an IS algorithm by sampling θtk

from a Gaussian distribution with importance weights given by

ω(θtk) = 1

�((dmax − θtk)/σ ) − �(−θtk/σ )
P

(
θtk|Z, θ t−1,V (tk)

)

(4.4)
×I (0 < Vtk < dmax)I (θtk > 0).

The distribution P(θtk|Z, θ t−1,V (tk)) in (4.4) can be approximated by a truncated
geometric distribution, that we denote by Tr.Geom(Ctk,p). See the Appendix for
an outline of the derivation. The important consideration in obtaining this result
corresponds to the fact that the sampling space of θtk , given Zt−1, θ t−1 and Zt ,
Ctk , gets narrower as time increases. We say that the values in this space are con-
sistent with the values of Zt−1, θ t−1 and Zt . The parameter p in the truncated
geometric distribution corresponds to the prior probability of a cell of being occu-
pied.

With this approximation in hand, we can go back to equation (4.4), and rewrite
the weight of each sampled value θtk as

ω(θtk) = Tr.Geom(Ctk,p; θtk)

�((dmax − θtk)/σ ) − �(−θtk/σ )
(4.5)

×I (0 < Vtk < dmax)I (θtk > 0).

4.2. Derivation of the second algorithm. This algorithm samples distances to
the closest obstacles first, and locations afterward. It disregards information carried
by odometer readings when explaining distances to obstacles, approximating their
posterior distribution by the perception model.

The approximation used in this second algorithm is more accurate than the one
used in the first algorithm, since odometry error accumulates over time, while laser
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error does not. In addition, the high precision of laser sensors produces accurate
readings and, thus, highly valuable information. Thus, dropping odometer readings
has a smaller impact than dropping laser readings.

In particular, consider the factorization of the posterior distribution given
in (4.2). To sample θ from the first term, P(θ |U ,V ), we use that

P(θ |U ,V ) ≈ P(θ |V ) =
T∏

t=1

N∏

k=1

P(θtk|Vtk)

∝
T∏

t=1

N∏

k=1

P(Vtk|θtk)P (θtk)(4.6)

=
T∏

t=1

N∏

k=1

φ((Vtk − θtk)/σ )

�((dmax − θtk)/σ ) − �(−θtk/σ )
(1 − p)θtk−1p.

Thus, we can implement an IS algorithm by sampling values of θtk from a
Gaussian distribution, and associating a weight

ω(θtk) = 1

�((dmax − θtk)/σ ) − �(−θtk/σ )
(1 − p)θtk−1p,(4.7)

to each observation.
For the second term in equation (4.2), P(Z|θ ,U ,V ), we have that

P(Z|θ ,U ,V ) =
T∏

t=1

P(Zt |θ ,U ,Zt−1)

(4.8)

=
T∏

t=1

P(Zt |θ ,UT
t ,Zt−1).

From this expression, applying Bayes’ theorem, we get

P(Z|θ ,U ,V) =
T∏

t=1

P(Zt |UT
t ,Zt−1)

P (θ |Zt,U
T
t ,Zt−1)

P (θ |UT
t ,Zt−1)

=
T∏

t=1

P(Zt |Ut,Zt−1)
P (θ |Zt,U

T
t ,Zt−1)

P (θ |UT
t ,Zt−1)

.

Thus, we can implement an IS strategy by sampling locations, Zt , from the motion
model, P(Zt |Ut,Zt−1), and assigning weights

ω(Zt) = P(θ |Zt,U
T
t ,Zt−1),

as the term P(θ |UT
t ,Zt−1) in the denominator does not depend on Zt .
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Decomposing θ over time, as in

ω(Zt) =
t−1∏

i=1

P(θ i |Zt,U
T
t+1,Z

t−1, θ i−1) × P(θ t |Zt,U
T
t+1,Z

t−1, θ t−1)

(4.9)

×
T∏

i=t+1

P(θ i |Zt,U
T
t+1,Zt−1, θ i−1),

we identify three types of terms.
When i is smaller than t , as in the terms in the first product in (4.9), there is

no distance information available at time t to match with Zt , so we can drop the
conditioning on Zt . Thus, the terms in this product do not depend on Zt and we
can drop them from the weight. When i is greater that t , the terms in the second
product become

P
(
θ i |Ui,M(Zt−1, θ t−1)

)
,

where M(Zt−1, θ t−1) corresponds to the partial map built with information up to
time t − 1. As the location information at time i, Ui , is random, computing this
term requires an additional integration. To avoid this, we approximate the weights
in (4.9) by

ω(Zt) ≈ P(θ t |Zt,U
T
t+1,Z

t−1, θ t−1)

= P
(
θ t |Zt,M(Zt−1, θ t−1)

)
(4.10)

=
N∏

k=1

P
(
θ tk|Zt,M(Zt−1, θ t−1)

)
.

