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MESOSCOPIC EIGENVALUE STATISTICS OF
WIGNER MATRICES1

BY YUKUN HE AND ANTTI KNOWLES

ETH Zürich

We prove that the linear statistics of the eigenvalues of a Wigner matrix
converge to a universal Gaussian process on all mesoscopic spectral scales,
that is, scales larger than the typical eigenvalue spacing and smaller than the
global extent of the spectrum.

1. Introduction. Let H be an N × N Wigner matrix—a Hermitian random
matrix with independent upper-triangular entries with zero expectation and con-
stant variance. We normalize H so that as N → ∞ its spectrum converges to the
interval [−2,2] and, therefore, its typical eigenvalue spacing is of order N−1. In
this paper, we study linear eigenvalue statistics of H of the form

(1.1) Trf
(

H − E

η

)
,

where f is a test function, E ∈ (−2,2) a fixed reference energy inside the bulk
spectrum, and η an N -dependent spectral scale. We distinguish the macroscopic
regime η � 1, the microscopic regime η � N−1, and the mesoscopic regime
N−1 � η � 1. The limiting distribution of (1.1) in the macroscopic regime is by
now well understood; see [2, 18]. Conversely, in the microscopic regime the lim-
iting distribution of (1.1) is governed by the distribution of individual eigenvalues
of H . This question has recently been the focus of much attention, and the uni-
versality of the emerging Wigner–Dyson–Mehta (WDM) microscopic eigenvalue
statistics for Wigner matrices has been established in great generality; we refer to
the surveys [9, 14] for further details.

In this paper, we focus on the mesoscopic regime. The study of linear eigenvalue
statistics of Wigner matrices on mesoscopic scales was initiated in [4, 5]. In [4],
the authors consider the case of Gaussian H (the Gaussian Orthogonal Ensemble)
and take f (x) = (x − i)−1, in which case (1.1) is η times the trace of the resolvent
of H at E + iη. Under these assumptions, it is proved in [4] that, after a centring,
the linear statistic (1.1) converges in distribution to a Gaussian random variable
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on all mesoscopic scales N−1 � η � 1. In [5], this result was extended to a class
of Wigner matrices for the range of mesoscopic scales N−1/8 � η � 1. Recently,
the results of [5] were extended in [17] to arbitrary Wigner matrices, mesoscopic
scales N−1/3 � η � 1, and general test functions f subject to mild regularity and
decay conditions. Apart from the works [5, 17] on Wigner matrices, mesoscopic
eigenvalue statistics have also been analysed for invariant ensembles; see [6, 8]
and the references therein.

Let Z = (Z(f ))f denote the Gaussian process obtained as the mesoscopic limit
of a centring of (1.1). From the works cited above, it is known that the variance of
Z(f ) is the square of the Sobolev H 1/2-norm of f :

(1.2) EZ(f )2 = 1

2π2

∫ (
f (x) − f (y)

x − y

)2
dx dy = 1

π

∫
|ξ |∣∣f̂ (ξ)

∣∣2 dξ,

where f̂ (ξ) := (2π)−1/2 ∫ f (x)e−iξx dx. Hence, a remarkable property of Z is

scale invariance: Z
d= Zλ, where Zλ(f ) := Z(fλ) and fλ(x) := f (λx). It may

be shown that Z is obtained by extrapolating the microscopic WDM statistics to
mesoscopic scales, and we therefore refer to its behaviour as the WDM mesoscopic
statistics. In light of the microscopic universality results for Wigner matrices men-
tioned above, the emergence of WDM statistics on mesoscopic scales is therefore
not surprising.

All of the models described above, including Wigner matrices, correspond to
mean-field models without spatial structure. In [10, 11], linear eigenvalue statis-
tics were analysed for band matrices, where matrix entries are set to be zero be-
yond a certain distance W ≤ N from the diagonal. Band matrices are a commonly
used model of quantum transport in disordered media. Wigner matrices can be re-
garded as a special case W = N of band matrices. Unlike the mean-field Wigner
matrices, band matrices possess a nontrivial spatial structure. An important mo-
tivation for the study of mesoscopic eigenvalue statistics of band matrices arises
from the theory of conductance fluctuations; we refer to [10] for more details. The
results of [10, 11] hold in the regime W−1/3 � η � 1, and hence for the special
case of Wigner matrices they hold for N−1/3 � η � 1. A key conclusion of [10,
11] is that for band matrices there is a sharp transition in the mesoscopic spectral
statistics, predicted in the physics literature [1]: above a certain critical spectral
scale ηc the mesoscopic spectral statistics are no longer governed by the Wigner–
Dyson–Mehta mesoscopic statistics (1.2), but by new limiting statistics, referred
to as Altshuler–Shklovskii (AS) statistics in [10, 11], which are not scale invariant
like (1.2). For instance for the d-dimensional (d = 1,2,3) AS statistics, the vari-
ance of the limiting Gaussian process Z(f ) is 1

π

∫ |ξ |1−d/2|f̂ (ξ)|2 dξ instead of the
right-hand side of (1.2); see [10, 11]. In particular, there is a range of mesoscopic
scales such that, although the microscopic eigenvalue statistics are expected to sat-
isfy the WDM statistics, the mesoscopic statistics do not, and instead satisfy the
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AS statistics. Hence, the WDM statistics on microscopic and mesoscopic scales
do in general not come hand in hand.

In this paper, we establish the WDM mesoscopic statistics for Wigner matrices
in full generality. Our results hold on all mesoscopic scales N−1 � η � 1 and all
Wigner matrices whose entries have finite moments of order 4 + o(1). We require
our test functions to have 1 + o(1) continuous derivatives and be subject to mild
decay assumptions, as in [17]. The precise statements are given in Section 2 below.

Our proof is based on two main ingredients: families of self-consistent equa-
tions for moments of linear statistics inspired by [5], and the local semicircle law
for Wigner matrices from [13, 16]. Our analysis of the self-consistent equations
departs significantly from that of [5], since repeating the steps there, even using
the optimal bounds provided by the local semicircle law, requires the lower bound
η � N−1/2 on the spectral scale. In addition, dealing with general test functions f

instead of f (x) = (x − i)−1 requires a new family of self-consistent equations that
is combined with the Helffer–Sjöstrand representation for general functions of H .
We perform the proof in two major steps.

In the first step, performed in Section 4, we consider traces of resolvents
G ≡ G(z) = (H − z)−1, corresponding to taking f (x) = (x − i)−1 in (1.1). De-
noting by G the normalized trace of G and 〈X〉 := X −EX, we derive a family of
self-consistent equations [see (4.22) below] for the moments E〈G∗〉n〈G〉m follow-
ing [5], obtained by expanding one factor inside the expectation using the resolvent
identity and then applying a standard cumulant expansion (see Lemma 3.1 below)
to the resulting expression of the form Ef (h)h. The main work of the first step
is to estimate the error terms of the self-consistent equation. An important ingre-
dient is a careful estimate of the remainder term in the cumulant expansion [see
Lemma 4.6(i) below], which allows us to remove the condition η � N−1/2 on the
spectral scale that would be required if one merely combined the local semicircle
law with the approach of [5]. Other important tools behind these estimates are new
precise high-probability bounds on the entries of the powers Gk of the resolvent
(see Lemma 4.4 below) and a further family of self-consistent equations for EGk

(see Lemma 4.8 below).
In the second step, performed in Section 5, we consider general test functions f .

The starting point is the well-known Helffer–Sjöstrand respresentation of (1.1)
as an integral of traces of resolvents. An important ingredient of the proof is a
self-consistent equation [see (5.21) below] that is used on the integrand of the
Helffer–Sjöstrand representation. Compared to the first step, we face the additional
difficulty that the arguments z of the resolvents are now integrated over, and may
in particular have very small imaginary parts. Handling such integrals for arbitrary
mesoscopic scales η and comparatively rough test functions in C1+o(1) requires
some care, and we use two different truncation scales N−1 � ω � σ � η in the
imaginary part of z, which allow us to extract the leading term. See Section 5 for
a more detailed explanation of the truncation scales. The error terms are estimated
by a generalization of the estimates established in the first step.
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Finally, in Section 6 we give a simple truncation and comparison argument that
allows us to consider without loss of generality Wigner matrices whose entries
have finite moments of all order, instead of finite moments of order 4 + o(1).

Conventions. We regard N as our fundamental large parameter. Any quanti-
ties that are not explicitly constant or fixed may depend on N ; we almost always
omit the argument N from our notation. We use C to denote a generic large posi-
tive constant, which may depend on some fixed parameters and whose value may
change from one expression to the next. Similarly, we use c to denote a generic
small positive constant.

2. Results. We begin this section by defining the class of random matrices
that we consider.

DEFINITION 2.1 (Wigner matrix). A Wigner matrix is a Hermitian N × N

matrix H = H ∗ ∈ C
N×N whose entries Hij satisfy the following conditions:

(i) The upper-triangular entries (Hij : 1 ≤ i ≤ j ≤ N) are independent.
(ii) We have EHij = 0 for all i, j , and E|√NHij |2 = 1 for i �= j .

(iii) There exist constants c,C > 0 such that E|√NHij |4+c−2δij ≤ C for
all i, j .

We distinguish the real symmetric case, where Hij ∈ R for all i, j , and the complex
Hermitian case, where EH 2

ij = 0 for i �= j .

For conciseness, we state our results for the real symmetric case. Analogous
results hold for the complex Hermitian case; see Remark 2.4 below.

Our first result is on the convergence of the trace of the resolvent G(z) := (H −
z)−1, where Im z �= 0. The Stieltjes transform of the empirical spectral measure of
H is

(2.1) G(z) := 1

N
TrG(z).

For x ∈R, z ∈ C, and Im z �= 0, the Wigner semicircle law 	 and its Stieltjes trans-
form m are defined by

(2.2) 	(x) := 1

2π

√(
4 − x2

)
+, m(z) :=

∫
	(x)

x − z
dx.

Denote by H := {z ∈ C : Im z > 0} the complex upper half-plane. Let (Y (b))b∈H
denote the complex-valued Gaussian process with mean zero and covariance

(2.3) E
(
Y(b1)Y (b2)

) = − 2

(b1 − b2)2
, E

(
Y(b1)Y (b2)

) = 0
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for all b1, b2 ∈ H. For instance, we can set

(2.4) Y(b) = 1√
2

(
2

b + i

)2 ∞∑
k=0

√
k + 1

(
b − i

b + i

)k

ϑk,

where (ϑk)
∞
k=0 is a family of independent standard complex Gaussians, where by

definition, a standard complex Gaussian is a mean-zero Gaussian random variable
X satisfying EX2 = 0 and E|X|2 = 1. Finally, for E ∈ R and η > 0, we define the
process (Ŷ (b))b∈H through

Ŷ (b) := Nη
(
G(E + bη) − m(E + bη)

)
for all b ∈ H. We may now state our first result.

THEOREM 2.2 (Convergence of the resolvent). Let H be a real symmetric
Wigner matrix. Fix α ∈ (0,1) and set η := N−α . Fix E ∈ (−2,2). Then the process
(Ŷ (b))b∈H converges in the sense of finite-dimensional distributions to (Y (b))b∈H
as N → ∞. That is, for any fixed p and b1, b2, . . . , bp ∈ H, we have

(2.5)
(
Ŷ (b1), . . . , Ŷ (bp)

) d−→ (
Y(b1), . . . , Y (bp)

)
as N → ∞.

Our second result is on the convergence of the trace of general functions of H .
For fixed r, s > 0, denote by C1,r,s(R) the space of all real-valued C1-functions
f such that f ′ is r-Hölder continuous uniformly in x, and |f (x)| + |f ′(x)| =
O((1 + |x|)−1−s). Let (Z(f ))f ∈C1,r,s (R) denote the real-valued Gaussian process
with mean zero and covariance

(2.6) E
(
Z(f1)Z(f2)

) = 1

2π2

∫
(f1(x) − f1(y))(f2(x) − f2(y))

(x − y)2 dx dy

for all f1, f2 ∈ C1,r,s(R) [see also (1.2)]. Our next result is the weak convergence
of the process

(2.7) Ẑ(f ) := Trf
(

H − E

η

)
− N

∫ 2

−2
	(x)f

(
x − E

η

)
dx,

where f ∈ C1,r,s(R). We may now state our second result.

