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PORTFOLIO OPTIMISATION BEYOND SEMIMARTINGALES:
SHADOW PRICES AND FRACTIONAL BROWNIAN MOTION

BY CHRISTOPH CZICHOWSKY1 AND WALTER SCHACHERMAYER2

London School of Economics and Political Science and Universität Wien

While absence of arbitrage in frictionless financial markets requires price
processes to be semimartingales, non-semimartingales can be used to model
prices in an arbitrage-free way, if proportional transaction costs are taken into
account. In this paper we show, for a class of price processes which are not
necessarily semimartingales, the existence of an optimal trading strategy for
utility maximisation under transaction costs by establishing the existence of
a so-called shadow price. This is a semimartingale price process, taking val-
ues in the bid ask spread, such that frictionless trading for that price process
leads to the same optimal strategy and utility as the original problem under
transaction costs. Our results combine arguments from convex duality with
the stickiness condition introduced by P. Guasoni. They apply in particular
to exponential utility and geometric fractional Brownian motion. In this case,
the shadow price is an Itô process. As a consequence, we obtain a rather sur-
prising result on the pathwise behaviour of fractional Brownian motion: the
trajectories may touch an Itô process in a one-sided manner without reflec-
tion.

1. Introduction. Most of the literature in mathematical finance assumes that
discounted prices S = (St )0≤t≤T of risky assets are modelled by semimartingales.
In frictionless financial markets, where arbitrary amounts of stock can be bought
and sold at the same price St , the semimartingale assumption is necessary. Oth-
erwise, there would exist “arbitrage opportunities” (see [26], Theorem 7.2 for a
precise statement) and optimal strategies for utility maximisation problems would
fail to exist or yield infinite expected utility (see [2, 40, 42]).

For non-semimartingale models based on fractional Brownian motion (BH
t )t≥0

such as the fractional Black–Scholes model St = exp(μt + σBH
t ), where μ ∈ R,

σ > 0 and Hurst parameter H ∈ (0,1) \ {1
2 }, Rogers [48] and Cheridito [13]

Received May 2015; revised February 2016.
1Supported in part by the Swiss National Science Foundation (SNF) under Grant PBEZP2_137313

and by the European Research Council (ERC) under Grant FA506041.
2Supported in part by the Austrian Science Fund (FWF) under Grant P25815, the European Re-

search Council (ERC) under Grant FA506041 and by the Vienna Science and Technology Fund
(WWTF) under Grant MA09-003.

MSC2010 subject classifications. 91G10, 60G22, 93E20, 60G48.
Key words and phrases. Portfolio choice, non-semimartingale price processes, fractional Brown-

ian motion, proportional transaction costs, utilities on the whole real line, exponential utility, shadow
price, convex duality, stickiness, optimal trading strategies.

1414

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/16-AAP1234
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


SHADOW PRICES AND FRACTIONAL BROWNIAN MOTION 1415

showed explicitly how to construct these arbitrage opportunities. Such models
have been proposed by Mandelbrot [43] for their natural fractal scaling behaviour
and related statistical properties. They are prime examples of non-semimartingale
models to start with.

While fractional models cannot be covered by the classical theory of friction-
less financial markets, recent results [30, 32, 33] illustrate that this can be done
in an arbitrage-free and economically meaningful way by taking (arbitrary small)
proportional transaction costs into account. As has been shown by Guasoni [30],
the crucial property for the absence of arbitrage under transaction costs is that frac-
tional Brownian motion is sticky. Conceptually, the absence of arbitrage allows to
consider portfolio optimisation also for non-semimartingale price processes under
transaction costs; see [29]. However, so far there have been no results on how to
obtain the optimal trading strategy in non-semimartingale models.

In this paper, we address this question. For this, we investigate portfolio optimi-
sation under transaction costs for non-semimartingale price processes satisfying
the stickiness condition such as the fractional Black–Scholes model and utility
functions U : R → R that are defined on the whole real line. The prime example
of such a utility is exponential utility U(x) = − exp(−x). Besides the nonlinearity
of the wealth dynamics under transaction costs, the main difficulty is that frac-
tional Brownian motion is neither a semimartingale nor a Markov process and,
therefore, the standard tools from stochastic calculus are quite limited. The basic
idea to overcome these issues is to use the concept of a shadow price. This is a
semimartingale price process Ŝ = (Ŝt )0≤t≤T such that the solution to the friction-
less utility maximisation problem for this price process gives the same optimal
strategy and utility as the original problem under transaction costs.

Our main result is established in Theorem 4.1 below. It shows the existence of
shadow prices for utility functions that are bounded from above, under the assump-
tion that the price process S = (St )0≤t≤T is continuous and sticky. Theorem 4.1
also ensures that an optimal trading strategy exists. In the frictionless case, one
typically assumes the existence of an equivalent local martingale measure for the
price process having suitable integrability properties to achieve this. In contrast,
our sufficient conditions under transaction costs are more robust and hold in a wide
variety of models; see [3, 14, 28, 31, 32, 35, 45, 46].3 They apply in particular to
the fractional Black–Scholes model and exponential utility. Moreover, we give an
example that illustrates that the condition that the price process S = (St )0≤t≤T is
sticky cannot be replaced by the assumption that it satisfies the condition (NFLVR)
of “no free lunch with vanishing risk” (without transaction costs).

The connection to frictionless financial markets is then the key to use tools
from semimartingale calculus for the potentially non-semimartingale price pro-
cesses S = (St )0≤t≤T by simply applying them to the shadow price process

3Note that, if a process has conditional full support, it is also sticky.
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Ŝ = (Ŝt )0≤t≤T . This also allows us to exploit known results for portfolio optimi-
sation in frictionless financial markets under transaction costs. For the fractional
Black–Scholes model, we obtain in this manner that the shadow price process is
an Itô process given by

dŜt = Ŝt (μ̂t dt + σ̂t dWt), 0 ≤ t ≤ T ,(1.1)

where μ = (μ̂t )0≤t≤T and σ̂ = (σ̂t )0≤t≤T are predictable processes such that the
solution to (1.1) is well defined in the sense of Itô integration.

We expect that analysing the coefficients μ̂ = (μ̂t )0≤t≤T and σ̂ = (σ̂t )0≤t≤T of
the Itô process (1.1) should also allow to obtain quantitative results for the optimal
strategy under transaction costs in the fractional Black–Scholes model. A thorough
analysis of these coefficient processes is left to future research.

By the definition of the shadow price, the optimal strategies under transaction
costs and the corresponding frictionless problem only trade, if the shadow price Ŝ

is equal to the bid price or the ask price, that is, Ŝ = (1 − λ)S or Ŝ = S, respec-
tively. For sufficiently small transaction costs, we show the intuitively obvious fact
that—with high probability—the optimal strategy actually does trade as opposed
to just keeping the initial position in bond. As a consequence, we obtain a rather
surprising result on the pathwise behaviour of fractional Brownian motion: the tra-
jectories may touch an Itô process in a one-sided manner without reflection. The
set on which the paths touch contains the set on which the optimal strategies trade.

It is tempting to conjecture that the above described touching of the trajectories
of the fractional Brownian motion and the Itô process happens on a Cantor-like
compact subset of [0, T ] without isolated points and that the optimal trading strat-
egy is continuous on (0, T ) and of local time type. When S is the usual Black–
Scholes model, it is well known that these properties hold true; see [23, 53, 55].
However, in the present fractional case, the question seems to be completely open.

The conditions that the price process S = (St )0≤t≤T is continuous and sticky
are invariant under equivalent changes of measure. Therefore, our main result also
ensures the existence of exponential utility indifference prices for all bounded
European contingent claims C by the usual change of measure given by dPC

dP
=

exp(C)
E[exp(C)] ; compare [25, 49] for the frictionless case. The question is then, if this
allows to obtain more reasonable prices in the fractional Black–Scholes model.
Recall that the concept of super-replication leads by the face-lifting theorem [32]
only to economically trivial prices in these models; compare also [54].

