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ON THE ROBUST DYNKIN GAME

BY ERHAN BAYRAKTAR1 AND SONG YAO2

University of Michigan and University of Pittsburgh

We analyze a robust version of the Dynkin game over a set P of mu-
tually singular probabilities. We first prove that conservative player’s lower
and upper value coincide (let us denote the value by V ). Such a result con-
nects the robust Dynkin game with second-order doubly reflected backward
stochastic differential equations. Also, we show that the value process V is a
submartingale under an appropriately defined nonlinear expectation E up to
the first time τ∗ when V meets the lower payoff process L. If the probability
set P is weakly compact, one can even find an optimal triplet (P∗, τ∗, γ∗) for
the value V0.

The mutual singularity of probabilities in P causes major technical diffi-
culties. To deal with them, we use some new methods including two approx-
imations with respect to the set of stopping times.
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1. Introduction. We analyze a continuous-time robust Dynkin game with re-
spect to a nondominated set P of mutually singular probabilities on the canonical
space � of continuous paths. In this game, Player 1, who negatively/conservatively
thinks that Nature is also against her, will receive the following payment from
Player 2 if the two players choose τ ∈ T and γ ∈ T , respectively, to quit the game:

(1.1) R(τ, γ ) :=
∫ τ∧γ

0
gs ds + 1{τ≤γ }Lτ + 1{γ<τ }Uγ .

Here, T denotes the set of all stopping times with respect to the natural filtration F
of the canonical process B , and the running payoff g, the terminal payoff L ≤ U

are F-adapted processes uniformly continuous in sense of (1.7).
As probabilities in P are mutually singular, one cannot define the conditional

expectation of the nonlinear expectation infP∈P EP[·], and thus Player 1’s lower
value process V and upper value process V , in essential extremum sense. Instead,
we use shifted processes and regular conditional probability distributions (see Sec-
tion 1.1 for details) to define

V t(ω) := sup
τ∈T t

inf
γ∈T t

inf
P∈P(t,ω)

EP

[
Rt,ω(τ, γ )

]
,

V t (ω) := inf
P∈P(t,ω)

inf
γ∈T t

sup
τ∈T t

EP

[
Rt,ω(τ, γ )

]
, (t,ω) ∈ [0, T ] × �.

Here, T t denotes the set of all stopping times with respect to the natural fil-
tration Ft of the shifted canonical process Bt on the shifted canonical space
�t , P(t,ω) is a path-dependent probability set which includes all regular con-
ditional probability distributions stemming from P [see (P2)], and Rt,ω(τ, γ ) :=∫ τ∧γ
t gt,ω

s ds + 1{τ≤γ }Lt,ω
τ + 1{γ<τ }Ut,ω

γ .
In Theorem 4.1, we demonstrate that Player 1’s lower and upper value pro-

cesses coincide, and thus she has a value process Vt(ω) = V t(ω) = V t(ω), (t,ω) ∈
[0, T ] × � in the robust Dynkin game. We also see in Theorem 4.1 that the first
time τ∗ when V meets L is an optimal stopping time for Player 1, that is,

(1.2) V0 = inf
γ∈T inf

P∈P EP

[
R(τ∗, γ )

]
,

and that processes Vt + ∫ t
0 gs ds, t ∈ [0, T ] is a submartingale under the pathwise-

defined nonlinear expectation E t [ξ ](ω) := infP∈P(t,ω)EP[ξ t,ω], (t,ω) ∈ [0, T ] ×
� up to time τ∗.

Since a Dynkin game is actually a coupling of two optimal stopping problems,
the martingale approach introduced by Snell [54] to solve the optimal stopping
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problem was later extended to Dynkin games; see, for example, [1, 11, 42, 45,
47]. In the current paper, we will adopt a generalized martingale method with
respect to the nonlinear expectations E = {E t }t∈[0,T ]. The mutual singularity of
probabilities in P gives rise to some major technical hurdles: First, no dominating
probability in P means that we do not have a dominated convergence theorem
for the nonlinear expectations E . Because of this, one can not follow the classic
approach for Dynkin games to obtain the E -martingale property of V· + ∫ ·

0 gs ds.
Second, we do not have a measurable selection theorem for stopping strategies,
which complicates the proof of the dynamic programming principle.

Our martingale approach starts with a dynamic programming principle (DPP)
for process V . The “subsolution” part of DPP (Proposition 3.1) relies on a
“weak stability under pasting” assumption (P3) on the probability class
{P(t,ω)}(t,ω)∈[0,T ]×�, which allows us to construct approximating measures by
pasting together local ε-optimal probabilistic models. We show in Section 5 that
(P3), along with our other assumptions on the probability class, are satisfied in the
case of some path-dependent SDEs with controls, which represents a large class of
models on simultaneous drift and volatility uncertainty. We demonstrate that the
“supersolution” part of the DPP (Proposition 3.2) by employing a countable dense
subset � of T t to construct a suitable approximation. This dynamic programming
result implies the continuity of process V (Proposition 3.4), which plays a crucial
role in the approximation scheme (to be described in the following paragraph) for
proving Theorem 4.1.

The key to Theorem 4.1 is the E -submartingality of process {V t +∫ t
0 gs ds}t∈[0,T ] up to τ∗. Inspired by Nutz and Zhang [49]’s idea on using stopping

times with finitely many values for approximation, we define an approximating
sequence of value processes V n’s to V by

V n
t (ω) := inf

P∈P(t,ω)
inf

γ∈T t
sup

τ∈T t (n)

EP

[
Rt,ω(τ, γ )

] ≤ V t(ω), (t,ω) ∈ [0, T ] × �,

where T t (n) collects all T t -stopping times taking values in {t ∨ (i2−nT )}2n

i=0. By
(P3), Proposition 3.1 still holds for V n, which leads to that for any δ > 0 and k ≥ n,
the process {V n

t + ∫ t
0 gs ds}t∈[0,T ] is an E -submartingale over the grid {i2−kT }2k

i=0
up to the first time νn,δ when V n meets L+δ [see (A.14)]. Letting k → ∞, n → ∞
and then ε → 0, we can deduce from limn→∞ ↑ V n = V (Proposition 3.3) and the
continuity of V that the process {V t + ∫ t

0 gs ds}t∈[0,T ] is an E -submartingale up
to τ∗. Theorem 4.1 then easily follows. It is worth pointing out that our argument
does not require the payoff processes to be bounded.

At the cost of some additional conditions such as the weak compactness of P
and the stronger pasting condition of [55] (all of which are satisfied for controls of
weak formulation, see Example 6.1), we can apply the main result of [7] to find in
Theorem 6.1 a pair (P∗, γ∗) ∈ P × T such that

(1.3) V0 = EP∗
[
R(τ∗, γ∗)

]
.
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Relevant literature. Since its introduction by [18], Dynkin games have been an-
alyzed in discrete and continuous-time models for decades. Bensoussan and Fried-
man [8, 9, 23] first analyzed the games in the setting of Markov diffusion processes
by means of variational inequalities and free boundary problems. Bayraktar and
Sîrbu in [4] had a fresh look at this problem using the Stochastic Perron’s method
(a verification approach without smoothness). For a more general class of reward
processes martingale approach was developed under Mokobodzki’s condition (see,
e.g., [1, 10, 11, 47]) and certain regularity assumption on payoff processes (see,
e.g., [40, 42]).

Cvitanić and Karatzas [16] connected Dynkin games to backward stochastic
differential equations (BSDEs) with two reflecting barriers L and U . Along with
the growth of the BSDEs theory, Dynkin games have attracted much attention in
the probabilistic framework with Brownian filtration; see, for example, [6, 13, 22,
25, 26, 28–30, 32, 60]. Among these works, [6, 13, 22, 26, 28, 32] only require
“L < U” rather than Mokobodski’s condition via a penalization method.

In Mathematical Finance, the theory of Dynkin games can be applied to pricing
and hedging game options (or Israeli options) and their derivatives; see [17, 21, 25,
34, 38, 43] and the references in the survey paper [39]. Also, [2, 21] analyzed the
sensitivity of the Dynkin game value with respect to changes in the volatility of
the underlying. There is plentiful research on Dynkin games in many other areas:
for examples, [25, 28–30, 32] added stochastic controls into the Dynkin games to
study mixed zero-sum stochastic differential games of control and stopping; [12,
24, 36, 58] and [15, 56] studied some Dynkin games through the associated singu-
lar control problems and impulse control problems, respectively; [41, 53, 59, 61]
considered the Dynkin games in which the players can choose randomized stop-
ping times; and [9, 14, 27, 31, 33, 46, 50] analyzed nonzero sum Dynkin games.

However, there are only a few works on Dynkin games under model uncer-
tainty: Hamadene and Hdhiri [28] and Yin [62] studied the Dynkin games over
a set of equivalent probabilities, which represents drift uncertainty (or Knight-
ian uncertainty). When the probability set contains mutually singular probabilities
(or equivalently, both drift and volatility of the underlying can be “manipulated”
against Player 1), Dolinsky [17] derived dual expressions for the super-replication
prices of game options in the discrete time, and Matoussi et al. [44] related the
Dynkin games under G-expectations (introduced by Peng [51]) to second-order
doubly reflected BSDEs.

In this paper, we substantially benefit from the martingale techniques developed
for robust optimal stopping problems by [3, 37] (which analyzed the problem when
P is dominated), [19] (P is nondominated but Nature and the stopper cooperate)
and [5, 49] (in which P is nondominated and Nature and stopper are adversaries.)
Especially the results of [7] are crucial for determining a saddle point. (The latter
results also recently proved to be useful for defining the viscosity solutions of fully
nonlinear degenerate path dependent PDEs in [20].)
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The rest of the paper is organized as follows: In Section 1.1, we will introduce
some notation and preliminary results such as the regular conditional probability
distribution. In Section 2, we set the stage for our main result by imposing some as-
sumptions on the reward process and the classes of mutually singular probabilities.
Then Section 3 derives properties of Player 1’s upper value processes and approx-
imating value processes such as path regularity and dynamic programming prin-
ciples. They play essential roles in deriving our main result on the robust Dynkin
games stated in Section 4. In Section 5, we give an example of path-dependent
SDEs with controls that satisfies all our assumptions. In Section 6, we discuss the
optimal triplet for Player 1’s value under additional conditions. Section 7 contains
proofs of our results while the demonstration of some auxiliary statements with
starred labels (in the corresponding equation numbers) in these proofs are deferred
to the Appendix. We also include in the Appendix a technical lemma necessary for
the proof of Theorem 4.1.

1.1. Notation and preliminaries. Throughout this paper, we fix d ∈ N. Let
S>0

d stand for all Rd×d -valued positively definite matrices and denote by B(S>0
d )

the Borel σ -field of S>0
d under the relative Euclidean topology. We also fix a time

horizon T ∈ (0,∞) and let t ∈ [0, T ].
We set �t := {ω ∈ C([t, T ];Rd) : ω(t) = 0} as the canonical space over period

[t, T ] and denote its null path by 0t := {ω(s) = 0,∀s ∈ [t, T ]}. For any s ∈ [t, T ],
‖ω‖t,s := supr∈[t,s] |ω(r)|, ∀ω ∈ �t defines a semi-norm on �t . In particular,
‖ · ‖t,T is the uniform norm on �t .

The canonical process Bt of �t is a d-dimensional standard Brownian mo-
tion under the Wiener measure Pt

0 of (�t ,F t
T ). Let Ft = {F t

s }s∈[t,T ], with F t
s :=

σ(Bt
r; r ∈ [t, s]), be the natural filtration of Bt and denote its Pt

0-augmentation

by F
t = {F t

s}s∈[t,T ], where F t

s := σ(F t
s ∪ N

t
) and N

t := {N ⊂ �t : N ⊂
A for some A ∈ F t

T with Pt
0(A) = 0}. The expectation on (�t ,F t

T ,Pt
0) will be

simply denoted by Et . Also, we let P t be the Ft -progressively measurable sigma-
field of [t, T ] × �t and let T t (resp., T t

) collect all Ft (resp., F
t
)-stopping times.

Given s ∈ [t, T ], we set T t
s := {τ ∈ T t : τ(ω) ≥ s,∀ω ∈ �t }, T t

s := {τ ∈ T t :
τ(ω) ≥ s, ∀ω ∈ �t } and define the truncation mapping �t

s from �t to �s by
(�t

s(ω))(r) := ω(r) − ω(s), ∀(r,ω) ∈ [s, T ] × �t . By Lemma A.1 of [5],

(1.4) τ
(
�t

s

) ∈ T t
s ∀τ ∈ T s .

For any δ > 0 and ω ∈ �t ,

Os
δ (ω) := {

ω′ ∈ �t : ∥∥ω′ − ω
∥∥
t,s < δ

}
is an F t

s -measurable open set of �t,
(1.5)

and O
s

δ(ω) := {ω′ ∈ �t : ‖ω′ − ω‖t,s ≤ δ} is an F t
s -measurable closed set of �t

(see, e.g., (2.1) of [5]). In particular, we will simply denote OT
δ (ω) and O

T

δ (ω) by
Oδ(ω) and Oδ(ω), respectively.
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For any n ∈ N and s ∈ [t, T ], let T t (n) denote all Ft -stopping times taking
values in {tni }2n

i=0 with

(1.6) tni := t ∨ (
i2−nT

)
, i = 0, . . . ,2n,

and set T t
s (n) := {τ ∈ T t (n) : τ(ω) ≥ s, ∀ω ∈ �t }. In particular, we literally set

T t (∞) := T t and T t
s (∞) := T t

s .
Let Pt collect all probabilities on (�t ,F t

T ). For any P ∈ Pt , we consider the
following spaces about P:

(1) For any sub sigma-field G of F t
T , let L1(G,P) be the space of all real-valued,

G-measurable random variables ξ with ‖ξ‖L1(G,P) := EP[|ξ |] < ∞.
(2) Let S(Ft ,P) be the space of all real-valued, Ft -adapted processes {Xs}s∈[t,T ]

with all continuous paths and satisfying EP[X∗] < ∞, where X∗ := ‖X‖t,T =
sups∈[t,T ] |Xs |.

We will drop the superscript t from the above notation if it is 0. For example,
(�,F) = (�0,F0).

We say that a process X is bounded by some C > 0 if |Xt(ω)| ≤ C for any
(t,ω) ∈ [0, T ] × �. Also, a real-valued process X is said to be uniformly continu-
ous on [0, T ] × � with respect to some modulus of continuity function ρ if

(1.7)

∣∣Xt1(ω1) − Xt2(ω2)
∣∣

≤ ρ
(
d∞

(
(t1,ω1), (t2,ω2)

)) ∀(t1,ω1), (t2,ω2) ∈ [0, T ] × �,

where d∞((t1,ω1), (t2,ω2)) := |t1 − t2|+‖ω1(· ∧ t1)−ω2(· ∧ t2)‖0,T . For any t ∈
[0, T ], taking t1 = t2 = t in (1.7) shows that |Xt(ω1)−Xt(ω2)| ≤ ρ(‖ω1 −ω2‖0,t ),
ω1,ω2 ∈ �, which implies the Ft -measurability of Xt . So

X is indeed an F-adapted process with all continuous paths.

Moreover, let M denote all modulus of continuity functions ρ such that for
some C > 0 and 0 < p1 ≤ p2,

(1.8) ρ(x) ≤ C
(
xp1 ∨ xp2

) ∀x ∈ [0,∞).

In this paper, we will use the convention inf∅ := ∞.

1.2. Shifted processes and regular conditional probability distributions. In
this subsection, we fix 0 ≤ t ≤ s ≤ T . The concatenation ω ⊗s ω̃ of an ω ∈ �t

and an ω̃ ∈ �s at time s:

(ω ⊗s ω̃)(r) := ω(r)1{r∈[t,s)} + (
ω(s) + ω̃(r)

)
1{r∈[s,T ]} ∀r ∈ [t, T ]

defines another path in �t . Set ω ⊗s ∅ = ∅ and ω ⊗s Ã := {ω ⊗s ω̃ : ω̃ ∈ Ã} for
any nonempty subset Ã of �s .

LEMMA 1.1. If A ∈F t
s , then ω ⊗s �s ⊂ A for any ω ∈ A.
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For any F t
s -measurable random variable η, since {ω′ ∈ �t : η(ω′) = η(ω)} ∈

F t
s , Lemma 1.1 implies that

ω ⊗s �s ⊂ {
ω′ ∈ �t : η(

ω′) = η(ω)
}

that is,

η(ω ⊗s ω̃) = η(ω) ∀ω̃ ∈ �s.
(1.9)

To wit, the value η(ω) depends only on ω|[t,s].
Let ω ∈ �t . For any A ⊂ �t we set As,ω := {ω̃ ∈ �s : ω ⊗s ω̃ ∈ A} as the

projection of A on �s along ω. In particular, ∅s,ω = ∅. Given a random variable
ξ on �t , define the shift ξ s,ω of ξ along ω|[t,s] by ξ s,ω(ω̃) := ξ(ω ⊗s ω̃), ∀ω̃ ∈ �s .
Correspondingly, for a process X = {Xr}r∈[t,T ] on �t , its shifted process Xs,ω is

Xs,ω(r, ω̃) := (Xr)
s,ω(ω̃) = Xr(ω ⊗s ω̃) ∀(r, ω̃) ∈ [s, T ] × �s.

Shifted random variables and shifted processes “inherit” the measurability of
original ones:

PROPOSITION 1.1. Let 0 ≤ t ≤ s ≤ T and ω ∈ �t :

(1) If a real-valued random variable ξ on �t is F t
r -measurable for some r ∈

[s, T ], then ξ s,ω is F s
r -measurable.

(2) For any n ∈ N ∪ {∞} and τ ∈ T t (n), if τ(ω ⊗s �s) ⊂ [r, T ] for some r ∈
[s, T ], then τ s,ω ∈ T s

r (n).
(3) Given τ ∈ T t , if τ(ω) ≤ s, then τ(ω ⊗s �s) ≡ τ(ω); if τ(ω) ≥ s (resp.,

> s), then τ(ω ⊗s ω̃) ≥ s (resp., > s), ∀ω̃ ∈ �s , and thus τ s,ω ∈ T s .
(4) If a real-valued process {Xr}r∈[t,T ] is Ft -adapted (resp., Ft -progressively

measurable), then Xs,ω is Fs -adapted (resp., Fs -progressively measurable).

Let P ∈ Pt . In light of the regular conditional probability distributions (see,
e.g., [57]), we can follow Section 2.2 of [5] to introduce a family of shifted proba-
bilities {Ps,ω}ω∈�t ⊂ Ps , under which the corresponding shifted random variables
and shifted processes inherit the P integrability of original ones.

PROPOSITION 1.2. (1) It holds for Pt
0-a.s. ω ∈ �t that (Pt

0)
s,ω = Ps

0.
(2) If ξ ∈ L1(F t

T ,P) for some P ∈ Pt , then it holds for P-a.s. ω ∈ �t that
ξ s,ω ∈ L1(F s

T ,Ps,ω) and

(1.10) EPs,ω

[
ξ s,ω] = EP

[
ξ |F t

s

]
(ω) ∈ R.

(3) If X ∈ S(Ft ,P) for some P ∈ Pt , then it holds for P-a.s. ω ∈ �t that Xs,ω ∈
S(Fs,Ps,ω).

As a consequence of (1.10), a shifted Pt
0-null set also has zero measure.

LEMMA 1.2. For any N ∈ N
t
, it holds for Pt

0-a.s. ω ∈ �t that N s,ω ∈ N
s
.
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This subsection was presented in [5] with more details and proofs. In the next
three sections, we will gradually provide the technical setup and preparation for
our main results (Theorem 4.1 and Theorem 6.1) on the robust Dynkin game.

2. Weak stability under pasting. To study the robust Dynkin game, we need
some regularity conditions on the payoff processes.

Standing assumptions on payoff processes (g,L,U).

(A) g, L and U are three real-valued processes that are uniformly continuous
on [0, T ] × � with respect to the same modulus of continuity function ρ0 and
satisfy Lt(ω) ≤ Ut(ω), ∀(t,ω) ∈ [0, T ] × �.

For any (t,ω) ∈ [0, T ] × � and s, s ′ ∈ [t, T ], we technically define R(t, s, s′,
ω) := ∫ s∧s′

t gr (ω)dr + 1{s≤s′}Ls(ω) + 1{s′<s}Us′(ω). By (1.7),

(2.1)

∣∣R(
t, s, s′,ω1

) − R
(
t, s, s′,ω2

)∣∣
≤

∫ s∧s′

t

∣∣gr(ω1) − gr(ω2)
∣∣dr

+ 1{s≤s′}
∣∣Ls(ω1) − Ls(ω2)

∣∣ + 1{s′<s}
∣∣Us′(ω1) − Us′(ω2)

∣∣
≤ (

1 + s ∧ s′ − t
)
ρ0

(‖ω1 − ω2‖0,s∧s′
) ∀ω1,ω2 ∈ �.

Let the robust Dynkin game start from time t ∈ [0, T ] when the history has
been evolving along path ω|[0,t] for some ω ∈ �. Players 1 and 2 make their own
choices on the exiting time of the game. If Player 1 selects τ ∈ T t and Player 2
selects γ ∈ T t , the game ceases at τ ∧ γ . Then Player 1 will receive from her
opponent an accumulated reward

∫ τ∧γ
t gt,ω

s ds and a terminal payoff Lt,ω
τ (resp.,

Ut,ω
γ ) if τ ≤ γ (resp., γ < τ ). Here, negative

∫ τ∧γ
t gt,ω

s ds, Lt,ω
τ or Ut,ω

γ means a
payment from Player 1 to Player 2. So Player 1’s total wealth at time τ ∧ γ is

Rt,ω(τ, γ ) :=
∫ τ∧γ

t
gt,ω

s ds + 1{τ≤γ }Lt,ω
τ + 1{γ<τ }Ut,ω

γ

=
∫ τ∧γ

t
gt,ω

s ds + 1{τ≤γ }Lt,ω
τ∧γ + 1{γ<τ }Ut,ω

τ∧γ .