THEOREM 2.3 (Convergence of general test functions). Let H be a real sym-
metric Wigner matrix. Fix α ∈ (0,1) and set η := N−α . Fix E ∈ (−2,2). Then
the process (Ẑ(f ))f ∈C1,r,s (R) converges in the sense of finite-dimensional distribu-
tions to (Z(f ))f ∈C1,r,s (R) as N → ∞. That is, for any fixed p and f1, f2, . . . , fp ∈
C1,r,s(R), we have

(2.8)
(
Ẑ(f1), . . . , Ẑ(fp)

) d−→ (
Z(f1), . . . ,Z(fp)

)
as N → ∞.
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REMARK 2.4. In the complex Hermitian case, Theorems 2.2 and 2.3 remain
true up to an additional factor 1/2 in the covariances. More precisely, if H is a
complex Wigner matrix then (2.5) is replaced by

(2.9)
(
Ŷ (b1), . . . , Ŷ (bp)

) d−→ 1√
2

(
Y(b1), . . . , Y (bp)

)
and (2.8) by

(2.10)
(
Ẑ(f1), . . . , Ẑ(fp)

) d−→ 1√
2

(
Z(f1), . . . ,Z(fp)

)
.

The minor modifications to the proof in the complex Hermitian case are given in
Section 7 below.

3. Tools. The rest of this paper is devoted to the proofs of Theorems 2.2
and 2.3. In this section, we collect notation and tools that are used throughout
the paper.

Let M be an N ×N matrix. We use the notation Mij
n ≡ (Mij )

n, M∗n ≡ (M∗)n,
M∗

ij ≡ (M∗)ij = Mji . We denote by ‖M‖ the operator norm of M , and abbrevi-

ate M := 1
N

TrM . It is easy to see that ‖G(E + iη)‖ ≤ |η|−1. For σ > 0, we use
N (0, σ 2) to denote the real Gaussian random variable with mean zero and vari-

ance σ 2, and NC(0, σ 2)
d= σNC(0,1) the complex Gaussian random variable with

mean zero and variance σ 2. We abbreviate 〈X〉 := X − EX for any random vari-
able X with finite expectation. Finally, if h is a real-valued random variable with
finite moments of all order, we denote by Ck(h) the kth cumulant of h, that is,

(3.1) Ck(h) := (−i)k · (∂k
λ logEeiλh)∣∣

λ=0.

We now state the cumulant expansion formula that is a central ingredient of the
proof. The formula is analogous to the corresponding formula in [5], and its proof
is obtained as a minor modification whose details we omit.

LEMMA 3.1 (Cumulant expansion). Let h be a real-valued random variable
with finite moments of all order, and f a complex-valued smooth function on R.
Then for any fixed l ∈ N we have

(3.2) Ef (h)h =
l∑

k=0

1

k!Ck+1(h)Ef (k)(h) + Rl+1,

provided all expectations in (3.2) exist. For any fixed τ > 0, the remainder term
Rl+1 satisfies

(3.3)
Rl+1 = O(1) ·E∣∣hl+2 · 1{|h|>Nτ−1/2}

∣∣ · ∥∥f (l+1)
∥∥∞

+ O(1) ·E|h|l+2 · sup
|x|≤Nτ−1/2

∣∣f (l+1)(x)
∣∣.
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The bulk of the proof is performed on Wigner matrices satisfying a stronger
condition than Definition 2.1(iii) by having entries with finite moments of all order.

DEFINITION 3.2. We consider the subset of Wigner matrices obtained from
Definition 2.1 by replacing (iii) with:

(iii)′ For each p ∈ N there exists a constant Cp such that E|√NHij |p ≤ Cp for
all N, i, j .

We focus on Wigner matrices satisfying Definition 3.2 until Section 6, where we
explain how to relax the condition (iii)′ to (iii) using a Green function comparison
argument; see Section 6 for more details.

We shall deduce Theorem 2.3 from Theorem 2.2 using the Helffer–Sjöstrand
formula [7], which is summarized in the following result whose standard proof we
omit.

LEMMA 3.3 (Helffer–Sjöstrand formula). Let f ∈ C1,r,s(R) with some
r, s > 0. Let f̃ be the almost analytic extension of f defined by

(3.4) f̃ (x + iy) := f (x) + i
(
f (x + y) − f (x)

)
.

If f is further in C2(R), we can also set

(3.5) f̃ (x + iy) := f (x) + iyf ′(x).

Let χ ∈ C∞
c (R) be a cutoff function satisfying χ(0) = 1, and by a slight abuse of

notation write χ(z) ≡ χ(Im z). Then for any λ ∈ R we have

(3.6) f (λ) = 1

π

∫
C

∂z̄(f̃ (z)χ(z))

λ − z
d2z,

where ∂z̄ := 1
2(∂x + i∂y) is the antiholomorphic derivative and d2z the Lebesgue

measure on C.

The following definition introduces a notion of a high-probability bound that is
suited for our purposes. It was introduced (in a more general form) in [13].

DEFINITION 3.4 (Stochastic domination). Let

X = (
X(N)(u) : N ∈N, u ∈ U(N)), Y = (

Y (N)(u) : N ∈ N, u ∈ U(N))
be two families of nonnegative random variables, where U(N) is a possibly N -
dependent parameter set. We say that X is stochastically dominated by Y , uni-
formly in u, if for all (small) ε > 0 and (large) D > 0 we have

(3.7) sup
u∈U(N)

P
[
X(N)(u) > NεY (N)(u)

] ≤ N−D

for large enough N ≥ N0(ε,D). If X is stochastically dominated by Y , we use the
notation X ≺ Y . The stochastic domination will always be uniform in all parame-
ters, such as z and matrix indices, that are not explicitly constant.
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We conclude this section with the local semicircle law for Wigner matrices from
[13, 16]. For a recent survey of the local semicircle law, see [3], where the follow-
ing version of the local semicircle law is stated.

THEOREM 3.5 (Local semicircle law). Let H be a Wigner matrix satisfying
Definition 3.2, and define the spectral domain

S := {
E + iη : |E| ≤ 10,0 < η ≤ 10

}
.

Then we have the bounds

(3.8) max
i,j

∣∣Gij (z) − δijm(z)
∣∣ ≺

√
Imm(z)

Nη
+ 1

Nη

and

(3.9)
∣∣G(z) − m(z)

∣∣ ≺ 1

Nη
,

uniformly in z = E + iη ∈ S. Moreover, outside the spectral domain we have the
stronger estimates

(3.10) max
i,j

∣∣Gij (z) − δijm(z)
∣∣ ≺ 1√

N

and

(3.11)
∣∣G(z) − m(z)

∣∣ ≺ 1

N
,

uniformly in z ∈ H \ S.

4. Convergence of the resolvent. In this section, we prove the following
weaker form of Theorem 2.2.

THEOREM 4.1. Theorem 2.2 holds for Wigner matrices H satisfying Defini-
tion 3.2, and the convergence also holds in the sense of moments.

For the statements of the following results, we abbreviate G ≡ G(E + iη) and
[G] := G − m(E + iη). The following result is a special case of Theorem 4.1.

PROPOSITION 4.2. Under the assumptions of Theorem 4.1, we have

(4.1) Nη[G] d−→ NC

(
0,

1

2

)

as N → ∞. The convergence also holds in the sense of moments.
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The main work in this section is to show the one-dimensional case from Propo-
sition 4.2, whose proof can easily be extended to the general case of Theorem 4.1
(see Section 4.4 below). Recall the notation 〈X〉 := X − EX. Proposition 4.2 is a
direct consequence of the following lemma.

LEMMA 4.3. Under the assumptions of Theorem 4.1, the following hold:

(i) For fixed m,n ∈ N satisfying m + n ≥ 2 we have

(4.2) E
〈
G∗〉n〈G〉m =

⎧⎨
⎩

n!
2n

N2n(α−1) + O
(
N2n(α−1)−c0

)
, if m = n,

O
(
N(m+n)(α−1)−c0

)
, if m �= n,

where

(4.3) c0 ≡ c0(α) := 1

3
min{α,1 − α}.

(ii) We have

(4.4) [G] − 〈G〉 = EG − m(E + iη) = O
(
Nα−1−c0

)
,

with c0 defined in (4.3).

As advertised, Proposition 4.2 follows immediately from Lemma 4.3. Indeed,
suppose that Lemma 4.3 holds. From (4.2), we find that N1−α〈G〉 converges to
NC(0,1/2) in the sense of moments, and hence also in distribution. Proposition 4.2
therefore follows from (4.4).

The bulk of this section, Sections 4.1–4.3, is devoted to the proof of Lemma 4.3.

4.1. Preliminary estimates on G. We begin with estimates on the entries
of Gk . For k ≥ 2, the bounds provided by the following lemma are significantly
better than those obtained for Gk by applying the estimate (3.8) to each entry
of the matrix product. For instance, a straightforward application of (3.8) yields
|(Gk)ij | ≺ Nk(1+α)/2−1, which is not enough to conclude the proof of Lemma 4.3.
The following result yields bounds that grow slower with k and in addition pro-
vide extra smallness for the off-diagonal entries of Gk . Both of these features are
necessary for the proof of Lemma 4.3.

LEMMA 4.4. Under the conditions of Theorem 4.1, for any fixed k ∈ N+ we
have

(4.5)
∣∣〈Gk 〉∣∣ ≺ Nkα−1

as well as

(4.6)
∣∣(Gk)

ij

∣∣ ≺
{
N(k−1)α, if i = j,

N(k−1/2)α−1/2, if i �= j,

uniformly in i, j .
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PROOF. We first prove (4.5). The case k = 1 is easy. Indeed, from (3.9) we get

(4.7)
∣∣〈G〉∣∣ ≤ ∣∣[G]∣∣+ ∣∣E[G]∣∣ ≺ Nα−1

as desired, where we used the definition of ≺ combined with the trivial bound
‖G‖ ≤ Nα to estimate E[G].

Next, for k ≥ 2 we write

(4.8) Gk =
(

(H − E)/η + i

(H − E)2/η2 + 1

)k

· η−k = f

(
H − E

η

)
· η−k,

where we defined f (x) := ( x+i
x2+1

)k . Note that f : R → C is smooth, and for any

n ∈ N, |f (n)(x)| = O((1 + |x|)−2). We define f̃ as in (3.5) and let χ be as in
Lemma 3.3 and satisfy χ(y) = 1 for |y| ≤ 1. Writing fη(x) := f (x−E

η
), we obtain

from Lemma 3.3 that

fη(H) = 1

π

∫
C

∂z̄(f̃η(z)χ(z/η))

H − z
d2z,

so that

(4.9)

〈
Gk 〉 = 1

2πηk

∫
R2

(
iyf ′′

η (x)χ(y/η) + i

η
fη(x)χ ′(y/η) − y

η
f ′

η(x)χ ′(y/η)

)

× 〈
G(x + iy)

〉
dx dy.

In order to estimate the right-hand side, we use (3.9) and (3.11) to obtain

(4.10)
∣∣〈G(x + iy)

〉∣∣ ≺ 1

N |y|
uniformly for |y| ∈ (0,1) and x. Hence,

(4.11)

1

2πηk

∫
R2

∣∣iyf ′′
η (x)χ(y/η)

〈
G(x + iy)

〉∣∣dx dy

≺ 1

2πηk

∫
R2

∣∣∣∣ 1

N
f ′′

η (x)χ(y/η)

∣∣∣∣dx dy = O(1)

Nηk
.