It is “folklore” that the existence of a shadow price is in general related to the
solution of a dual problem; see [18, 20, 22, 37]. We establish this relation for utility
functions taking finite values on the whole real line and càdlàg price processes and
provide the necessary duality results in this setup. Similarly, as in the frictionless
case [50], this builds up upon results from utility maximisation for utility functions
U : (0,∞) →R that have been recently established in [20] under transaction costs.
Moreover, we use an “abstract version” of the duality for utility functions on the
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whole real line in the spirit of those in [41] for utility functions on the positive
half-line.

The understanding of the duality, sometimes called the “martingale method”, in
the context of portfolio optimisation goes back to [34, 38, 39] in the frictionless
case. Under transaction costs, our work complements the dynamic duality results
[16, 17, 20, 22] for utility functions on the positive half-line as well as the static
duality results [4, 8, 9, 11, 24] for (possibly) multivariate utility functions.

The insight that utility maximisation can be studied under proportional trans-
action costs also for non-semimartingale price processes goes back to Guasoni
[29]. In that paper, utility functions U : (0,∞) → R are considered under the as-
sumption that the problems are well posed. However, in this setup it is not clear
whether or not this assumption is satisfied for non-semimartingale processes such
as the fractional Black–Scholes model and popular utilities like logarithmic util-
ity U(x) = log(x). In particular, a counterexample in [22] shows that it is not
sufficient to suppose that the price process is continuous and sticky to guarantee
the existence of a shadow price. For utility functions U : (0,∞) → R that are
bounded from above like power utility U(x) = 1

p
xp with p ∈ (−∞,0), Guasoni’s

result [29] applies and establishes the existence of an optimal trading strategy un-
der transaction costs. It remains an open question whether a shadow price exists in
this setting.4

The paper is organised as follows. We formulate the problem in Section 2. Sec-
tion 3 contains the duality results and the relation of the solution to the dual prob-
lem and the shadow price for utility functions on the whole real line. Our main
result, which asserts the existence of a shadow price, is established in Section 4.
We explain how to specialise this result to the fractional Black–Scholes model and
exponential utility in Section 5. In Theorem 5.3, we give the result on the path-
wise behaviour of fractional Brownian motion. Finally, the Appendix contains an
“abstract version” of the duality result established in Section 3 that is used in its
proof.

2. Formulation of the problem. We consider a financial market consisting of
one riskless and one risky asset. The riskless asset is assumed to be constant to one.
Trading the risky asset incurs proportional transaction costs λ ∈ (0,1). This means
that one has to pay a (higher) ask price St when buying risky shares but only re-
ceives a lower bid price (1−λ)St when selling them. Here, S = (St )0≤t≤T denotes

4Note added in proof: This question has been answered in [19] in the meantime. If the indirect
utility is finite, it is sufficient for the existence of a shadow price that the price process is continuous
and satisfies the condition (TWC) of “two way crossing”; see [5, 47]. Combining this with the fact
that fractional Brownian motion satisfies a law of iterated logarithm not only at deterministic times
but also stopping times (see Theorem 1.1 of [47]), it allows to deduce the existence of a shadow
price for the fractional Black–Scholes model and all utility functions U : (0,∞) → R satisfying the
condition of reasonable asymptotic elasticity.
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a strictly positive, adapted, càdlàg (right-continuous process with left limits) pro-
cess defined on some underlying filtered probability space (�,F, (Ft )0≤t≤T ,P )

with fixed finite time horizon T ∈ (0,∞) satisfying the usual assumptions of
right-continuity and completeness. As usual equalities and inequalities between
random variables hold up to P -nullsets and between stochastic processes up to
P -evanescent sets.

Trading strategies are modelled by R
2-valued, predictable processes ϕ =

(ϕ0
t , ϕ

1
t )0≤t≤T of finite variation, where ϕ0

t and ϕ1
t describe the holdings in the risk-

less and the risky asset, respectively, after rebalancing the portfolio at time t . For
any process ψ = (ψt )0≤t≤T of finite variation, we denote by ψ = ψ0 + ψ↑ − ψ↓
its Jordan–Hahn decomposition into two nondecreasing processes ψ↑ and ψ↓ both
null at zero. The total variation |ψ |t of ψ on (0, t] is then given by |ψ |t = ψ

↑
t +ψ

↓
t .

For 0 ≤ s < t ≤ T , the total variation of ψ on (s, t] denoted by
∫ t
s |dψu| is then

simply
∫ t
s |dψu| = |ψ |t −|ψ |s . Note that, any process ψ of finite variation is in par-

ticular làdlàg (with right and left limits). For any làdlàg process X = (Xt)0≤t≤T ,
we denote by Xc its continuous part given by

Xc
t := Xt − ∑

s<t

�+Xs − ∑
s≤t

�Xs,

where �+Xt := Xt+ − Xt are its right and �Xt := Xt − Xt− its left jumps.
A strategy ϕ = (ϕ0

t , ϕ
1
t )0≤t≤T is called self-financing, if

(2.1)
∫ t

s
dϕ0

u ≤ −
∫ t

s
Su dϕ1,↑

u +
∫ t

s
(1 − λ)Su dϕ1,↓

u , 0 ≤ s ≤ t ≤ T ,

where the integrals∫ t

s
Su dϕ1,↑

u :=
∫ t

s
Su dϕ1,↑,c

u + ∑
s<u≤t

Su−�ϕ1,↑
u + ∑

s≤u<t

Su�+ϕ1,↑
u ,

∫ t

s
(1 − λ)Su dϕ1,↓

u :=
∫ t

s
(1 − λ)Su dϕ1,↓,c

u + ∑
s<u≤t

(1 − λ)Su−�ϕ1,↓
u

+ ∑
s≤u<t

(1 − λ)Su�+ϕ1,↓
u

can be defined pathwise by using Riemann–Stieltjes integrals, as explained in
[20, 21, 52] for example. The total variation of ϕ = (ϕ0, ϕ1) on (s, t] is given
by

∫ t
s |dϕu| = ∫ t

s |dϕ0
u| +

∫ t
s |dϕ1

u|.
A self-financing strategy ϕ = (ϕ0, ϕ1) is called admissible, if there exists some

constant M > 0 such that its liquidation value satisfies

(2.2) V
liq
t (ϕ) := ϕ0

t + (
ϕ1

t

)+
(1 − λ)St − (

ϕ1
t

)−
St ≥ −M, 0 ≤ t ≤ T .

For x ∈ R, we denote by Aλ
adm(x) the set of all self-financing and admissi-

ble trading strategies under transaction costs λ starting from initial endowment
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(ϕ0
0, ϕ1

0) = (x,0) and

Cλ
b (x) := {

V
liq
T (ϕ)|ϕ = (

ϕ0, ϕ1) ∈ Aλ
adm(x)

}
.

As explained in Remark 4.2 in [12], we can assume without loss of generality
that ϕ1

T = 0 and, therefore, have

Cλ
b (x) = {

ϕ0
T |ϕ = (

ϕ0, ϕ1) ∈ Aλ
adm(x)

}
.

A λ-consistent price system is a pair of stochastic processes Z = (Z0
t ,Z

1
t )0≤t≤T

consisting of the density process Z0 = (Z0
t )0≤t≤T of an equivalent local martin-

gale measure Q ∼ P for a price process S̃ = (S̃t )0≤t≤T evolving in the bid-ask
spread [(1 − λ)S,S] and the product Z1 = Z0S̃. Requiring that S̃ is a local mar-
tingale under Q is tantamount to the product Z1 = Z0S̃ being a local martin-
gale under P . Similarly, an absolutely continuous λ-consistent price system is a
pair of stochastic processes Z = (Z0

t ,Z
1
t )0≤t≤T consisting of the density process

Z0 = (Z0
t )0≤t≤T of an absolutely continuous local martingale measure Q 
 P for

a price process S̃ = (S̃t )0≤t≤T evolving in the bid-ask spread [(1 −λ)S,S] and the
product Z1 = Z0S̃ which is assumed to be a local martingale. Under transaction
costs, these concepts play a similar role as equivalent and absolutely continuous
local martingale measures in the frictionless case. We denote by Zλ

e the set of
all λ-consistent price systems and by Zλ

a the set of all absolutely continuous λ-
consistent price systems.