The terms inside the product in equation (4.10) correspond to a truncated geomet-
ric distribution (see the Appendix for details).

We note that the weight, ω(Zt) = P(θ t |Zt,M(Zt−1, θ t−1)), represents the de-
gree of agreement between true distances to obstacles at time t , θ t , and the sampled
location, Zt , within the partial map implied by Zt−1 and θ t−1.

4.3. Derivation of our main algorithm. Our third algorithm builds upon the
derivation of the second algorithm. The key difference lies on the weights used
when sampling locations Zt . As we show in the application of the second algo-
rithm in Section 5, problems arise with the weights of the locations in (4.10), due
to the imposition of consistency between observations. Our third algorithm relaxes
the concept of consistency by redefining weights. This induces a new probabilistic
model for the process and we have not explored the probabilistic consequences of
using the new weights.

Consider a draw at a single time instant t , (Zt , θt ). At this point, there are avail-
able draws of locations and distances up to time t −1, Zt−1 and θ t−1, respectively.
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Since we are now dealing with a different concept of consistency, the draws ob-
tained up to time t − 1 do not necessarily imply a consistent map, in the sense
consistency was understood before. That is, there may be conflicting information
in previous draws so that a certain cell is determined as empty by some observa-
tions and as occupied by others. Thus, we redefine the map up to time t − 1 as a

probabilistic map that we label M̃
t−1

.

To understand the definition of M̃
t−1

, consider each pair (Zl, θl), l = 1, . . . ,

t − 1. Every time one of these pairs is drawn, the status of each cell in the map
is determined as empty, occupied or unknown. We define the value of cell (i, j)

in M̃
t−1

as the proportion of times the cell was determined as occupied, over the
number of times the cell was determined either occupied or empty. We determine,

afterward, that a cell in M̃
t−1

is empty if its value is smaller that π and is occupied
if its value is greater than or equal to 1 − π . From calibration of the algorithm on
the Wean Hall data set described in the next section, we use π = 0.2.

On the other hand, consider that for laser beam k, a sampled value θtk and a
sampled last location Zt obtained from the motion model, determine that the cell
at the distance θtk from Zt in the kth direction is occupied, while the cells between
that cell and Zt are empty.

The algorithm considers the degree of agreement between these two sources of

information: the partial map M̃
t−1

and the information obtained from θtk and the

sampled value Zt . Two cells, one in M̃
t−1

and the same one in the map determined
by θtk and Zt , agree if they have been assigned the same value by the two sources.
Otherwise, they disagree. Unlabeled cells are discarded. We define the weight of
Zt with respect to the kth direction, ωk(Zt), as the proportion of cells that agree,
over the total number of cells that either agree or disagree. Finally, we define the
weight of Zt as

ω(Zt) =
N∏

k=1

ωk(Zt).(4.11)

5. Implementation and empirical results. We first apply the three algo-
rithms described in Section 4 to data obtained from an experimental run in Wean
Hall, at Carnegie Mellon University, by Pearl (see Figure 1), a robot equipped
with an odometer and a laser sensor. (The data were provided by Nicholas Roy.)
Pearl navigated inside the 5th floor of Wean Hall building going back and forth
along two corridors shown in the map in Figure 3. Pearl collected data at about 10
recordings per second. In her journey, she took 3354 measurements, each of them
consisting in a pair (Ut ,Vt ), t = 1, . . . ,3354. Her laser sensor sent beams every
degree and thus there are 180 distances recorded for each laser reading. The laser
sensor had a maximum distance range of dmax = 10m.

A map drawn from raw odometer and laser readings is shown in Figure 4. This
figure shows how odometry error accumulates so that it seems that Pearl visited
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FIG. 3. Map of Wean Hall.

three different corridors, instead of two. The smoothness of the depicted walls,
however, suggests that error in laser sensor readings is small compared to error in
odometer readings.

5.1. Results of the first algorithm. Figure 5 shows a typical path obtained us-
ing the first algorithm. We see that large observed rotations in odometry cause
large rotations to occur in the sampled path, which explains its curved undesirable
shape. Figure 5 shows that paths are unable to recover from the error accumulated
by odometry. The lack of ability of the motion model to recover from odometry
error shows the need of incorporating the information carried by laser sensor read-
ings when sampling paths, as our second and main algorithms do.

FIG. 4. Map obtained from raw data.



SLAM FOR MOBILE ROBOTS 77

FIG. 5. Path sampled by the first algorithm.