(Note that the use of stochastic domination inside the integral requires some jus-
tification. In fact, we use that a high-probability bound of the form (4.10) holds
simultaneously for all x ∈ R and |y| ∈ (0,1). We refer to [3], Remark 2.7 and
Lemma 10.2, for further details. Similarly, by our choice of χ , we find

1

2πηk

∫
R2

∣∣∣∣ i

η
fη(x)χ ′(y/η)

〈
G(x + iy)

〉∣∣∣∣dx dy

≺ 1

2πηk

∫
|y|≥η

∣∣∣∣ 1

Nη2 fη(x)χ ′(y/η)

∣∣∣∣dx dy = O(1)

Nηk
.
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An analogous estimate yields

1

2πηk

∫
R2

∣∣∣∣yηf ′
η(x)χ ′(y/η)

〈
G(x + iy)

〉∣∣∣∣dx dy ≺ 1

Nηk
.

Altogether we have |〈Gk〉| ≺ Nkα−1, which is (4.5).
Next, we prove (4.6). For k = 1, we use the well-known bound |m(z)| < 1,

which follows using an elementary estimate from the fact that m is the unique
solution of

(4.12) m(z) + 1

m(z)
+ z = 0

satisfying Imm(z) Im z > 0. Thus, by (3.8) we have

(4.13)
∣∣(G)ij

∣∣ ≺
{

1, if i = j,

N(α−1)/2, if i �= j,

which is (4.6) for k = 1. The extension to k ≥ 2 follows again using Lemma 3.1,
and we omit the details. �

Lemma 4.4 is very useful in estimating the expectations involving entries of G,
in combination with the following elementary result about stochastic domination.

LEMMA 4.5. (i) If X1 ≺ Y1 and X2 ≺ Y2 then X1X2 ≺ Y1Y2.
(ii) Suppose that X is a nonnegative random variable satisfying X ≤ NC and

X ≺ � for some deterministic � ≥ N−C . Then EX ≺ �.

4.2. Proof of Lemma 4.3(i). Abbreviating ζi := E|√NHii |2, we find from
Definition 3.2(iii)′ that ζi = O(1). We write z := E + iη and often omit the ar-
gument z from our notation. Note that G = (H − z)−1 and G∗ = (H − z̄)−1. In
particular, Theorem 3.5 also holds for G∗ with obvious modifications accounting
for the different sign of η. For m,n ≥ 1, we need to compute

(4.14) E
〈
G∗〉n〈G〉m = E

〈〈G〉m−1〈G∗〉n〉G.

By the resolvent identity, we have

G = 1

z
GH − 1

z
I,

so that

(4.15) E
〈
G∗〉n〈G〉m = 1

z
E
〈〈
G∗〉n〈G〉m−1〉GH = 1

zN

∑
i,j

E
〈〈
G∗〉n〈G〉m−1〉GijHji.

Since H is symmetric, for any differentiable f = f (H) we set

(4.16)
∂

∂Hij

f (H) = ∂

∂Hji

f (H) := d

dt

∣∣∣∣
t=0

f
(
H + t�(ij)),
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where �(ij) denotes the matrix whose entries are zero everywhere except at the
sites (i, j) and (j, i) where they are one: �

(ij)
kl = (δikδjl + δjkδil)(1 + δij )

−1.
We then compute the last averaging in (4.15) using the formula (3.2) with f =
fij (H) := 〈〈G∗〉n〈G〉m−1〉Gij , h = Hji , and obtain

(4.17)

zE
〈
G∗〉n〈G〉m = 1

N2

∑
i,j

E
∂(〈〈G∗〉n〈G〉m−1〉Gij )

∂Hji

(
1 + δji(ζi − 1)

)+ L

= 1

N2

∑
i,j

E
〈〈
G∗〉n〈G〉m−1〉∂Gij

∂Hji

(1 + δji)

+ 1

N2

∑
i,j

E
∂(〈〈G∗〉n〈G〉m−1〉)

∂Hji

Gij (1 + δji) + K + L

=: (a) + (b) + K + L,

where

(4.18) K = N−2
∑
i

E
∂(〈〈G∗〉n〈G〉m−1〉Gii)

∂Hii

(ζi − 2)

and

(4.19) L = N−1 ·∑
i,j

[
l∑

k=2

1

k!Ck+1(Hji)E
∂k(〈〈G∗〉n〈G〉m−1〉Gij )

∂Hji
k

+ R
(ji)
l+1

]
.

Here, l is a fixed positive integer to be chosen later, and R
(ji)
l+1 is a remainder term

defined analogously to Rl+1 in (3.2). More precisely, we have the bound

(4.20)
R

(ji)
l+1 = O(1) ·E∣∣Hji

l+21{|Hji |>Nτ−1/2}
∣∣ · ∥∥∂l+1

ji fij (H)
∥∥∞

+ O(1) ·E∣∣Hji
l+2∣∣ ·E sup

|x|≤Nτ−1/2

∣∣∂l+1
ji fij

(
H(ij) + x�(ij))∣∣,

where we define H(ij) := H − Hij�
(ij), so that the matrix H(ij) has zero entries

at the positions (i, j) and (j, i), and abbreviate ∂ij := ∂
∂Hij

. Note that for G =
(H − z)−1 we have

(4.21)
∂Gij

∂Hkl

= −(GikGlj + GilGkj )(1 + δkl)
−1,
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which gives

(a) = N−2
∑
i,j

E
〈〈
G∗〉n〈G〉m−1〉(−GijGij − GiiGjj )

= −N−1
E
〈
G∗〉n〈G〉m−1〈G2〉−E

〈
G∗〉n〈G〉m−1〈G2〉

= −N−1
E
〈
G∗〉m〈G〉m−1〈G2〉−E

〈
G∗〉n〈G〉m〈G〉

− 2E
〈
G∗〉n〈G〉mEG +E

〈
G∗〉m〈G〉m−1

E〈G〉2.

Similarly, a straightforward calculation gives

(b) = − 2

N2

[
nE

〈
G∗〉n−1〈G〉m−1GG∗2 + (m − 1)E

〈
G∗〉n〈G〉m−2G3].

Altogether we obtain

(4.22)

E
〈
G∗〉n〈G〉m = 1

T
E
〈
G∗〉n〈G〉m+1 − 1

T
E
〈
G∗〉n〈G〉m−1

E〈G〉2

+ 1

T N
E
〈
G∗〉n〈G〉m−1〈G2〉+ 2m − 2

N2T
E
〈
G∗〉n〈G〉m−2G3

− K

T
− L

T
+ 2n

N2T
E
〈
G∗〉n−1〈G〉m−1GG∗2,

where T := −z − 2EG. From (3.9), (4.12) and Lemma 4.5 it is easy to see that

(4.23)
∣∣∣∣ 1

T

∣∣∣∣ = O(1),

and the implicit constant depends only on the distance to the spectral edge

(4.24) κ := 2 − |E|.
In (4.22), the last term is the leading term. The calculation of (4.22) consists of
computing the leading term and estimating the subleading terms. We aim to show
that the subleading terms are of order N(m+n)(α−1)−c0 .

We begin with L. For k ≥ 2, define

(4.25) Jk := N−(k+3)/2
∑
i,j

∣∣∣∣E∂k(〈〈G∗〉n〈G〉m−1〉Gij )

∂Hji
k

∣∣∣∣.

LEMMA 4.6. Let R
(ji)
l+1 be as in (4.19).

(i) For any fixed D0 > 0 there exists some l0 = l0(D0) ≥ 2 such that

(4.26)
∑
i,j

R
(ji)
l0+1 = O

(
N−D0

)
.
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(ii) For all fixed k ≥ 2 we have

(4.27) Jk = O
(
N(m+n)(α−1)−c0

)
,

where c0 is defined in (4.3).

Before proving Lemma 4.6, we show how to use it to estimate L. By setting
D0 = (m + n)(1 − α) in (4.26), we obtain

(4.28)
∑
i,j

R
(ji)
l0+1 = O

(
N(m+n)(α−1))

for some l0 ≥ 2. From Definition 3.2 (iii)′ we get

max
i,j

∣∣Ck(Hji)
∣∣ = O

(
N−k/2)

for all k ≥ 2. Thus, (4.27) and (4.28) together imply

(4.29) L = O
(
N(m+n)(α−1)−c0

)
,

as desired.

PROOF OF LEMMA 4.6(i). Let D0 > 0 be given. Fix i, j , and choose τ =
min {α/2, (1 − α)/4} in (4.20). Define W := Hij�

(ij) and Ĥ := H(ij) = H − W .
Let Ĝ := (Ĥ − E − iη)−1. We have the resolvent expansions

(4.30) Ĝ = G + (GW)G + (GW)2Ĝ

and

(4.31) G = Ĝ − (ĜW)Ĝ + (ĜW)2G.

Note that only two entries of W are nonzero, and they are stochastically domi-
nated by N−1/2. Then the trivial bound maxa,b |Ĝab| ≤ Nα together with (4.13)
and (4.30) show that maxa �=b |Ĝab| ≺ N−(α−1)/2, and maxa |Ĝaa| ≺ 1. Combining
with (4.31), the trivial bound maxa,b |Gab| ≤ Nα , and the fact Ĝ is independent of
W , we have

(4.32) max
a �=b

sup
|Hji |≤Nτ−1/2

|Gab| ≺ N−(α−1)/2

and

(4.33) max
a

sup
|Hji |≤Nτ−1/2

|Gaa| ≺ 1.

Now let us estimate the last term in (4.20). We have the derivatives

∂jiGab = −(GajGib + GaiGjb)(1 + δji)
−1, ∂ji〈G〉 = 2

N

(
G2)

ji(1 + δji)
−1
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and

∂ji

(
G2)

ab = ((
G2)

ajGib + (
G2)

aiGjb + (
G2)

bjGia + (
G2)

biGja

)
(1 + δji)

−1,

where ∂ij := ∂
∂Hij

. Hence, for any fixed l ∈ N, ∂l+1
ji fij is a polynomial in the vari-

ables 〈G〉, 〈G∗〉, 1
N

(G2)ab, 1
N

(G∗2)ab, Gab and G∗
ab, with a, b ∈ {i, j}. Note that

in each term of the polynomial, the sum of the degrees of 〈G〉, 〈G∗〉, 1
N

(G2)ab and
1
N

(G∗2)ab is m + n − 1, so that the product of the factors other than Gab and G∗
ab

is trivially bounded by O(N(m+n−1)α) for all H . Together with (4.32) and (4.33)
we know, for any fixed l ∈ N,

sup
|x|≤Nτ−1/2

∣∣∂l+1
ji fij

(
Ĥ + x�(ij))∣∣ ≺ N(m+n−1)α.

Note that E|Hji |l+2 = O(N−(l+2)/2), and we can find l0 = l0(D0,m,n) ≥ 2 such
that

(4.34) E|Hji |l0+2 ·E sup
x≤Nτ−1/2

∣∣∂l0+1
ji fij

(
Ĥ + x�(ij))∣∣ = O

(
N−(D0+2)).

Finally, we estimate the first term of (4.20). Note that by the trivial bound
|Gij | ≤ Nα , we have ‖∂l0+1

ji f (H)‖∞ = O(NC(m,n,l0)). From Definition 3.2(iii)′

we find maxi,j |Hij | ≺ 1√
N

, then by Hölder’s inequality we have

(4.35) E
∣∣Hji

l+21{|Hji |>Nτ−1/2}
∣∣ · ∥∥∂l+1

ji fij (H)
∥∥∞ = O

(
N−(D0+2)).

Combining (4.34) and (4.35), we obtain from (4.20) that R
(ji)
l0+1 = O(N−(D0+2)),

from which (4.26) follows. �

PROOF OF LEMMA 4.6(ii). We begin with the case k = 2, which gives rise to
terms of three types depending on how many derivatives act on Gij . We deal with
each type separately.