Since Proposition 1.1(4) shows that gt,ω, Lt,ω and Ut,ω are Ft -adapted processes
with all continuous paths,

(2.2) Rt,ω(τ, γ ) ∈ F t
τ∧γ ∀τ, γ ∈ T t .

Also, it is clear that

(2.3)
(
Rt,ω(τ, γ )

)
(ω̃) = R

(
t, τ (ω̃), γ (ω̃),ω ⊗t ω̃

) ∀ω̃ ∈ �t.

Next, we define �t := (−Lt)∨Ut ∨ 0, t ∈ [0, T ]. By (1.7), one can deduce that

(2.4)
∣∣�t(ω1) − �t(ω2)

∣∣ ≤ ρ0
(‖ω1 − ω2‖0,t

) ∀t ∈ [0, T ],∀ω1,ω2 ∈ �
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(for the reader’s convenience, we provided a proof in Section 7.1).
It is clear that ∣∣Rt,ω(τ, γ )

∣∣ ≤
∫ τ∧γ

t

∣∣gt,ω
s

∣∣ds + �t,ω
τ∧γ

∀(t,ω) ∈ [0, T ] × �,∀τ, γ ∈ T t .

(2.5)

The following result shows that the integrability of shifted payoff processes is
independent of the given path history.

LEMMA 2.1. Assume (A). For any t ∈ [0, T ] and P ∈ Pt , if �t,ω ∈
S(Ft ,P) and EP

∫ T
t |gt,ω

s |ds < ∞ for some ω ∈ �, then �t,ω′ ∈ S(Ft ,P) and
EP

∫ T
t |gt,ω′

s |ds < ∞ for all ω′ ∈ �.

We will concentrate on those probabilities P in Pt under which shifted payoff
processes are integrable:

ASSUMPTION 2.1. For any t ∈ [0, T ], P̂t := {P ∈ Pt : �t,0 ∈ S(Ft ,P) and
EP

∫ T
t |gt,0

s |ds < ∞} is not empty.

REMARK 2.1. (1) If � ∈ S(F,P0) and EP0

∫ T
0 |gs |ds < ∞, then Pt

0 ∈ P̂t for
any t ∈ [0, T ].

(2) As we will show in Proposition 5.1, when the modulus of continuity ρ0 in
(A) has polynomial growth, the laws of solutions to the controlled SDEs (5.1) over
period [t, T ] belong to P̂t .

Under (A) and Assumption 2.1, one can deduce from Lemma 2.1 that for any
t ∈ [0, T ] and P ∈ P̂t ,

(2.6) �t,ω ∈ S
(
Ft ,P

)
and EP

∫ T

t

∣∣gt,ω
s

∣∣ds < ∞ ∀ω ∈ �.

Next, we need the probability class to be adapted and weakly stable under past-
ing in the following sense:

Standing assumptions on the probability class.

(P1) For any t ∈ [0, T ], we consider a family {P(t,ω)}ω∈� of subsets of P̂t

such that

(2.7) P(t,ω1) = P(t,ω2) if ω1|[0,t] = ω2|[0,t].

Assume further that the probability class {P(t,ω)}(t,ω)∈[0,T ]×� satisfy the fol-
lowing two conditions for some modulus of continuity function ρ̂0: for any
0 ≤ t < s ≤ T , ω ∈ � and P ∈ P(t,ω):
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(P2) There exists an extension (�t ,F ′,P′) of (�t ,F t
T ,P) (i.e., F t

T ⊂ F ′ and
P′|F t

T
= P) and �′ ∈ F ′ with P′(�′) = 1 such that Ps,ω̃ belongs to P(s,ω ⊗t ω̃)

for any ω̃ ∈ �′.
(P3) (weak stability under pasting) For any δ ∈ Q+ and λ ∈ N, let {Aj }λj=0

be a F t
s -partition of �t such that for j = 1, . . . , λ, Aj ⊂ Os

δj
(ω̃j ) for some δj ∈

((0, δ] ∩ Q) ∪ {δ} and ω̃j ∈ �t . Then for any Pj ∈ P(s,ω ⊗t ω̃j ), j = 1, . . . , λ,
there exists a P̂ ∈ P(t,ω) such that:

(i) P̂(A ∩A0) = P(A ∩A0), ∀A ∈ F t
T .

(ii) For any j = 1, . . . , λ and A ∈ F t
s , P̂(A ∩Aj ) = P(A ∩Aj ).

(iii) For any n ∈ N ∪ {∞} and ℘ ∈ T s , there exist ℘n
j ∈ T t

s , j = 1, . . . , λ such
that for any A ∈F t

s and τ ∈ T t
s (n)

(2.8)

λ∑
j=1

EP̂

[
1A∩Aj

Rt,ω(
τ,℘n

j

)]

≤
λ∑

j=1

EP

[
1{ω̃∈A∩Aj }

(
sup

ς∈T s (n)

EPj

[
Rs,ω⊗t ω̃(ς,℘)

] +
∫ s

t
gt,ω

r (ω̃) dr

)]
+ ρ̂0(δ).

REMARK 2.2. (1) By (2.7), one can regard P(t,ω) as a path-dependent subset
of Pt . In particular, P := P(0,0) = P(0,ω), ∀ω ∈ �.

(2) Both sides of (2.8) are finite as we will show in Section 7. In particular,
the expectations on the right-hand side are well-defined since the mapping ω̃ →
supς∈T s (n)EP̃[Rs,ω⊗t ω̃(ς,℘)] is continuous under norm ‖‖t,T for any n ∈ N ∪
{∞}, P̃ ∈ P̂s and ℘ ∈ T s .

(3) Analogous to (P2) assumed in [5], the condition (P3) can be regarded as
a weak form of stability under pasting since it is implied by the “stability under
finite pasting” (see, e.g., (4.18) of [55]): for any 0 ≤ t < s ≤ T , ω ∈ �, P ∈ P(t,ω),
δ ∈ Q+ and λ ∈ N, let {Aj }λj=0 be a F t

s -partition of �t such that for j = 1, . . . , λ,
Aj ⊂ Os

δj
(ω̃j ) for some δj ∈ ((0, δ] ∩ Q) ∪ {δ} and ω̃j ∈ �t . Then for any Pj ∈

P(s,ω ⊗t ω̃j ), j = 1, . . . , λ, the probability defined by

(2.9) P̂(A) = P(A ∩A0) +
λ∑

j=1

EP

[
1{ω̃∈Aj }Pj

(
As,ω̃)] ∀A ∈ F t

T

is in P(t,ω).

As pointed out in Remark 3.6 of [48] (see also Remark 3.4 of [5]), (2.9) is not
suitable for the example of path-dependent SDEs with controls (see Section 5).
Thus, we assume the weak pasting condition (P3), which turns out to be sufficient
for our approximation scheme in proving the main results.
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3. The dynamic programming principle. Consider the robust Dynkin
game with payoff processes (g,L,U) and over the probability class
{P(t,ω)}(t,ω)∈[0,T ]×� as described in Section 2. If Player 1 conservatively thinks
that Nature is also against her, then for any (t,ω) ∈ [0, T ] × �,

V t(ω) := sup
τ∈T t

inf
γ∈T t

inf
P∈P(t,ω)

EP

[
Rt,ω(τ, γ )

]
and

V t(ω) := inf
P∈P(t,ω)

inf
γ∈T t

sup
τ∈T t

EP

[
Rt,ω(τ, γ )

]
define the lower value and upper value of Player 1 at time t given the historical
path ω|[0,t].

As we will see in Theorem 4.1 that V coincides with V as Player 1’s value
process V , whose sum with

∫ ·
0 gs ds is an E -submartingale up to the first time τ∗

when V meets L. For this purpose, we derive in this section some basic properties
of V and its approximating values including dynamic programming principles. Let
(A), (P1)–(P3) and Assumption 2.1 hold throughout the section.

For any (t,ω) ∈ [0, T ] × �, following Nutz and Zhang’s [49] idea, we techni-
cally define approximating value processes of V by

(3.1)

V n
t (ω) := inf

P∈P(t,ω)
inf

γ∈T t
sup

τ∈T t (n)

EP

[
Rt,ω(τ, γ )

]
≤ inf

P∈P(t,ω)
inf

γ∈T t
sup
τ∈T t

EP

[
Rt,ω(τ, γ )

] = V t(ω) ∀n ∈ N,

and set in particular V ∞
t (ω) := V t(ω).

Let n ∈ N∪ {∞}. It is clear that

(3.2)

V n(T ,ω) = inf
P∈P(T ,ω)

inf
γ∈T T

sup
τ∈T T (n)

EP

[
RT,ω(τ, γ )

]
= inf

P∈P(T ,ω)
EP

[
RT,ω(T ,T )

] = LT (ω) ∀ω ∈ �.

And we can show that

(3.3) −�t(ω) ≤ Lt(ω) ≤ V n
t (ω) ≤ Ut(ω) ≤ �t(ω) ∀(t,ω) ∈ [0, T ] × �.

For the reader’s convenience, we provide a proof in Section 7.1.
We need the following assumption on V n’s to discuss the dynamic program-

ming principles they satisfy.

ASSUMPTION 3.1. There exists a modulus of continuity function ρ1 ≥ ρ0
such that for any n ∈ N∪ {∞}
(3.4)

∣∣V n
t (ω1) − V n

t (ω2)
∣∣ ≤ ρ1

(‖ω1 − ω2‖0,t

) ∀t ∈ [0, T ],∀ω1,ω2 ∈ �.

REMARK 3.1. If P(t,ω) does not depend on ω for all t ∈ [0, T ], then As-
sumption 3.1 holds automatically.
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REMARK 3.2. Assumption 3.1 implies that V n is F-adapted for any n ∈
N∪ {∞}.

We first present the sub-solution side of dynamic programming principle for
V n’s:

PROPOSITION 3.1. For any n ∈ N∪ {∞}, 0 ≤ t ≤ s ≤ T and ω ∈ �,

(3.5)

V n
t (ω) ≤ inf

P∈P(t,ω)
inf

γ∈T t
sup

τ∈T t (n)

EP

[
1{τ∧γ<s}Rt,ω(τ, γ )

+ 1{τ∧γ≥s}
((

V n
s

)t,ω +
∫ s

t
gt,ω

r dr

)]
.

Conversely, we only need to show the super-solution side of dynamic program-
ming principle for V ∞ = V .

PROPOSITION 3.2. For any 0 ≤ t ≤ s ≤ T and ω ∈ �,

V t(ω) ≥ inf
P∈P(t,ω)

inf
γ∈T t

sup
τ∈T t

EP

[
1{τ∧γ<s}Rt,ω(τ, γ )

+ 1{τ∧γ≥s}
(
V

t,ω

s +
∫ s

t
gt,ω

r dr

)]
.

As a consequence of Propositions 3.1 and 3.2, the upper value process V of
Player 1 satisfies a true dynamic programming principle.

We rely on another condition to further show the convergence of V n to V and
their path regularities in the next two propositions.

ASSUMPTION 3.2. For any α > 0, there exists a modulus of continuity func-
tion ρα such that for any t ∈ [0, T )

(3.6)
sup

ω∈Ot
α(0)

sup
P∈P(t,ω)

sup
ζ∈T t

EP

[
ρ1

(
δ + sup

r∈[ζ,(ζ+δ)∧T ]
∣∣Bt

r − Bt
ζ

∣∣)]
≤ ρα(δ)

∀δ ∈ (0, T ].
PROPOSITION 3.3. Let n ∈ N, t ∈ [0, T ] and α > 0. It holds for any ω ∈

Ot
α(0) that

(3.7) V t(ω) ≤ V n
t (ω) + ρα

(
2−n) + 2−n(∣∣gt (ω)

∣∣ + ρα(T − t)
)
.

PROPOSITION 3.4. (1) For any n ∈ N ∪ {∞}, all paths of process V n are
both left-upper-semicontinuous and right-lower-semicontinuous. In particular, the
process V has all continuous paths.

(2) For any (t,ω) ∈ [0, T ] × � and P ∈ P(t,ω), V
t,ω ∈ S(Ft ,P).
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4. Main result. In this section, we state our first main result on robust Dynkin
games. Let (A), (P1)–(P3) and Assumptions 2.1, 3.1, 3.2 hold throughout the sec-
tion.

Given t ∈ [0, T ], set Lt := {random variable ξ on � : ξ t,ω ∈ L1(F t
T ,P), ∀ω ∈

�, ∀P ∈ P(t,ω)}. Clearly, Lt is closed under linear combination: that is, for any
ξ1, ξ2 ∈ Lt and α1, α2 ∈ R, α1ξ1 + α2ξ2 ∈ Lt . Then we define on Lt a nonlinear
expectation:

E t [ξ ](ω) := inf
P∈P(t,ω)

EP

[
ξ t,ω] ∀ω ∈ �,∀ξ ∈ Lt .

For any n ∈ N∪ {∞} and τ ∈ T ,

(4.1) both V n
τ and

∫ τ

0
gr dr belong to Lt .

(We demonstrate this claim in Section 7.3.)
Similar to the classic Dynkin game, we will show that V coincides with V as

the value process V of Player 1 in the robust Dynkin game and that V plus
∫ ·

0 gs ds

is a submartingale with respect to the nonlinear expectation E .

THEOREM 4.1. Let (A), (P1)–(P3) and Assumptions 2.1, 3.1, 3.2 hold:

(1) For any (t,ω) ∈ [0, T ] × �,

(4.2) Vt(ω) := V t(ω) = V t(ω)

in the robust Dynkin game starting from time t given the historical path ω|[0,t].
Moreover,

(4.3)
Vt(ω) = inf

γ∈T t
inf

P∈P(t,ω)
EP

[
Rt,ω(

τ ∗
(t,ω), γ

)]
where τ ∗

(t,ω) := inf
{
s ∈ [t, T ] : V t,ω

s = Lt,ω
s

} ∈ T t .

(2) The F-adapted process with all continuous paths ϒt := Vt + ∫ t
0 gr dr , t ∈

[0, T ] is an E -submartingale up to time τ∗ := τ ∗
(0,0) = inf{t ∈ [0, T ] : Vt = Lt } ∈ T

in sense that for any ζ ∈ T
(4.4) ϒτ∗∧ζ∧t (ω) ≤ E t [ϒτ∗∧ζ ](ω) ∀(t,ω) ∈ [0, T ] × �.

5. Examples: Controlled path-dependent SDEs. In this section, we pro-
vide an example of the probability class {P(t,ω)}(t,ω)∈[0,T ]×� in case of path-
dependent stochastic differential equations with controls.

Let κ > 0 and let b : [0, T ] × � × Rd×d → Rd be a P ⊗ B(Rd×d)/B(Rd)-
measurable function such that∣∣b(t,ω,u) − b

(
t,ω′, u

)∣∣ ≤ κ
∥∥ω − ω′∥∥

0,t and∣∣b(t,0, u)
∣∣ ≤ κ

(
1 + |u|) ∀ω,ω′ ∈ �, (t, u) ∈ [0, T ] ×Rd×d .
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Fix t ∈ [0, T ]. We let Ut collect all S>0
d -valued, Ft -progressively measurable

processes {μs}s∈[t,T ] such that |μs | ≤ κ , ds × dPt
0-a.s. Let ω ∈ �, bt,ω(r, ω̃, u) :=

b(r,ω⊗t ω̃, u), (r, ω̃, u) ∈ [t, T ]×�t ×Rd×d is clearly a P t ⊗B(Rd×d)/B(Rd)-
measurable function that satisfies∣∣bt,ω(r, ω̃, u) − bt,ω(

r, ω̃′, u
)∣∣ ≤ κ

∥∥ω̃ − ω̃′∥∥
t,r and∣∣bt,ω(

r,0t , u
)∣∣ ≤ κ

(
1 + ‖ω‖0,t + |u|)

∀ω̃, ω̃′ ∈ �t, (r, u) ∈ [t, T ] ×Rd×d .

Given μ ∈ Ut , a slight extension of Theorem V.12.1 of [52] shows that the
following SDE on the probability space (�t ,F t

T ,Pt
0):

(5.1) Xs =
∫ s

t
bt,ω(r,X,μr) dr +

∫ s

t
μr dBt

r , s ∈ [t, T ],

admits a unique solution Xt,ω,μ, which is an F
t
-adapted continuous process satis-

fying Et [(Xt,ω,μ∗ )p] < ∞ for any p ≥ 1 (or see the complete ArXiv version of [5]
for its proof).

Note that the SDE (5.1) depends on ω|[0,t] via the generator bt,ω. Without loss of
generality, we assume that all paths of Xt,ω,μ are continuous and starting from 0.
(Otherwise, by setting N := {ω ∈ �t : Xt,ω,μ

t (ω) �= 0 or the path X
t,ω,μ· (ω) is not

continuous} ∈ N
t
, one can take X̃

t,ω,μ
s := 1N cX

t,ω,μ
s , s ∈ [t, T ]. It is an F

t
-

adapted process that satisfies (5.1) and whose paths are all continuous and starting
from 0.)

Applying the Burkholder–Davis–Gundy inequality, Gronwall’s inequality and
using the Lipschitz continuity of b in ω-variable, one can easily derive the follow-
ing estimates for Xt,ω,μ: for any p ≥ 1,

Et

[
sup

r∈[t,s]
∣∣Xt,ω,μ

r − Xt,ω′,μ
r

∣∣p]
(5.2)

≤ Cp

∥∥ω − ω′∥∥p
0,t (s − t)p ∀ω′ ∈ �,∀s ∈ [t, T ], and

Et

[
sup

r∈[ζ,(ζ+δ)∧T ]
∣∣Xt,ω,μ

r − X
t,ω,μ
ζ

∣∣p]
(5.3)

≤ ϕp

(‖ω‖0,t

)
δp/2 for any F

t
-stopping time ζ and δ > 0,

where Cp is a constant depending on p,κ,T and ϕp : R+ → R+ is a continuous
function depending on p,κ,T (see the complete ArXiv version of [5] for the proofs
of (5.2) and (5.3)).

For any s ∈ [t, T ], we see from [5] that F t
s ⊂ GXt,ω,μ

s := {A ⊂ �t :
(Xt,ω,μ)−1(A) ∈ F t

s}, that is,

(5.4)
(
Xt,ω,μ)−1

(A) ∈ F t

s ∀A ∈ F t
s .
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Namely, Xt,ω,μ is F t

s/F t
s -measurable as a mapping from �t to �t . Define the law

of Xt,ω,μ under Pt
0 by

pt,ω,μ(A) := Pt
0 ◦ (

Xt,ω,μ)−1
(A) ∀A ∈ GXt,ω,μ

T ,

and denote by Pt,ω,μ the restriction of pt,ω,μ on (�t ,F t
T ).

Now, let us set P(t,ω) := {Pt,ω,μ : μ ∈ Ut } ⊂Pt .

PROPOSITION 5.1. Let �0 be a modulus of continuity function such that for
some � ≥ 1, �0(δ) ≤ κ(1 + δ� ), ∀δ > 0. Assume that g, L, U satisfy (A) with
respect to �0 and that

∫ T
0 |gt (0)|dt < ∞. Then for any (t,ω) ∈ [0, T ] × �, we

have P(t,ω) ⊂ P̂t . And the probability class {P(t,ω)}(t,ω)∈[0,T ]×� satisfies (P1)–
(P3), Assumptions 3.1–3.2.

REMARK 5.1. (1) When b ≡ 0, Proposition 5.1 and the result (4.2) verify As-
sumption 5.7 of [44] (particularly for t = 0). Then we know from Theorem 5.8
therein that in case of controlled path-dependent SDEs with null drift, Player 1’s
value V is closely related to the solution of a second-order doubly reflected back-
ward stochastic differential equation.

(2) Similar to [5], the reason we consider the law of Xt,ω,μ under Pt
0 over GXt,ω,μ

T

(the largest σ -field to induce Pt
0 under the mapping Xt,ω,μ) rather than F t

T lies in
the fact that the proof of Proposition 5.1 relies heavily on the inverse mapping
Wt,ω,μ of Xt,ω,μ. According to the proofs of Proposition 6.2 and 6.3 in [5], since
Wt,ω,μ is an Ft -progressively measurable processes that has only pt,ω,μ-a.s. con-
tinuous paths, it holds for pt,ω,μ-a.s. ω̃ ∈ �t that the shifted probability (Pt,ω,μ)s,ω̃

is the law of the solution to the shifted SDE [and thus (Pt,ω,μ)s,ω̃ ∈ P(s,ω ⊗t ω̃)].
This explains why our assumption (P2) needs an extension (�t ,F ′,P′) of the prob-
ability space (�t ,F t

T ,P).

6. The optimal triplet. In this section, we identify an optimal triplet for
Player 1’s value in the robust Dynkin game under the following additional con-
ditions on the payoff processes and the probability class:

(A′) Let g ≡ 0 and let L, U be two real-valued processes bounded by some
M0 > 0 such that they are uniformly continuous on [0, T ] × � with respect to the
same ρ0 ∈ M, that Lt(ω) ≤ Ut(ω), ∀(t,ω) ∈ [0, T )×�, and that LT (ω) = UT (ω),
∀ω ∈ �.