While absence of arbitrage in the frictionless setting in the form of the existence
of an equivalent local martingale measure for the price process S = (St )0≤t≤T im-
plies that it has to be a semimartingale (this property is invariant under equivalent
changes of measure), non-semimartingales can be used to model asset prices in an
arbitrage-free way as soon as proportional transaction costs are taken into account.
Indeed, for the prime example of a non-seminarmartingale, geometric franctional
Brownian motion St := exp(BH

t ) with Hurst parameter H ∈ (0,1) \ {1
2}, Guasoni

[30] showed that this price process is arbitrage-free for any proportion λ ∈ (0,1) of
transaction costs, and hence admits a λ-consistent price system for any λ ∈ (0,1)

by the fundamental theorem of asset pricing for continuous processes under small
transaction costs in [33]. As has been observed by Guasoni, the crucial property of
fractional Brownian motion, which allows us to deduce the arbitrage freeness, is
that it is sticky.

DEFINITION 2.1. A stochastic process X = (Xt)0≤t≤T is sticky, if

P
(

sup
t∈[τ,T ]

|Xt − Xτ | < δ, τ < T
)

> 0,

for any [0, T ]-valued stopping time τ with P(τ < T ) > 0 and any δ > 0.
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By Proposition 2 in [3], the stickiness condition is preserved under a transfor-
mation of the process X = (Xt)0≤t≤T by continuous functions. Therefore, it does
not make a difference, if we require that the R+-valued process S = (St )0≤t≤T or
Xt := log(St ) is sticky.

In this paper, we want to investigate the existence of optimal trading strategies in
models based on fractional Brownian motion (BH

t ) such as the fractional Black–
Scholes model, where

St = exp
(
μt + σBH

t

)
, 0 ≤ t ≤ T ,

where μ ∈ R and σ > 0.
To that end, we consider a utility function U : R → R that is defined and

finite on the whole real line, increasing, strictly convex, continuously differen-
tiable and satisfying the Inada conditions U ′(−∞) = limx→−∞ U ′(x) = ∞ and
U ′(∞) = limx→∞ U ′(x) = 0. The prime example of such a utility is exponential
utility U(x) = − exp(−x). While for utility functions on the positive half-line neg-
ative wealth is forbidden by the admissibility condition of nonnegative wealth, this
is not ruled out in the present setting but only penalised by giving it a low utility.
Therefore, the optimal trading strategy is in general not attained in the set of admis-
sible trading strategies (which are uniformly bounded from below) and the “good
definition” of “allowed” trading strategies becomes crucial; see [51] for results
in the frictionless setting. In the frictionless case, there are two approaches to deal
with this issue. The first is to use a dual definition and to consider all trading strate-
gies whose wealth processes are a supermartingale under all equivalent local mar-
tingale measures (ELMM) Q with finite V -expectation, that is, E[V (y dQ

dP
)] < ∞

for some y > 0, where V (y) := supx∈R{U(x) − xy} for y > 0 denotes the Legen-
dre transform of −U(−x); see, for example, [7, 25, 36].

We follow the second approach of [50] to consider the “closure” of the set of
terminal wealths of admissible trading strategies with respect to expected utility.

For this, we define

Cλ
U (x) = {

g ∈ L0(
P ;R∪ {∞})|∃gn ∈ Cλ

b (x) s.t.

U(gn) ∈ L1(P ) and U(gn)
L1(P )−→ U(g)

}
and consider the maximisation problem:

(2.3) E
[
U(g)

] → max!, g ∈ Cλ
U (x).

Clearly,

u(x) := sup
g∈Cλ

U (x)

E
[
U(g)

] = sup
g∈Cλ

b (x)

E
[
U(g)

]
.(2.4)

Note that U(gn)
L1(P )−→ U(g) implies that gn → g in L0(�,F,P ;R∪{∞}), with

respect to convergence in probability, since U :R →R is strictly increasing.
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While the gn are real-valued random variables, it may—a priori—indeed hap-
pen that the solution ĝ(x) to (2.3) takes the value ∞ with strictly positive proba-
bility, that is, P(ĝ(x) = ∞) > 0. As explained in [1] in the frictionless case, this
can only happen, if U(∞) < ∞, and does not contradict the no arbitrage assump-
tion. In our setting under transaction costs, we show in Example 4.3 below how
this phenomenon arises. The question is therefore: does there exist a self-financing
trading strategy ϕ̂ = (ϕ̂0

t , ϕ̂
1
t )0≤t≤T under transaction costs λ that attains the so-

lution ĝ(x) to (2.3) in the sense that ĝ(x) = V
liq
T (ϕ̂)? For this, we consider the

set Aλ
U (x) of all predictable finite variation processes ϕ = (ϕ0

t , ϕ
1
t )0≤t≤T , start-

ing at (ϕ0
0, ϕ1

0) = (x,0), satisfying the self-financing condition (2.1) and such that

there exists ϕn = (ϕ0,n, ϕ1,n) ∈ Aλ
adm(x) verifying that U(V

liq
T (ϕn)) ∈ L1(P ) and

U(V
liq
T (ϕn))

L1(P )−→ U(V
liq
T (ϕ)).

Note that the latter convergence again implies that V
liq
T (ϕn)

L0(P )−→ V
liq
T (ϕ) by the

strict monotonicity of U .
Requiring only that the terminal liquidation value V

liq
T (ϕ) can be approximated

by the terminal liquidation values V
liq
T (ϕn) of admissible trading strategies ϕn =

(ϕ0,n, ϕ1,n) ∈ Aλ
adm(x) seems to be a rather weak version of attainability. However,

as we shall see in Proposition 3.2 and Theorem 4.1 below, our results yield that

P
[(

ϕ
0,n
t , ϕ

1,n
t

) → (
ϕ0

t , ϕ
1
t

)
,∀t ∈ [0, T ]] = 1,

which implies

P
[
V

liq
t

(
ϕn) → V

liq
t (ϕ),∀t ∈ [0, T ]] = 1

by the definition of the liquidation value in (2.2).
We investigate the question of attainability by using the concept of a shadow

price.

DEFINITION 2.2. A semimartingale price process Ŝ = (Ŝt )0≤t≤T is called a
shadow price process if:

(1) Ŝ is valued in the bid-ask spread [(1 − λ)S,S].
(2) The solution ϑ̂ = (ϑ̂t )0≤t≤T to the frictionless utility maximisation problem

(2.5) E
[
U(x + ϑ • ŜT )

] → max!, ϑ ∈ AU(x; Ŝ),

exists in the sense of [50]. Here, AU(x; Ŝ) denotes the set of all Ŝ-integrable (in the
sense of Itô), predictable processes ϑ = (ϑt )0≤t≤T such that there exists a sequence
(ϑn)∞n=1 of self-financing and admissible trading strategies ϑn = (ϑn

t )0≤t≤T with-

out transaction costs5 such that U(x +ϑn • ŜT ) ∈ L1(P ) and U(x +ϑn • ŜT )
L1(P )−→

U(x + ϑ • ŜT ).