Step 1. The first type is

J2,1 := N−5/2
∑
i,j

∣∣∣∣E〈〈G∗〉n〈G〉m−1〉∂2Gij

∂Hji
2

∣∣∣∣.
Note that

∂2Gij

∂Hji
2 = a1 · GiiGjjGij + a2 · Gij

3,

where a1, a2 are some constants depending on the value of δji . Together with (4.6)
and Lemma 4.5, we find

J2,1 ≤ N−5/2 · N2 ·E∣∣〈〈G∗〉n〈G〉m−1〉∣∣ · O(
N(α−1)/2+ε)

= O
(
Nα/2+ε−1) ·E∣∣〈G∗〉n〈G〉m−1∣∣
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for any fixed ε > 0. Together with (4.5) and Lemma 4.5, we find

(4.36) J2,1 = O
(
Nα/2+ε−1+(m+n−1)(α−1)) = O

(
N(m+n)(α−1)−c0

)
,

where in the last inequality we chose ε small enough depending on α.
Step 2. The second type is

(4.37) J2,2 := N− 5
2
∑
i,j

∣∣∣∣E∂2(〈〈G∗〉n〈G〉m−1〉)
∂Hji

2 Gij

∣∣∣∣.
Since

∂〈G∗〉
∂Hji

= a3

N
· (G∗2)

ij and

∂2〈G∗〉
∂Hji

2 = a4

N
· (G∗2)

iiG
∗
jj + a5

N
· (G∗2)

jjG
∗
ii + a6

N
· (G∗2)

ijG
∗
ij

for some constants a3, a4 and a5, we see that the most dangerous term of J2,2 is of
the form

(4.38) P2,2 := N−7/2 ·∑
i,j

∣∣E〈G∗〉n−1〈G〉m−1(G∗2)
iiG

∗
jjGij

∣∣.
By (4.5), (4.6) and Lemma 4.5, we have

P2,2 = O
(
N−7/2+2+(m+n−2)(α−1)+α+(α−1)/2+ε) = O

(
N(m+n)(α−1)−α/2+ε)

for any fixed ε > 0. The other terms of J2,2 are estimated similarly. By choosing ε

small enough, we obtain

(4.39) J2,2 = O
(
N(m+n)(α−1)−c0

)
.

Step 3. The third type is

(4.40) J2,3 := N−5/2
∑
i,j

∣∣∣∣E∂(〈〈G∗〉n〈G〉m−1〉)
∂Hji

∂Gij

∂Hji

∣∣∣∣.
The most dangerous term in J2,3 is of the form

(4.41) P2,3 := N−7/2 ·∑
i,j

∣∣E〈G∗〉n−1〈G〉m−1(G∗2)
ijGiiGjj

∣∣.
Again by (4.5), (4.6) and Lemma 4.5, we have

P2,3 = O
(
N−7/2+2+(m+n−2)(α−1)+3α/2−1/2+ε) = O

(
N(m+n)(α−1)−c0

)
for any fixed ε > 0. The other terms of J2,3 are estimated similarly. Thus, we get

J2,3 = O
(
N(m+n)(α−1)−c0

)
.
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Step 4. Putting the estimates of the three types in Steps 1–3 together, we find

J2 = O
(
N(m+n)(α−1)−c0

)
,

which concludes the proof of (4.27) for k = 2.
For k ≥ 3, the estimates are easier than those in k = 2 because of the small

prefactor N−(k+3)/2 in the definition of Jk . Analogously to the case k = 2, we
obtain for any fixed k ≥ 3 and ε > 0,

Jk = O
(
N(m+n)(α−1)+1−k/2+ε),

for any ε > 0, from which (4.27) follows. We omit further details. �

Now we look at the term K defined in (4.18), whose estimate is contained in
the next lemma.

LEMMA 4.7. We have

(4.42) K = O
(
N(m+n)(α−1)−α/2).

PROOF. Let us first consider

(4.43) B := N−2
∑
i

E

∣∣∣∣∂(〈〈G∗〉n〈G〉m−1〉Gii)

∂Hii

∣∣∣∣.
The estimate of B is similar to that of J2, namely we will have terms of two types
depending on whether the derivative acts on Gii or not. We then estimate the terms
by Lemmas 4.4 and 4.5, which easily yields

B = O
(
N(m+n)(α−1)−α+ε) = O

(
N(m+n)(α−1)−α/2).

From Definition 3.2(iii)′ we get maxi |ζi − 2| = O(1), hence K = O(B). This
completes the proof. �

In order to conclude the proof, we need to use that the expectation of Gk is
typically much smaller than Gk itself. Lemma 4.4 implies that E|Gk| ≺ N(k−1)α ,
which is not enough to conclude the proof. We need some extra decay from the
expectation, which is provided by the following result.

LEMMA 4.8. Let c0 be defined as in (4.3). We have

(4.44) EGk = O
(
N(k−1)α−c0

)
for k = 2,3.
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PROOF. The proof is analogous to that of Lemma 4.6. Let us first consider
EG2. Again by the resolvent identity and the cumulant expansion, we arrive at

(4.45) EG2 = 1

T
EG + 2

T
E〈G〉〈G2〉+ 1

T N
EG3 − K(2)

T
− L(2)

T
,

where

(4.46) K(2) = N−2
∑
i

E
∂(G2)ii

∂Hii

(ζi − 2)

and

(4.47) L(2) = 1

N

∑
i,j

[
l∑

k=2

1

k!Ck+1(Hji)E
∂k(G2)ij

∂Hji
k

+ R
(2,j i)
l+1

]
,

and we recall the definition (4.23) of T . Here, R
(2,j i)
l+1 is a remainder term de-

fined analogously to R
(ji)
l+1 in (4.20). We can argue similarly as in the proof of

Lemma 4.6(i) and show that R
(2,j i)
l0+1 = O(N−1) for some l0 ∈ N. Thus, we have

|L(2)| ≤ ∑l0
k=2 O(J

(2)
k ) + O(1), where

(4.48) J
(2)
k := N−(k+3)/2

∑
i,j

∣∣∣∣E∂k(G2)ij

∂Hji
k

∣∣∣∣.
Analogously to the proof of Lemma 4.6(ii), we find

J
(2)
2 = O

(
N−5/2 · N2 · Nα+ε) = O

(
Nα+ε−1/2),

for any fixed ε > 0, and J
(2)
k = O(Nα−1/2) for k ≥ 3. This shows |L(2)| =

O(Nα+ε−1/2) for any fixed ε > 0. Similarly, as in Lemma 4.7, one can show
K(2) = O(Nα/2). By Lemmas 4.4 and 4.5, we have

(4.49)

∣∣E〈G〉〈G2〉∣∣ = O
(
N(α−1)+(2α−1)+ε) = O

(
N3α−2+ε),

1

N

∣∣EG3∣∣ = O
(
N−1+2α+ε),

for any fixed ε > 0. Hence, by using (4.23) and choosing ε small enough, we obtain∣∣EG2∣∣ ≤ O
(
N2α−1+ε)+ O

(
Nα/2)+ O

(
Nα+ε−1/2) = O

(
Nα−c0

)
.

The proof of the case k = 3 is similar, and we omit the details. �

Armed with Lemmas 4.6 and 4.8, we may now conclude the proof of
Lemma 4.3(i). We still have to estimate the subleading terms on the right-hand
side of (4.22). From (4.5), Lemma 4.5 and Lemma 4.8, we have

(4.50)
E
〈
G∗〉n〈G〉m−2G3 = E

〈
G∗〉n〈G〉m−2(

EG3 + 〈
G3〉)

= O
(
N(m+n)(α−1)+2−c0

)
.
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Moreover, (4.5) and Lemma 4.5 imply

E
〈
G∗〉n〈G〉m−1〈G2〉 = O

(
N(m+n)(α−1)+1−c0

)
,(4.51)

E
〈
G∗〉n〈G〉m+1 = O

(
N(m+n)(α−1)−c0

)
,(4.52)

as well as

(4.53) E
〈
G∗〉n〈G〉m−1

E〈G〉2 = O
(
N(m+n)(α−1)−c0

)
.

Applying (4.29), Lemma 4.8 and (4.50)–(4.53) to (4.22), together with (4.23), we
obtain

E
〈
G∗〉n〈G〉m = 2n

N2T
E
〈
G∗〉n−1〈G〉m−1GG∗2 + O

(
N(m+n)(α−1)−c0

)
.

By the resolvent identity,

(4.54) GG∗2 = 1

z − z̄

(
GG∗ − G∗2) = −N2α

4

(
G − G∗)− Nα

2i
G∗2.

Moreover, (4.5) and Lemmas 4.5 and 4.8 give |E〈G∗〉n−1〈G〉m−1G∗2| =
O(N(m+n−2)(α−1)+α−c0). We therefore conclude that

E
〈
G∗〉n〈G〉m = − n

2T
N2α−2

E
〈
G∗〉n−1〈G〉m−1(G − G∗)+ O

(
N(m+n)(α−1)−c0

)
,

which yields

E
〈
G∗〉n〈G〉m = − n

2T
N2α−2

E
〈
G∗〉n−1〈G〉m−1(

EG −EG∗)+ O
(
N(m+n)(α−1)−c0

)
by (4.5) and Lemma 4.5. Writing ξ := ImG, we have EG − EG∗ = 2iEξ . More-
over, (3.9) and (4.12) imply that T = −z − 2EG = −2iEξ + O(N−c0). Together
with (4.5) and Lemma 4.5, we have

(4.55) E
〈
G∗〉n〈G〉m = n

2
N2α−2

E
〈
G∗〉n−1〈G〉m−1 + O

(
N(m+n)(α−1)−c0

)
for m,n ≥ 1.

The preceding argument can also be used to show

(4.56) E〈G〉m = O
(
Nm(α−1)−c0

)
for all m ≥ 2. In fact, one can start with

E〈G〉m = 1

zN

∑
i,j

E
〈〈G〉m−1〉GijHji

and apply Lemma 3.1 to get an analogue of (4.22), which is

(4.57)

E〈G〉m = 1

T
E〈G〉m+1 − 1

T
E〈G〉m−1

E〈G〉2 + 1

T N
E〈G〉m−1〈G2〉

+ 2m − 2

N2T
E〈G〉m−2G3 − K(3)

T
− L(3)

T
.
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Here, T = −z − 2EG, and K(3), L(3) are defined analogously as K and L in
(4.22). Due to the absence of G∗, there is no leading term in (4.57) as the last term
in (4.22). One can easily apply our previous techniques and show every term in the
right-hand side of (4.57) is bounded by O(Nm(α−1)−c0).

By taking complex conjugation in (4.56), we also have

(4.58) E
〈
G∗〉n = O

(
Nn(α−1)−c0

)
for all n ≥ 2. Now (4.2) follows from (4.55), (4.56) and (4.58) combined with
induction. This concludes the proof of Lemma 4.3(i).

4.3. Proof of Lemma 4.3(ii). Again by the resolvent identity and the cumulant
expansion, we have

(4.59) EG = 1

U

(
1 +E〈G〉2 + 1

N
EG2 − K(4) − L(4)

)
,

where U := −z −EG, z = E + iη,

(4.60) K(4) = N−2
∑
i

E
∂Gii

∂Hii

(ζi − 2)

and

(4.61) L(4) = N−1
∑
i,j

[
l∑

k=2

1

k!Ck+1(Hji)E
∂kGij

∂Hji
k

+ R
(4,j i)
l+1

]
.

Here, R
(4,j i)
l+1 is a remainder term defined analogously to R

(ji)
l+1 in (4.20). We can

argue similarly as in the proof of Lemma 4.6(i) and show that R
(4,j i)
l0+1 = O(N−2)

for some l0 ∈ N. Thus, we have |L(4)| ≤ ∑l0
k=2 O(J

(4)
k ) + O(N−1), where

(4.62) J
(4)
k := N−(k+3)/2

∑
i,j

∣∣∣∣E∂kGij

∂Hji
k

∣∣∣∣.
Analogously to the proof of Lemma 4.6(ii), we find

J
(4)
2 = O

(
N−5/2 · N2 · N(α−1)/2+ε) = O

(
Nα/2−1+ε),

for any fixed ε > 0, and J
(4)
k = O(Nα/2−1) for k ≥ 3. This shows that |L(2)| =

O(Nα/2−1+ε) for any fixed ε > 0. As in Lemma 4.7, one can show that K(4) =
O(N−1). By (4.56) and Lemma 4.8, we have

E〈G〉2 = O
(
N2α−2−c0

)
and

1

N
EG2 = O

(
Nα−1−c0

)
.