Also, let a family {Pt }t∈[0,T ] of subsets Pt of P̂t = Pt , t ∈ [0, T ] satisfy:

(H1) P := P0 is a weakly compact subset of P0.
(H2) For any ρ ∈ M, there exists another ρ of M such that

sup
(P,ζ )∈Pt×T t

EP

[
ρ

(
δ + sup

r∈[ζ,(ζ+δ)∧T ]
∣∣Bt

r − Bt
ζ

∣∣)]
≤ ρ(δ)

∀t ∈ [0, T ),∀δ ∈ (0,∞).
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In particular, we require ρ0 to satisfy (1.8) with some C > 0 and 1 < p1 ≤ p2.
(H3) For any 0 ≤ t < s ≤ T , ω ∈ � and P ∈ Pt , there exists an extension

(�t ,F ′,P′) of (�t ,F t
T ,P) (i.e., F t

T ⊂ F ′ and P′|F t
T

= P) and �′ ∈ F ′ with

P′(�′) = 1 such that Ps,ω̃ belongs to Ps for any ω̃ ∈ �′.
(H4) Moreover, let the finite stability under pasting stated in Remark 2.2(3)

hold.

The next example shows that controls of weak formulation (i.e., P contains all
semimartingale measures under which B has uniformly bounded drift and diffu-
sion coefficients) satisfies (H1)–(H4).

EXAMPLE 6.1. Given � > 0, let {P�
t }t∈[0,T ] be the family of semimartingale

measures considered in [19] such that P�
t collects all continuous semimartingale

measures on (�t ,F t
T ) whose drift and diffusion characteristics are bounded by

� and
√

2�, respectively. According to Lemma 2.3 therein, {P�
t }t∈[0,T ] satisfies

(H1), (H3) and (H4). Also, one can deduce from the Burkholder–Davis–Gundy
inequality that {P�

t }t∈[0,T ] satisfies (H2); see the proof of [7], Example 3.3, for
details.

Remark 2.2(3) and a revisit of the proof of Remark 3.1 show that the path-
independent probability class {Pt }t∈[0,T ] satisfies (P1)–(P3) and Assumption 3.1
with ρ1 = ρ0, while Assumption 3.2 is clearly implied by (H2) with ρα ≡ ρ0,
∀α > 0. So Theorem 4.1 still holds for the robust Dynkin game over {Pt }t∈[0,T ].
In addition, (H1) enables us to apply the result of [7] to solve (1.3).

THEOREM 6.1. Under Assumptions (A′) and (H1)–(H4), there exists a pair
(P∗, γ∗) ∈ P × T such that V0 = EP∗[R(τ∗, γ∗)].

REMARK 6.1. Theorem 4.1(1) and Theorem 6.1 imply that

V0 = EP∗
[
R(τ∗, γ∗)

] ≥ inf
P∈PEP

[
R(τ∗, γ∗)

] ≥ inf
γ∈T inf

P∈PEP

[
R(τ∗, γ )

] = V0,

which shows that V0 = infP∈P EP[R(τ∗, γ∗)] = E 0[R(τ∗, γ∗)]. Hence, we see that
the pair (τ∗, γ∗) is robust with respect to P ∈ P , or (τ∗, γ∗) is a saddle point of the
Dynkin game under the nonlinear expectation E 0.

7. Proofs.

7.1. Proofs of technical results in Sections 1.1, 2 and 3.

PROOF OF PROPOSITION 1.1(2). Let n ∈ N and τ ∈ T t (n). Assume that
τ(ω ⊗s �s) ⊂ [r, T ] for some r ∈ [s, T ]. For any i = 0, . . . ,2n such that tni =
t ∨ (i2−nT ) ≥ r , since r ≥ s ≥ t , one has r̃ := t ∨ (i2−nT ) = (t ∨ (i2−nT )) ∨ s =
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s ∨ (i2−nT ). Setting A := {ω′ ∈ �t : τ(ω′) ≤ r̃} ∈ F t
r̃ , we can deduce from

Lemma 2.2 of [5] that{
ω̃ ∈ �s : τ s,ω(ω̃) ≤ r̃

} = {
ω̃ ∈ �s : τ(ω ⊗s ω̃) ≤ r̃

}
= {

ω̃ ∈ �s : ω ⊗s ω̃ ∈ A
} = As,ω ∈ F s

r̃ .

So τ s,ω is an Fs -stopping time valued in {t ∨ (i2−nT ) ∈ [r, T ] : i = 0, . . . ,2n} ⊂
{s ∨ (i2−nT ) ∈ [r, T ] : i = 0, . . . ,2n}, that is, τ s,ω ∈ T s

r (n).
For the case of n = ∞, see Corollary 2.1 of [5]. �

PROOF OF (2.4). Let t ∈ [0, T ] and ω1,ω2 ∈ �. We see from (1.7) that

−Lt(ω1) ≤ −Lt(ω2) + ∣∣Lt(ω1) − Lt(ω2)
∣∣ ≤ �t(ω2) + ρ0

(‖ω1 − ω2‖0,t

)
and

Ut(ω1) ≤ Ut(ω2) + ∣∣Ut(ω1) − Ut(ω2)
∣∣ ≤ �t(ω2) + ρ0

(‖ω1 − ω2‖0,t

)
.

It follows that �t(ω1) = (−Lt(ω1)) ∨ Ut(ω1) ∨ 0 ≤ �t(ω2) + ρ0(‖ω1 − ω2‖0,t ).
Then exchanging the roles of ω1 and ω2 proves (2.4). �

PROOF OF LEMMA 2.1. Let t ∈ [0, T ] and P ∈ Pt . Suppose that �t,ω ∈
S(Ft ,P) and EP

∫ T
t |gt,ω

s |ds < ∞ for some ω ∈ �. Let ω′ ∈ �. For any (s, ω̃) ∈
[t, T ] × �t , (1.7) implies that

(7.1)

∣∣gt,ω′
s (ω̃) − gt,ω

s (ω̃)
∣∣ = ∣∣gs

(
ω′ ⊗t ω̃

) − gs(ω ⊗t ω̃)
∣∣

≤ ρ0
(∥∥ω′ ⊗t ω̃ − ω ⊗t ω̃

∥∥
0,s

) = ρ0
(∥∥ω′ − ω

∥∥
0,t

)
,

so EP

∫ T
t |gt,ω′

s |ds ≤ EP

∫ T
t |gt,ω

s |ds + (T − t)ρ0(‖ω′ − ω‖0,t ) < ∞.
Proposition 1.1(4) shows that both Lt,ω′

and Ut,ω′
are Ft -adapted processes

with all continuous paths, so is the process �t,ω′
s = (−Lt,ω′

s )∨Ut,ω′
s ∨0, s ∈ [t, T ].

Similar to (7.1), we see from (2.4) that∣∣�t,ω′
s (ω̃) − �t,ω

s (ω̃)
∣∣ ≤ ρ0

(∥∥ω′ − ω
∥∥

0,t

) ∀(s, ω̃) ∈ [t, T ] × �t.

It follows that EP[�t,ω′
∗ ] = EP[sups∈[t,T ] |�t,ω′

s |] ≤ EP[sups∈[t,T ] |�t,ω
s |] +

ρ0(‖ω′ −ω‖0,t ) = EP[�t,ω∗ ]+ ρ0(‖ω′ −ω‖0,t ) < ∞. Therefore, �t,ω′ ∈ S(Ft ,P).
�

PROOF OF REMARK 2.1(1). Let t ∈ [0, T ]. Proposition 1.2 implies that for
P0-a.s. ω ∈ �, �t,ω ∈ S(Ft , (P0)

t,ω) = S(Ft ,Pt
0) and

EPt
0

∫ T

t

∣∣gt,ω
s

∣∣ds = E(P0)
t,ω

[(∫ T

t
|gs |ds

)t,ω]
≤ E(P0)

t,ω

[(∫ T

0
|gs |ds

)t,ω]

= EP0

[∫ T

0
|gs |ds

∣∣∣Ft

]
(ω) < ∞.
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It then follows from Lemma 2.1 that �t,0 ∈ S(Ft ,Pt
0) and EPt

0

∫ T
t |gt,0

s |ds < ∞.

Hence, Pt
0 ∈ P̂t . �

PROOF OF REMARK 2.2. (2) Fix t ∈ [0, T ] and let ω1,ω2 ∈ �, τ, γ ∈ T t . By
(2.3) and (2.1),

(7.2)

∣∣(Rt,ω1(τ, γ )
)
(ω̃) − (

Rt,ω2(τ, γ )
)
(ω̃)

∣∣
= ∣∣R(

t, τ (ω̃), γ (ω̃),ω1 ⊗t ω̃
) − R

(
t, τ (ω̃), γ (ω̃),ω2 ⊗t ω̃

)∣∣
≤ (1 + T )ρ0

(‖ω1 ⊗t ω̃ − ω2 ⊗t ω̃‖0,T

)
= (1 + T )ρ0

(‖ω1 − ω2‖0,t

) ∀ω̃ ∈ �t.

Now, let ω ∈ �, s ∈ [t, T ], n ∈ N∪{∞}, P̃ ∈ P̂s and ℘ ∈ T s . Given ω̃1, ω̃2 ∈ �t

and ς ∈ T s(n), similar to (7.2),

(7.3)

∣∣Rs,ω⊗t ω̃1(ς,℘) − Rs,ω⊗t ω̃2(ς,℘)
∣∣

≤ (1 + T )ρ0
(‖ω ⊗t ω̃1 − ω ⊗t ω̃2‖0,s

) = (1 + T )ρ0
(‖ω̃1 − ω̃2‖t,s

)
.

It follows that EP̃[Rs,ω⊗t ω̃1(ς,℘)] ≤ EP̃[Rs,ω⊗t ω̃2(ς,℘)] + (1 + T )ρ0(‖ω̃1 −
ω̃2‖t,s). Taking supremum over ς ∈ T s(n) yields that supς∈T s (n)EP̃[Rs,ω⊗t ω̃1(ς,

℘)] ≤ supς∈T s (n)EP̃[Rs,ω⊗t ω̃2(ς,℘)]+ (1+T )ρ0(‖ω̃1 − ω̃2‖t,T ). Exchanging the
roles of ω̃1 and ω̃2 shows that the mapping ω̃ → supς∈T s (n)EP̃[Rs,ω⊗t ω̃(ς,℘)] is
continuous under norm ‖‖t,T , and thus F t

T -measurable.
Next, let us show that both sides of (2.8) are finite: Let A ∈ F t

s , τ ∈ T t
s (n) and

j = 1, . . . , λ. By (2.5) and (2.6),∣∣EP̂

[
1A∩Aj

Rt,ω(
τ,℘n

j

)]∣∣ ≤ EP̂

[∣∣Rt,ω(
τ,℘n

j

)∣∣] ≤ EP̂

[∫ τ∧℘n
j

t

∣∣gt,ω
s

∣∣ds + �
t,ω
τ∧℘n

j

]

≤ EP̂

[∫ T

t

∣∣gt,ω
s

∣∣ds + �t,ω∗
]

< ∞.

On the other hand, given ω̃ ∈ A∩Aj and ς ∈ T s(n), taking (ω̃1, ω̃2) = (ω̃, ω̃j )

in (7.3), we can deduce from (2.5) and (2.6) again that∣∣EPj

[
Rs,ω⊗t ω̃(ς,℘)

]∣∣ ≤ EPj

[∣∣Rs,ω⊗t ω̃j (ς,℘)
∣∣] + (1 + T )ρ0

(‖ω̃ − ω̃j‖t,s

)
≤ EPj

[∫ T

s

∣∣gs,ω⊗t ω̃j
r

∣∣dr + �
s,ω⊗t ω̃j∗

]
+ (1 + T )ρ0(δ)

:= αj < ∞.

It then follows that

EP

[
1{ω̃∈A∩Aj }

(
sup

ς∈T s (n)

EPj

[
Rs,ω⊗t ω̃(ς,℘)

] +
∫ s

t
gt,ω

r (ω̃) dr

)]

≤ EP

[
1A∩Aj

∫ T

t

∣∣gt,ω
r

∣∣dr

]
+ αjP(A ∩Aj ) < ∞,
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as well as that

EP

[
1{ω̃∈A∩Aj }

(
sup

ς∈T s (n)

EPj

[
Rs,ω⊗t ω̃(ς,℘)

] +
∫ s

t
gt,ω

r (ω̃) dr

)]

≥ −EP

[
1A∩Aj

∫ T

t

∣∣gt,ω
r

∣∣dr

]
− αjP(A ∩Aj ) > −∞.

Summing both up over j ∈ {1, . . . , λ} shows that the right-hand-side of (2.8) is
finite.

(3) The proof of Remark 3.3(2) in [5] has shown that the probability P̂ defined
in (2.9) satisfies (P3)(i) and (ii): P̂(A ∩ A0) = P(A ∩ A0), ∀A ∈ F t

T , and P̂(A ∩
Aj ) = P(A ∩ Aj ), ∀j = 1, . . . , λ, ∀A ∈ F t

s . To see P̂ satisfying (2.8), let us fix
n ∈ N ∪ {∞} and ℘ ∈ T s . We set ℘n

j := ℘(�t
s), j = 1, . . . , λ, which are of T t

s

by (1.4).
Let A ∈ F t

s and τ ∈ T t
s (n). Given ω̃ ∈ �t , Proposition 1.1(2) shows that τ s,ω̃ ∈

T s(n). Since the F-adaptedness of g and (1.9) imply that

(7.4)
gr

(
ω ⊗t �t ) = gr(ω) ∀r ∈ [0, t] and

gr

(
(ω ⊗t ω̃) ⊗s �s) = gr(ω ⊗t ω̃) ∀r ∈ [0, s],

we see from (2.3) that for any ω̂ ∈ �s

(7.5)

(
Rt,ω(

τ,℘n
j

))s,ω̃
(ω̂)

= (
Rt,ω(

τ,℘n
j

))
(ω̃ ⊗s ω̂)

= R
(
t, τ (ω̃ ⊗s ω̂),℘

(
�t

s(ω̃ ⊗s ω̂)
)
,ω ⊗t (ω̃ ⊗s ω̂)

)
= R

(
s, τ s,ω̃(ω̂),℘ (ω̂), (ω ⊗t ω̃) ⊗s ω̂

) +
∫ s

t
gr

(
(ω ⊗t ω̃) ⊗s ω̂

)
dr

= (
Rs,ω⊗t ω̃

(
τ s,ω̃,℘

))
(ω̂) +

∫ s

t
gr(ω ⊗t ω̃) dr.

By Lemma 1.1, (A ∩ Aj )
s,ω̃ = �s (resp., = ∅) if ω̃ ∈ A ∩ Aj (resp., /∈ A ∩ Aj ).

Then (7.5) leads to that

EP̂

[
1A∩Aj

Rt,ω(
τ,℘n

j

)]
=

λ∑
j ′=1

EP

[
1{ω̃∈Aj ′ }EPj ′

[(
1A∩Aj

Rt,ω(
τ,℘n

j

))s,ω̃]]

=
λ∑

j ′=1

EP

[
1{ω̃∈A∩Aj }1{ω̃∈Aj ′ }EPj ′

[(
Rt,ω(

τ,℘n
j

))s,ω̃]]
= EP

[
1{ω̃∈A∩Aj }

(
EPj

[
Rs,ω⊗t ω̃

(
τ s,ω̃,℘

)] +
∫ s

t
gt,ω

r (ω̃) dr

)]
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≤ EP

[
1{ω̃∈A∩Aj }

(
sup

ς∈T s (n)

EPj

[
Rs,ω⊗t ω̃(ς,℘)

] +
∫ s

t
gt,ω

r (ω̃) dr

)]
.

Taking summation over j ∈ {1, . . . , λ} yields (2.8). �

PROOF OF (3.3). Let (t,ω) ∈ [0, T ] × �. Since the Ft -measurability of Lt ,
Ut and (1.9) show that

(7.6)
L

t,ω
t (ω̃) = Lt(ω ⊗t ω̃) = Lt(ω) and

U
t,ω
t (ω̃) = Ut(ω ⊗t ω̃) = Ut(ω) ∀ω̃ ∈ �t.

it holds for any τ ∈ T t (n) that Rt,ω(τ, t) = 1{τ=t}Lt,ω
τ +1{t<τ }Ut,ω

t = 1{τ=t}Lt,ω
t +

1{t<τ }Ut,ω
t ≤ U

t,ω
t = Ut(ω). So

V n
t (ω) ≤ inf

P∈P(t,ω)
sup

τ∈T t (n)

EP

[
Rt,ω(τ, t)

] ≤ inf
P∈P(t,ω)

EP

[
Ut(ω)

] = Ut(ω) ≤ �t(ω).

On the other hand, since t ∈ T t (n) and since Rt,ω(t, γ ) = 1{t≤γ }Lt,ω
t +

1{γ<t}Ut,ω
γ = L

t,ω
t = Lt(ω) for any γ ∈ T t ,

V n
t (ω) ≥ inf

P∈P(t,ω)
inf

γ∈T t
EP

[
Rt,ω(t, γ )

] = inf
P∈P(t,ω)

EP

[
Lt(ω)

] = Lt(ω)

≥ −�t(ω). �

PROOF OF REMARK 3.1. Fix n ∈ N∪{∞}. Let t ∈ [0, T ], ω1,ω2 ∈ �, P ∈ Pt

and τ, γ ∈ T t . By (7.2), EP[Rt,ω1(τ, γ )] ≤ EP[Rt,ω2(τ, γ )] + (1 + T )ρ0(‖ω1 −
ω2‖0,t ). Taking supremum over τ ∈ T t (n), taking infimum over γ ∈ T t and then
taking infimum over P ∈ Pt yield that V n

t (ω1) ≤ V n
t (ω2) + (1 + T )ρ0(‖ω1 −

ω2‖0,t ). Exchanging the roles of ω1 and ω2, we obtain (3.4) with ρ1 = (1 + T )ρ0
for each n ∈ N∪ {∞}. �

7.2. Proofs of the dynamic programming principles.

PROOF OF PROPOSITION 3.1. Fix n ∈ N∪ {∞}, 0 ≤ t ≤ s ≤ T and ω ∈ �.
(1) When t = s, since V n is F-adapted by Remark 3.2, an analogy to (7.6) shows

that (V n)
t,ω
t (ω̃) = V n(t,ω ⊗t ω̃) = V n

t (ω), ∀ω̃ ∈ �t . Then

inf
P∈P(t,ω)

inf
γ∈T t

sup
τ∈T t (n)

EP

[
1{τ∧γ<t}Rt,ω(τ, γ ) + 1{τ∧γ≥t}

(
V n

t

)t,ω]
= inf

P∈P(t,ω)
EP

[
V n

t (ω)
] = V n

t (ω).

(2) To demonstrate (3.5) for case t < s, we shall paste the local approximating
P-minimizers of (V n

s )t,ω according to (P3) and then make some estimations.



1722 E. BAYRAKTAR AND S. YAO

(2a) Under norm ‖ · ‖t,T , since �t is a separable complete metric space, there
exists a countable dense subset {ω̂t

j }j∈N of �t . Fix ε > 0 and let δ ∈ Q+ sat-
isfy ρ1(δ) ∨ ρ̂0(δ) ∨ ((1 + T )ρ0(δ)) < ε/5. Let j ∈ N. By (1.5), Aj := Os

δ (ω̂
t
j ) \

(
⋃

j ′<j Os
δ (ω̂

t
j ′)) ∈ F t

s . We can find a Pj ∈ P(s,ω ⊗t ω̂t
j ) and a γj ∈ T s such

that

(7.7)

V n
s

(
ω ⊗t ω̂t

j

) ≥ inf
γ∈T s

sup
τ∈T s (n)

EPj

[
R

s,ω⊗t ω̂
t
j (τ, γ )

] − 1

5
ε

≥ sup
τ∈T s (n)

EPj

[
R

s,ω⊗t ω̂
t
j (τ, γj )

] − 2

5
ε.

Given ω̃ ∈ Os
δ (ω̂

t
j ), an analogy to (7.3) shows that for any τ ∈ T s(n)

∣∣Rs,ω⊗t ω̃(τ, γj ) − R
s,ω⊗t ω̂

t
j (τ, γj )

∣∣ ≤ (1 + T )ρ0
(∥∥ω̃ − ω̂t

j

∥∥
t,s

)
≤ (1 + T )ρ0(δ) ≤ 1

5
ε,

so EPj
[Rs,ω⊗t ω̃(τ, γj )] ≤ EPj

[Rs,ω⊗t ω̂
t
j (τ, γj )]+ ε/5. Taking supremum over τ ∈

T s(n), we see from (7.7) and (3.4) that

(7.8)

sup
τ∈T s (n)

EPj

[
Rs,ω⊗t ω̃(τ, γj )

]
≤ sup

τ∈T s (n)

EPj

[
R

s,ω⊗t ω̂
t
j (τ, γj )

] + 1

5
ε ≤ V n

s

(
ω ⊗t ω̂t

j

) + 3

5
ε

≤ V n
s (ω ⊗t ω̃) + ρ1

(∥∥ω ⊗t ω̃ − ω ⊗t ω̂t
j

∥∥
0,s

) + 3

5
ε

= (
V n

s

)t,ω
(ω̃) + ρ1

(∥∥ω̃ − ω̂t
j

∥∥
t,s

) + 3

5
ε

≤ (
V n

s

)t,ω
(ω̃) + ρ1(δ) + 3

5
ε ≤ (

V n
s

)t,ω
(ω̃) + 4

5
ε.