5That is Ŝ-integrable, predictable processes ϑn = (ϑn
t )0≤t≤T such that Xt = x + ϑn • Ŝt ≥

−M(n) for all 0 ≤ t ≤ T for some constant M(n) > 0 that might depend on n; see [50], for example.
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(3) The optimal trading strategy ϑ̂ = (ϑ̂t )0≤t≤T to the frictionless prob-
lem (2.5) coincides with the holdings in stock ϕ̂1 = (ϕ̂1

t )0≤t≤T to the utility
maximisation problem (2.3) under transaction costs such that x + ϑ̂ • ŜT =
V

liq
T (ϕ̂) = ĝ(x).

The basic idea is that, if a shadow price Ŝ = (Ŝt )0≤t≤T for (2.3) exists, this al-
lows us to obtain the optimal trading strategy for the utility maximisation problem
(2.3) under transaction costs by solving the frictionless utility maximisation prob-
lem (2.5). To the frictionless problem (2.5), we can then apply all known results
from the frictionless theory to solve it. Since the shadow price Ŝ = (Ŝt )0≤t≤T has
to be a semimartingale, this allows us in particular to transfer some of the tech-
niques from semimartingale calculus to utility maximisation problem (2.3) for the
possible non-semimartingale price process S = (St )0≤t≤T .

Note that the existence of a shadow price implies that the optimal strategy
ϑ̂ = (ϑ̂t )0≤t≤T to the frictionless problem (2.5) is of finite variation and that both
optimal strategies ϑ̂ = (ϑ̂t )0≤t≤T and ϕ̂1 = (ϕ̂1

t )0≤t≤T that coincide ϑ̂ = ϕ̂1 only
trade, if Ŝ is at the bid or ask price, that is,{

dϑ̂ = dϕ̂1 > 0
} ⊆ {Ŝ = S} and

{
dϑ̂ = dϕ̂1 < 0

} ⊆ {
Ŝ = (1 − λ)S

}
in the sense that {

dϑ̂c = dϕ̂1,c > 0
} ⊆ {Ŝ = S},{

dϑ̂c = dϕ̂1,c < 0
} ⊆ {

Ŝ = (1 − λ)S
}
,

{�ϑ̂ = �ϕ̂ > 0} ⊆ {Ŝ− = S−},
(2.6)

{�ϑ̂ = �ϕ̂ < 0} ⊆ {
Ŝ− = (1 − λ)S−

}
,

{�+ϑ̂ = �+ϕ̂ > 0} ⊆ {Ŝ = S},
{�+ϑ̂ = �+ϕ̂ < 0} ⊆ {

Ŝ = (1 − λ)S
}
.

Here, a precise mathematical meaning of the inclusions (2.6) above is given by∫ T

0
1{Ŝ �=S}(u)ϕ̂1,↑

u =
∫ T

0
1{Ŝ �=S}(u) dϕ̂1,↑,c

u + ∑
0<u≤T

1{Ŝ−�=S−}(u)�ϕ̂1,↑
u

+ ∑
0≤u<T

1{Ŝ �=S}(u)�+ϕ̂1,↑
u = 0,

∫ T

0
1{Ŝ �=(1−λ)S}(u)ϕ̂1,↓

u =
∫ T

0
1{Ŝ �=(1−λ)S}(u) dϕ̂1,↓,c

u

+ ∑
0<u≤T

1{Ŝ−�=(1−λ)S−}(u)�ϕ̂1,↓
u

+ ∑
0≤u<T

1{Ŝ �=(1−λ)S}(u)�+ϕ̂1,↓
u = 0.
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It is “folklore” that the shadow price is related to the solution of the dual prob-
lem; see Proposition 3.9 of [20], for example. In the present setting of a utility
function that is defined on the whole real line, we explain this relation in the next
section.

3. Duality theory. We discuss the connections between shadow prices and
the solution to the dual problem for utility functions on the whole real line. The
following duality relations can be obtained similarly as their frictionless counter-
parts in [50]. This has already been implicitly exploited in the static setup of [8].
We will prove this result in the Appendix by reducing it to an “abstract version”.

THEOREM 3.1 (Utility functions on the whole real line). Suppose that S

is locally bounded and admits a λ′-consistent price system for all λ′ ∈ (0,1),
that U : R → R satisfies the Inada conditions U ′(−∞) = limx→−∞ U ′(x) = ∞
and U ′(∞) = limx→∞ U ′(x) = 0, has reasonable asymptotic elasticity, that is,
AE∞(U) := limx→∞ xU ′(x)

U(x)
< 1 and AE−∞(U) := limx→−∞

xU ′(x)
U(x)

> 1, and
that

(3.1) u(x) := sup
g∈Cλ

U (x)

E
[
U(g)

]
< U(∞)

for some x ∈ R. Then:

(1) The primal value function u, defined in (2.4), and the dual value function

v(y) := inf
(Z0,Z1)∈Zλ

a

E
[
V

(
yZ0

T

)]
,

where V (y) := supx∈R{U(x) − xy} for y > 0 denotes the Legendre transform of
U , are conjugate, that is,

u(x) = inf
y>0

{
v(y) + xy

}
, v(y) = sup

x∈R
{
u(x) − xy

}
,

and continuously differentiable. The functions u and −v are strictly concave and
satisfy the Inada conditions

lim
x→−∞u′(x) = ∞, lim

y→∞v′(y) = ∞,

lim
x→∞u′(x) = 0, lim

y→0
v′(y) = −∞.

The primal value function u has reasonable asymptotic elasticity.
(2) For y > 0, the solution Ẑ(y) = (Ẑ0(y), Ẑ1(y)) ∈ Zλ

a to the dual problem

(3.2) E
[
V

(
yZ0

T

)] → min!, Z = (
Z0,Z1) ∈ Zλ

a ,

exists, the first component Ẑ0
T (y) is unique and the map y �→ Ẑ0

T (y) is continuous
in variation norm.
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(3) For x ∈ R, the solution ĝ(x) ∈ Cλ
U (x) to the primal problem (2.3) exists, is

unique and given by

(3.3) ĝ(x) = (
U ′)−1(

ŷ(x)Ẑ0
T

(
ŷ(x)

))
,

where ŷ(x) = u′(x).
(4) We have the formulae

v′(y) = E
[
Ẑ0

T (y)V ′(yẐ0
T (y)

)]
and xu′(x) = E

[
ĝ(x)U ′(ĝ(x)

)]
,

where we use the convention that 0 · ∞ = 0, if the random variables are of this
form.

Why did we focus on utility functions U taking finite values on the entire real
line? The reason is that, for utility functions U : (0,∞) → R on the positive half-
line shadow prices might fail to exist due to the fact that the solution to the dual
problem is not necessarily attained as a local martingale but in general only as a
supermartingale; see, for example, [6, 18, 20, 22]. We do not know how to success-
fully overcome this difficulty for models like the fractional Black–Scholes model
in that context.6 This “supermartingale phenomenon” does not appear for utilities
U : R → R on the whole real line, the dual optimiser is guaranteed to be a local
martingale. On the other hand, the solution Ẑ = (Ẑ0, Ẑ1) to the dual problem (3.2)
may—in general—fail to induce a shadow price due to the fact that it might only
be a absolutely continuous λ-consistent price system, that is, that P(Ẑ0

T = 0) > 0.
By the duality relation (3.3), the set {Ẑ0

T = 0} is equal to the set {ĝ(x) = ∞}. As
V (0) = U(∞), such a behaviour can only arise, if U(∞) < ∞ and there exists
no λ′-consistent price system Z̄ = (Z̄0

t , Z̄
1
t )0≤t≤T such that E[V (yZ̄0

T )] < ∞ for
some y > 0; compare [1, 15, 50] for the frictionless case. For utility functions such
that U(∞) = ∞, the dual optimiser Ẑ = (Ẑ0, Ẑ1), provided it exists, always sat-
isfies Ẑ0

T > 0 almost surely. However, for these utility functions, condition (3.1)
seems hard to verify for non-semimartingale price process such as the fractional
Black–Scholes model.