Altogether we have

(4.63) EG(z +EG) + 1 = O
(
Nα−1−c0

)
.
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Recall that m(z) is the unique solution of x2 + zx + 1 = 0 satisfying
sgn(Imm(z)) = sgn(Im z) = sgn(η) = 1. Let m̃(z) be the other solution of
x2 + zx + 1 = 0. An application of Lemma 5.5 in [3] gives

(4.64) min
{∣∣EG − m(z)

∣∣, ∣∣EG − m̃(z)
∣∣} = O(Nα−1−c0)√

κ
= O

(
Nα−1−c0

)
,

where we recall the definition (4.24) of κ . Since G = (H − z)−1, we know that
sgn(ImG) = sgn(Im z) > 0. Also, we have Im m̃(z) ≤ −c for some c = c(κ) > 0.
This shows |EG − m̃(z)| ≥ c. Thus, from (4.64) we have∣∣EG − m(z)

∣∣ = O
(
Nα−1−c0

)
,

which completes the proof.

4.4. Proof of Theorem 4.1. Let Ỹ (b) := N1−α〈G(E + bη)〉. As in the one-
dimensional case, Proposition 4.2, Theorem 4.1 follows from the following lemma,
which generalizes Lemma 4.3.

LEMMA 4.9. Let c0 be defined as in (4.3). Under the assumptions of Theo-
rem 4.1, the following hold:

(i) For fixed m,n ≥ 1 and i1, . . . , im, j1, . . . , jn ∈ {1,2, . . . , p}, we have

(4.65)

E
[
Ỹ (bi1) · · · Ỹ (bim)Ỹ (bj1) · · · Ỹ (bjn)

]

=
⎧⎪⎨
⎪⎩
∑∏ −2

(bil − bjk
)2

+ O
(
N−c0

)
, if m = n,

O
(
N−c0

)
, if m �= n,

where the notation
∑∏

means summing over all distinct ways of partitioning
bi1, . . . , bim, bj1, . . . , bjn into pairs bil , bjk

, and each summand is the product of
the n pairs.

(ii) For any fixed b ∈ H, we have

(4.66) Ŷ (b) − Ỹ (b) = EŶ (b) = O
(
N−c0

)
.

Suppose Lemma 4.9 holds. Result (4.65) implies

(4.67)
(
Ỹ (b1), . . . , Ỹ (bp)

) d−→ (
Y(b1), . . . , Y (bp)

)
.

Theorem 4.1 then follows from (4.66).

PROOF OF LEMMA 4.9. The proof is similar to that of Lemma 4.3. Indeed,
we see that

(4.68)

E
[
Ỹ (bi1) · · · Ỹ (bim)Ỹ (b̄j1) · · · Ỹ (b̄jn)

]
= N(m+n)(1−α)

E
[〈
G(E + bi1η)

〉 · · · 〈G(E + bimη)
〉〈
G(E + bj1η)

〉 · · ·
× 〈

G(E + bjnη)
〉]
,



MESOSCOPIC EIGENVALUE STATISTICS OF WIGNER MATRICES 1531

which can be computed in the same way as E〈G〉m〈G∗〉n = E〈G(E + iη)〉m ×
〈G(E − iη)〉n in Section 4.2. Most of our previous techniques and estimates can be
applied to the new computation, and the only difference is when using the resolvent
identity [e.g., in (4.54)], we now have

G(E + bikη)G(E + bjl
η) = 1

bik − bjl

(
G(E + bikη) − G(E + bjl

η)
)

instead of

GG∗ = 1

2i

(
G − G∗).

This will give us different constants in the leading terms, and lead to the induction
step

E
[
Ỹ (bi1) · · · Ỹ (bim)Ỹ (bj1) · · · Ỹ (bjn)

]
=

n∑
k=1

−2

(bim − bjk
)2
E
[
Ỹ (bi1) · · · Ỹ (bim−1)Ỹ (bj1) · · · Ỹ (bjn)/Ỹ (bjk

)
]

+ O
(
N−c0

)
for m,n ≥ 1. One can also show that

E
[
Ỹ (bi1) · · · Ỹ (bim)

] = O
(
N−c0

)
and E

[
Ỹ (bj1) · · · Ỹ (bjn)

] = O
(
N−c0

)
for m,n ≥ 2. These results together imply (4.65).

Moreover, (4.66) says nothing but N1−α
E(G(E + bη) − m(E + bη)) =

O(N−c0), and this can be shown using the steps in Section 4.3, in which we
proved N1−α

E(G(E + iη) − m(E + iη)) = O(N−c0). �

5. Convergence of general functions. Similarly, as in the resolvent case, in
Section 5 we prove the following analogue of Theorem 2.3.

THEOREM 5.1. Theorem 2.3 holds for Wigner matrices H satisfying Defini-
tion 3.2, and the convergence also holds in the sense of moments.

Let us abbreviate fη(x) := f (x−E
η

), and denote [Trfη(H)] := Trfη(H) −
N

∫ 2
−2 	(x)fη(x)dx. Our next result is a particular case of Theorem 5.1.

PROPOSITION 5.2. Let η,E,H be as in Theorem 5.1. Then

(5.1)
[
Trfη(H)

] d−→ N
(

0,
1

2π2

∫ (
f (x) − f (y)

x − y

)2
dx dy

)

as N → ∞. The convergence also holds in the sense of moments.
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Our main work in is section will be to show the above one-dimensional case,
since the proof can easily be extended to the general case (see Section 5.5). Recall
that for a random variable X, 〈X〉 := X − EX. Proposition 5.2 is a direct conse-
quence of the following lemma.

LEMMA 5.3. Under the conditions of Theorem 5.1, we have the following
results:

(i) For any n ≥ 2

(5.2)
E
〈
Trfη(H)

〉n = n − 1

2π2

∫ (
f (x) − f (y)

x − y

)2
dx dy ·E〈Trfη(H)

〉n−2

+ O
(
N−c/n2)

,

where c = c(r, s, α) > 0.
(ii) The random variables [Trfη(H)] and 〈Trfη(H)〉 are close in the sense

that

(5.3)
[
Trfη(H)

]− 〈
Trfη(H)

〉 = E
[
Trfη(H)

] = O
(
N−rs2c0/16),

with c0 defined in (4.3).

Assume Lemma 5.3 holds. Then (5.2) and Wick’s theorem imply

(5.4)
〈
Trfη(H)

〉 d−→ N
(

0,
1

2π2

∫ (
f (x) − f (y)

x − y

)2
dx dy

)

as N → ∞. Note that the above result is proved in a stronger sense that we have
convergence in moments. Proposition 5.2 then follows from (5.3).

Sections 5.1 to 5.3 are devoted to proving Lemma 5.3(i). Before starting the
proof, we give some explanations of the ideas, especially the choice of truncations
in the proof. We use Lemma 3.3 to write fη(H) in the form (5.6) below, where
we scale the cutoff function χ to be supported in an interval of size O(σ), with
N−1 � σ � η. This scaling ensures that when we integrate ϕf , the integral of the
last term in (5.7) below dominates over the others.

We then write E〈Trfη(H)〉n as an integral over Cn, written
∫

F in (5.8) below.
The leading contribution to

∫
F arises from the region {|y1|, . . . , |yn| ≥ ω}, where

ω � N−1 is a second truncation scale. In order to ensure that
∫

F is small in the
complementary region, we require that ω � σ . Then, when estimating

∫
|y1|<ω F ,

the integral over z1 yields a factor that is small enough to compensate the integrals
from the other variables. We use the notation σ = N−(α+β) and ω = N−(α+γ ), so
that 0 < β < γ . In addition, for all steps of the analysis to work, we have further
requirements on the exponents γ and β; for instance, the last step in (5.18) below
requires nβ ≤ rsγ /4. Combining all requirements, we are led to set β as in (5.5)
below.
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5.1. Transformation by Helffer–Sjöstrand formula. Let f ∈ C1,r,s(R) with
r, s > 0, and without loss of generality we assume s ≤ 1. Fix n ≥ 2, and define
σ := N−(α+β), where

(5.5) β := rs2c0

24n2 ,

and c0 is defined in (4.3). We define f̃ as in (3.4). Let χ be as in Lemma 3.3 satis-
fying χ(y) = 1 for |y| ≤ 1, and χ(y) = 0 for |y| ≥ 2. An application of Lemma 3.3
gives

(5.6) fη(H) = 1

π

∫
C

∂z̄(f̃η(z)χ(z/σ))

H − z
d2z =

∫
C

ϕf (z)G(z)d2z,

where

(5.7)

ϕf (x + iy) = 1

2π

(
(i − 1)

(
f ′

η(x + y) − f ′
η(x)

)
χ(y/σ)

− 1

σ

(
fη(x + y) − fη(x)

)
χ ′(y/σ) + i

σ
fη(x)χ ′(y/σ)

)
.

Thus,

(5.8)
E
〈
Trfη(H)

〉n = Nn
∫

ϕf (z1) · · ·ϕf (zn)E
〈1G〉 · · · 〈nG〉

d2z1 · · · d2zn

=:
∫

F,

where kG := (H − zk)
−1 for i ∈ {1,2, . . . , n}. Note that χ(y/σ) ≡ 0 for |y| ≥ 2σ ,

and we only need to consider the integral for |y1|, . . . , |yn| ≤ 2σ .

5.2. The subleading terms. Let ω := N−(α+γ ) with γ := 4nβ/rs, and by (5.5)
we have α + β < α + γ < 1. We define X := {|x1|, . . . , |xn| ≤ 2 − κ

2 } and Y :=
{|y1|, . . . , |yn| ∈ [ω,2σ ]}, where we recall the definition (4.24) of κ . We have a
lemma about

∫
F outside the region X × Y .

LEMMA 5.4. For F as in (5.8) we have

(5.9)
∫
(X×Y )c

F = O
(
N−β/2).

PROOF. We first estimate
∫
Rn×Y c F . By the estimates (3.9) and (3.11), we

know

(5.10)
∣∣〈1G〉 · · · 〈nG〉∣∣ ≺ 1

|y1 · · ·yn|Nn
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uniformly in {|y1|, . . . , |yn| ≤ 2σ }. Since χ ′(y/σ) = 0 for |y| < σ , we have

(5.11)

∫
|y|<ω

∣∣∣∣ϕf (z) · 1

y

∣∣∣∣d2z

= O(1) ·
∫
|y|<ω

∣∣∣∣(f ′
η(x + y) − f ′

η(x)
) · 1

y

∣∣∣∣dx dy

= O(1) ·
∫
|b|<Nβ−γ

∣∣∣∣(f ′(a + bN−β)− f ′(a)
) · 1

b

∣∣∣∣da db,

where in the second step we used the change of variables

(5.12) a := (x − E)/η and b := y/σ.

By the Hölder continuity and decay of the function f ′, we know

(5.13)

∣∣f ′(a + bN−β)− f ′(a)
∣∣ ≤ C min

{(|b|N−β)r , 1

1 + |a|1+s

}

≤ C
(|b|N−β)rq( 1

1 + |a|1+s

)1−q

for all q ∈ [0,1]. Choose q = q0(s) := s
2(1+s)

≥ s
4 , so that (1 + s)(1 − q0) = 1 +

s
2 > 1. Thus, we have

(5.14)

∫
|y|<ω

∣∣∣∣ϕf (z) · 1

y

∣∣∣∣d2z

= O
(
N−rq0β

) ·
∫
|b|<Nβ−γ

|b|rq0−1 1

1 + |a|1+s/2 da db

= O
(
N−rq0γ

)
.