Next, fix P ∈ P(t,ω), λ ∈ N and let P̂λ be the probability of P(t,ω) in (P3) for
{(Aj , δj , ω̃j ,Pj )}λj=1 = {(Aj , δ, ω̂

t
j ,Pj )}λj=1 and A0 := (

⋃λ
j=1 Aj )

c ∈ F t
s . Then

we have

(7.9)
EP̂λ

[ξ ] = EP[ξ ] ∀ξ ∈ L1(
F t

s , P̂λ

) ∩ L1(
F t

s ,P
)

and

EP̂λ
[1A0ξ ] = EP[1A0ξ ] ∀ξ ∈ L1(

F t
T , P̂λ

) ∩ L1(
F t

T ,P
)
.
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Also, in light of (2.8) and (7.8), there exist ℘n
j ∈ T t

s , j = 1, . . . , λ, such that for
any A ∈ F t

s and τ ∈ T t
s (n)

(7.10)

λ∑
j=1

EP̂λ

[
1A∩Aj

Rt,ω(
τ,℘n

j

)]

≤
λ∑

j=1

EP

[
1{ω̃∈A∩Aj }

(
sup

ς∈T s (n)

EPj

[
Rs,ω⊗t ω̃(ς, γj )

]
+

∫ s

t
gt,ω

r (ω̃) dr

)]
+ ρ̂0(δ)

≤ EP

[
1A∩Ac

0

((
V n

s

)t,ω +
∫ s

t
gt,ω

r dr

)]
+ ε.

(2b) Now, let γ ∈ T t and τ ∈ T t (n). Applying (7.10) with A = {τ ∧ γ ≥ s} ∈
F t

s , one can show that

(7.11*)

λ∑
j=1

EP̂λ

[
1{τ∧γ≥s}∩Aj

Rt,ω(
τ,℘n

j

)]
≤ EP

[
1{τ∧γ≥s}∩Ac

0

((
V n

s

)t,ω +
∫ s

t
gt,ω

r dr

)]
+ ε.

We glue γ with {℘n
j }λj=1 to form a new Ft -stopping time

(7.12*) γ̂λ := 1{γ<s}γ + 1{γ≥s}
(

1A0γ +
λ∑

j=1

1Aj
℘n

j

)
.

Since γ̂λ ≥ s > τ on {γ ≥ s} ∩ {τ < s}, (2.2) shows that

1{τ∧γ<s}Rt,ω(τ, γ̂λ) = 1{γ<s}Rt,ω(τ, γ ) + 1{γ≥s}∩{τ<s}
(∫ τ

t
gt,ω

s ds + Lt,ω
τ

)
= 1{τ∧γ<s}Rt,ω(τ, γ ) ∈ F t

s .

Then one can deduce from (7.9), (7.11*), (2.5) and (3.3) that

EP̂λ

[
Rt,ω(τ, γ̂λ)

] = EP̂λ

[
(1{τ∧γ<s} + 1{τ∧γ≥s}∩A0)R

t,ω(τ, γ )
]

+
λ∑

j=1

EP̂λ

[
1{τ∧γ≥s}∩Aj

Rt,ω(
τ,℘n

j

)]
≤ EP

[
1{τ∧γ<s}Rt,ω(τ, γ ) + 1{τ∧γ≥s}

((
V n

s

)t,ω +
∫ s

t
gt,ω

r dr

)
+ 1{τ∧γ≥s}∩A0

(
Rt,ω(τ, γ ) − (

V n
s

)t,ω −
∫ s

t
gt,ω

r dr

)]
+ ε
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≤ EP

[
1{τ∧γ<s}Rt,ω(τ, γ ) + 1{τ∧γ≥s}

((
V n

s

)t,ω +
∫ s

t
gt,ω

r dr

)

+ 1A0

(
2

∫ T

t

∣∣gt,ω
r

∣∣dr + 2�t,ω∗
)]

+ ε.

Taking supremum over τ ∈ T t (n) yields that

V n
t (ω) ≤ sup

τ∈T t (n)

EP

[
1{τ∧γ<s}Rt,ω(τ, γ ) + 1{τ∧γ≥s}

((
V n

s

)t,ω +
∫ s

t
gt,ω

r dr

)]

+ 2EP

[
1A0

(∫ T

t

∣∣gt,ω
r

∣∣dr + �t,ω∗
)]

+ ε.

Then taking infimum over γ ∈ T t on the right-hand side, we obtain

V n
t (ω) ≤ inf

γ∈T t
sup

τ∈T t (n)

EP

[
1{τ∧γ<s}Rt,ω(τ, γ ) + 1{τ∧γ≥s}

((
V n

s

)t,ω +
∫ s

t
gt,ω

r dr

)]

+ 2EP

[
1(

⋃λ
j=1 Aj )c

(∫ T

t

∣∣gt,ω
r

∣∣dr + �t,ω∗
)]

+ ε.

Since
⋃

j∈NAj = ⋃
j∈N Os

δ (ω̂
t
j ) ⊃ ⋃

j∈N OT
δ (ω̂t

j ) = �t and since

(7.13) EP

[∫ T

t

∣∣gt,ω
r

∣∣dr + �t,ω∗
]

< ∞
by (2.6), letting λ → ∞, one can deduce from the dominated convergence theorem
that

V n
t (ω) ≤ inf

γ∈T t
sup

τ∈T t (n)

EP

[
1{τ∧γ<s}Rt,ω(τ, γ )

+ 1{τ∧γ≥s}
((

V n
s

)t,ω +
∫ s

t
gt,ω

r dr

)]
+ ε.

Eventually, taking infimum over P ∈ P(t,ω) on the right-hand side and then letting
ε → 0 yield (3.5). �

PROOF OF PROPOSITION 3.2. Let 0 ≤ t ≤ s ≤ T and ω ∈ �. It suffices to
show for a given P ∈P(t,ω) that

(7.14)

inf
γ∈T t

sup
τ∈T t

EP

[
Rt,ω(τ, γ )

] ≥ inf
γ∈T t

sup
τ∈T t

EP

[
1{τ∧γ<s}Rt,ω(τ, γ )

+ 1{τ∧γ≥s}
(
V

t,ω

s +
∫ s

t
gt,ω

r dr

)]
.

Fix ε > 0. There exists a γ̂ = γ̂ (ε) ∈ T t such that

(7.15) sup
τ∈T t

EP

[
Rt,ω(τ, γ̂ )

] ≤ inf
γ∈T t

sup
τ∈T t

EP

[
Rt,ω(τ, γ )

] + ε/5.
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(1) Set γ̂ ′ := γ̂ ∨ s ∈ T t
s . In the first step, we use a “dense” countable subset of

T s and Proposition 1.2 to show that

(7.16) V
t,ω

s +
∫ s

t
gt,ω

r dr ≤ esssup
τ∈T t

s

EP

[
Rt,ω(

τ, γ̂ ′)|F t
s

] + 3

5
ε, P-a.s.

As in the proof of [5], Proposition 4.1 [see part (2a) and (2c) therein], we can
construct a dense countable subset � of T s in sense that for any δ > 0, ζ ∈ T s and
P̃ ∈ Ps ,

(7.17)

∃{ςn}n∈N ⊂ � such that

lim
n→∞↓ ςn(ω̂) = ζ(ω̂) ∀ω̂ ∈ �s and that

P̃{ςn �= ζn} < δ ∀n ∈ N,

where ζn := ∑�2nT �
i=�2ns� 1{i2−n≤ζ<(i+1)2−n}( i+1

2n ∧ T ) ∈ T s .
Since ζ(�t

s) ∈ T t
s for any ζ ∈ T s by (1.4), it holds except on a P-null set N that

(7.18) EP

[
Rt,ω(

ζ
(
�t

s

)
, γ̂ ′)|F t

s

] ≤ esssup
τ∈T t

s

EP

[
Rt,ω(

τ, γ̂ ′)|F t
s

] ∀ζ ∈ �.

By Proposition 1.1(2), γω̃ := (γ̂ ′)s,ω̃ ∈ T s . In light of (1.10), there exists a P-
null set Ñ such that for any ω̃ ∈ Ñ c,

(7.19)

EP

[
Rt,ω(

ζ
(
�t

s

)
, γ̂ ′)|F t

s

]
(ω̃)

= EPs,ω̃

[(
Rt,ω(

ζ
(
�t

s

)
, γ̂ ′))s,ω̃]

= EPs,ω̃

[
Rs,ω⊗t ω̃(ζ, γω̃)

] +
∫ s

t
gt,ω

r (ω̃) dr ∀ζ ∈ �.

Here, we used an analogy to (7.5) that (Rt,ω(ζ(�t
s), γ̂

′))s,ω̃ = Rs,ω⊗t ω̃(ζ, γω̃) +∫ s
t gt,ω

r (ω̃) dr .
By (P2), there exist an extension (�t ,F ′,P′) of (�t ,F t

T ,P) and �′ ∈ F ′ with
P′(�′) = 1 such that for any ω̃ ∈ �′, Ps,ω̃ ∈ P(s,ω ⊗t ω̃). Let N be the F t

T -
measurable set containing N ∪ Ñ and with P(N ) = 0.

Now, fix ω̃ ∈ �′ ∩N c ∈ F ′. There exists a ζω̃ ∈ T s such that

(7.20) sup
ζ∈T s

EPs,ω̃

[
Rs,ω⊗t ω̃(ζ, γω̃)

] ≤ EPs,ω̃

[
Rs,ω⊗t ω̃(ζω̃, γω̃)

] + ε/5.

As Ps,ω̃ ∈P(s,ω ⊗t ω̃), (2.6) shows that

(7.21) EPs,ω̃

[∫ T

s

∣∣gs,ω⊗t ω̃
r

∣∣dr + �s,ω⊗t ω̃∗
]

< ∞.

So for some δω̃ > 0,

(7.22)
EPs,ω̃

[
1A

(∫ T

s

∣∣gs,ω⊗t ω̃
r

∣∣dr + �s,ω⊗t ω̃∗
)]

< ε/5

for any A ∈ F s
T with Ps,ω̃(A) < δω̃.
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Applying (7.17) with (δ, ζ, P̃) = (δω̃, ζω̃,Ps,ω̃), there exist {ςk
ω̃}k∈N ⊂ � such

that limk→∞ ↓ ςk
ω̃(ω̂) = ζω̃(ω̂), ω̂ ∈ �s and that Ps,ω̃{ςk

ω̃ �= ζ k
ω̃} < δω̃, ∀k ∈ N,

where ζ k
ω̃ := ∑�2kT �

i=�2ks� 1{i2−k≤ζω̃<(i+1)2−k}( i+1
2k ∧ T ) ∈ T s .

Given k ∈ N, (7.22) and (2.5) imply that

EPs,ω̃

[∣∣Rs,ω⊗t ω̃
(
ζ k
ω̃, γω̃

) − Rs,ω⊗t ω̃
(
ςk

ω̃, γω̃

)∣∣]
= EPs,ω̃

[
1{ζ k

ω̃ �=ςk
ω̃}

∣∣Rs,ω⊗t ω̃
(
ζ k
ω̃, γω̃

) − Rs,ω⊗t ω̃
(
ςk

ω̃, γω̃

)∣∣]
≤ 2EPs,ω̃

[
1{ζ k

ω̃ �=ςk
ω̃}

(∫ T

s

∣∣gs,ω⊗t ω̃
r

∣∣dr + �s,ω⊗t ω̃∗
)]

<
2

5
ε,

which together with (7.18) and (7.19) shows that

EPs,ω̃

[
Rs,ω⊗t ω̃

(
ζ k
ω̃, γω̃

)]
< EPs,ω̃

[
Rs,ω⊗t ω̃

(
ςk

ω̃, γω̃

)] + 2

5
ε

≤ esssup
τ∈T t

s

EP

[
Rt,ω(

τ, γ̂ ′)|F t
s

]
(ω̃) −

∫ s

t
gt,ω

r (ω̃) dr + 2

5
ε.

As one can deduce from ζω̃ = limk→∞ ↓ ζ k
ω̃ and the continuity of L that

(7.23*) Rs,ω⊗t ω̃(ζω̃, γω̃) ≤ lim
k→∞Rs,ω⊗t ω̃

(
ζ k
ω̃, γω̃

)
,

(2.5), (7.21), the dominated convergence theorem and (7.20) imply that

V
t,ω

s (ω̃) = V s(ω ⊗t ω̃) ≤ sup
ζ∈T s

EPs,ω̃

[
Rs,ω⊗t ω̃(ζ, γω̃)

]
≤ EPs,ω̃

[
Rs,ω⊗t ω̃(ζω̃, γω̃)

] + ε/5

= lim
k→∞EPs,ω̃

[
Rs,ω⊗t ω̃

(
ζ k
ω̃, γω̃

)] + ε/5

≤ esssup
τ∈T t

s

EP

[
Rt,ω(

τ, γ̂ ′)|F t
s

]
(ω̃)

−
∫ s

t
gt,ω

r (ω̃) dr + 3

5
ε ∀ω̃ ∈ �′ ∩N c

,

This shows �′∩N c ⊂ A := {V t,ω

s +∫ s
t gt,ω

r dr ≤ esssupτ∈T t
s
EP[Rt,ω(τ, γ̂ ′)|F t

s ]+
3
5ε}. As Remark 3.2 and Proposition 1.1(1) imply that V

t,ω

s + ∫ s
t gt,ω

r dr = (V s +∫ s
t gr dr)t,ω ∈ F t

s , we see that A ∈ F t
s and thus P(A) = P′(A) ≥ P′(�′ ∩N c

) = 1.
Therefore, (7.16) holds.

Moreover, one can find a sequence {τn}n∈N in T t
s such that

(7.24*) esssup
τ∈T t

s

EP

[
Rt,ω(

τ, γ̂ ′)|F t
s

] = lim
n→∞↑ EP

[
Rt,ω(

τn, γ̂
′)|F t

s

]
, P-a.s.
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(2) Next, let τ ∈ T t and n ∈ N. Since

(7.25*) τn := 1{τ∧γ̂ <s}τ + 1{τ∧γ̂≥s}τn

defines an Ft -stopping time, (7.16) and (3.3) show that

(7.26)

EP

[
1{τ∧γ̂ <s}Rt,ω(τ, γ̂ ) + 1{τ∧γ̂≥s}

(
V

t,ω

s +
∫ s

t
gt,ω

r dr

)]
≤ EP

[
1{τ∧γ̂ <s}Rt,ω(τn, γ̂ )

+ 1An∩{τ∧γ̂≥s}
(
EP

[
Rt,ω(

τn, γ̂
′)|F t

s

] + 4

5
ε

)]
+ αn,

where An := {esssupτ∈T t
s
EP[Rt,ω(τ, γ̂ ′)|F t

s ] < EP[Rt,ω(τn, γ̂
′)|F t

s ] + ε/5} ∈ F t
s

and αn := EP[1Ac
n
(
∫ T
t |gt,ω

r |dr + �t,ω∗ )].
Also, we can deduce from (2.5) that

EP

[
1An∩{τ∧γ̂≥s}EP

[
Rt,ω(

τn, γ̂
′)|F t

s

]]
= EP

[
EP

[
1An∩{τ∧γ̂≥s}Rt,ω(

τn, γ̂
′)|F t

s

]] = EP

[
1An∩{τ∧γ̂≥s}Rt,ω(τn, γ̂ )

]
= EP

[
1{τ∧γ̂≥s}Rt,ω(τn, γ̂ ) − 1Ac

n∩{τ∧γ̂≥s}Rt,ω(τn, γ̂ )
]

≤ EP

[
1{τ∧γ̂≥s}Rt,ω(τn, γ̂ )

] + αn

which, together with (7.26) and (7.15), leads to

EP

[
1{τ∧γ̂ <s}Rt,ω(τ, γ̂ ) + 1{τ∧γ̂≥s}

(
V

t,ω

s +
∫ s

t
gt,ω

r dr

)]
≤ EP

[
Rt,ω(τn, γ̂ )

] + 2αn + 4

5
ε ≤ sup

τ∈T t

EP

[
Rt,ω(τ, γ̂ )

] + 2αn + 4

5
ε

≤ inf
γ∈T t

sup
τ∈T t

EP

[
Rt,ω(τ, γ )

] + 2αn + ε.

Since limn→∞ ↑ P(An) = 1 by (7.24*), we see from (7.13) and the dominated
convergence theorem that limn→∞ ↓ αn = 0, and thus

(7.27)
EP

[
1{τ∧γ̂ <s}Rt,ω(τ, γ̂ ) + 1{τ∧γ̂≥s}

(
V

t,ω

s +
∫ s

t
gt,ω

r dr

)]
≤ inf

γ∈T t
sup
τ∈T t

EP

[
Rt,ω(τ, γ )

] + ε ∀τ ∈ T t .

Taking supremum over τ ∈ T t on the left-hand side and then letting ε → 0 lead to
(7.14). �

PROOF OF PROPOSITION 3.3. Let n ∈N, t ∈ [0, T ], α > 0 and ω ∈ Ot
α(0).
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We fix P ∈ P(t,ω) and γ, τ ∈ T t . Set {tni }2n

i=0 as in (1.6) and define τn :=
1{τ=t}t + ∑2n

i=1 1{tni−1<τ≤tni }tni ∈ T t (n). One can deduce that

(7.28)

Rt,ω(τ, γ ) − Rt,ω(τn, γ )

= −
∫ τn∧γ

τ∧γ
gt,ω

r dr + 1{τ≤γ }
(
Lt,ω

τ − 1{τn≤γ }Lt,ω
τn

− 1{γ<τn}Ut,ω
γ

)
+ 1{γ<τ }

(
Ut,ω

γ − Ut,ω
γ

)
= −

∫ τn∧γ

τ∧γ
gt,ω

r dr +
2n∑
i=1

(
1{tni−1<τ≤tni ≤γ }

(
Lt,ω

τ − L
t,ω
tni

)
+ 1{tni−1<τ≤γ<tni }

(
Lt,ω

τ − Ut,ω
γ

))
.

Given i = 1, . . . ,2n, (1.7) shows that for any ω̃ ∈ {tni−1 < τ ≤ tni ≤ γ }

(7.29)

∣∣Lt,ω
τ (ω̃) − L

t,ω
tni

(ω̃)
∣∣

= ∣∣L(
τ(ω̃),ω ⊗t ω̃

) − L
(
tni ,ω ⊗t ω̃

)∣∣
≤ ρ0

((
tni − τ(ω̃)

)
+ sup

r∈[0,T ]
∣∣(ω ⊗t ω̃)

(
r ∧ τ(ω̃)

) − (ω ⊗t ω̃)
(
r ∧ tni

)∣∣)
≤ ρ0

(
2−n + sup

r∈[τ(ω̃),tni ]
∣∣ω̃(r) − ω̃

(
τ(ω̃)

)∣∣)
≤ ρ0

(
2−n + sup

τ(ω̃)≤r≤(τ (ω̃)+2−n)∧T

∣∣Bt
r(ω̃) − Bt

τ (ω̃)
∣∣).

Similarly, it holds for any ω̃ ∈ {tni−1 < τ ≤ γ < tni } that

(7.30)

∣∣Ut,ω
τ − Ut,ω

γ

∣∣(ω̃)

≤ ρ0

((
γ (ω̃) − τ(ω̃)

) + sup
r∈[τ(ω̃),γ (ω̃)]

∣∣ω̃(r) − ω̃
(
τ(ω̃)

)∣∣)
≤ ρ0

(
2−n + sup τ(ω̃) ≤ r ≤ (

τ(ω̃) + 2−n) ∧ T
∣∣Bt

r(ω̃) − Bt
τ (ω̃)

∣∣).
Moreover, another analogy to (7.29) shows that for any (s, ω̃) ∈ [t, T ] × �t

(7.31)

∣∣gt,ω
s (ω̃) − gt (ω)

∣∣ ≤ ∣∣g(s,ω ⊗t ω̃) − g(t,ω)
∣∣ ≤ ρ0

(
s − t + sup

r∈[t,s]
∣∣ω̃(r)

∣∣)
≤ ρ0

(
T − t + sup

r∈[t,T ]
∣∣Bt

r(ω̃) − Bt
t (ω̃)

∣∣),
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where we used the fact that Bt
t = 0 in the last inequality. Plugging (7.29)–(7.31)

back into (7.28) leads to that

Rt,ω(τ, γ ) − Rt,ω(τn, γ ) ≤ 2−n
[∣∣gt (ω)

∣∣ + ρ0

(
T − t + sup

r∈[t,T ]
∣∣Bt

r(ω̃) − Bt
t (ω̃)

∣∣)]
+ ρ0

(
2−n + sup

r∈[τ,(τ+2−n)∧T ]
∣∣Bt

r − Bt
τ

∣∣).
Taking expectation EP[ ], we see from (3.6) that

EP

[
Rt,ω(τ, γ )

] ≤ EP

[
Rt,ω(τn, γ )

] + In
α ≤ sup

τ ′∈T t (n)

EP

[
Rt,ω(

τ ′, γ
)] + In

α ,

where In
α := ρα(2−n) + 2−n(|gt (ω)| + ρα(T − t)). Taking supremum over τ ∈ T t

on the left-hand side yields that

sup
τ∈T t

EP

[
Rt,ω(τ, γ )

] ≤ sup
τ∈T t (n)

EP

[
Rt,ω(τ, γ )

] + In
α .

Eventually, taking infimum over γ ∈ T t and P ∈ P(t,ω) leads to (3.7). �

PROOF OF PROPOSITION 3.4. Fix n ∈ N ∪ {∞}, ω ∈ � and set α := 1 +
‖ω‖0,T . Let 0 ≤ t < s ≤ T such that δt,s := (s − t)∨ supt≤r<r ′≤s |ω(r ′)−ω(r)| ≤
T .

(1a) We first utilize Proposition 3.1 and (3.6) to show that

(7.32) V n
t (ω) − V n

s (ω) ≤ (s − t) sup
r∈[0,T ]

∣∣gr(ω)
∣∣ + (2 + s − t)ρα(δt,s).

Let P ∈ P(t,ω). Applying (3.5) and taking γ = s show that

(7.33)

V n
t (ω) − V n

s (ω)

≤ sup
τ∈T t (n)

EP

[
1{τ<s}Rt,ω(τ, s) + 1{τ≥s}

((
V n

s

)t,ω +
∫ s

t
gt,ω

r dr

)]
− V n

s (ω)

= sup
τ∈T t (n)

EP

[
1{τ<s}Lt,ω

τ + 1{τ≥s}
(
V n

s

)t,ω − V n
s (ω) +

∫ τ∧s

t
gt,ω

r dr

]
.