The following proposition shows that the existence of a strictly consistent price
system with finite V -expectation ensures the attainability of the primal optimiser
ĝ(x). It generalises Lemma 25 in [8] to our setting and its proof follows by similar
arguments.

PROPOSITION 3.2. Under the assumptions of Theorem 3.1, suppose that, for
some λ′ ∈ (0, λ), there exists a λ′-consistent price system Z̄ = (Z̄0, Z̄1) ∈ Zλ′

e such
that

E
[
V

(
ȳZ̄0

T

)]
< ∞

6Note added in proof: We answered this question in [19] in a quite satisfactory way: for the frac-
tional Black–Scholes model, there exists a shadow price for all utility functions U : (0,∞) → R

satisfying the condition of reasonable asymptotic elasticity. See the footnote on page 1417 for more
details.
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for some ȳ > 0. Then the solution to the primal problem (2.3) is attainable, that
is, there exists ϕ̂ = (ϕ̂0, ϕ̂1) ∈ Aλ

U (x) such that V
liq
T (ϕ̂) = ĝ(x), and there exist

ϕ̃n = (ϕ̃0,n, ϕ̃1,n) ∈ Aλ
adm(x) such that

(3.4) P
[(

ϕ̃
0,n
t , ϕ̃

1,n
t

) → (
ϕ̂0

t , ϕ̂
1
t

)
,∀t ∈ [0, T ]] = 1.

PROOF. By Theorem 3.1, there exists a sequence ϕn = (ϕ0,n, ϕ1,n) ∈ Aλ
adm(x)

such that

U
(
V

liq
T

(
ϕn)) L1(P )−−−→ U

(
ĝ(x)

)
.

Then (Z̄0
t (ϕ

0,n
t +ϕ

1,n
t S̄t +An

t ))0≤t≤T is a supermartingale for all n, where S̄ := Z̄1

Z̄0

and An
t := (λ − λ′)

∫ t
0 Su dϕ

1,n,↓
u . Indeed, by integration by parts we can write

Z̄0
t

(
ϕ

0,n
t + ϕ

1,n
t S̄t

) = Z̄0
t

(
ϕ

0,n
t +

∫ t

0
S̄u dϕ1,n

u +
∫ t

0
ϕ1,n

u dS̄u

)
.

Since S̄ ∈ [(1 − λ′)S, S] and

ϕ
0,n
t ≤ x −

∫ t

0
Su dϕ1,n,↑

u +
∫ t

0
(1 − λ)Su dϕ1,n,↓

u

by the self-financing condition (2.1), the process (ϕ
0,n
t +∫ t

0 S̄u dϕ1,n
u +An

t )0≤t≤T is
nonincreasing. Moreover, by Bayes’ rule S̄ is a local martingale under the measure

Q̄ ∼ P given by dQ̄
dP

= Z̄0
T and, since ϕ1,n is of finite variation, and hence locally

bounded, the stochastic integral ϕ1,n • S̄ is a local martingale under Q̄. Therefore,
Z̄0(ϕ0,n + ϕ1,nS̄ + An) is a local supermartingale under P again by Bayes’ rules
that is bounded from below by Z̄0V liq(ϕn). Since ϕn ∈ Aλ

adm(x) is admissible and
Z̄0 a martingale, this implies that Z̄0(ϕ0,n +ϕ1,nS̄ +An) is a true supermartingale
so that

(3.5) E
[
Z̄0

T

(
V

liq
T

(
ϕn) + An

T

)] = E

[
Z̄0

T

(
ϕ

0,n
T + (

λ − λ′) ∫ T

0
Su dϕ1,n,↓

u

)]
≤ x

for all n. Combining Fenchel’s inequality with the monotonicity of U , we can
estimate

Z̄0
T

(
V

liq
T

(
ϕn) + An

T

) ≥ 1

ȳ

(
U

(
V

liq
T

(
ϕn)) − V

(
ȳZ̄0

T

))
.

Since 1
ȳ
(U(V

liq
T (ϕn)) − V (ȳZ̄0

T ))
L1(P )−−−→ 1

ȳ
(U(ĝ(x)) − V (ȳZ̄0

T )), as n → ∞, we

obtain that (Z̄0
T (V

liq
T (ϕn) + An

T )−)∞n=1 is uniformly integrable, and hence that

(Z̄0
T (V

liq
T (ϕn) + An

T ))∞n=1 is bounded in L1(P ) by (3.5). Since Z̄0
T > 0 and

V
liq
T (ϕn)

L0(P )−→ ĝ(x), this implies that conv{An
T ;n ≥ 1} is bounded in L0(P ). Since

S̄ is as a nonnegative local Q̄-martingale also a Q̄-supermartingale, we have that
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inf0≤u≤T Su ≥ inf0≤u≤T S̄u > 0 by the minimum principle for supermartingales.
This implies that conv{|ϕ1,n|T ;n ≥ 1} and hence conv{|ϕ0,n|T ;n ≥ 1} are bounded
in L0(P ) as well. By Proposition 3.4 in [12] (and its application in the proof of
Theorem 3.5 therein), there exists a sequence(

ϕ̃0,n, ϕ̃1,n) ∈ conv
((

ϕ0,n, ϕ1,n)
,
(
ϕ0,n+1, ϕ1,n+1)

, . . .
)

of convex combinations and a predictable process ϕ̂ = (ϕ̂0
t , ϕ̂

1
t )0≤t≤T of finite vari-

ation such that

(3.6) P
[(

ϕ̃
0,n
t , ϕ̃

1,n
t

) → (
ϕ̂0

t , ϕ̂
1
t

)
,∀t ∈ [0, T ]] = 1.

The convergence (3.6) then implies that ϕ̂ = (ϕ̂0, ϕ̂1) is a self-financing trad-
ing strategy under transaction costs λ such that V

liq
T (ϕ̂) = ĝ(x), and hence

ϕ̂ ∈ Aλ
U (x). �

The next result shows that (3.4) is sufficient to guarantee the existence of a
shadow price.

PROPOSITION 3.3. Under the assumptions of Theorem 3.1, suppose that
the solution ĝ(x) to the primal problem (2.3) is attainable, that is, there ex-
ists ϕ̂ = (ϕ̂0, ϕ̂1) ∈ Aλ

U (x) such that V
liq
T (ϕ̂) = ĝ(x), and that there exist ϕ̃n =

(ϕ̃0,n, ϕ̃1,n) ∈ Aλ
adm(x) such that

(3.7) P
[(

ϕ̃
0,n
t , ϕ̃

1,n
t

) → (
ϕ̂0

t , ϕ̂
1
t

)
,∀t ∈ [0, T ]] = 1.

Then the dual optimiser Ẑ = (Ẑ0, Ẑ1) to (3.2) is in Zλ
e , that is, a λ-consistent price

system, and Ŝ := Ẑ1

Ẑ0 is a shadow price (in the sense of Definition 2.2) to problem
(2.3).