The second step of our sampling process simulates distances to the obstacles
from their posterior distribution given the data and the sampled paths. Figure 6
shows the map obtained for the same path shown in Figure 5. The figure shows that
laser readings appear to induce larger errors in the sampled maps. This impression
is not true, however, if we notice that the sampled locations carry large errors in
orientations, which could not be seen in Figure 5. This causes the obstacles in the
map to be located in the wrong places.

5.2. Results of the second algorithm. Under this algorithm, we obtain a sam-
ple of distances to obstacles θ from a Gaussian perception model, and assign
weights ω(θtk) in equation (4.7). It is not possible to visualize the observations
obtained in this step within the map, as there are no locations available.

FIG. 6. Map matching sample path in Figure 5.
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Problems arise early during the second sampling step. When sampling Zt , at
instant t , there is available a partial map built with information up to time t − 1,
M t−1(Zt−1, θ t−1), and a set of distances, θt . At this step, we sample a value of the
current location Zt from the motion model, and assign a weight to this observa-
tion that corresponds to the degree of agreement of this location with the previous
information.

The partial map that is available, M t−1, contains undetermined cells. Thus, for
a given location Zt , there is a set of possible distances to the closest obstacles.
The weight of the location sampled, Zt , is zero if θt is not in that set. Once t

increases and more information is available in M t−1, the set of possible distances
to obstacles from Zt gets smaller and, thus, it becomes difficult to draw a value
of Zt with a positive weight. In other words, it becomes hard to find a consistent
location Zt .

This issue appears rapidly in the implementation of this algorithm. Once a few
locations are sampled, it becomes hard to find consistent subsequent locations,
making this implementation unfeasible from the computational point of view.

5.3. Results of our main algorithm. We tested our main algorithm with both
data sets, from Carnegie Mellon University and from the Pontificia Universidad
Catolica de Chile. To get each observation (Z, θ) in the sample, we start by
sampling n sets of distances to obstacles, θtk, t = 1, . . . , T , k = 1, . . . ,N , from
Gaussian distributions, with means Vtk and σ̂ = 2cm. Using IS weights according
to equation (4.7), we resample one of these observations.

We sample n sets of locations Zt, t = 1, . . . , t , from the motion model and use
the value of θ obtained in the first step to compute the new weights in equation
(4.10). We resample one observation according to these weights.

For the Wean Hall data, we run this algorithm with two different IS sample sizes
n. Figures 7 and 8 show two maps obtained for n = 10 and n = 100, respectively.
For each IS sample size, additional observations obtained closely resemble the
ones shown here.

For the data collected at the Pontificia Universidad Catolica de Chile, Figure 9
shows the map obtained from raw data, confirming the error accumulation present
in odometry. Figure 10 shows the result of the application or our main algorithm
to this data.

Figures 7, 8 and 10 show that this algorithm allows the robot to recover from
odometry error, aligning the data into the right number of corridors. Comparing
these results with the results obtained by our first algorithm, we find that incorpo-
rating laser data when sampling locations significantly improves the behavior of
the sampling technique. Figures 7 and 8 closely resemble the true Wean Hall map,
shown in Figure 3. Figure 10 also resembles the true area navigated by the robot
(not shown here).

Our results also show improvement when we draw more observations in the
IS step for sampling locations, although even a small sample size, for example,
n = 10, behaves reasonably well.
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FIG. 7. Map of Wean Hall, at Carnegie Mellon University, obtained from proposed main algorithm,
and IS sample size n = 10.

The computational complexity of the algorithm is O(n × T ). The complexity is
linear in the size n of the IS step, as each sampled value is processed independently,
which allows to an easy parallelization of the algorithm. In particular, we also re-
duce processing time by using pre-computed weights, when repeated observations
are sampled at the re-sampling step of IS.

The complexity is linear in the number of observations in the sample, T , as at
each point in time, we only update a fixed number of cells in the neighborhood of
the sampled location in the map.

We further reduce the computational complexity in our implementation by con-
sidering that a robot usually obtains data at a high rate (about 10 measurements
per second). We discard redundant information when the robot is static or moving
too slowly.

FIG. 8. Map of Wean Hall, at Carnegie Mellon University, obtained from proposed main algorithm,
and IS sample size n = 100.
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FIG. 9. Map of the Computer Science Department, at Universidad Catolica de Chile, obtained
from raw data. The true area possesses only one corridor.

With these simplifications, our algorithm requires about 1 second to compute
the weights of the n observations sampled at each point in time, when running in
a Pentium processor at 2 GHz.

6. Contributions and open statistical modeling problems. In this paper we
have presented a fully Bayesian approach to modeling the simultaneous localiza-
tion and mapping (SLAM) problem for mobile robots in indoor environments with
a simplified sensor system. Our methodology utilizes a probabilistic graphical rep-
resentation for data acquisition and inference that has already been adapted to a
variety of other SLAM problems in the robotics literature. We use importance
sampling approaches to calculate the posterior distribution and the methodology,
while not implementable in anything approximating real time can serve as a base-
line for assessing various real-time approximations, such as the particle filtering
methods as well as other approaches.