Then let τ ∈ T t (n). For any ω̃ ∈ {τ < s}, (1.7) implies that

(7.34)

∣∣Lt,ω
τ (ω̃) − Lt,ω

s (ω̃)
∣∣

= ∣∣L(
τ(ω̃),ω ⊗t ω̃

) − L(s,ω ⊗t ω̃)
∣∣

≤ ρ0

(
(s − t) + sup

r∈[t,T ]
∣∣ω̃(

r ∧ τ(ω̃)
) − ω̃(r ∧ s)

∣∣)
≤ ρ0

(
(s − t) + sup

r∈[τ(ω̃),s]
∣∣ω̃(r) − ω̃

(
τ(ω̃)

)∣∣)
≤ ρ0

(
(s − t) + sup

r∈[τ(ω̃),(τ (ω̃)+s−t)∧T ]
∣∣Bt

r(ω̃) − Bt
τ (ω̃)

∣∣).
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Similarly, using (1.7) again and applying (1.9) with η = gt ∈ Ft yields that for any
ω̃ ∈ �t

(7.35)

∣∣∣∣∫ τ(ω̃)∧s

t
gt,ω

r (ω̃) dr

∣∣∣∣
≤

∫ s

t

∣∣gt,ω
r (ω̃)

∣∣dr ≤
∫ s

t

(∣∣gt,ω
t (ω̃)

∣∣ + ∣∣gt,ω
r (ω̃) − g

t,ω
t (ω̃)

∣∣)dr

≤
∫ s

t

(∣∣gt (ω)
∣∣ + ρ0

(
(s − t) + sup

r∈[t,s]
∣∣Bt

r(ω̃) − Bt
t (ω̃)

∣∣))
dr.

Also, (3.4) shows that for any ω̃ ∈ �t

(7.36)

∣∣V n
s (ω) − (

V n
s

)t,ω
(ω̃)

∣∣
= ∣∣V n

s (ω) − V n(s,ω ⊗t ω̃)
∣∣ ≤ ρ1

(‖ω − ω ⊗t ω̃‖0,s

)
= ρ1

(
sup

r∈[t,s]
∣∣ω(r) − ω(t) − ω̃(r)

∣∣)
≤ ρ1

(
sup

r∈[t,s]
∣∣ω(r) − ω(t)

∣∣ + sup
r∈[t,s]

∣∣ω̃(r)
∣∣)

≤ ρ1

(
δt,s + sup

r∈[t,(t+δt,s )∧T ]
∣∣Bt

r(ω̃) − Bt
t (ω̃)

∣∣).
Since ‖ω‖0,t ≤ ‖ω‖0,T < α, we can deduce from (7.34), (7.35), (3.3), (3.6) and

(7.36) that

EP

[
1{τ<s}Lt,ω

τ + 1{τ≥s}
(
V n

s

)t,ω − V n
s (ω) +

∫ τ∧s

t
gt,ω

r dr

]
− (s − t)

∣∣gt (ω)
∣∣

≤ EP

[
1{τ<s}Lt,ω

s + 1{τ≥s}
(
V n

s

)t,ω − V n
s (ω)

+ ρ1

(
(s − t) + sup

r∈[τ,(τ+s−t)∧T ]
∣∣Bt

r − Bt
τ

∣∣)
+ (s − t)ρ1

(
(s − t) + sup

r∈[t,s]
∣∣Bt

r − Bt
t

∣∣)]
≤ EP

[(
V n

s

)t,ω − V n
s (ω)

] + (1 + s − t)ρα(s − t) ≤ (2 + s − t)ρα(δt,s).

Taking supremum over τ ∈ T t (n) on the left-hand side, we obtain (7.32) from
(7.33).

(1b) Next, we show that for V the inequality (7.32) can be strengthened as

(7.37)
∣∣V s(ω) − V t(ω)

∣∣ ≤ (s − t) sup
r∈[0,T ]

∣∣gr(ω)
∣∣ + (2 + s − t)ρα(δt,s).

Fix ε > 0. We can find a P = P(ε) ∈ P(t,ω) such that V t(ω) + ε/2 ≥
infγ∈T t supτ∈T t EP[Rt,ω(τ, γ )]. By (7.27), there exists some γ̂ = γ̂ (ε) ∈ T t such
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that

EP

[
1{τ∧γ̂ <s}Rt,ω(τ, γ̂ ) + 1{τ∧γ̂≥s}

(
V

t,ω

s +
∫ s

t
gt,ω

r dr

)]
≤ inf

γ∈T t
sup
τ∈T t

EP

[
Rt,ω(τ, γ )

] + ε/2 ∀τ ∈ T t .

In particular, taking τ = s on the left-hand side gives that

(7.38)

V t(ω) + ε ≥ EP

[
1{γ̂ <s}Rt,ω(s, γ̂ ) + 1{γ̂≥s}

(
V

t,ω

s +
∫ s

t
gt,ω

r dr

)]

= EP

[∫ γ̂∧s

t
gt,ω

r dr + 1{γ̂ <s}Ut,ω
γ̂ + 1{γ̂≥s}V

t,ω

s

]
.

An analogy to (7.34) and (7.35) shows that∣∣Ut,ω
γ̂ (ω̃) − Ut,ω

s (ω̃)
∣∣

≤ ρ0

(
(s − t) + sup

r∈[γ̂ (ω̃),(γ̂ (ω̃)+s−t)∧T ]
∣∣Bt

r(ω̃) − Bt
γ̂ (ω̃)

∣∣) ∀ω̃ ∈ {γ̂ < s}

and∣∣∣∣∫ γ̂ (ω̃)∧s

t
gt,ω

r (ω̃) dr

∣∣∣∣
≤ (s − t)

(∣∣gt (ω)
∣∣ + ρ0

(
(s − t) + sup

r∈[t,s]
∣∣Bt

r(ω̃) − Bt
t (ω̃)

∣∣))
∀ω̃ ∈ �t.

As ‖ω‖0,t ≤ ‖ω‖0,T < α, plugging them back to (7.38) and applying (7.36) with
n = ∞, we can deduce from (3.6) and (3.3) that

V t(ω) − V s(ω) + ε + (s − t)
∣∣gt (ω)

∣∣
≥ EP

[
1{γ̂ <s}Ut,ω

s + 1{γ̂≥s}V
t,ω

s − V s(ω)
] − (1 + s − t)ρα(s − t)

≥ EP

[
V

t,ω

s − V s(ω)
] − (1 + s − t)ρα(s − t) ≥ −(2 + s − t)ρα(δt,s).

Letting ε → 0 and taking (7.32) with n = ∞ yield (7.37).
Since limt↗s ↓ δt,s = lims↘t ↓ δt,s = 0, we can deduce from (7.32) and

(7.37) that each path of V n is both left-upper-semicontinuous and right-lower-
semicontinuous, in particular, each path of V is continuous.

(2) Given (t,ω) ∈ [0, T ] × �, Remark 3.2, Proposition 1.1(4) and Part 1 show
that V

t,ω
is an Ft -adapted process with all continuous paths. For any P ∈ P(t,ω),

(3.3) and (2.6) imply that EP[V t,ω

∗ ] ≤ EP[�t,ω∗ ] < ∞. So V
t,ω ∈ S(Ft ,P). �

7.3. Proofs of the results in Section 4.

PROOF OF (4.1). Fix n ∈ N ∪ {∞} and τ ∈ T . We let (t,ω) ∈ [0, T ] × � and
P ∈P(t,ω). Since V n

τ ∈ FT and
∫ τ

0 gr dr ∈FT by Remark 3.2, Proposition 1.1(1)
shows that both (V n

τ )t,ω and (
∫ τ

0 gr dr)t,ω belong to F t
T .
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(1) If t̂ := τ(ω) ≤ t , Proposition 1.1(3) shows that τ(ω ⊗t �t ) ≡ t̂ . Applying
(1.9) to η = V n

t̂
∈ Ft̂ ⊂ Ft and to η = ∫ t̂

0 gr dr ∈ Ft̂ ⊂ Ft yields that for any ω̃ ∈ �t

(7.39)
(
V n

τ

)t,ω
(ω̃) = V n(

τ(ω ⊗t ω̃),ω ⊗t ω̃
) = V n(̂t,ω ⊗t ω̃) = V n(̂t,ω),

and (
∫ τ

0 gr dr)t,ω(ω̃) = ∫ τ(ω⊗t ω̃)
0 gr(ω ⊗t ω̃) dr = ∫ t̂

0 gr(ω ⊗t ω̃) dr = ∫ t̂
0 gr(ω)dr .

Both only depend on ω.
(2) Next, suppose that τ > t . Proposition 1.1(3) also shows that τ(ω ⊗t ω̃) > t ,

∀ω̃ ∈ �t and that ζ := τ t,ω is a T t -stopping time. It follows that (V n
τ )t,ω(ω̃) =

V n(τ(ω ⊗t ω̃),ω ⊗t ω̃) = V n(τ t,ω(ω̃),ω ⊗t ω̃) = (V n)t,ω(ζ(ω̃), ω̃), ∀ω̃ ∈ �t .
By the first equality of (7.4), we also have (

∫ τ
0 gr dr)t,ω(ω̃) = ∫ τ(ω⊗t ω̃)

0 gr(ω ⊗t

ω̃) dr = ∫ t
0 gr(ω)dr + ∫ ζ(ω̃)

t gt,ω
r (ω̃) dr . Then (3.3) and (2.6) imply that

EP

[∣∣(V n
τ

)t,ω∣∣ + ∣∣∣∣(∫ τ

0
gr dr

)t,ω∣∣∣∣]

≤ EP

[∣∣(V n)t,ω
ζ

∣∣ + ∫ ζ

t

∣∣gt,ω
r

∣∣dr

]
+

∫ t

0

∣∣gr(ω)
∣∣dr

≤ EP

[
�t,ω∗ +

∫ T

t

∣∣gt,ω
r

∣∣dr

]
+

∫ t

0

∣∣gr(ω)
∣∣dr < ∞. �

PROOF OF THEOREM 4.1. Define ϒt := V t + ∫ t
0 gr dr , t ∈ [0, T ] as in

Lemma A.1.
Given (t,ω) ∈ [0, T ] × � and n ∈ N, since Remark 3.2, Proposition 1.1(4) and

Proposition 3.4 show that (V n)t,ω −Lt,ω is an Ft -adapted process with left-upper-
semicontinuous paths and that V

t,ω − Lt,ω is an Ft -adapted process with all con-
tinuous paths, we can deduce from (3.2) that

τ
n,δ
(t,ω) := inf

{
s ∈ [t, T ] : (

V n)t,ω
s < Lt,ω

s + δ
} ∀δ > 0

are all Ft -optional times and that

τ ∗
(t,ω) := inf

{
s ∈ [t, T ] : V t,ω

s = Lt,ω
s

} = inf
{
s ∈ [t, T ] : V t,ω

s ≤ Lt,ω
s

}
is an Ft -stopping time.

(1) Let (t,ω) ∈ [0, T ]×� and γ ∈ T t . Since γ (�0
t ) ∈ Tt by (1.4), Taking t ′ = t

and ζ = γ (�0
t ) in (A.1) of Lemma A.1 shows that

(7.40) V t(ω) +
∫ t

0
gr(ω)dr = ϒt(ω) ≤ inf

P∈P(t,ω)
EP

[
(ϒ(τ∗

(t,ω)(�
0
t )∧γ (�0

t ))∨t )
t,ω]

.

For any ω̃ ∈ �t , (3.3) and the first equality in (7.4) imply that

(ϒ(τ∗
(t,ω)(�

0
t )∧γ (�0

t ))∨t )
t,ω(ω̃)

= ϒ
((

τ ∗
(t,ω)

(
�0

t (ω ⊗t ω̃)
) ∧ γ

(
�0

t (ω ⊗t ω̃)
)) ∨ t,ω ⊗t ω̃

)
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= ϒ
(
τ ∗
(t,ω)(ω̃) ∧ γ (ω̃),ω ⊗t ω̃

)
= V

t,ω(
τ ∗
(t,ω)(ω̃) ∧ γ (ω̃), ω̃

) +
∫ τ∗

(t,ω)(ω̃)∧γ (ω̃)

0
gr(ω ⊗t ω̃) dr

≤ 1{τ∗
(t,ω)(ω̃)≤γ (ω̃)}Lt,ω(

τ ∗
(t,ω)(ω̃), ω̃

) + 1{γ (ω̃)<τ∗
(t,ω)(ω̃)}Ut,ω(

γ (ω̃), ω̃
)

+
∫ t

0
gr(ω)dr +

∫ τ∗
(t,ω)(ω̃)∧γ (ω̃)

t
gt,ω

r (ω̃) dr

= (
Rt,ω(

τ ∗
(t,ω), γ

))
(ω̃) +

∫ t

0
gr(ω)dr.

Plugging this into (7.40) yields that V t(ω) ≤ infP∈P(t,ω)EP[Rt,ω(τ ∗
(t,ω), γ )]. Tak-

ing infimum over γ ∈ T t leads to that

V t(ω) ≤ inf
γ∈T t

inf
P∈P(t,ω)

EP

[
Rt,ω(

τ ∗
(t,ω), γ

)] ≤ sup
τ∈T t

inf
γ∈T t

inf
P∈P(t,ω)

EP

[
Rt,ω(τ, γ )

]
= V t(ω) ≤ V t(ω) proving (4.3).

(2) Let ζ ∈ T and (t,ω) ∈ [0, T ]×�. If t̂ := τ∗(ω)∧ζ(ω) ≤ t , similar to (7.39),
we can deduce from Proposition 1.1(3), the F-adaptedness of ϒ by Remark 3.2 as
well as (1.9) that (ϒτ∗∧ζ )

t,ω(ω̃) = ϒ(̂t,ω), ∀ω̃ ∈ �t . Then

(7.41)
E t [ϒτ∗∧ζ ](ω) = inf

P∈P(t,ω)
EP

[
(ϒτ∗∧ζ )

t,ω] = inf
P∈P(t,ω)

EP

[
ϒ(̂t,ω)

]
= ϒ(̂t,ω) = ϒ

(
τ∗(ω) ∧ ζ(ω) ∧ t,ω

)
.

On the other hand, if τ∗(ω) ∧ ζ(ω) > t , applying Proposition 1.1(3) once again
shows that ω⊗t �

t ⊂ {τ∗ ∧ζ > t}. So it holds for any ω̃ ∈ �t that (ϒτ∗∧ζ )
t,ω(ω̃) =

ϒτ∗∧ζ (ω ⊗t ω̃) = ϒ(τ∗∧ζ )∨t (ω ⊗t ω̃) = (ϒ(τ∗∧ζ )∨t )
t,ω(ω̃). As τ∗ = τ ∗

(0,0) = τ ∗
(0,ω),

taking t ′ = 0 in (A.1) yields that

ϒτ∗∧ζ∧t (ω) = ϒt(ω) ≤ inf
P∈P(t,ω)

EP

[
(ϒ(τ∗∧ζ )∨t )

t,ω]
= inf

P∈P(t,ω)
EP

[
(ϒτ∗∧ζ )

t,ω] = E t [ϒτ∗∧ζ ](ω),

which together with (7.41) proves (4.4). �

7.4. Proof of Proposition 5.1. For any α, δ ∈ (0,∞), we define �(α, δ) :=
�0(δ + δ1/4) + κ(1 + 2�−1δ� )ϕ1(α)δ1/4 + κ2�−1ϕ�+1(α)δ�/2+1/4.

(1) we first show that the probability class {P(t,ω)}(t,ω)∈[0,T ]×� satisfies (P1)
and (P2).

Let (t,ω) ∈ [0, T ]×� and μ ∈ Ut . We set (P,p,X ) := (Pt,ω,μ,pt,ω,μ,Xt,ω,μ).
Given ω̃ ∈ �t , (2.4) shows that

(7.42)

∣∣�t,0
r

(
X (ω̃)

) − �r(0)
∣∣ = ∣∣�r

(
0 ⊗t X (ω̃)

) − �r(0)
∣∣ ≤ �0

(∥∥0 ⊗t X (ω̃)
∥∥

0,r

)
≤ κ

(
1 + ∥∥X (ω̃)

∥∥�
t,r

) ∀r ∈ [t, T ].
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It follows that �t,0∗ (X (ω̃)) = supr∈[t,T ] |�t,0
r (X (ω̃))| ≤ κ(1 + ‖X (ω̃)‖�

t,T ) + M�
0 ,

where M�
0 := supr∈[t,T ] |�r(0)| < ∞ by the continuity of path �·(0). Since �t,0

is an Ft -adapted process by Proposition 1.1(4), applying (5.3) yields that

EP

[
�t,0∗

] = Ep

[
�t,0∗

] = Et

[
�t,0∗ (X )

] ≤ κ
(
1 +Et

[‖X‖�
t,T

]) + M�
0

≤ κ
(
1 + ϕ�

(‖ω‖0,t

)
T �/2) + M�

0 < ∞.

Namely, �t,0 ∈ S(Ft ,P). Similar to (7.42), one can deduce from (1.7) that
|gt,0

r (X (ω̃)) − gr(0)| ≤ κ(1 + ‖X (ω̃)‖�
t,r ) for any r ∈ [t, T ]. Then Fubini’s the-

orem and (5.3) imply that

(7.43)

EP

∫ T

t

∣∣gt,0
r

∣∣dr = Ep

∫ T

t

∣∣gt,0
r

∣∣dr = Et

∫ T

t

∣∣gt,0
r (X )

∣∣dr

≤ κ

∫ T

t

(
1 +Et

[‖X‖�
t,T

])
dr +

∫ T

t

∣∣gr(0)
∣∣dr

≤ κT
(
1 + ϕ�

(‖ω‖0,t

)
T �/2) +

∫ T

t

∣∣gr(0)
∣∣dr < ∞

hence P ∈ P̂t .

For any t ∈ [0, T ] and ω1,ω2 ∈ � with ω1|[0,t] = ω2|[0,t], since the SDE (5.1)
depends only on ω|[0,t] for a given path ω ∈ �, we see that Xt,ω1,μ = Xt,ω2,μ

and thus Pt,ω1,μ = Pt,ω2,μ for any μ ∈ Ut . It follows that P(t,ω1) = P(t,ω2). So
Assumption (P1) is satisfied. Also, Proposition 6.3 of [5] has already shown that
the probability class {P(t,ω)}(t,ω)∈[0,T ]×� satisfies (P2).

(2) The verification that the probability class {P(t,ω)}(t,ω)∈[0,T ]×� satisfies
(P3) is relatively lengthy. We split it into several steps.

(2a) Let us first quote some knowledge on the inverse mapping of Xt,ω,μ from
[5], which has already verified (P3)(i), (ii) for {P(t,ω)}(t,ω)∈[0,T ]×�.

Given (t,ω) ∈ [0, T ] × � and μ ∈ Ut , according to [5] [see the context around
(7.62) and (7.63) therein], there exists an Ft -progressively measurable process
Wt,ω,μ such that for all ω̃ ∈ �t except on a Pt

0-null set Nt,ω,μ

Bt
s(ω̃) = Wt,ω,μ

s

(
Xt,ω,μ(ω̃)

) ∀s ∈ [t, T ],
and that the pt,ω,μ probability of set At,ω,μ := {ω̃′ ∈ �t : N c

t,ω,μ ∩
(Xt,ω,μ)−1(ω̃′) �= ∅} is 1, that is, Ac

t,ω,μ ∈ N pt,ω,μ := {A ∈ GXt,ω,μ

T :
pt,ω,μ(A) = 0}. For any r ∈ [t, T ], (5.4) and Lemma A.3(2) of [5] show that
F

t,ω,μ
r := σ(F t

r ∪ N pt,ω,μ
) ⊂ GXt,ω,μ

r .
We see from the context around (7.67)–(7.69) of [5] that W̃

t,ω,μ
r (ω̃) :=

1{ω̃∈At,ω,μ}Wt,ω,μ
r (ω̃), (r, ω̃) ∈ [t, T ] × �t is an {Ft,ω,μ

r }r∈[t,T ]-adapted process
such that all its paths belong to �t , that

(7.44)
ω̃ = Bt(ω̃) = Wt,ω,μ(

Xt,ω,μ(ω̃)
)

= W̃ t,ω,μ(
Xt,ω,μ(ω̃)

) ∀ω̃ ∈ N c
t,ω,μ,
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and that

(7.45)
(
W̃ t,ω,μ)−1(

A′) ∈ Ft,ω,μ
r ∀A′ ∈ F t

r ,∀r ∈ [t, T ].
Fix 0 ≤ t < s ≤ T , ω ∈ � and μ ∈ Ut , δ ∈ Q+ and λ ∈ N. We consider a F t

s -
partition {Aj }λj=0 of �t such that for j = 1, . . . , λ, Aj ⊂ Os

δj
(ω̃j ) for some δj ∈

((0, δ] ∩Q) ∪ {δ} and ω̃j ∈ �t , and let {μj }λj=1 ⊂ Us . We will simply set

(7.46) (P,p,X ,W,F·) := (
Pt,ω,μ,pt,ω,μ,Xt,ω,μ, W̃ t,ω,μ,Ft,ω,μ·

)
.