PROOF. Since ĝ(x) = V
liq
T (ϕ̂) < ∞, we have that ŷ(x)Ẑ0

T = U ′(ĝ(x)) > 0
by the duality relation (3.3) and, therefore, that the dual optimiser Ẑ = (Ẑ0, Ẑ1)

is in Zλ
e . It then follows along the same arguments as in the proof of Propo-

sition 3.2 after replacing ϕn = (ϕ0,n, ϕ1,n) by ϕ̃n = (ϕ̃0,n, ϕ̃1,n) and Z̄ =
(Z̄0, Z̄1) by Ẑ = (Ẑ0, Ẑ1) and setting λ′ = λ that (Ẑ0ϕ̃0,n + Ẑ1ϕ̃1,n)∞n=1 is a

sequence of supermartingales Ẑ0ϕ̃0,n + Ẑ1ϕ̃1,n = (Ẑ0
t ϕ̃

0,n
t + Ẑ1

t ϕ̃
1,n
t )0≤t≤T such

that ((Ẑ0
T ϕ̃

0,n
T + Ẑ1

T ϕ̃
1,n
T )−)∞n=1 is uniformly integrable. This implies that each

((Ẑ0
t ϕ̃

0,n
t + Ẑ1

t ϕ̃
1,n
t )−)0≤t≤T is a nonnegative submartingale, and hence of class

(D) so that ((Ẑ0
τ ϕ̃

0,n
τ + Ẑ1

τ ϕ̃
1,n
τ )−)∞n=1 is uniformly integrable for every [0, T ]-

valued stopping time τ . Since

Ẑ0
τ ϕ̃

0,n
τ + Ẑ1

τ ϕ̃
1,n
τ

P -a.s.−−−→ Ẑ0
τ ϕ̂

0
τ + Ẑ1

τ ϕ̂
1
τ as n → ∞,

for every [0, T ]-valued stopping time τ by (3.7), we obtain that (Ẑ0
t ϕ̂

0
t +

Ẑ1
t ϕ̂

1
t )0≤t≤T is a supermartingale by Fatou’s lemma that has by part (4) of Theo-

rem 3.1 constant expectation and is therefore a martingale.
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By integration by parts, we get that

Ẑ0ϕ̂0 + Ẑ1ϕ̂1 = Ẑ0(
ϕ̂0 + ϕ̂1Ŝ

) = Ẑ0(
x + ϕ̂1 • Ŝ − A

)
,

where

At =
∫ t

0

(
Ŝu − (1 − λ)Su

)
dϕ̂1,↓

u +
∫ t

0
(Su − Ŝu) dϕ̂1,↑

u , 0 ≤ t ≤ T ,

is a nondecreasing, predictable process.
Since Ẑ0ϕ̂0 + Ẑ1ϕ̂1 is a martingale and Ẑ0(x + ϕ̂1 • Ŝ) is a local martingale by

Bayes’ rule and the fact that ϕ̂1 is of finite variation, and hence locally bounded,
this implies that A ≡ 0 and, therefore, that Ẑ0(ϕ̂0 + ϕ̂1Ŝ) = Ẑ0(x + ϕ̂1 • Ŝ) is a
martingale and {dϕ̂1 > 0} ⊆ {Ŝ = S} and {dϕ̂1 < 0} ⊆ {Ŝ = (1 − λ)S} in the sense
of (2.6). As Ẑ = (Ẑ0, Ẑ1) ∈ Zλ

e , we obtain that Ẑ0 = (Ẑ0
t )0≤t≤T is the density

process of an ELMM for the frictionless price process Ŝ = (Ŝt )0≤t≤T . Therefore,
Ẑ0 = (Ẑ0

t )0≤t≤T and ŷ(x) have to be also the solution to the frictionless dual
problem:

E
[
V (yZT )

] + xy → min!, y > 0,Z ∈ Za(Ŝ),

where Za(Ŝ) denotes the set of all density processes Z = (Zt )0≤t≤T of absolutely
continuous martingale measures Q 
 P for the locally bounded price process
Ŝ = (Ŝt )0≤t≤T . It follows from the frictionless duality (see Theorem 2.2 in [50])
that x + ϕ̂1 • ŜT = ϕ̂0

T + ϕ̂1
T ŜT = V

liq
T (ϕ̂) = U ′(ŷ(x)Ẑ0

T ) is the optimal terminal
wealth to the frictionless utility maximisation problem (2.5) for Ŝ = (Ŝt )0≤t≤T .

Since x + ϕ̂1 • Ŝ is a Q̂-martingale under the measure Q̂ ∼ P given by dQ̂
dP

= Ẑ0
T

by Bayes’ rule, we obtain that ϕ̂1 = (ϕ̂1
T )0≤t≤T has to be the optimal strategy to

the frictionless utility maximisation problem (2.5) and, therefore, in AU(x; Ŝ) by
part (iv) of Theorem 2.2 in [50], as the optimal strategy is unique in L(Ŝ). This
implies that Ŝ = (Ŝt )0≤t≤T is a shadow price process in the sense of Definition 2.2
for the utility maximisation problem (2.3) under transaction costs. �

4. The main result.

THEOREM 4.1. Suppose that S is continuous and sticky and that U : R → R

is strictly concave, increasing, continuously differentiable, bounded from above,
satisfying the Inada condition U ′(−∞) = limx→−∞ U ′(x) = −∞ and having rea-
sonable asymptotic elasticity, that is, limx→−∞

xU ′(x)
U(x)

> 1.
Then we have for any x ∈ R and any proportion of transaction costs λ ∈ (0,1)

that:

(1) An optimal trading strategy ϕ̂(x) = (ϕ̂0
t (x), ϕ̂1

t (x))0≤t≤T ∈ Aλ
U (x) for (2.3)

exists.
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(2) There exist admissible trading strategies ϕ̃n = (ϕ̃0,n, ϕ̃1,n) ∈ Aλ
adm(x)

which are maximising for (2.3) and such that

P
[(

ϕ̃
0,n
t , ϕ̃

1,n
t

) → (
ϕ̂0

t , ϕ̂
1
t

)
,∀t ∈ [0, T ]] = 1.

In fact, for every maximising sequence (ϕn)∞n=1 ∈Aλ
adm(x) we can find a sequence

(ϕ̃n)∞n=1 of convex combinations with the above properties.
(3) The dual optimiser Ẑ = (Ẑ0, Ẑ1) to (3.2) is in Zλ

e , that is, a λ-consistent
price system.

(4) Ŝ := Ẑ1

Ẑ0 is a shadow price (in the sense of Definition 2.2). This implies in
particular that{

dϕ̂1,c > 0
} ⊆ {Ŝ = S}, {

dϕ̂1,c < 0
} ⊆ {

Ŝ = (1 − λ)S
}
,{

�ϕ̂1 > 0
} ⊆ {Ŝ− = S}, {

�ϕ̂1 < 0
} ⊆ {

Ŝ− = (1 − λ)S
}
,{

�+ϕ̂1 > 0
} ⊆ {Ŝ = S}, {

�+ϕ̂1 < 0
} ⊆ {

Ŝ = (1 − λ)S
}
.

The proof of Theorem 4.1 will be broken into several lemmas. We begin by
verifying the conditions of the duality theorem (Theorem 3.1). Since S is contin-
uous and sticky, combining Corollary 2.1 in [30] and Theorem 2 in [33] yields
the existence of a strictly consistent price system for all sizes of transaction costs
λ′ ∈ (0,1). Moreover, the conditions on the utility function U are satisfied by our
assumptions. Therefore, we only need to check condition (3.1).

LEMMA 4.2. Let U : R → R be a utility function that is bounded from above
and S = (St )0≤t≤T be sticky. Then we have, for all x ∈ R, that

(4.1) u(x) = sup
ϕ∈Aλ

adm(x)

E
[
U

(
V

liq
T (ϕ)

)]
< U(∞).

PROOF. By the stickiness of S = (St )0≤t≤T , and hence that of Xt := log(St )

the set

A :=
{

sup
t∈[0,T ]

∣∣∣∣S0

St

− 1
∣∣∣∣ <

λ

3

}
⊇

{
sup

t∈[0,T ]
| Xt − X0 |< log

(
1 + λ

3

)}

has strictly positive measure, that is, P [A] > 0. Similarly, as in Lemma 2.5 and
Proposition 2.8 in [30] we then have that V

liq
T (ϕ) ≤ x on A for any ϕ ∈ Aλ

adm(x).
Indeed, using the self-financing condition (2.1) under transaction costs we obtain
that

V
liq
T (ϕ) = ϕ0

T + ϕ1
T ST − λST

(
ϕ1

T

)+
≤ x −

∫ T

0
Su dϕ1

u − λ

∫ T

0
Su dϕ1,↓

u + ϕ1
T ST − λST

(
ϕ1

T

)+(4.2)
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= x −
∫ T

0
(Su − S0) dϕ1

u − λ

∫ T

0
Su dϕ1,↓

u + ϕ1
T (ST − S0) − λST

(
ϕ1

T

)+
≤ x − 2

3
λ

∫ T

0
Su dϕ1,↓

u − 2

3
λST

(
ϕ1

T

)+ ≤ x on A.