Similarly, one can show that

(5.15)
∫
|y|∈[ω,σ)

∣∣∣∣ϕf (z) · 1

y

∣∣∣∣d2z = O
(
N−rq0β

)
.

We also have

(5.16)
∫
|y|≥σ

∣∣∣∣ϕf (z) · 1

y

∣∣∣∣d2z = Nβ
∫

1≤|b|≤2

∣∣∣∣ψf (a, b) · 1

b

∣∣∣∣da db = O
(
Nβ),

where we used the change of variables (5.12), and abbreviate

(5.17)
ψf (a, b) := 1

2π

(
N−β(i − 1)

(
f ′(a + bN−β)− f ′(a)

)
χ(b)

− (
f
(
a + bN−β)− f (a)

)
χ ′(b) + if (a)χ ′(b)

)
.
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Using Lemma 4.5, we have

(5.18)

∣∣∣∣
∫
Rn×Y c

F

∣∣∣∣ ≤ n

∫
|y1|<ω

|F |

≺
∫
|y1|<ω

∣∣∣∣ϕf (z1) · 1

y1
· · ·ϕf (zn) · 1

yn

∣∣∣∣d2z1 · · ·d2zn

=
∫
|y1|<ω

∣∣∣∣ϕf (z1) · 1

y1

∣∣∣∣dz1

×
∫ ∣∣∣∣ϕf (z2) · 1

y1
· · ·ϕf (zn) · 1

yn

∣∣∣∣d2z2 · · ·d2zn

= O
(
N−rq0γ · N(n−1)β) ≤ O

(
N−rsγ /4 · N(n−1)β)

≤ O
(
N−β).

Next, we estimate
∫
Xc×Y F . By the decay of the functions f and f ′, we have

(5.19)

∫
|x|>2− κ

2

∣∣∣∣ϕf (z) · 1

y

∣∣∣∣d2z

≤ Nβ
∫
|a|≥ κ

2η

∣∣∣∣ψf (a, b) · 1

b

∣∣∣∣da db

= O
(
Nβ) ·

(∫
|a|≥ κ

2η

1

1 + |a|1+s/2 da

+
∫
|a|≥ κ

2η

1

1 + |a|1+s
da +

∫
|a|≥ κ

2η

∣∣f (a)
∣∣da

)

= O
(
Nβ−sα/2).

where a, b are defined as in (5.12). Hence,

(5.20)

∣∣∣∣
∫
Xc×Y

F

∣∣∣∣ ≺
∫
{|x1|>2− κ

2 }×Y

∣∣∣∣ϕf (z1) · 1

y1
· · ·ϕf (zn) · 1

yn

∣∣∣∣d2z1 · · · d2zn

=O
(
N(n−1)β) ·

∫
{|x1|>2− κ

2 ,|y1|≥ω}

∣∣∣∣ϕf (z1) · 1

y1

∣∣∣∣d2z1

=O
(
Nnβ−sα/2) ≤ O

(
N−β).

Combining (5.18) and (5.20), we get∫
F =

∫
X×Y

F + O
(
N−β/2). �

5.3. The main computation. Now let us focus on the integral
∫
X×Y F . Note

that now we are in the “good” region where it is effective to apply the cumu-
lant expansion to the resolvent. In X ∩ Y , we want to compute the quantity
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E〈1G〉 · · · 〈nG〉. Note that this is very close to the expression we had in (4.14).
Let us abbreviate

Qm := 〈1G〉 · · · 〈mG
〉

and Q(k)
m := Qm/

〈kG〉
for all 1 ≤ k ≤ m ≤ n, and ζi := E|√NHii |2. We proceed the computation as in
Section 4.2, and get an analogue of (4.22):

(5.21)

EQn = 1

Tn

EQn

〈nG〉− 1

Tn

EQn−1E
〈nG〉2 + 1

NTn

EQn−1
〈nG2〉

− K̃

Tn

− L̃

Tn

+ 2

N2Tn

n−1∑
k=1

EQ
(k)
n−1

kG2 · nG,

where Tn := −zn − 2EnG,

K̃ = N−2
∑
i

E
∂(〈〈1G〉 · · · 〈n−1G〉〉 · nGii)

∂Hii

(ζi − 2)

and

L̃ = N−1
∑
i,j

[
l∑

k=2

1

k!Cl+1(Hji)E
∂k(〈〈1G〉 · · · 〈n−1G〉〉 · nGij )

∂Hji
k

+ R̃
(j i)
l+1

]
.

Here, R̃
(j i)
l+1 is a remainder term defined analogously to R

(ji)
l+1 in (4.20). Note in Y ,

we have |y1|, . . . , |yn| ≥ ω, and we have estimates analogue to those in Section 4.2.
We state these estimates in the next lemma and omit the proof.

LEMMA 5.5. Let us extend the definition of c0 in (4.3) to a function c0(·) :
(0,1) →R such that

(5.22) c0(x) := 1

3
min{x,1 − x}.

The following results hold uniformly in X × Y :

(i) Analogously to Lemma 4.4, for any m ∈N+ and k = 1,2, . . . , n, we have

(5.23)
∣∣〈kGm〉∣∣ ≺ Nm(α+γ )−1

as well as

(5.24)
∣∣(kGm)

ij

∣∣ ≺
{
N(m−1)(α+γ ), if i = j,

N(m−1/2)(α+γ )−1/2, if i �= j.

(ii) Analogously to (4.23), we have

(5.25)
∣∣∣∣ 1

Tn

∣∣∣∣ = O(1).
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(iii) Analogously to Lemma 4.6, we have

(5.26) |L̃| = O
(
Nn(α+γ−1)−c0(α+γ )).

(iv) Analogously to Lemma 4.7, we have

(5.27) |K̃| = O
(
Nn(α+γ−1)−(α+γ )/2).

(v) Analogously to Lemma 4.8, we have

(5.28) E
kG2 = O

(
Nα+γ−c0(α+γ ))

for k = 1,2, . . . , n.

Applying Lemma 5.5 to (5.21) yields

(5.29) EQn = 2

N2Tn

n−1∑
k=1

EQ
(k)
n−1

kG2 · nG + O
(
Nn(α+γ−1)−c0(α+γ ))

uniformly in X × Y . Note that by the definition of β and γ we have γ =
sc0(α)/6n < c0(α)/2, which gives c0(α + γ ) > 5c0(α)/6 > 0. Since we have the
simple estimate

(5.30)
∫ ∣∣ϕf (z)

∣∣d2z = O(η),

we know

(5.31)

∫
X×Y

F = Nn
∫
X×Y

ϕf (z1) · · ·ϕf (zn)EQn d2z1 · · ·d2zn

= 2Nn−2

Tn

n−1∑
k=1

∫
X×Y

ϕf (z1) · · ·ϕf (zn)EQ
(k)
n−1

kG2 · nGd2z1 · · ·d2zn

+ O
(
N−2c0(α)/3),

where in the estimate of the error term we implicitly used nγ = sc0(α)/6 ≤
c0(α)/6. By symmetry, it suffices to fix k ∈ {1,2, . . . , n − 1}, and consider the
integral over X × Y of

(5.32) Fkn := 2Nn−2

Tn

ϕf (z1) · · ·ϕf (zn)EQ
(k)
n−1

kG2 · nG.

As before, we summarize the necessary estimates into a lemma.

LEMMA 5.6. Let Fkn be as in (5.32). Then we have the following estimates:

(i) Let A1 := {(x, y) ∈ X × Y : ykyn > 0, |xk − xn| ≤ ηN−(n+1)γ }. Then

(5.33)
∣∣∣∣
∫
A1

Fkn

∣∣∣∣ ≺ N−γ .
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(ii) Let A2 := {(x, y) ∈ X × Y : ykyn > 0, |xk − xn| ∈ (ηN−(n+1)γ ,

ηN(n+1)γ /s]}. Then

(5.34)
∫
A2

Fkn = O
(
N−c0(α)/4),

where the function c0(·) is defined in (5.22).
(iii) For A3 := {(x, y) ∈ X × Y : |xk − xn| > ηN(n+1)γ /s}, we have

(5.35)
∣∣∣∣
∫
A3

Fkn

∣∣∣∣ ≺ N−γ .

PROOF. (i) By Lemma 5.5(i)–(ii), we have∣∣∣∣N
n−2

Tn

EQ
(k)
n−1

kG2 · nG

∣∣∣∣ ≺ ω−n

uniformly in A1. Thus, by (5.30) and the decay of f and f ′ we know

(5.36)

∣∣∣∣
∫
A1

F̃kn

∣∣∣∣ ≺ ω−n · ηn−2 ·
∫ ∣∣ϕf (zk) · ϕf (zn)

∣∣1{|xk−xn|≤η·N−(n+1)γ } d2zk d2zn

= O
(
ω−n · ηn) ∫ ∣∣ψf (ak, bk) · ψf (an, bn)

∣∣
× 1{|ak−an|≤N−(n+1)γ } dak dbk dan dbn

= O
(
Nnγ · N−(n+1)γ ) = O

(
N−γ ),

where we use the change of variables

(5.37) ai = (xi − E)/η and bi = yi/σ, i = k,n,

and ψf is defined as in (5.17).
(ii) Note that our assumption (5.5) on β shows ηN(n+1)γ /s = O(N−α/2). By

the resolvent identity, the semicircle law (3.9), and Lemma 5.5 we know

(5.38)

∣∣∣∣N
n−2

Tn

EQ
(k)
n−1

kG2 · nG

∣∣∣∣
=

∣∣∣∣Nn−2
EQ

(k)
n−1

(〈kG2〉 +E
kG2

Tn(zk − zn)
+ 〈nG〉 − 〈kG〉 +E(nG − kG)

Tn(zk − zn)2

)∣∣∣∣
≺ ω−(n−2) ·

(
ω−1N−c0(α+γ )

ηN−(n+1)γ
+ (Nω)−1 + (Nω)−1 + N−c0(α+γ )

η2N−2(n+1)γ

)

= O
(
η−n · N3nγ−c0(α+γ )) ≤ O

(
η−n · N−c0(α)/3)

uniformly in A2. Hence, (5.30) yields

(5.39)
∫
A2

Fkn = O
(
N−c0(α)/4).
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(iii) Similarly, as in (5.36), we know

(5.40)

∣∣∣∣
∫
A3

Fkn

∣∣∣∣ ≺ ω−n · ηn−2 ·
∫ ∣∣ϕf (zk) · ϕf (zn)

∣∣1{|xk−xn|>ηN(n+1)γ /s} d2zk d2zn

= O
(
ω−n · ηn) ∫ ∣∣ψf (ak, bk) · ψf (an, bn)

∣∣
× 1{|ak−an|>N(n+1)γ /s} dak dbk dan dbn.

Note that in {|ak − an| > N(n+1)γ /s}, either |ak| > 1
2N(n+1)γ /s or |an| >

1
2N(n+1)γ /s . Hence, by the decay conditions of f and f ′, we have∣∣∣∣

∫
A3

Fkn

∣∣∣∣ ≺ ω−n · ηn · N−(n+1)γ = N−γ . �

Let A4 := {(x, y) ∈ (X × Y) : ykyn < 0, |xk − xn| ≤ ηN(n+1)γ /s}. Note that Cn

is the disjoint union of A1, . . . ,A4. The next result is about the integral of Fkn in
A4, which gives the leading contribution.

LEMMA 5.7. We have

(5.41)

∫
A4

Fkn = 1

2π2

∫ (
f (x) − f (y)

x − y

)2
dx dy ·E〈Trfη(H)

〉n−2

+ O
(
N−rsβ/9),

where β is defined in (5.5).