Given j = 1, . . . , λ, (5.4) shows that AX
j := X−1(Aj ) ∈ F t

s . So there exists an

Aj ∈ F t
s such that AX

j �Aj ∈ N
t

(see, e.g., Problem 2.7.3 of [35]). Following
similar arguments to those used in the proof of Proposition 6.3 of [5], one can
show that

(u1) The set Ãj := Aj \ ⋃
j ′<j Aj ′ ∈F t

s satisfies AX
j �Ãj ∈ N

t
(see (7.70) of

[5]).
(u2) The pasted control μ̂r (ω̃) := 1{r∈[t,s)}μr(ω̃) + 1{r∈[s,T ]}(1{ω̃∈Ã0}μr(ω̃) +∑λ
j=1 1{ω̃∈Ãj }μ

j
r (�

t
s(ω̃))), ∀(r, ω̃) ∈ [t, T ] × �t belongs to Ut , where Ã0 :=

(
⋃λ

j=1 Ãj )
c ∈ F t

s (see (7.71) of [5]). Set

(P̂, p̂, X̂ ,Ŵ, F̂·, N̂ ) := (
Pt,ω,μ̂,pt,ω,μ̂,Xt,ω,μ̂, W̃ t,ω,μ̂,Ft,ω,μ̂· ,Nt,ω,μ̂

)
.

(u3) There exists a Pt
0-null set Ñj such that for any ω̃ ∈ Ãj ∩ Ñ c

j ,

Nω̃ := {
ω̂ ∈ �s : X̂r (ω̃ ⊗s ω̂) �= (

X (ω̃) ⊗s Xs,ω⊗tX (ω̃),μj

(ω̂)
)
(r)

for some r ∈ [t, T ]} belongs to N
s
(see (7.78) of [5]).

(u4) For any A ∈F t
s , X−1(A)�X̂−1(A) ∈ N

t
(see (7.74) of [5]).

Also, analogous to part (2b) of [5], Proposition 6.3, we can use the uniqueness of
controlled SDE (5.1) to show that the equality μ̂ = μ over ([t, s]×�t)∪ ([s, T ]×
Ã0) implies the equality X̂ =X over ([t, s] × �t) ∪ ([s, T ] × Ã0), and thus that P̂
satisfies (P3)(i), (ii).

(2b) To show that P̂ satisfies (2.8), we make some technical setting and prepa-
ration first.

Proposition 1.1(4) shows that Y1
r := gt,ω

r , Y2
r := Lt,ω

r and Y3
r := Ut,ω

r , r ∈ [t, T ]
are three Ft -adapted processes with all continuous paths. For � = 1,2,3, (5.4)
implies that Y�(X̂ ) is an F

t
-adapted process with all continuous paths. Applying

Lemma A.2(3) of [5] with (P,X) = (Pt
0,B

t ) shows that Y�(X̂ ) has an (Ft ,Pt
0)-

version Y �. More precisely, Y �’s are Ft -progressively measurable processes such
that

(7.47) NR :=
3⋃

�=1

{
ω̃ ∈ �t : Y �

r (ω̃) �= Y�
r

(
X̂ (ω̃)

)
for some r ∈ [t, T ]} ∈ N

t
.
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By Lemma 1.2, it holds for all ω̃ ∈ �t except on an ÑR ∈ N
t

that (NR ∪ N̂ )s,ω̃ ∈
N

s
.

We see from Proposition 1.1(4) that the random variables

(7.48) ξm := sup
t ′∈[t,T ]

∫ (t ′+2−m)∧T

t ′
∣∣gt,ω

r

∣∣dr ∀m ∈ N

are F t
T -measurable. Since limm→∞ ↓ ξm = 0, (2.6) and the dominated conver-

gence theorem show that limm→∞ ↓ EP̂[ξm] = 0. So there exists m ∈ N such that
EP̂[ξm] ≤ δ/2 and �(‖ω‖0,t ,2−m) ≤ δ/2. Set a := 2−m.

Now, fix n ∈ N∪ {∞}, ℘ ∈ T s and let j = 1, . . . , λ. We set(
Pj ,pj ,X j ,Wj ,Fj· ,NX j

)
:= (

Ps,ω⊗t ω̃j ,μj

,ps,ω⊗t ω̃j ,μj

,Xs,ω⊗t ω̃j ,μj

,

W̃ s,ω⊗t ω̃j ,μj

,F
s,ω⊗t ω̃j ,μj

· ,Ns,ω⊗t ω̃j ,μj

)
and define

(7.49*) ℘j := ℘
(
X j ) ∈ T s

, νj := ℘j

(
�t

s

) ∈ T t

s , γ̂j := νj (Ŵ),

where γ̂j is a F̂-stopping time that takes values in [s, T ].
Given i = 0, . . . ,2m, we set si := s ∨ (i2−mT ) and Di := {si−1 < γ̂j ≤ si} ∈

F̂si with s−1 := −1. By, for example, Problem 2.7.3 of [35], there exists an
D̃i ∈ F t

si
such that Di�D̃i ∈ N p̂. Define Di := D̃i \ ⋃

i′<i D̃i′ ∈ F t
si

and D :=⋃2m
i=0 Di = ⋃2m

i=0 D̃i ∈ F t
T . Then γ ′

j := ∑2m
i=0 1Di

si is a F̂-stopping time while

γj := ∑2m
i=0 1Di

si + 1DcT defines an T t
s -stopping time. Clearly, γ ′

j coincides with

γj over
⋃2m

i=1(Di ∩Di ), whose complement
⋃2m

i=1(Di \Di ) belongs to N p̂ because

Di \Di = Di ∩
[
(D̃i)

c ∪
(⋃

i′<i

D̃i′
)]

= (Di \ D̃i) ∪
(⋃

i′<i

(D̃i′ ∩ Di)

)

⊂ (Di�D̃i) ∪
(⋃

i′<i

(
D̃i′ ∩ Dc

i′
)) ⊂ ⋃

i′≤i

(Di′�D̃i′) ∈ N p̂

for i = 1, . . . ,2m. To wit, we have

(7.50) γ ′
j = γj , p̂-a.s.

(2c) Now, fix A ∈ F t
s , τ ∈ T t

s (n) and set τ̂ := τ(X̂ ). We show an auxiliary in-
equality:

(7.51)
λ∑

j=1

EP̂

[
1A∩Aj

Rt,ω(τ, γj )
] ≤

λ∑
j=1

Et [1X̂−1(A∩Aj )�j ] + δ,
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where �j := ∫ τ̂∧νj

t Y 1
r dr + 1{τ̂≤νj }Y 2

τ̂ + 1{νj<τ̂ }Y 3
νj

.

For any r ∈ [s, T ], an analogy to (A.19) shows that {τ̂ ≤ r} = X̂−1({τ ≤ r}) ∈
F t

r , So τ̂ ∈ T t

s . By Lemma 2.5(3) in the ArXiv version of [5], it holds for all

ω̃ ∈ �t except on a Nτ ∈ N
t

that τ̂ s,ω̃ ∈ T s
. For j = 1, . . . , λ, since Y �’s are

Ft -progressively measurable processes and since νj is a T t

s -stopping time, we see

that �j is an F t

T -measurable random variable.
Let j = 1, . . . , λ. By (7.50),

(7.52)
EP̂

[
1A∩Aj

Rt,ω(τ, γj )
] = Ep̂

[
1A∩Aj

Rt,ω(τ, γj )
] = Ep̂

[
1A∩Aj

Rt,ω(
τ, γ ′

j

)]
= Et

[
1X̂−1(A∩Aj )R

t,ω(
τ, γ ′

j

)
(X̂ )

]
.

Given ω̃ ∈ �t , since 0 ≤ γ ′
j (ω̃) − γ̂j (ω̃) < a, (1.7) implies that

Rt,ω(
τ, γ ′

j

)
(ω̃) − Rt,ω(τ, γ̂j )(ω̃)

=
∫ τ(ω̃)∧γ ′

j (ω̃)

τ (ω̃)∧γ̂j (ω̃)
gt,ω

r (ω̃) dr

+ 1{γ̂j (ω̃)<τ(ω̃)≤γ ′
j (ω̃)}

(
Lt,ω(

τ(ω̃), ω̃
) − Ut,ω(

γ̂j (ω̃), ω̃
))

+ 1{γ ′
j (ω̃)<τ(ω̃)}

(
Ut,ω(

γ ′
j (ω̃), ω̃

) − Ut,ω(
γ̂j (ω̃), ω̃

))
≤ ξm(ω̃) + 1{γ̂j (ω̃)<τ(ω̃)≤γ ′

j (ω̃)}�0

((
τ(ω̃) − γ̂j (ω̃)

)
+ sup

r∈[0,T ]
∣∣(ω ⊗t ω̃)

(
r ∧ τ(ω̃)

) − (ω ⊗t ω̃)
(
r ∧ γ̂j (ω̃)

)∣∣)
+ 1{γ ′

j (ω̃)<τ(ω̃)}�0

((
γ ′
j (ω̃) − γ̂j (ω̃)

)
+ sup

r∈[0,T ]
∣∣(ω ⊗t ω̃)

(
r ∧ γ ′

j (ω̃)
) − (ω ⊗t ω̃)

(
r ∧ γ̂j (ω̃)

)∣∣)
≤ ξm(ω̃) + 1{γ̂j (ω̃)<τ(ω̃)≤γ ′

j (ω̃)}�0

(
a+ sup

r∈[γ̂j (ω̃),τ (ω̃)]
∣∣ω̃(r) − ω̃

(
γ̂j (ω̃)

)∣∣)
+ 1{γ ′

j (ω̃)<τ(ω̃)}�0

(
a+ sup

r∈[γ̂j (ω̃),γ ′
j (ω̃)]

∣∣ω̃(r) − ω̃
(
γ̂j (ω̃)

)∣∣)
≤ ξm(ω̃) + �0

(
a+ sup

r∈[νj (Ŵ(ω̃)),(νj (Ŵ(ω̃))+a)∧T ]

∣∣ω̃(r) − ω̃
(
νj

(
Ŵ(ω̃)

))∣∣).
Taking ω̃ = X̂ (ω̃′), one can deduce from (7.44) that for Pt

0-a.s. ω̃′ ∈ �t ,

(7.53)

Rt,ω(
τ, γ ′

j

)(
X̂

(
ω̃′)) − Rt,ω(τ, γ̂j )

(
X̂

(
ω̃′))

≤ ξm
(
X̂

(
ω̃′)) + �0

(
a+ sup

r∈[νj (ω̃′),(νj (ω̃′)+a)∧T ]
∣∣X̂r

(
ω̃′) − X̂νj

(
ω̃′)∣∣).
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Also, (7.44) and (7.47) show that for any ω̃′ ∈ (NR ∪ N̂ )c

(7.54)

Rt,ω(τ, γ̂j )
(
X̂

(
ω̃′))

=
∫ τ̂ (ω̃′)∧νj (ω̃′)

t
Y1

r

(
X̂

(
ω̃′))dr + 1{τ̂ (ω̃′)≤νj (ω̃′)}Y2(

τ̂
(
ω̃′), X̂ (

ω̃′))
+ 1{νj (ω̃′)<τ̂ (ω̃′)}Y3(

νj

(
ω̃′), X̂ (

ω̃′))
=

∫ τ̂ (ω̃′)∧νj (ω̃′)

t
Y 1

r

(
ω̃′)dr + 1{τ̂ (ω̃′)≤νj (ω̃′)}Y 2(

τ̂
(
ω̃′), ω̃′)

+ 1{νj (ω̃′)<τ̂ (ω̃′)}Y 3(
νj

(
ω̃′), ω̃′)

= �j

(
ω̃′).

Since X̂−1(A∩Aj ) ∈F t

s , j = 0, . . . , λ by (5.4) and since νj ’s are T t

s -stopping

times, ν := 1X̂−1(A0)
T + ∑λ

j=1 1X̂−1(Aj )νj is also a T t

s -stopping time. Set η :=
supr∈[ν,(ν+a)∧T ] |X̂r − X̂ν |. Using the inequality (a + b)� ≤ 2�−1(a� + b� ),
∀a, b > 0, one can deduce from (7.54), (7.53) and (5.3) that

(7.55)

λ∑
j=1

Et

[
1X̂−1(A∩Aj )

(
Rt,ω(

τ, γ ′
j

)
(X̂ ) − �j

)]

≤
λ∑

j=1

Et

[
1X̂−1(A∩Aj )

(
ξm(X̂ )

+ �0

(
a+ sup

r∈[νj ,(νj+a)∧T ]
∣∣X̂r − X̂νj

∣∣))]

=
λ∑

j=1

Et

[
1X̂−1(A∩Aj )

(
ξm(X̂ ) + �0(a+ η)

)]
≤ Et

[
ξm(X̂ ) + �0(a+ η)

]
≤ Ep̂[ξm] +Et

[
1{η≤a

1
4 }�0

(
a+ a

1
4
) + κ1{η>a

1
4 }

(
1 + (a+ η)�

)]
≤ EP̂[ξm] + �0

(
a+ a

1
4
)

+ κa−1/4Et

[(
1 + 2�−1a� )

η + 2�−1η�+1]
≤ δ/2 + �0

(
a+ a

1
4
) + κ

(
1 + 2�−1a� )

ϕ1
(‖ω‖0,t

)
a

1
4

+ κ2�−1ϕ�+1
(‖ω‖0,t

)
a�/2+1/4

= δ/2 + �
(‖ω‖0,t ,2−m

) ≤ δ.
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Then we see from (7.52) that

λ∑
j=1

EP̂

[
1A∩Aj

Rt,ω(τ, γj )
] =

λ∑
j=1

Et

[
1X̂−1(A∩Aj )R

t,ω(
τ, γ ′

j

)
(X̂ )

]

≤
λ∑

j=1

Et [1X̂−1(A∩Aj )�j ] + δ proving (7.51).

(2d) We are ready to use (2.1) and the estimate (5.2) to verify (2.8) for P̂.
Let j = 1, . . . , λ again. As P̂ ∈ P̂t by (7.43), (7.54), (2.5) and (2.6) imply that

Et

[|�j |] ≤ Et

[∫ T

t

∣∣gt,ω
r (X̂ )

∣∣dr + �t,ω∗ (X̂ )

]
= Ep̂

[∫ T

t

∣∣gt,ω
r

∣∣dr + �t,ω∗
]

= EP̂

[∫ T

t

∣∣gt,ω
r

∣∣dr + �t,ω∗
]

< ∞.

Since X̂−1(A ∩ Aj ) ∈ F t

s , applying Lemma A.2 (1) of [5] with (P,X, ξ) =
(Pt

0,B
t ,�j ), using (u4) with A = A ∩ Aj and applying Proposition 2.3 in the

ArXiv version of [5] with (P, ξ) = (Pt
0,�j ), we can deduce from Proposi-

tion 1.2(1) and (u1) that

(7.56)

Et [1X̂−1(A∩Aj )�j ]
= Et

[
1X̂−1(A∩Aj )Et

[
�j |F t

s

]] = Et

[
1X̂−1(A∩Aj )Et

[
�j |F t

s

]]
= Et

[
1X−1(A∩Aj )Et

[
�j |F t

s

]] = Et

[
1{ω̃∈X−1(A)∩AX

j }Es

[
�

s,ω̃
j

]]
= Et

[
1{ω̃∈X−1(A)∩AX

j ∩Ãj }Es

[
�

s,ω̃
j

]]
.

Let ω̃ ∈ AX
j ∩ Ãj ∩ Ñ c

j ∩ Ñ c
R ∩ N c

τ . As τ̂ s,ω̃ ∈ T s
, similar to γ̂j = νj (Ŵ),

ζω̃ := τ̂ s,ω̃(Wj ) is a Fj -stopping time. Let ω̂ ∈ �s such that ω̂ is not in the Ps
0-

null set (NR ∪ N̂ )s,ω̃ ∪ NX j ∪ Nω̃, and define �X
j
ω̃(ω̂) := ‖Xs,ω⊗tX (ω̃),μj

(ω̂) −
X j (ω̂)‖s,T . Taking ω̃′ = ω̃ ⊗s ω̂ ∈ (NR ∪ N̂ )c in (7.54), we see from (2.3), (7.44),
(u3), (2.1) as well as an analogy to the second equality of (7.4) that

�
s,ω̃
j (ω̂) = Rt,ω(τ, γ̂j )

(
X̂ (ω̃ ⊗s ω̂)

)
= R

(
t, τ

(
X̂ (ω̃ ⊗s ω̂)

)
, γ̂j

(
X̂ (ω̃ ⊗s ω̂)

)
,ω ⊗t

(
X̂ (ω̃ ⊗s ω̂)

))
= R

(
t, τ̂ (ω̃ ⊗s ω̂), νj (ω̃ ⊗s ω̂),ω ⊗t

(
X̂ (ω̃ ⊗s ω̂)

))
= R

(
t, τ̂ s,ω̃(ω̂),℘j (ω̂),ω ⊗t

(
X̂ (ω̃ ⊗s ω̂)

))
= R

(
t, ζω̃

(
X j (ω̂)

)
,℘

(
X j (ω̂)

)
,ω ⊗t

(
X (ω̃) ⊗s Xs,ω⊗tX (ω̃),μj

(ω̂)
))

≤ R
(
t, ζω̃

(
X j (ω̂)

)
,℘

(
X j (ω̂)

)
,
(
ω ⊗t X (ω̃)

) ⊗s

(
X j (ω̂)

))
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+ (1 + T )�0
(
�X

j
ω̃(ω̂)

)
= R

(
s, ζω̃

(
X j (ω̂)

)
,℘

(
X j (ω̂)

)
,
(
ω ⊗t X (ω̃)

) ⊗s

(
X j (ω̂)

))
+

∫ s

t
gr

((
ω ⊗t X (ω̃)

) ⊗s

(
X j (ω̂)

))
dr + (1 + T )�0

(
�X

j
ω̃(ω̂)

)
= (

Rs,ω⊗tX (ω̃)(ζω̃,℘)
)(
X j (ω̂)

) +
∫ s

t
gr

(
ω ⊗t X (ω̃)

)
dr

+ (1 + T )�0
(
�X

j
ω̃(ω̂)

)
.

Since �0(�X
j
ω̃(ω̂)) ≤ 1{�X

j
ω̃(ω̂)≤δ1/2}�0(δ

1/2) + 1{�X
j
ω̃(ω̂)>δ1/2}κδ−1/2(�X

j
ω̃(ω̂) +

(�X
j
ω̃(ω̂))�+1), (5.2) shows that

(7.57)

Es

[
�

s,ω̃
j

] ≤ Es

[(
Rs,ω⊗tX (ω̃)(ζω̃,℘)

)(
X j )]

+
∫ s

t
gt,ω

r

(
X (ω̃)

)
dr + (1 + T )�0

(
δ1/2)

+ (1 + T )κδ−1/2(
C1T

∥∥ω ⊗t X (ω̃) − ω ⊗t ω̃j

∥∥
0,s

+ C�+1T
�+1∥∥ω ⊗t X (ω̃) − ω ⊗t ω̃j

∥∥�+1
0,s

)
.

Set �̂0(δ) := δ + (1 + T )�0(δ
1/2) + (1 + T )κ(C1T δ1/2 + C�+1T

�+1δ�+1/2).
As ω̃ ∈ AX

j = X−1(Aj ), that is, X (ω̃) ∈ Aj ⊂ Os
δj

(ω̃j ), one has ‖ω ⊗t X (ω̃) −
ω ⊗t ω̃j‖0,s = ‖X (ω̃) − ω̃j‖t,s < δj ≤ δ. It follows from (7.57) that

(7.58*)

Es

[
�

s,ω̃
j

] ≤ Epj

[
Rs,ω⊗tX (ω̃)(ζω̃,℘)

] +
∫ s

t
gt,ω

r

(
X (ω̃)

)
dr + �̂0(δ) − δ

≤ sup
ς∈T s (n)

EPj

[
Rs,ω⊗tX (ω̃)(ς,℘)

]
+

∫ s

t
gt,ω

r

(
X (ω̃)

)
dr + �̂0(δ) − δ.

Plugging this back into (7.56), we see from (7.51) and (u1) that
λ∑

j=1

EP̂

[
1A∩Aj

Rt,ω(τ, γj )
]

≤
λ∑

j=1

Et

[
1{ω̃∈X−1(A)∩X−1(Aj )}

(
sup

ς∈T s (n)

EPj

[
Rs,ω⊗tX (ω̃)(ς,℘)

]
+

∫ s

t
gt,ω

r

(
X (ω̃)

)
dr + �̂0(δ) − δ

)]
+ δ

=
λ∑

j=1

Ep

[
1{ω̃∈A∩Aj }

(
sup

ς∈T s (n)

EPj

[
Rs,ω⊗t ω̃(ς,℘)

]
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+
∫ s

t
gt,ω

r (ω̃) dr + �̂0(δ) − δ

)]
+ δ

=
λ∑

j=1

EP

[
1{ω̃∈A∩Aj }

(
sup

ς∈T s (n)

EPj

[
Rs,ω⊗t ω̃(ς,℘)

] +
∫ s

t
gt,ω

r (ω̃) dr

)]
+ P

(
A ∩Ac

0
)(

�̂0(δ) − δ
) + δ.

In the last equality, we used the fact that the mapping ω̃ →
supς∈T s (n)EPj [Rs,ω⊗t ω̃(ς,℘)] is continuous under norm ‖‖t,T , and thus F t

T -
measurable by Remark 2.2(2). Therefore, (2.8) holds for ℘n

j = γj , j = 1, . . . λ.
(3) In this part, we still use (2.1) and the estimate (5.2) to show that

{P(t,ω)}(t,ω)∈[0,T ]×� satisfies Assumption 3.1.
Fix n ∈ N ∪ {∞}, t ∈ [0, T ], ω,ω′ ∈ �, μ ∈ Ut and set δ := ‖ω′ − ω‖0,t . We

still take the notation (7.46) and set (P′,p′,X ′,W ′,F′·) := (Pt,ω′,μ,pt,ω′,μ,Xt,ω′,μ,

W̃ t,ω′,μ,F
t,ω′,μ· ).