This implies that

E
[
U

(
V

liq
T (ϕ)

)] ≤ U(∞)
(
1 − P [A]) + U(x)P [A] < U(∞)

for all ϕ ∈Aλ
adm(x) and, therefore, (4.1) by taking the supremum. �

Applying the duality theorem (Theorem 3.1) allows us to obtain a maximis-
ing sequence ϕn = (ϕ

0,n
t , ϕ

1,n
t )0≤t≤T ∈ Aλ

adm(x) of self-financing and admissible
trading strategies and a random variable ĝ = ĝ(x) ∈ L0(P ;R ∪ {∞}) such that
E[U(ĝ(x))] = u(x) and

V
liq
T

(
ϕn) P−→ ĝ(x),

(4.3)

U
(
V

liq
T

(
ϕn)) L1(P )−→ U

(
ĝ(x)

)
.

As already mentioned, it may—a priori—happen that the random variable ĝ(x)

takes the value ∞ with strictly positive probability. The following example illus-
trates how this phenomenon arises under transaction costs. It shows, in particular,
that the condition that S = (St )0≤t≤T is sticky in Theorem 4.1 cannot be replaced
by the assumption that S = (St )0≤t≤T satisfies the condition (NFLVR) of “no free
lunch with vanishing risk” (without transaction costs).

EXAMPLE 4.3. We give an example of a price process S = (St )0≤t≤1 such
that:

(1) S is continuous.
(2) S satisfies the condition (NFLVR) without transaction costs and, therefore,

admits a λ′-consistent price system for all λ′ ∈ (0,1).
(3) There exists no optimal trading strategy to the problem of maximising ex-

ponential utility U(x) = − exp(−x) under transaction costs λ ∈ (0, 1
2), that is,

E
[
U

(
V

liq
1 (ϕ)

)] = E
[− exp

(−V
liq
1 (ϕ)

)] → max!, ϕ ∈ Aλ
U (x).

(3′) There exists a sequence ϕ̂n = (ϕ̂
0,n
t , ϕ̂

1,n
t )0≤t≤1 ∈ Aλ

U (x) such that

U
(
V

liq
1

(
ϕ̂n)) L1(P )−−−→ 0 = U(∞)

and, therefore, ĝ(x) = ∞ P -a.s. In particular, we have that |ϕ̂n|T P−→ ∞.
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For convenience, we give the construction on the infinite time interval [0,+∞].
The corresponding example on the finite interval [0,1] can be obtained by using a
time change h : [0,+∞] → [0,1] given by h(t) = (1 − exp(−t)) and considering
Sh(t) instead of St .

We begin by specifying the ask price S = (St )0≤t≤∞ under an equivalent local
martingale measure Q. Let W = (Wt)t≥0 be a Brownian motion on [0,+∞) under
Q and set

σ := inf
{
t > 0

∣∣∣E(W)t = exp
(
Wt − 1

2
t

)
= 1

2

}
.

Define S = (St )0≤t≤∞ by

St = 2E(W)σt , 0 ≤ t ≤ ∞.

In prose, the price process S starts at 2. It then fluctuates until it hits the level 1
for the first time at time σ and then remains constant afterwards. Since the stopping
time σ is almost surely finite, we have that the price process is a nonnegative local
martingale under Q such that S∞ = 1 Q-a.s.

Therefore, short selling one share of stock at time 0 yields 2(1 − λ) − 1 > 0 at
time ∞ as liquidation value.

The problem with this strategy is, of course, that it is not admissible. Since the
stock price can get arbitrarily high with strictly positive probability, the liquidation
value V liq(ϕ) can get arbitrarily small with strictly positive probability between 0
and σ . However, we can approximate this strategy by admissible trading strategies
ϕ̄n = (ϕ̄

0,n
t , ϕ̄

1,n
t )0≤t≤∞ ∈ Aλ

adm(0). For this, we simply set ϕ̄
1,n
t = −1�0,σn�(t) for

0 ≤ t ≤ ∞, where σn := inf{t > 0|St = n}, and define ϕ̄
0,n
t via the self-financing

condition (2.1) with equality. Then

V
liq∞

(
ϕ̄n) = (

2(1 − λ) − 1
)
1{σn≥σ }

+ (
2(1 − λ) − n

)
1{σn<σ }

P -a.s.−−−→ 1 + 2(1 − λ) − 1 as n → ∞,

since σn ↗ ∞ Q-a.s. Therefore, setting ϕ̂1,n = nϕ̄1,n and ϕ̂0,n = nϕ̄0,n gives
a sequence (ϕ̂n)∞n=1 of self-financing and admissible trading strategies ϕ̂n =
(ϕ̂

0,n
t , ϕ̂

1,n
t )0≤t≤∞ ∈ Aλ

adm(0) such that

U
(
V

liq∞
(
ϕ̂n)) = − exp

(−n
(
2(1 − λ) − 1

))
1{σn≥σ }

− exp
(−n

(
2(1 − λ) − n

))
1{σn<σ }

P -a.s.−−−→ 0 as n → ∞.

To ensure the convergence also in L1(P ), we need to specify the distribution of S

under P . Since

E
[
U

(
V

liq∞
(
ϕ̂n))] = − exp

(−n
(
2(1 − λ) − 1

))
P(σn ≥ σ)

− exp
(−n

(
2(1 − λ) − n

))
P(σn < σ)
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and − exp(−(1 + n(2(1 − λ) − n))) = O(exp(n2)), it will be sufficient to choose
P ∼ Q such that P(σn < σ) = o(exp(−n2)). This is possible because An :=
{σn < σ } is a decreasing sequence of sets such that Q(An) > 0 and Q(An) ↘ 0.

To obtain u(x) < U(∞), we flip a fair coin at time 0. If heads shows up, we use
the above price process. If we observe tails, then the price process stays at 2.

The above example indicates that ĝ(x) can only take the value ∞, if the to-
tal variations (|ϕ̂n|T )∞n=1 of the maximising sequence ϕn = (ϕ

0,n
t , ϕ

1,n
t )0≤t≤T ∈

Aλ
adm(x) of admissible trading strategies diverge to ∞. However, this behaviour

leads to an infinite amount of trading volume and therefore of transaction costs.
This cannot be optimal for a sticky price process and we now argue how to ex-
clude it. For this, we observe that, if we have that

C := conv
{∣∣ϕn

∣∣
T ;n ≥ 1

}
(4.4)

is bounded in L0(P ) for a sequence (ϕn)∞n=1 of strategies ϕn ∈ Aλ
adm(x) satisfying

(4.3), there exists a sequence (ϕ̂n)∞n=1 of convex combinations

ϕ̂n ∈ conv
(
ϕ̄n, ϕ̄n+1, . . .

)
and a self-financing trading strategy ϕ̂ = (ϕ̂0

t , ϕ̂
1
t )0≤t≤T under transaction costs

such that

P
[(

ϕ̂
0,n
t , ϕ̂

1,n
t

) n→∞−−−→ (
ϕ̂0

t , ϕ̂
1
t

)
,∀t ∈ [0, T ]] = 1(4.5)

by Proposition 3.4 in [12] (and its application in the proof of Theorem 3.5
therein).7

Since we then have, in particular,

V
liq
T

(
ϕ̂n) P−→ V

liq
T (ϕ̂) = ĝ(x),

U
(
V

liq
T

(
ϕ̂n)) L1(P )−→ U

(
V

liq
T (ϕ̂)

) = U
(
ĝ(x)

)
,

this implies that ϕ̂ = (ϕ̂0
t , ϕ̂

1
t )0≤t≤T ∈ Aλ

U (x) attains the solution ĝ(x) to (2.3) and
that ĝ(x) is a.s. real-valued. Therefore, it only remains to show that (ϕn)∞n=1 satis-
fies (4.4) which will be true for any sequence (ϕn)∞n=1 of strategies ϕn ∈ Aλ

adm(x)

satisfying (4.3).
To that end, we fix any sequence (ϕn)∞n=1 of strategies ϕn ∈ Aλ

adm(x) satisfying
(4.3) and denote by S the set of all [0, T ]∪ {∞}-valued stopping times σ such that

conv
{∣∣ϕn

∣∣
σ∧T ;n ≥ 1

}
is bounded in L0(P ). Then (4.4) corresponds to showing that ∞ ∈ S .