Finally, our results suggest that modeling odometry error is the key component
in modeling the SLAM problem.

Extensions to the models here might well involve distributions over families pri-
ors for the maps and over motion and perception models. But to make the method-
ology truly useful for robotics, we need to explore approximations to the fully
Bayesian methods here and compare these to current technologies such as Fast-

FIG. 10. Map of the Computer Science Department, at Universidad Catolica de Chile, obtained
from proposed main algorithm, and IS sample size n = 100.
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SLAM which is built on Kalman filtering ideas and Gaussian approximations. Two
approximation approaches seem potentially promising:

1. Variational approximations of the sort that proved extremely valuable in a va-
riety of other machine learning problems, for example, see [14] and [3], that
have an EM-like structure.

2. Model approximations emerging from the literature on tropical geometry which
have already been applied to simple hidden Markov models [20, 21].

Variational approximations should be reasonably easy to implement, while the
tropical geometry approaches likely will require new mathematical and statistical
work.

As we mentioned at the outset, we have addressed a relatively simple and styl-
ized probabilistic robotics problem. Current sensors in widespread use provide
more elaborate information of environments, including pictures, and many of the
most interesting environments are three-dimensional [12] and either dynamic or do
not have the simple restricted boundaries exhibited by our data and modeling [27].
Other settings involve multiple robots interacting within an environment [9]. These
mapping and localization problems provide serious challenges to both machine
learning and statistics. For most of these problems, the FastSLAM methodology
of Thrun and his colleagues remains the state-of-the-art.

APPENDIX: DETAILS FOR FIRST ALGORITHM

Consider

P(θtk|Z,V , θ t−1) ∝ P(θtk|Vtk)
P (θtk,Z, θ t−1,V (tk))

P (θtk,V (tk))
.(A.1)

Based on the fact that θtk is independent of laser readings that do not contain a
reading k at time t , V(tk), when no information about locations is available, we can
decompose the denominator in equation (A.1) in a product of marginals. We also
decompose the term P(θtk,Z, θ t−1,V (tk)) in the numerator and, under a Gaussian
perception model, we obtain

P(θtk|Z,V , θ t−1) ∝ P(θtk|Vtk)
P (Z, θ t−1,V (tk))P (θtk|Z, θ t−1,V (tk))

P (θtk)P (V (tk))

= φ((Vtk − θtk)/σ )

�((dmax − θtk)/σ ) − �(−θtk/σ )
P

(
θtk|Z, θ t−1,V (tk)

)

×I (0 < Vtk < dmax)I (θtk > 0),

where the functions φ and � are the density and cumulative function of the stan-
dard Gaussian distribution, respectively.



82 A. ARANEDA, S. E. FIENBERG AND A. SOTO

FIG. 11. Illustration of a truncated geometric distribution.

Truncated geometric distribution approximation. Consider that in the term
P(θtk|Z, θ t−1,V (tk)), Zt−1 and θ t−1 convey deterministic information about the
map. Thus, the sample space of θtk gets narrower once Zt is also known. Let
ZT

t+1 be the set of locations between times t + 1 and T . Calculation of the term
P(θtk|Z, θ t−1,V (tk)) is difficult because ZT

t+1 and V (tk) also convey information
about the map but, since the laser readings carry error, this information is proba-
bilistic instead of deterministic. Thus, introducing this information involves intro-
ducing additional integration. To avoid this, we use

P
(
θ tk|Z, θ t−1,V (tk)

) ≈ P(θtk|Zt−1, θ t−1,Zt ).

The distribution in this equation takes the value zero for those θtk that are incon-
sistent with Zt−1, θ t−1 and Zt .

Figure 11 shows this situation. The dashed cell corresponds to the location of
the robot at time t , Zt . Using the information conveyed by Zt−1 and θ t−1, we
label each cell las either “1” or “0” depending on whether we determine it to be
occupied or empty. The arrow corresponds to the direction of the kth beam. We see
that the closest obstacle in that direction can only be located at the unlabeled cells
or at the occupied cell, in the direction of the arrow. We denote the set of these
possible cells as Ctk .

On the other hand, the probability that the closest obstacle is in one of the cells
in Ctk corresponds to a certain particularization of a Geometric distribution with
parameter p, where p is the prior probability of each cell of being occupied. These
considerations imply that the distribution P(θtk|Zt−1, θ t−1,Zt ) corresponds to the
so-named Truncated Geometric distribution, Tr.Geom(Ctk,p).
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