Fix ε > 0. We still define ξm’s as in (7.48) and can find a k ∈ N such that
EP′ [ξk] ≤ ε/2 and �(‖ω′‖0,t ,2−k) ≤ ε/2. Also, fix γ ∈ T t and τ ∈ T t (n). Similar
to τ̂ = τ(X̂ ) in part 2c), τ(X ′) belongs to T t

; and analogous to γ̂j = νj (Ŵ), (7.45)
implies that τ̃ := τ(X ′(W)) is a F-stopping time. Symmetrically, γ (X ) belongs to
T t

and γ̃ := γ (X (W ′)) defines a F′-stopping time.

Set ti := t ∨ (i2−kT ), i = 0, . . . ,2k. Then γ̃ ′
k
:= ∑2k

i=0 1{ti−1<γ̃≤ti}ti defines a F′-
stopping time, where t−1 := −1. By similar arguments to those that lead to (7.50),
one can construct a T t -stopping time γ̃k valued in {ti}2k

i=0 such that γ̃ ′
k
= γ̃k, p′-a.s.

Analogous to (7.53), we can deduce that for Pt
0-a.s. ω̃ ∈ �t ,

Rt,ω(
τ, γ̃ ′

k

)(
X ′(ω̃)

) − Rt,ω(τ, γ̃ )
(
X ′(ω̃)

) ≤ ξk
(
X ′(ω̃)

) + �0
(
2−k + η′(ω̃)

)
,

where η′ := supr∈[γ (X ),(γ (X )+2−k)∧T ] |X ′
r − X ′

γ (X )|. And similar to (7.55), (5.3)
implies that

(7.59)

Ep′
[
Rt,ω(τ, γ̃k) − Rt,ω(τ, γ̃ )

]
= Ep′

[
Rt,ω(

τ, γ̃ ′
k

) − Rt,ω(τ, γ̃ )
]

= Et

[
Rt,ω(

τ, γ̃ ′
k

)(
X ′) − Rt,ω(τ, γ̃ )

(
X ′)]

≤ Et

[
ξk

(
X ′) + �0

(
2−k + η′)] ≤ EP′ [ξk] + �

(∥∥ω′∥∥
0,t ,2−k

) ≤ ε.

Since (7.44) shows that τ(X ′(ω̃)) = τ(X ′(W(X (ω̃)))) = τ̃ (X (ω̃)) and
γ̃ (X ′(ω̃)) = γ (X (W ′(X ′(ω̃)))) = γ (X (ω̃)) hold for Pt

0-a.s. ω̃ ∈ �t , we see from
(2.3) and (2.1) that for Pt

0-a.s. ω̃ ∈ �t

(
Rt,ω′

(τ, γ̃ )
)(
X ′(ω̃)

) − (
Rt,ω(τ̃ , γ )

)(
X (ω̃)

)
= R

(
t, τ

(
X ′(ω̃)

)
, γ̃

(
X ′(ω̃)

)
,ω′ ⊗t X ′(ω̃)

)
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− R
(
t, τ̃

(
X (ω̃)

)
, γ

(
X (ω̃)

)
,ω ⊗t X (ω̃)

)
= R

(
t, τ̃

(
X (ω̃)

)
, γ

(
X (ω̃)

)
,ω′ ⊗t X ′(ω̃)

)
− R

(
t, τ̃

(
X (ω̃)

)
, γ

(
X (ω̃)

)
,ω ⊗t X (ω̃)

)
≤ (1 + T )�0

(∥∥ω′ ⊗t X ′(ω̃) − ω ⊗t X (ω̃)
∥∥

0,T

)
≤ (1 + T )�0

(∥∥ω′ − ω
∥∥

0,t + ∥∥X ′(ω̃) −X (ω̃)
∥∥
t,T

)
= (1 + T )�0

(
δ + �X(ω̃)

)
≤ 1{�X(ω̃)≤δ1/2}(1 + T )�0

(
δ + δ1/2)

+ 1{�X(ω̃)>δ1/2}κ(1 + T )δ−1/2((
1 + 2�−1δ� )

�X(ω̃)

+ 2�−1(
�X(ω̃)

)�+1)
,

with �X(ω̃) := ‖X ′(ω̃) −X (ω̃)‖t,T . Then (7.59) and (5.2) show that

(7.60)

EP′
[
Rt,ω(τ, γ̃k)

] = Ep′
[
Rt,ω(τ, γ̃k)

] ≤ Ep′
[
Rt,ω′

(τ, γ̃ )
] + ε

= Et

[(
Rt,ω′

(τ, γ̃ )
)(
X ′)] + ε

≤ Et

[(
Rt,ω(τ̃ , γ )

)
(X )

] + �1(δ) + ε

= Ep

[
Rt,ω(τ̃ , γ )

] + �1(δ) + ε,

where �1(δ) := (1 + T )�0(δ + δ1/2) + κ(1 + T )((1 + 2�−1δ� )C1T δ1/2 +
2�−1C�+1T

�+1δ�+1/2) ≥ �0(δ).
Similar to (7.58*), one can deduce that Ep[Rt,ω(τ̃ , γ )] ≤ supς∈T t (n)EP[Rt,ω(ς,

γ )]. So it follows from (7.60) that

EP′
[
Rt,ω′

(τ, γ̃k)
] ≤ sup

ς∈T t (n)

EP

[
Rt,ω(ς, γ )

] + �1(δ) + ε.

Taking supremum over τ ∈ T t (n) on the left-hand side yields that

inf
ζ∈T t

sup
τ∈T t (n)

EP′
[
Rt,ω′

(τ, ζ )
] ≤ sup

τ∈T t (n)

EP′
[
Rt,ω′

(τ, γ̃k)
]

≤ sup
ς∈T t (n)

EP

[
Rt,ω(ς, γ )

] + �1(δ) + ε.

Then taking infimum over γ ∈ T t on the right-hand side, we obtain that

inf
ζ∈T t

sup
τ∈T t (n)

E
Pt,ω′,μ

[
Rt,ω′

(τ, ζ )
] ≤ inf

γ∈T t
sup

ς∈T t (n)

EPt,ω,μ

[
Rt,ω(ς, γ )

] + �1(δ) + ε.
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Letting ε → 0 and taking infimum over μ ∈ Ut on both sides lead to that

V n
t

(
ω′) = inf

μ∈Ut

inf
ζ∈T t

sup
τ∈T t (n)

E
Pt,ω′,μ

[
Rt,ω′

(τ, ζ )
]

≤ inf
μ∈Ut

inf
γ∈T t

sup
ς∈T t (n)

EPt,ω,μ

[
Rt,ω(ς, γ )

] + �1
(∥∥ω′ − ω

∥∥
0,t

)
= V n

t (ω) + �1
(∥∥ω′ − ω

∥∥
0,t

)
.

Exchanging the roles of ω′ and ω shows that {P(t,ω)}(t,ω)∈[0,T ]×� satisfies (3.4).
(4) To verify Assumption 3.2 for {P(t,ω)}(t,ω)∈[0,T ]×�, we fix α > 0 and δ ∈

(0, T ].
Let t ∈ [0, T ), ω ∈ Ot

α(0), μ ∈ Ut and ζ ∈ T t . We take the notation (7.46)
again. Similar to τ̂ = τ(X̂ ) in part 2c), ζ̃ := ζ(X ) is a T t

-stopping time. Set η̃ :=
supr∈[̃ζ ,(ζ̃+δ)∧T ] |Xr −Xζ̃ |. Analogous to (7.55), one can deduce from (5.3) that

EP

[
�1

(
δ + sup

r∈[ζ,(ζ+δ)∧T ]
∣∣Bt

r − Bt
ζ

∣∣)]
= Ep

[
�1

(
δ + sup

r∈[ζ,(ζ+δ)∧T ]
∣∣Bt

r − Bt
ζ

∣∣)]
= Et

[
�1

(
δ + sup

r∈[̃ζ ,(ζ̃+δ)∧T ]
|Xr −Xζ̃ |

)]
= Et

[
�1(δ + η̃)

]
≤ �1

(
δ + δ1/4) + κ

(
1 + 2�−1δ� )

ϕ1
(‖ω‖0,t

)
δ1/4

+ κ2�−1ϕ�+1
(‖ω‖0,t

)
δ�/2+1/4

≤ �α(δ),

where �α(δ) := �1(δ + δ1/4) + κ(1 + 2�−1δ� )ϕ1(α)δ1/4 + κ2�−1ϕ�+1(α) ×
δ�/2+1/4. Taking supremum over ζ ∈ T t and then taking supremum over μ ∈ Ut

and ω ∈ Ot
α(0) yield (3.6).

7.5. Proof of Theorem 6.1. If V0 = L0, then τ∗ = 0 and it thus holds for any
(P, γ ) ∈ P × T that EP[R(τ∗, γ )] = EP[R(0, γ )] = EP[L0] = L0 = V0.

Next, let us assume that V0 > L0. Theorem 4.1(1), Proposition 3.4(1), (A′) and
the proof of Remark 3.1 imply that the process Xt := Vt − Lt , t ∈ [0, T ] has all
continuous paths and satisfies∣∣Xt (ω) − Xt

(
ω′)∣∣ ≤ ∣∣Vt(ω) − Vt

(
ω′)∣∣ + ∣∣Lt(ω) − Lt

(
ω′)∣∣

≤ 2ρ0
(∥∥ω − ω′∥∥

0,t

) ∀t ∈ [0, T ],∀ω,ω′ ∈ �.

Then applying Theorem 3.1 of [7] with payoff processes L := −U , U := −L

and random maturity τ0 = inf{t ∈ [0, T ] : Xt ≤ 0} ∧ T = inf{t ∈ [0, T ] : Vt =
Lt } = τ∗ shows that (In particular, (H4) implies (P4) of [7] by Remark 3.1(3)
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therein) for some (P∗, γ∗) ∈ P × T , sup(P,γ )∈P×T EP[1{γ<τ∗}Lγ + 1{τ∗≤γ }Uτ∗] =
EP∗[1{γ∗<τ∗}Lγ∗ + 1{τ∗≤γ∗}Uτ∗]. Multiplying −1 on both sides, we see from (4.3)
that V0 = inf(P,γ )∈P×T EP[R(τ∗, γ )] = EP∗[R(τ∗, γ∗)].

APPENDIX

A.1. A technical lemma.

LEMMA A.1. Define ϒt := V t + ∫ t
0 gr dr , t ∈ [0, T ]. Given ζ ∈ T , it holds

for any (t,ω) ∈ [0, T ] × � and t ′ ∈ [0, t] that

(A.1) ϒt(ω) ≤ inf
P∈P(t,ω)

EP

[
(ϒ(τ∗

(t ′,ω)
(�0

t ′ )∧ζ )∨t )
t,ω]

.

PROOF. Fix 0 ≤ t ′ ≤ t ≤ T , ω ∈ �, ζ ∈ T and set α := 1 + ‖ω‖0,T .
(1) When t = T , one has infP∈P(T ,ω)EP[(ϒ(τ∗

(t ′,ω)
(�0

t ′ )∧ζ )∨T )T ,ω] =
infP∈P(T ,ω)EP[(ϒT )T ,ω] = infP∈P(T ,ω)EP[ϒT (ω)] = ϒT (ω).

(2) Next, suppose that t < T and V t(ω) = Lt(ω). Then

τ ∗
(t ′,ω)

(
�0

t ′(ω)
) = inf

{
s ∈ [

t ′, T
] : V t ′,ω

s

(
�0

t ′(ω)
) = Lt ′,ω

s

(
�0

t ′(ω)
)}

= inf
{
s ∈ [

t ′, T
] : V s(ω) = Ls(ω)

} ≤ t,

which means that ω ∈ (�0
t ′)

−1(A′) with A′ := {ω′ ∈ �t ′ : τ ∗
(t ′,ω)(ω

′) ≤ t} ∈ F t ′
t .

Since Lemma A.1 of [5] shows that

(A.2) �0
t ′ is an Fr/F t ′

r -measurable mapping ∀r ∈ [
t ′, T

]
,

we see that (�0
t ′)

−1(A′) ∈ Ft . It follows from Lemma 1.1 that

(A.3) ω ⊗t �t ⊂ (
�0

t ′
)−1(

A′) or τ ∗
(t ′,ω)

(
�0

t ′(ω ⊗t ω̃)
) ≤ t ∀ω̃ ∈ �t.

Remark 3.2 and Proposition 3.4(1) show that ϒ is an F-adapted process with
all continuous paths. Applying (1.9) to ϒt ∈ Ft and using (A.3) yield that

(ϒ(τ∗
(t ′,ω)

(�0
t ′ )∧ζ )∨t )

t,ω(ω̃) = ϒ
((

τ ∗
(t ′,ω)

(
�0

t ′(ω ⊗t ω̃)
) ∧ ζ(ω ⊗t ω̃)

) ∨ t,ω ⊗t ω̃
)

= ϒt(ω ⊗t ω̃) = ϒt(ω) ∀ω̃ ∈ �t,

Thus, we still obtain (A.1) as an equality.
(3) The discussion of the case t < T with V t(ω) > Lt(ω) is relatively lengthy.

We split it into several steps. Since limn→∞ ↑ V n
t (ω) = V t(ω) by (3.1) and Propo-

sition 3.3, there exists an integer N = N(t,ω) > log2(
T

T −t
) such that V n

t (ω) >

Lt(ω) for any n ≥ N .
Fix δ > 0 and k,n ∈ N with k ≥ n > N . For any r ∈ [t ′, T ], as Ar := {ω̃ ∈ �t ′ :

τ
n,δ
(t ′,ω)(ω̃) < r} ∈ F t ′

r , (A.2) implies that {ω′ ∈ � : τn,δ
(t ′,ω)(�

0
t ′(ω

′)) < r} = {ω′ ∈ � :
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�0
t ′(ω

′) ∈ Ar} = (�0
t ′)

−1(Ar) ∈ Fr . So τ
n,δ
(t ′,ω)(�

0
t ′) is an F-optional time valued in

[t ′, T ], and it follows that νn,δ := (τ
n,δ
(t ′,ω)(�

0
t ′)∧ζ )∨ t is an F-optional time valued

in [t, T ].
Let ik be the largest integer such that ik2−kT ≤ t . As k > log2(

T
T −t

), one can
deduce that ik < 2k − 1. Set tik := t and ti := i2−kT for i = ik + 1, . . . ,2k .

(3a) In the first step, we derive from Proposition 3.1 an auxiliary inequality:

(A.4) V n
ti
(ω) ≤ Lti (ω) ∨ E ti

[
V n

ti+1
+

∫ ti+1

ti

gr dr

]
(ω), i = ik, . . . ,2k − 1.

Let i = ik, . . . ,2k −1. Applying (3.5) with (t, s) = (ti , ti+1) and taking γ = ti+1
yield that

(A.5)

V n
ti
(ω) ≤ inf

P∈P(ti ,ω)
sup

τ∈T ti (n)

EP

[
1{τ<ti+1}Rti,ω(τ, ti+1)

+ 1{τ≥ti+1}
((

V n
ti+1

)ti ,ω +
∫ ti+1

ti

gti ,ω
r dr

)]
.

For any τ ∈ T ti (n), it takes values in {ti} ∪ {j2−nT }2n

j=j0
, where j0 is the smallest

integer such that ti < j02−nT . As n ≤ k, one has ti+1 ≤ j02−nT , so {τ < ti+1} =
{τ = ti} ∈ F ti

ti
= {∅,�ti }. To wit, we have either {τ < ti+1} = {τ = ti} = �ti or

{τ ≥ ti+1} = �ti . Since Rti,ω(ti , ti+1) = L
ti,ω
ti

= L(ti,ω) by (7.6), we see from
(A.5) that

V n
ti
(ω) ≤ inf

P∈P(ti ,ω)

(
Lti (ω) ∨EP

[(
V n

ti+1

)ti ,ω +
∫ ti+1

ti

gti ,ω
r dr

])

= Lti (ω) ∨ E ti

[
V n

ti+1
+

∫ ti+1

ti

gr dr

]
(ω) proving (A.4).

(3b) In the next step, we will show that over time grids {ti}2k

ik
, the F-adapted

process ϒn
t := V n

t + ∫ t
0 gr dr , t ∈ [0, T ] is an E -submartingale up to time ν

n,δ
k :=∑2k

i=ik+1 1{ti−1≤νn,δ<ti}ti + 1{νn,δ=T }T , that is,

(A.6) ϒn

ν
n,δ
k ∧ti

(ω) ≤ E ti

[
ϒn

ν
n,δ
k ∧ti+1

]
(ω), i = ik, . . . ,2k − 1.

For any r ∈ [tik+1, T ), let jr be the largest integer such that tjr ≤ r . Since

νn,δ is an F-optional time, one can deduce that {νn,δ
k ≤ r} = ⋃jr

i=ik+1{νn,δ
k = ti} =⋃jr

i=ik+1{ti−1 ≤ νn,δ < ti} = {νn,δ < tjr } ∈ Ftjr
⊂ Fr . So ν

n,δ
k is a Tt (k)-stopping

time.
(i) Let i = ik first. We simply denote tik+1 by s. Since V n

t (ω) > Lt(ω), applying
(A.4) with i = ik yields that

(A.7) V n
t (ω) ≤ E t

[
V n

s +
∫ s

t
gr dr

]
(ω).
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As ν
n,δ
k ≥ tik+1 = s > tik = t , the first equality in (7.4) shows that(
ϒn

ν
n,δ
k ∧s

)t,ω
(ω̃) = ϒn(

ν
n,δ
k (ω ⊗t ω̃) ∧ s,ω ⊗t ω̃

) = ϒn(s,ω ⊗t ω̃)

= V n(s,ω ⊗t ω̃) +
∫ s

t
gr(ω ⊗t ω̃) dr +

∫ t

0
gr(ω)dr

=
(
V n

s +
∫ s

t
gr dr

)t,ω

(ω̃) +
∫ t

0
gr(ω)dr ∀ω̃ ∈ �t.

Taking expectation EP[ ] and then taking infimum over P ∈ P(t,ω), we see from
(A.7) that

E t

[
ϒn

ν
n,δ
k ∧s

]
(ω) = E t

[
V n

s +
∫ s

t
gr dr

]
(ω) +

∫ t

0
gr(ω)dr ≥ ϒn

t (ω)

= ϒn

ν
n,δ
k ∧t

(ω) proving (A.6) for i = ik.

(ii) Next, let i = ik + 1, . . . ,2k − 1. Given ω ∈ {νn,δ
k ≤ ti}, applying Proposi-

tion 1.1(3) with (t, s, τ ) = (0, ti , ν
n,δ
k ) shows that ν

n,δ
k (ω ⊗ti �ti ) ≡ ν

n,δ
k (ω) := t̂ .

As ϒn
t̂

∈ Ft̂ ⊂ Fti , using (1.9) with (t, s, η) = (0, ti ,ϒ
n
t̂
) yields that for any

ω̃ ∈ �ti (ϒn

ν
n,δ
k ∧ti+1

)ti ,ω(ω̃) = ϒn(ν
n,δ
k (ω⊗ti ω̃)∧ ti+1,ω⊗t ω̃) = ϒn(̂t ∧ ti+1,ω⊗ti

ω̃) = ϒn(̂t,ω ⊗ti ω̃) = ϒn(̂t,ω). It follows that

(A.8)
E ti

[
ϒn

ν
n,δ
k ∧ti+1

]
(ω) = inf

P∈P(ti ,ω)
EP

[(
ϒn

ν
n,δ
k ∧ti+1

)ti ,ω] = inf
P∈P(ti ,ω)

EP

[
ϒn(̂t,ω)

]
= ϒn(̂t,ω) = ϒn(

ν
n,δ
k (ω) ∧ ti ,ω

)
.

Then we let ω ∈ {νn,δ
k > ti}. Proposition 1.1(3) shows that

(A.9) ω ⊗ti �ti ⊂ {
ν

n,δ
k > ti

} = {
ν

n,δ
k ≥ ti+1

}
,

and one can deduce that νn,δ(ω) ≥ ti ≥ tik+1 > tik = t . By the definition of νn,δ ,
one has ti ≤ νn,δ(ω) = τ

n,δ
(t ′,ω)(�

0
t ′(ω)) ∧ ζ(ω) ≤ τ

n,δ
(t ′,ω)(�

0
t ′(ω)) and it follows that

(A.10*) V n(ti,ω) ≥ L(ti,ω) + δ.

This together with (A.4) shows that V n
ti
(ω) ≤ E ti

[V n
ti+1

+ ∫ ti+1
ti

gr dr](ω). Adding∫ ti
0 gr(ω)dr to both sides, one can deduce from (A.9) that

E ti

[
ϒn

ν
n,δ
k ∧ti+1

]
(ω) = E ti

[
ϒn

ti+1

]
(ω) = E ti

[
V n

ti+1
+

∫ ti+1

ti

gr dr

]
(ω) +

∫ ti

0
gr(ω)dr

≥ ϒn
ti
(ω) = ϒn

ν
n,δ
k ∧ti

(ω),

which together with (A.8) proves (A.6) for i = ik + 1, . . . ,2k − 1.
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(3c) As a consequence of (A.6), one then has

(A.11) E t

[
ϒn

ν
n,δ
k ∧ti

]
(ω) ≤ E t

[
ϒn

ν
n,δ
k ∧ti+1

]
(ω), i = ik + 1, . . . ,2k − 1.