PROOF. Step 1. By symmetry, let us consider A5 := {(x, y) ∈ A4 : yk ≥
ω,yn ≤ −ω, |xk − xn| ≤ ηN(n+1)γ /s}. Similarly, as in (5.38), we have

(5.42)

Nn−2

Tn

EQ
(k)
n−1

kG2 · nG

= Nn−2
EQ

(k)
n−1

E
nG −E

kG

Tn(zk − zn)2 + O
(
η−n · N−c0(α)/3)

uniformly in A5. Note the semicircle law (3.9) now gives

(5.43)
E

nG −E
kG

Tn

= E
nG −E

kG

−zn − 2EnG
= −1 + O

(
N−c0(α+γ ))

uniformly in A5. By (5.30), we know∫
A5

Fkn = Nn−2
∫
A5

ϕf (z1) · · ·ϕf (zn)EQ
(k)
n−1

−2

(zk − zn)2 d2z1 · · ·d2zn

+ O
(
N−c0(α)/3)

= −2
∫
A′

5

1

(zk − zn)2 ϕf (zk)ϕf (zn)d2zk d2zn ·
∫
A′′

5

F̂kn + O
(
N−c0(α)/3),
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where we decompose A5 = A′
5 × A′′

5, with A′
5 depends on (xk, yk, xn, yn). Here,

F̂kn is defined as

F̂kn := Nn−2ϕf (z1) · · ·ϕf (zn−1)/ϕf (zk)EQ
(k)
n−1.

Let X(k,n) := {|x1|, . . . , |xk−1|, |xk+1|, . . . , |xn−1| ≤ 2 − κ
2 }, and Y (k,n) := {|y1|,

. . . , |yk−1|, |yk+1|, . . . , |yn−1| ≥ ω}, and note that A′′
5 = X(k,n) × Y (k,n). Applying

Lemma 5.4 with n replaced by n − 2, we get

(5.44)
∫
A′′

5

F̂kn = E
〈
Trfη(H)

〉n−2 + O
(
N−β/2).

By the decay conditions of f and f ′,∫
A′

5

1

(zk − zn)2 ϕf (zk)ϕf (zn)d2zk d2zn

=
∫ 1

(zk − zn)2 ϕf (zk)ϕf (zn)1{yk≥ω,yn≤−ω} d2zk d2zn + O
(
N−γ )

=
∫

ψf (ak, bk)ψf (an, bn)

(ak − an + i(bk − bn)N−β)2 1{bk≥Nβ−γ ,bn≤−Nβ−γ } d2zk d2zn

+ O
(
N−γ )

=:
∫

� + O
(
N−γ ),

where in the second-to-last step we use the change of variables in (5.37), and ψf

is as in (5.17). Note that one can repeat the steps in the proof of Lemma 4.4 for
any f ∈ C1,r,s(R) instead of f (x) = ( x+i

x2+1
)k , and get

(5.45)
∣∣〈fη(H)

〉∣∣ ≺ 1.

Together with Lemma 4.5, we know

(5.46)
∫
A5

Fkn = −2E
〈
Trfη(H)

〉n−2
∫

� +
∣∣∣∣
∫

�

∣∣∣∣ · O(
N−β/2)+ O

(
N−γ /2).

Step 2. We now compute
∫

� . Let us set

(5.47)

ψf,1(a, b) := i − 1

2π
N−β(f ′(a + bN−β)− f ′(a)

)
χ(b),

ψf,2(a, b) := − 1

2π

(
f
(
a + bN−β)− f (a)

)
χ ′(b) and

ψf,3(a, b) := i

2π
f (a)χ ′(b),

which gives ψf (a, b) = ψf,1(a, b) + ψf,2(a, b) + ψf,3(a, b). Let∫
�i,j :=

∫
ψf,i(ak, bk)ψf,j (an, bn)

(ak − an + i(bk − bn)N−β)2 1{bk≥Nβ−γ ,bn≤−Nβ−γ } dak dbk dan dbn,
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with 1 ≤ i, j ≤ 3. We will calculate
∫

� by calculating 6 different integrals
∫

�i,j ,
subject to symmetry.

Let us first consider
∫

�1,1. Note that, by (5.13),

(5.48)
∣∣f ′(a + bN−β)− f ′(a)

∣∣ ≤ C
(|b|N−β)rq0

(
1

1 + |a|1+s/2

)
,

where q0 = q0(s) = s
2(s+1)

≥ s
4 > 0. Thus,

∫
�1,1 ≤ C

∫ 1

|bkbn|N−2β
N−2β−2rq0β |bkbn|rq0χ(bk)χ(bn)

× 1{bk≥Nβ−γ ,bn≤−Nβ−γ } dbk dbn

= O
(
N−2rq0β

)
.

Now we consider
∫

�2,1. Note that χ ′(b) = 0 for |b| < 1. Using integration by
parts on the variable ak , we know

∫
�2,1 =

∫
ψf,2(ak, bk)ψf,1(an, bn)

(ak − an + i(bk − bn)N−β)2 1{bk≥1,bn≤−Nβ−γ } dak dbk dan dbn

=
∫

ψ̃f,2(ak, bk)ψf,1(an, bn)

ak − an + i(bk − bn)N−β
1{bk≥1,bn≤−Nβ−γ } dak dbk dan dbn,

where ψ̃f,2(a, b) := − 1
2π

(f ′(a + bN−β) − f ′(a))χ ′(b). Then by (5.48) we know

(5.49)
∫

�2,1 = O
(
Nβ · N−rq0β · N−β−rq0β

) = O
(
N−2rq0β

)
.

Similarly,
∫

�3,1 = O(N−rq0β).
Now we move to

∫
�2,2. Using integration by parts on the variables ak and an,

we know

∫
�2,2 =

∫
log

(
ak − an + i(bk − bn)N

−β)ψ̃f,2(ak, bk)ψ̃f,2(an, bn)

× 1{bk≥1,bn≤−1} dak dbk dan dbn

= O
(
logN · N−2rq0β

) = O
(
N−rq0β

)
.

Similarly,
∫

�3,2 = O(N−rq0β/2) ≤ O(N−rsβ/8).
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The leading contribution comes from �3,3. Note that∫
�3,3 = − 1

4π2

∫
f (ak)f (an)

(ak − an + i(bk − bn)N−β)2 χ ′(bk)χ
′(bn)

× 1{bk≥1,bn≤−1} dak dbk dan dbn

= 1

8π2

∫ (
f (ak) − f (an)

(ak − an + i(bk − bn)N−β)

)2
χ ′(bk)χ

′(bn)

× 1{bk≥1,bn≤−1} dak dbk dan dbn

= 1

8π2

∫ (
f (ak) − f (an)

ak − an

)2
χ ′(bk)χ

′(bn)1{bk≥1,bn≤−1} dak dbk dan dbn

+ O
(
N−β/3)

= − 1

8π2

∫ (
f (ak) − f (an)

ak − an

)2
dak dan + O

(
N−β/3),

where the second-to-last last step is an elementary estimate whose details we omit.
Hence, by (5.45) and Lemma 4.5 we have

(5.50)

∫
A5

Fkn = 1

4π2

∫ (
f (x) − f (y)

x − y

)2
dx dy ·E〈Trfη(H)

〉n−2

+ O
(
N−rsβ/9).

Similarly, let A6 := {(x, y) ∈ A4 : yk ≤ −ω,yn ≥ ω, |xk − xn| ≤ ηN(n+1)γ /s},
and we have

(5.51)

∫
A6

Fkn = 1

4π2

∫ (
f (x) − f (y)

x − y

)2
dx dy ·E〈Trfη(H)

〉n−2

+ O
(
N−rsβ/9).

Thus, by (5.50) and (5.51) we conclude the proof. �

Note that Lemmas 5.6 and 5.7 imply∫
Fkn = n − 1

2π2

∫ (
f (x) − f (y)

x − y

)2
dx dy ·E〈Trfη(H)

〉n−2 + O
(
N−rsβ/9).

Together with Lemma 5.4 and (5.31), we have

(5.52)
E
〈
Trfη(H)

〉n = n − 1

2π2

∫ (
f (x) − f (y)

x − y

)2
dx dy ·E〈Trfη(H)

〉n−2

+ O
(
N−rsβ/9),

which completes the proof of Lemma 5.3(i).
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5.4. Proof of Lemma 5.3(ii). Let f ∈ C1,r,s(R) with r, s > 0, and without loss
of generality we assume s ≤ 1. We define f̃ as in (3.4). Let σ = N−(α+β), where
we define β = sc0/4 instead in (5.5). Let χ be as in Lemma 3.3 satisfying χ(y) = 1
for |y| ≤ 1, and χ(y) = 0 for |y| ≥ 2. An application of Lemma 3.3 gives

(5.53) E
[
Trfη(H)

] = N

∫
ϕf (x + iy)

(
EG(x + iy) − m(x + iy)

)
dx dy =:

∫
F̃ ,

where ϕf is defined as in (5.7). Note that (3.9) and (3.11) imply

∣∣G(x + iy) − m(x + iy)
∣∣ ≺ 1

N |y|
uniformly in x ∈R, |y| ≤ 1. Then we have

(5.54)
∣∣∣∣
∫
|y|≤σ

F̃

∣∣∣∣ ≺
∫
|y|≤σ

∣∣∣∣ϕf (z) · 1

y

∣∣∣∣d2z = O
(
N−rq0β

)
,

where q0 = q0(s) = s
2(1+s)

≥ s
4 . Also, we have

(5.55)

∣∣∣∣
∫
|y|≥σ,|x|>2− κ

2

F̃

∣∣∣∣ ≺
∫
|y|≥σ,|x|>2− κ

2

∣∣∣∣ϕf (z) · 1

y

∣∣∣∣d2z

= O
(
Nβ−sα/2) = O

(
N−sc0/2).

An analogue of (4.4) yields

(5.56) EG(x + iy) − m(x + iy) = O
(
N(α+β)−1−c0(α+β))

uniformly in |x| ≤ 2 − κ
2 , |y| ≥ σ , where the function c0(·) is defined as in (5.22).

Thus,

(5.57)

∫
|y|≥σ,|x|≤2− κ

2

F̃ = O
(
N(α+β)−c0(α+β) · η) = O

(
Nβ−c0(α+β))

= O
(
N−c0/2).

Altogether we have (5.3).

5.5. Remark on the general case. Let us turn to Theorem 5.1. As in the one-
dimensional case, we first show that

(5.58)
(
Z̃(f1), . . . , Z̃(fp)

) d−→ (
Z(f1), . . . ,Z(fp)

)
as N → ∞, where Z̃(fi) := 〈Trfi(

H−E
η

)〉 for 1 ≤ i ≤ p. In order to show (5.58),

it suffices to compute E[Z̃(fi1) · · · Z̃(fin)], i1, . . . , in ∈ {1,2, . . . , p}, and this fol-
lows exactly the same way as we compute E〈Trfη(H)〉n. Theorem 5.1 then fol-

lows from the estimate EẐ(fi) = O(N−rs2c0/16) for all i ∈ {1,2, . . . , p}, which is
Lemma 5.3(ii).
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6. Relaxing the moment condition. In this section, we use a Green function
comparison argument to pass from Theorems 4.1 and 5.1 to Theorems 2.2 and 2.3.

Recall G := G(E + iη) = (H − E − iη)−1, and [G] := G − m(E + iη) with
E,η defined in Theorem 2.2. Similarly, as in Section 4, we have a particular case
of Theorem 2.2.

PROPOSITION 6.1. Let η,E,H be as in Theorem 2.2. Then

(6.1) N1−α[G] d−→ NC

(
0,

1

2

)

as N → ∞.

In this section, we only sketch a proof of Proposition 6.1, and the other results
can be proved analogously. We begin with the following lemma.

LEMMA 6.2. Fix m > 2 and let X be a real random variable, with absolutely
continuous law, satisfying

(6.2) EX = 0, EX2 = σ 2, E|X|m ≤ Cm

for some constant Cm > 0. Let λ > 2σ . Then there exists a real random variable
Y that satisfies

(6.3) EY = 0, EY 2 = σ 2, |Y | ≤ λ, P(X �= Y) ≤ 2Cmλ−m.

In particular, E|Y |m ≤ 3Cm. Moreover, if m > 4 and σ = 1, then there exists a real
random variable Z matching the first four moments of Y , and satisfies |Z| ≤ 6Cm.