Let i = ik +1, . . . ,2k −1 and P ∈P(t,ω). As ξi := ϒn

ν
n,δ
k ∧tki+1

is FT -measurable

by Remark 3.2, Proposition 1.1(1) shows that ηi := ξ
t,ω
i is F t

T -measurable. Since
(3.3) and the first equality in (7.4) show that for any ω̃ ∈ �t

(A.12)

∣∣ηi(ω̃)
∣∣ ≤�

(
ν

n,δ
k (ω ⊗t ω̃) ∧ tki+1,ω ⊗t ω̃

) +
∫ T

0

∣∣gr(ω ⊗t ω̃)
∣∣dr

≤ sup
r∈[t,T ]

�r(ω ⊗t ω̃) +
∫ t

0

∣∣gr(ω)
∣∣dr +

∫ T

t

∣∣gt,ω
r (ω̃)

∣∣dr,

an analogy to (7.13) and (1.10) imply that for all ω̃ ∈ �t except on a P-null set Ni ,

(A.13) EPti ,ω̃

[
η

ti ,ω̃
i

] = EP

[
ηi |F t

ti

]
(ω̃) ∈R.

By (P2), there exists an extension (�t ,F ′,P′) of (�t ,F t
T ,P) and �′ ∈ F ′ with

P′(�′) = 1 such that Pti ,ω̃ ∈ P(s,ω ⊗t ω̃) for any ω̃ ∈ �′. Given ω̃ ∈ �′ ∩ N c
i ,

since

η
ti ,ω̃
i (ω̂) = ηi(ω̃ ⊗ti ω̂) = ξ

t,ω
i (ω̃ ⊗ti ω̂) = ξi

(
ω ⊗t (ω̃ ⊗ti ω̂)

)
= ξi

(
(ω ⊗t ω̃) ⊗ti ω̂

) = ξ
ti ,ω⊗t ω̃
i (ω̂) ∀ω̂ ∈ �s,

we can deduce from (A.6) and (A.13) that(
ϒn

ν
n,δ
k ∧ti

)t,ω
(ω̃) = (

ϒn

ν
n,δ
k ∧ti

)
(ω ⊗t ω̃) ≤ E ti

[
ϒn

ν
n,δ
k ∧ti+1

]
(ω ⊗t ω̃)

= E ti
[ξi](ω ⊗t ω̃) = inf

P̃∈P(ti ,ω⊗t ω̃)
EP̃

[
ξ

ti ,ω⊗t ω̃
i

]
≤ EPti ,ω̃

[
ξ

ti ,ω⊗t ω̃
i

] = EPti ,ω̃

[
η

ti ,ω̃
i

]
= EP

[
ηi |F t

ti

]
(ω̃) = EP

[
ξ

t,ω
i |F t

ti

]
(ω̃),

which shows that �′ ∩ N c
i ⊂ A′ := {(ϒn

ν
n,δ
k ∧ti

)t,ω ≤ EP[ξ t,ω
i |F t

ti
]} ∈ F t

T . It fol-

lows that P(A′) = P′(A′) ≥ P′(�′ ∩N c
i ) = 1. Hence, (ϒn

ν
n,δ
k ∧ti

)t,ω ≤ EP[ξ t,ω
i |F t

ti
],

P-a.s. Taking the expectation EP[·] yields that EP[(ϒn

ν
n,δ
k ∧ti

)t,ω] ≤ EP[ξ t,ω
i ] =

EP[(ϒn

ν
n,δ
k ∧ti+1

)t,ω]. Then taking infimum over P ∈P(t,ω), we obtain (A.11).

(3d) Finally, we will use (A.11) as well as the continuity of process V to reach
(A.1) for the case t < T with V t(ω) > Lt(ω).
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Taking i = ik in (A.6) shows that ϒn
t (ω) = ϒn

ν
n,δ
k ∧t

(ω) ≤ E t [ϒn

ν
n,δ
k ∧tik+1

](ω),

which together with (A.11) and (3.1) yields that

(A.14)

ϒn
t (ω) ≤ E t

[
ϒn

ν
n,δ
k ∧tik+1

]
(ω) ≤ E t

[
ϒn

ν
n,δ
k ∧tik+2

]
(ω) ≤ · · ·

≤ E t

[
ϒn

ν
n,δ
k ∧t2k

]
(ω) = E t

[
ϒn

ν
n,δ
k

]
(ω) ≤ E t [ϒν

n,δ
k

](ω).

Since limk→∞ ↓ ν
n,δ
k = νn,δ , the continuity of V by Proposition 3.4 implies that

limk→∞ ϒ
ν

n,δ
k

= ϒνn,δ . Also, an analogy to (A.12) that for any ω̃ ∈ �t

(A.15)
∣∣(ϒ

ν
n,δ
k

)t,ω(ω̃)
∣∣ ≤ �t,ω∗ (ω̃) +

∫ t

0

∣∣gr(ω)
∣∣dr +

∫ T

t

∣∣gt,ω
r (ω̃)

∣∣dr.

Then for any P ∈ P(t,ω), the dominated convergence theorem and an analogy to
(7.13) imply that limk→∞EP[(ϒν

n,δ
k

)t,ω] = EP[(ϒνn,δ )t,ω]. Taking infimum over

P ∈P(t,ω) and letting k → ∞ in (A.14), we obtain

ϒn
t (ω) ≤ lim

k→∞ inf
P∈P(t,ω)

EP

[
(ϒ

ν
n,δ
k

)t,ω
] ≤ inf

P∈P(t,ω)
lim

k→∞EP

[
(ϒ

ν
n,δ
k

)t,ω
]

= inf
P∈P(t,ω)

EP

[
(ϒνn,δ )t,ω

]
.

As ‖ω‖0,t ≤ ‖ω‖0,T < α, we further see from (3.7) that

(A.16)
ϒt(ω) ≤ ϒn

t (ω) + ρα

(
2−n) + 2−n(∣∣gt (ω)

∣∣ + ρα(T − t)
)

≤ inf
P∈P(t,ω)

EP

[
(ϒνn,δ )t,ω

] + ρα

(
2−n) + 2−n(∣∣gt (ω)

∣∣ + ρα(T − t)
)
.

The path regularity of V n in Proposition 3.4 implies that

(A.17*) lim
δ→0

↑ lim
n→∞↑ τ

n,δ
(t,ω)(ω̃) = τ ∗

(t,ω)(ω̃) ∀ω̃ ∈ �t.

The continuity of V thus shows that limδ→0 limn→∞ ϒνn,δ =
limδ→0 limn→∞ ϒ

(τ
n,δ

(t ′,ω)
(�0

t ′ )∧ζ )∨t
= ϒ(τ∗

(t ′,ω)
(�0

t ′ )∧ζ )∨t . Also, letting k → ∞ in

(A.15) yields that |(ϒνn,δ )t,ω| ≤ �t,ω∗ + ∫ t
0 |gr(ω)|dr + ∫ T

t |gt,ω
r |dr . Then for

any P ∈ P(t,ω), applying the dominated convergence theorem and an anal-
ogy to (7.13) again, we obtain that limδ→0 limn→∞EP[(ϒνn,δ )t,ω] =
EP[(ϒ(τ∗

(t ′,ω)
(�0

t ′ )∧ζ )∨t )
t,ω]. Eventually, letting n → ∞ and δ → 0 in (A.16) yields

that

ϒt(ω) ≤ lim
δ→0

lim
n→∞ inf

P∈P(t,ω)
EP

[
(ϒνn,δ )t,ω

] ≤ lim
δ→0

inf
P∈P(t,ω)

lim
n→∞EP

[
(ϒνn,δ )t,ω

]
≤ inf

P∈P(t,ω)
lim
δ→0

lim
n→∞EP

[
(ϒνn,δ )t,ω

]
= inf

P∈P(t,ω)
EP

[
(ϒ(τ∗

(t ′,ω)
(�0

t ′ )∧ζ )∨t )
t,ω]

. �
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A.2. Proofs of starred statements in Section 7.

PROOF OF (7.11*). When n = ∞, applying (7.10) with A = {τ ∧ γ ≥ s} ∈ F t
s

and τ = τ ∨ s ∈ T t
s shows that

λ∑
j=1

EP̂λ

[
1{τ∧γ≥s}∩Aj

Rt,ω(
τ,℘n

j

)] =
λ∑

j=1

EP̂λ

[
1{τ∧γ≥s}∩Aj

Rt,ω(
τ ∨ s,℘n

j

)]
≤ EP

[
1{τ∧γ≥s}∩Ac

0

(
V t,ω

s +
∫ s

t
gt,ω

r dr

)]
+ ε.

On the other hand, if n < ∞, let is be the smallest integer such that is2−nT ≥ s.
Clearly, τ ∨ (is2−nT ) ∈ T t

s (n). Since {τ ∧ γ ≥ s} ⊂ {τ ≥ s} = {τ ≥ is2−nT }, ap-
plying (7.10) again with A = {τ ∧ γ ≥ s} and τ = τ ∨ (is2−nT ) yields that

λ∑
j=1

EP̂λ

[
1{τ∧γ≥s}∩Aj

Rt,ω(
τ,℘n

j

)]

=
λ∑

j=1

EP̂λ

[
1{τ∧γ≥s}∩Aj

Rt,ω(
τ ∨ (

is2−nT
)
,℘n

j

)]
≤ EP

[
1{τ∧γ≥s}∩Ac

0

((
V n

s

)t,ω +
∫ s

t
gt,ω

r dr

)]
+ ε. �

PROOF OF (7.12*). We set As
0 := {γ < s} ∪ ({γ ≥ s} ∩ A0) ∈ F t

s and As
j :=

{γ ≥ s} ∩Aj ∈ F t
s . Given r ∈ [t, T ],

(A.18) {γ̂λ ≤ r} = (
As

0 ∩ {γ ≤ r}) ∪
(

λ⋃
j=1

(
As

j ∩ {
℘n

j ≤ r
}))

.

If r < s, since {γ ≤ r} ⊂ {γ < s} and since each ℘n
j ∈ T t

s , one has {γ̂λ ≤ r} =
{γ < s} ∩ {γ ≤ r} = {γ ≤ r} ∈ F t

r . Otherwise, if r ≥ s, as As
j ∈ F t

s ⊂ F t
r for

j = 0,1, . . . , λ, (A.18) also implies that {γ̂λ ≤ r} ∈ F t
r . Hence, γ̂λ ∈ T t . �

PROOF OF (7.23*). Since ζω̃ = limk→∞ ↓ ζ k
ω̃, we see that {ζω̃ < γω̃} ⊂ Aω̃ :=⋃

k∈N{ζ k
ω̃ ≤ γω̃} ⊂ {ζω̃ ≤ γω̃}, and thus {ζω̃ ≤ γω̃} \ Aω̃ ⊂ {ζω̃ = γω̃}. Then the

continuity of process L implies that

Rs,ω⊗t ω̃(ζω̃, γω̃)

=
∫ ζω̃∧γω̃

s
gs,ω⊗t ω̃

r dr + 1{ζω̃≤γω̃}Ls,ω⊗t ω̃
ζω̃

+ 1{γω̃<ζω̃}Us,ω⊗t ω̃
γω̃

=
∫ ζω̃∧γω̃

s
gs,ω⊗t ω̃

r dr + 1Aω̃L
s,ω⊗t ω̃
ζω̃
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+ 1{ζω̃≤γω̃}\Aω̃Ls,ω⊗t ω̃
γω̃

+ 1{γω̃<ζω̃}Us,ω⊗t ω̃
γω̃

≤
∫ ζω̃∧γω̃

s
gs,ω⊗t ω̃

r dr + 1Aω̃L
s,ω⊗t ω̃
ζω̃

+ 1Ac
ω̃
Us,ω⊗t ω̃

γω̃

= lim
k→∞

(∫ ζ k
ω̃∧γω̃

s
gs,ω⊗t ω̃

r dr + 1{ζ k
ω̃≤γω̃}L

s,ω⊗t ω̃

ζ k
ω̃

+ 1{γω̃<ζk
ω̃}U

s,ω⊗t ω̃
γω̃

)
= lim

k→∞Rs,ω⊗t ω̃
(
ζ k
ω̃, γω̃

)
. �

PROOF OF (7.24*). For any τ1, τ2 ∈ T t
s , letting A := {EP[Rt,ω(τ1, γ̂

′)|F t
s ] ≥

EP[Rt,ω(τ2, γ̂
′)|F t

s ]} ∈ F t
s and τ := 1Aτ1 + 1Acτ2 ∈ T t

s , we can deduce that

EP

[
Rt,ω(

τ , γ̂ ′)|F t
s

] = EP

[
1ARt,ω(

τ1, γ̂
′) + 1AcRt,ω(

τ2, γ̂
′)|F t

s

]
= 1AEP

[
Rt,ω(

τ1, γ̂
′)|F t

s

] + 1AcEP

[
Rt,ω(

τ2, γ̂
′)|F t

s

]
= EP

[
Rt,ω(

τ1, γ̂
′)|F t

s

] ∨EP

[
Rt,ω(

τ2, γ̂
′)|F t

s

]
.

So the family {EP[Rt,ω(τ, γ̂ ′)|F t
s ]}τ∈T t

s
is directed upwards. Appealing to the ba-

sic properties of the essential infimum (e.g., [47], Proposition VI-1-1), we can find
a sequence {τn}n∈N in T t

s such that (7.24*) holds. �

PROOF OF (7.25*). For any r ∈ [t, s), since τn ∈ T t
s and since {τ ≤ r} ⊂ {τ <

s} ⊂ {τ ∧ γ̂ < s}, one can deduce that {τn ≤ r} = {τ ∧ γ̂ < s} ∩ {τ ≤ r} = {τ ≤
r} ∈ F t

r . On the other hand, for any r ∈ [s, T ], {τn ≤ r} = ({τ ∧ γ̂ < s} ∩ {τ ≤
r}) ∪ ({τ ∧ γ̂ ≥ s} ∩ {τn ≤ r}) ∈ F t

r . Hence, τn ∈ T t . �

PROOF OF (7.49*). Given r ∈ [s, T ], as Ar := {℘ ≤ r} ∈F s
r , (5.4) shows that

(A.19)
{℘j ≤ r} = {

ω̂ ∈ �s : ℘(
X j (ω̂)

) ≤ r
} = {

ω̂ ∈ �s : X j (ω̂) ∈ Ar

}
= (

X j )−1
(Ar) ∈ F s

r .

Also, Lemma A.3 in the ArXiv version of [5] implies that {νj ≤ r} = {ω̃ ∈ �t :
�t

s(ω̃) ∈ {℘j ≤ r}} = (�t
s)

−1({℘j ≤ r}) ∈ F t

r , then one can deduce from (7.45)
that {γ̂j ≤ r} = {ω̃ ∈ �t : Ŵ(ω̃) ∈ {νj ≤ r}} = Ŵ−1({νj ≤ r}) ∈ F̂r . Hence, ℘j ∈
T s

, νj ∈ T t

s while γ̂j is a F̂-stopping time that takes values in [s, T ]. �

PROOF OF (7.58*). When n < ∞, as induced by τ ∈ T t
s (n), ζω̃ takes values in

{tni }2n

i=is
, where is be the smallest integer such that is2−nT ≥ s. Similar to (7.50),

there exists ζ ′̃
ω ∈ T s(n) such that ζ ′̃

ω = ζω̃, pj -a.s. So we have

Epj

[
Rs,ω⊗tX (ω̃)(ζω̃,℘)

] = Epj

[
Rs,ω⊗tX (ω̃)(ζ ′̃

ω,℘
)] = EPj

[
Rs,ω⊗tX (ω̃)(ζ ′̃

ω,℘
)]

≤ sup
ς∈T s (n)

EPj

[
Rs,ω⊗tX (ω̃)(ς,℘)

]
.
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Suppose n = ∞ now. Let k ∈ N and set sk
i := s ∨ (i2−kT ), i = 0, . . . ,2k . With

sk−1 := −1, ζ k
ω̃ := ∑2k

i=0 1{sk
i−1<ζω̃≤sk

i }sk
i defines a Fj -stopping time. By similar ar-

guments to those that lead to (7.50), one can construct a T s -stopping time ςk
ω̃

valued in {sk
i }2k

i=0 such that ζ k
ω̃ = ςk

ω̃, pj -a.s. Since ζω̃ = limk→∞ ↓ ζ k
ω̃, an analogy

to (7.23*) shows that

(A.20) Rs,ω⊗tX (ω̃)(ζω̃,℘) ≤ lim
k→∞Rs,ω⊗tX (ω̃)(ζ k

ω̃,℘
)
.

By (2.5), |Rs,ω⊗tX (ω̃)(ζ k
ω̃,℘)| ≤ ∫ T

s |gs,ω⊗tX (ω̃)
r |dr + �

s,ω⊗tX (ω̃)∗ , ∀k ∈ N. Since
Pj ∈ P̂s by (7.43), (2.6) shows that

Epj

[∫ T

s

∣∣gs,ω⊗tX (ω̃)
r

∣∣dr + �s,ω⊗tX (ω̃)∗
]

= EPj

[∫ T

s

∣∣gs,ω⊗tX (ω̃)
r

∣∣dr + �s,ω⊗tX (ω̃)∗
]

< ∞.

Taking expectation Epj [ ] in (A.20), one can deduce from the dominated conver-
gence theorem that

Epj

[
Rs,ω⊗tX (ω̃)(ζω̃,℘)

]
≤ lim

k→∞Epj

[
Rs,ω⊗tX (ω̃)(ζ k

ω̃,℘
)] = lim

k→∞Epj

[
Rs,ω⊗tX (ω̃)(ςk

ω̃,℘
)]

= lim
k→∞EPj

[
Rs,ω⊗tX (ω̃)(ςk

ω̃,℘
)] ≤ sup

ς∈T s
EPj

[
Rs,ω⊗tX (ω̃)(ς,℘)

]
. �

PROOF OF (A.10*). If ti < τ
n,δ
(t ′,ω)(�

0
t ′(ω)), the definition of τ

n,δ
(t ′,ω) shows that

(V n − L)(ti,ω) = ((V n)t
′,ω − Lt ′,ω)(ti,�

0
t ′(ω)) ≥ δ ≥ 0. On the other hand, if

ti = τ
n,δ
(t ′,ω)(�

0
t ′(ω)) the left-upper-semicontinuity of (V n)t

′,ω − Lt ′,ω implies that(
V n − L

)
(ti,ω) = ((

V n)t ′,ω − Lt ′,ω)(
ti ,�

0
t ′(ω)

)
≥ lim

s↗ti

((
V n)t ′,ω − Lt ′,ω)(

s,�0
t ′(ω)

) ≥ δ. �

PROOF OF (A.17*). Fix ω̃ ∈ �t and set α̃ := 1 + ‖ω ⊗t ω̃‖0,T .
We Let δ > 0, n ∈ N and simply denote tn,δ := τ

n,δ
(t,ω)(ω̃), t∗ := τ ∗

(t,ω)(ω̃). Let us
first show that

(A.21)
(
V n)t,ω

(tn,δ, ω̃) ≤ Lt,ω(tn,δ, ω̃) + δ.

If tn,δ = T , (3.2) shows that

(A.22)
(
V n)t,ω

(tn,δ, ω̃) = (
V n)t,ω

(T , ω̃) = Lt,ω(T , ω̃) = Lt,ω(tn,δ, ω̃).

On the other hand, if tn,δ < T , let {ti = ti (t,ω, ω̃, n, δ)}i∈N be a sequence in
[tn,δ, T ] such that limi→∞ ↓ ti = tn,δ and that (V n)t,ω(ti , ω̃) < Lt,ω(ti , ω̃) + δ,
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∀i ∈ N by the definition of tn,δ = τ
n,δ
(t,ω)(ω̃). The right-lower-semicontinuity of path

V n· (ω ⊗t ω̃) by Proposition 3.4 and the continuity of path L·(ω ⊗t ω̃) then imply
that(
V n)t,ω

(tn,δ, ω̃) = V n(tn,δ,ω ⊗t ω̃) ≤ lim
s↘tn,δ

V n(s,ω ⊗t ω̃) ≤ lim
i→∞

V n(ti ,ω ⊗t ω̃)

≤ L(tn,δ,ω ⊗t ω̃) + δ = Lt,ω(tn,δ, ω̃) + δ,

which together with (A.22) proves (A.21).
As ‖ω ⊗t ω̃‖0,tn,δ ≤ ‖ω ⊗t ω̃‖0,T < α̃, we see from (A.21) and (3.7) that

(A.23)

V
t,ω

(tn,δ, ω̃) − Lt,ω(tn,δ, ω̃)

≤ V (tn,δ,ω ⊗t ω̃) − V n(tn,δ,ω ⊗t ω̃) + δ

≤ ρα̃

(
2−n) + 2−n

(
sup

r∈[0,T ]
∣∣gr(ω ⊗t ω̃)

∣∣ + ρα̃(T )
)

+ δ.

For any s ∈ [t, T ], since T s(n) ⊂ T s(n + 1) ⊂ T s , an analogy to (3.1) shows that
V n

s (ω ⊗t ω̃) ≤ V n+1
s (ω ⊗t ω̃) ≤ V s(ω ⊗t ω̃). It follows that t̂δ := limn→∞ ↑ tn,δ ≤

t∗. As n → ∞ in (A.23), the continuity of the path V
t,ω

(ω̃) − Lt,ω(ω̃) by Propo-
sition 3.4 yields that V

t,ω
(̂tδ, ω̃) − Lt,ω(̂tδ, ω̃) ≤ δ, and thus

(A.24)
t∗ ≥ lim

n→∞↑ tn,δ = t̂δ ≥ t∗,δ := inf
{
s ∈ [t, T ] : V t,ω

s (ω̃) ≤ Lt,ω
s (ω̃) + δ

}
.

The continuity of the path V
t,ω

(ω̃) − Lt,ω(ω̃) also implies that t∗ = limδ→0 ↑ t∗,δ

which together with (A.24) leads to that limδ→0 ↑ limn→∞ ↑ tn,δ = t∗, that is,
limδ→0 ↑ limn→∞ ↑ τ

n,δ
(t,ω)(ω̃) = τ ∗

(t,ω)(ω̃). �
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