The existence of Y is a slight modification of Lemma 7.6 in [12], and the con-
struction of Z is contained in the proof of Theorem 2.5 in [12]; we omit further
details.

The next lemma is an easy application of Lemma 6.2.

LEMMA 6.3. Let H be a real symmetric Wigner matrix, whose entries have
absolutely continuous law. Let c be as in Definition 2.1. Then there exists a real
symmetric Wigner matrix H(1) satisfying Definition 2.1 and

(6.4) max
i,j

P
(
H

(1)
ij �= Hij

) = O
(
N−2−c/4+δij

)
, max

i,j

∣∣H(1)
ij

∣∣ ≤ N−ε,

where ε = ε(c) := c
4(4+c)

> 0. Moreover, there exists a real symmetric Wigner ma-

trix H(2) satisfying Definition 3.2, such that for all i, j ,

(6.5) E
(
H

(2)
ij

)k = E
(
H

(1)
ij

)k
,

where 1 ≤ k ≤ 4 − 2δij .
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PROOF. Fix c,C > 0 such that E|√NHij |4+c−2δij ≤ C for all i, j . By using
Lemma 6.2 with m := 4 + c − 2δij , X := √

NHij , λ := N1/2−ε , Cm := C, we

construct, for each Hij , a random variable H
(1)
ij := N−1/2Y such that the family

{H(1)
ij }i≤j is independent and

EH
(1)
ij = 0, E

(
H

(1)
ij

)2 = EHij
2,

∣∣H(1)
ij

∣∣ ≤ N−ε,

P
(
Hij �= H

(1)
ij

) ≤ 2CN−2−c/4+δij ,

and we also have

E
∣∣√NH

(1)
ij

∣∣4+c−2δij ≤ 3C.

Hence, we have proved the existence of H(1).
For i < j , by using the second part of Lemma 6.2 on Y = √

NH
(1)
ij , we con-

struct, for each H
(1)
ij , a random variable H

(2)
ij := N−1/2Z matching the first four

moments of H
(1)
ij , and the family {H(2)

ij }i<j is independent. Moreover, we have the

bound |√NH
(2)
ij | ≤ 6C, which ensures

√
NH

(2)
ij has uniformly bounded moments

of all order. Let us denote ζi := E|√NH
(1)
ii |2. Then we can construct random vari-

ables H
(2)
ii such that

√
NH

(2)
ii

d∼ N (0, ζi) and the family {H(2)
ij }i≤j is independent.

This completes the proof. �

Now we look at Proposition 6.1.

PROOF OF PROPOSITION 6.1. Let H be as in Theorem 2.2. Note that it suf-
fices to consider the case that the entries of H have absolutely continuous law.
Otherwise, consider the matrix

H ′ := (
1 − e−2N )1/2 · H + e−NV,

where V is a GOE matrix independent of H . Then H ′ also satisfies Definition 2.1.
Let G′ := (H ′ − E − iη)−1, and [G′] := G′ − m(E + iη) with E,η defined in
Theorem 2.2. The resolvent identity G′ − G = G(H − H ′)G′ implies

|[G′]− [G]| ≺ e−N/2.

We can then construct H(1) and H(2) from H , as in Lemma 6.3.
Let z := E + iη. We have already obtained from Proposition 4.2 that

(6.6) N1−α

(
1

N
Tr

1

H(2) − z
− m(z)

)
d−→ NC

(
0,

1

2

)
,

and we need to show (6.6) holds with H(2) replaced by H . We first compare the
local spectral statistics of H(2) and H(1) using the Green function comparison
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method from [15]; see also Section 4 of [9] for an overview. Fix a bijective ordering
map on the index set of the independent matrix entries,

φ : {(i, j) : 1 ≤ i ≤ j ≤ N
} −→ {

1, . . . , γ (N)
}
, γ (N) := N(N + 1)

2
,

and we assume φ(i, i) = i for i = 1,2, . . . ,N . Denote by Hγ the Wigner matrix

whose matrix entries hij = H
(2)
ij if φ(i, j) ≤ γ and hij = H

(1)
ij ; otherwise; in par-

ticular H(2) = H0 and H(1) = Hγ(N). Let F = F(x + iy) be a complex-valued,
smooth, bounded function, with bounded derivatives. Then

EF

(
N1−α

(
1

N
Tr

1

H(2) − z
− m(z)

))

−EF

(
N1−α

(
1

N
Tr

1

H(1) − z
− m(z)

))

=
γ (N)∑
γ=1

[
EF

(
N1−α

(
1

N
Tr

1

Hγ−1 − z
− m(z)

))

−EF

(
N1−α

(
1

N
Tr

1

Hγ − z
− m(z)

))]
.

Now we focus on the term

EF

(
N1−α

(
1

N
Tr

1

Hγ−1 − z
− m(z)

))
−EF

(
N1−α

(
1

N
Tr

1

Hγ − z
− m(z)

))

=: εγ .

For γ > N , let (i, j) = φ−1(γ ). Note that i < j , and we define

Ṽ = H
(2)
ij �(ij), V̂ = H

(1)
ij �(ij),

and recall from Section 4.2 that the matrix �(ij) satisfies �
(ij)
kl = (δikδjl +

δjkδil)(1 + δij )
−1. Denote Q := Hγ−1 − Ṽ . Then Hγ−1 = Q + Ṽ , and Ṽ is inde-

pendent of Q. Also, Hγ = Q + V̂ . Define the Green functions

R := 1

Q − z
, S := 1

Hγ−1 − z
, T := 1

Hγ − z
,

and the resolvent expansion gives

(6.7) S = R − RṼ R + (RṼ )2 − (RṼ )3R + (RṼ )4R − (RṼ )5S.

Since Ṽ has only at most two nonzero entries, when computing the (k, l) matrix
entry of this matrix identity, each term is a finite sum involving matrix entries
of S or R and H

(2)
ij , for example, (SṼ S)kl = SkiH

(2)
ij Sjl + SkjH

(2)
j i Sil . Let S̊ :=

N1−α(S − m(z)), and R̊, T̊ are defined analogously. Set ξ := S̊ − R̊, and note that
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one can easily obtain ξ from (6.7). Similarly, μ := T̊ − R̊, and we have an explicit
expansion for

(6.8) εγ = EF(S̊) −EF(T̊ ) = EF(R̊ + ξ) −EF(R̊ + μ).

Now we expand F(R̊ + ξ) and F(R̊ + μ) around R̊ using the Taylor expan-
sion. The detailed formulas of the expansion can be found in Section 4.1 of [9],
and we omit them here. Since the first four moments of the entries of H(1) and
H(2) coincide, the error is bounded by the terms with factors (H

(1)
ij )m1(H

(1)
j i )n1 or

(H
(2)
ij )m2(H

(2)
j i )n2 in the expansion, where m1 + n1,m2 + n2 ≥ 5. Since

E
∣∣H(1)

ij

∣∣m = N−(m−4−c)ε ·E∣∣H(1)
ij

∣∣4+c = O
(
N−2−c/2)

and

E
∣∣H(2)

ij

∣∣m = O
(
N−m

2
)

for all m ≥ 5, a routine estimate shows the rest terms are bounded by O(N−2−c/2).
Thus, we have εγ = O(N−2−c/2) uniformly in γ > N . Similarly, one can show
εγ = O(N−1−c/2) uniformly for γ ≤ N . Thus,

EF

(
N1−α

(
1

N
Tr

1

H(2) − z
− m(z)

))
−EF

(
N1−α

(
1

N
Tr

1

H(1) − z
− m(z)

))

= O
(
N−c/2).

The transition from H(1) to H is immediate, since we have

(6.9)

∣∣∣∣EF

(
N1−α

(
1

N
Tr

1

H(1) − z
− m(z)

))

−EF

(
N1−α

(
1

N
Tr

1

H − z
− m(z)

))∣∣∣∣
≤ O

(
P
(
H(1) �= H

)) ≤ ∑
i,j

P
(
H

(1)
ij �= Hij

) = O
(
N−c/4).

Note that by an approximation argument, for F in the above class,

limN→∞EF(XN) = EF(X) is sufficient in showing XN
d→ X. Thus, we have

finished the proof. �

7. The complex Hermitian case. We conclude the paper with a remark on
the complex Hermitian case. As mentioned in Remark 2.4, in the complex case we
now have (2.9) and (2.10) instead of Theorems 2.2 and 2.3. We omit the complete
statements of the results here. The proof in complex Hermitian case replies on the
complex cumulant expansion, which we state in the lemma below, whose proof is
omitted.
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LEMMA 7.1 (Complex cumulant expansion). Let h be a complex random vari-
able with all its moments exist. The (p, q)-cumulant of h is defined as

C(p,q)(h) := (−i)p+q ·
(

∂p+q

∂sp ∂tq
logEeish+it h̄

)∣∣∣∣
s=t=0

.

Let f : C2 → C be a smooth function, and we denote its holomorphic derivatives
by

f (p,q)(z1, z2) := ∂p+q

∂z1
p ∂z2

q
f (z1, z2).

Then for any fixed l ∈ N, we have

(7.1) Ef (h, h̄)h̄ =
l∑

p+q=0

1

p!q!C
(p,q+1)(h)Ef (p,q)(h, h̄) + Rl+1,

given all integrals in (7.1) exist. Here, Rl+1 is the remainder term depending on f

and h, and for any τ > 0, we have the estimate

Rl+1 = O(1) ·E∣∣hl+2 · 1{|h|>Nτ−1/2}
∣∣ · max

p+q=l+1

∥∥f (p,q)(z, z̄)
∥∥∞

+ O(1) ·E|h|l+2 · max
p+q=l+1

∥∥f (p,q)(z, z̄) · 1{|z|≤Nτ−1/2}
∥∥∞.

Using Lemma 7.1, it is not hard to extend the argument of Sections 4–5 to the
complex case. We sketch the required modifications.

Let H be a complex Wigner matrix. An argument analogous to Section 6 shows
that it suffices to consider H satisfying Definition 3.2. Let G := G(E + iη) =
(H − E − iη)−1 with E,η defined in Theorem 2.2. Let m,n ≥ 1. Since H is
complex hermitian, for any differentiable f = f (H) we set

(7.2)
∂

∂Hij

f (H) := d

dt

∣∣∣∣
t=0

f
(
H + t�̃(ij)),

where �̃(ij) denotes the matrix whose entries are zero everywhere except at the
site (i, j) where it is one: �̃

(ij)
kl = δikδjl . Then by using Lemma 7.1 with h = Hij ,

we have

(7.3)

zE
〈
G∗〉n〈G〉m = 1

N

∑
i,j

E
〈〈
G∗〉n〈G〉m−1〉GijHji

= 1

N2

∑
i,j

E
∂(〈〈G∗〉n〈G〉m−1〉Gij )

∂Hij

+ K̂ + L̂,

where K̂ and L̂ are defined analogously to K and L in (4.17). Note that

(7.4)
∂Gij

∂Hkl

= −GikGlj ,
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and by (7.3) we have

(7.5)

E
〈
G∗〉n〈G〉m = 1

T
E
〈
G∗〉n〈G〉m+1 − 1

T
E
〈
G∗〉n〈G〉m−1

E〈G〉2

+ m − 1

N2T
E
〈
G∗〉n〈G〉m−2G3

− K̂

T
− L̂

T
+ n

N2T
E
〈
G∗〉n−1〈G〉m−1GG∗2,

where T = −z − 2EG. By a comparison of (7.5) and its real analogue (4.22), we
see that the leading term is now halved. By estimating the subleading terms in a
similar fashion, one can show that instead of (4.55), we have

E
〈
G∗〉n〈G〉m = n

4
N2α−2

E
〈
G∗〉n−1〈G〉m−1 + O

(
N(m+n)(α−1)−c0

)
,

which agrees with our statement that we have an additional factor of 1/2 in the
covariances.
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[9] ERDŐS, L. (2011). Universality of Wigner random matrices: A survey of recent results. Russian
Math. Surveys 66 67–198.
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