7Note that, since C ⊆ L0+(P ) is convex and bounded, there exists, by, for example, Lemma 2.3 in

[10], a probability measure Q ∼ P such that C is bounded in L1(Q) so that the sequence (ϕ̄n)∞n=1,
indeed, satisfies the assumptions of Proposition 3.4 in [12].



1432 C. CZICHOWSKY AND W. SCHACHERMAYER

LEMMA 4.4. The set S is stable under taking pairwise maxima, that is,
σ1, σ2 ∈ S implies σ1 ∨ σ2 ∈ S .

PROOF. Let ψ ∈ A := conv{|ϕn|;n ≥ 1}. Then

ψ(σ1∨σ2)∧T = ψσ1∧T 1{σ1≥σ2} + ψσ2∧T 1{σ1<σ2}.

This implies that

lim
N→∞ sup

ψ∈A

P (ψ(σ1∨σ2)∧T ≥ N)

≤ lim
N→∞ sup

ψ∈A

P (ψσ1∧T ≥ N) + lim
N→∞ sup

ψ∈A

P (ψσ2∧T ≥ N) = 0,

and hence that σ1 ∨ σ2 ∈ S . �

The fact that S is stable under taking pairwise maxima allows us to obtain its
essential supremum

σ̂ := ess sup
σ∈S

σ(4.6)

as a limit of an increasing sequence (σ̂k)
∞
k=1 of stopping times σ̂k ∈ S by Theo-

rem A.33(b) in [27]. Note that σ̂ ≥ 0, as 0 ∈ S , and that σ̂ again is a stopping
time.

Recall that the existence of a shadow price implies that the optimal trading
strategy ϕ̂ = (ϕ̂0

t , ϕ̂
1
t )0≤t≤T under transaction costs only trades, if the shadow price

is at the bid or ask price in the sense of (2.6). The next lemma shows that this is
already the case in an approximate sense, if we do not yet know, whether or not
there is a shadow price.

LEMMA 4.5. Under the assumptions of Theorem 4.1, let (ϕn)∞n=1 be a

maximising sequence of admissible trading strategies ϕn = (ϕ
0,n
t , ϕ

1,n
t )0≤t≤T ∈

Aλ
adm(x) for problem (2.3) satisfying (4.3) and set B1,j = {Ẑ0S − Ẑ1 > 1

j
} and

B2,j = {Ẑ1 − Ẑ0(1 − λ)S > 1
j
} for j ∈ N. Then we have, for all j ∈N, that

1B1,j
• ϕ

1,n,↑
T + 1B2,j

• ϕ
1,n,↓
T

P−→ 0,

1B1,j
• ϕ

0,n,↓
T + 1B2,j

• ϕ
0,n,↑
T

P−→ 0.

PROOF. Here, we can without loss of generality assume that we have equality
in the self-financing condition (2.1) for the maximising strategies (ϕn)∞n=1. Since
0 < sup0≤t≤T St < ∞ P -a.s. by the assumption that S is strictly positive and con-

tinuous, it is sufficient to prove the assertion for ϕ1,n = (ϕ
1,n
t )0≤t≤T . This implies

the assertion as well for ϕ0,n = (ϕ
0,n
t )0≤t≤T by the self-financing condition (2.1).
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By Lemma A.2, we have that

Ẑ0
T ϕ

0,n
T

L1(P )−→ Ẑ0
T ĝ(x)

for any maximising sequence ϕn = (ϕ
0,n
t , ϕ

1,n
t )0≤t≤T of self-financing and admis-

sible trading strategies satisfying (4.3). As we can without loss of generality as-
sume that ϕ

1,n
T = 0, defining

X̂n
t = ϕ

0,n
t Ẑ0

t + ϕ
1,n
t Ẑ1

t , 0 ≤ t ≤ T ,

gives a sequence (X̂n)∞n=1 of supermartingales X̂n = (X̂n
t )0≤t≤T starting at x such

that X̂n
T converges in L1(P ) to the terminal value X̂∞

T = Ẑ0
T ĝ(x) of the martingale

X̂∞ = (X̂∞
t )0≤t≤T given by

X̂∞
t = E

[
Ẑ0

T ĝ(x)|Ft

]
, 0 ≤ t ≤ T ,

that is also starting at x by part (4) of Theorem 3.1.
By integration by parts, we obtain

X̂n
t = x + ϕ0,n • Ẑ0

t + ϕ1,n • Ẑ1
t − An

t , 0 ≤ t ≤ T ,

where

An
t :=

∫ t

0

(
Ẑ0

uSu − Ẑ1
u

)
dϕ1,n,↑

u +
∫ t

0

(
Ẑ1

u − Ẑ0
u(1 − λ)Su

)
dϕ1,n,↓

u , 0 ≤ t ≤ T ,

is a nondecreasing process starting at 0. Since

X̂n
t = Ẑ0

t

(
ϕ

0,n
t + ϕ

1,n
t Ŝt

) ≥ Ẑ0
t V

liq
t

(
ϕn) ≥ Ẑ0

t (−m), 0 ≤ t ≤ T ,

for some m > 0 by the admissibility of ϕn, the local martingale (x + ϕ0,n •

Ẑ0
t + ϕ1,n • Ẑ1

t )0≤t≤T is bounded from below by the uniformly integrable mar-
tingale (Ẑ0

t (−m))0≤t≤T , and hence a supermartingale. As the supermartingales
X̂n = (X̂n

t )0≤t≤T and the martingale X̂∞ = (X̂∞
t )0≤t≤T are both starting at x, the

convergence X̂n
T

L1(P )−−−→ X̂∞
T therefore implies that An

T

L1(P )−−−→ 0. Since

An
T ≥ 1

j

(
1B1,j

• ϕ
1,n,↑
T + 1B2,j

• ϕ
1,n,↓
T

) ≥ 0,

the latter L1-convergence yields that 1B1,j
• ϕ

1,n,↑
T + 1B2,j

• ϕ
1,n,↓
T

L1(P )−−−→ 0, and
hence also in probability. �

We establish the following lemma to prove that σ̂ as defined in (4.6) equals
σ̂ = ∞ by contradiction.

LEMMA 4.6. Under the assumptions of Theorem 4.1, suppose that P(σ̂ <

∞) > 0. Then there exists a stopping time τ with P(τ < T ) > 0 such that we
have:



1434 C. CZICHOWSKY AND W. SCHACHERMAYER

(1) conv{|ϕn|τ∧T ;n ≥ 1} is bounded in L0(P ),
(2) there exists a set A ∈ F with A ⊆ {τ < T } and P(A) > 0, a constant c > 0

and a sequence (ϕ̂n)∞n=1 of convex combinations

ϕ̂n ∈ conv
(
ϕn,ϕn+1, . . .

)
such that we have on A that:

(a)
∫ τ

0 |dϕ̂n
u | ≤ c for all n,

(b)
∫ T
τ |dϕ̂n

u | P−→ ∞, as n → ∞,
(c) |St − Sτ | ≤ λ

3St for all t ∈ [τ, T ].

PROOF. Let Xt = log(St ) and define the stopping time

� := inf
{
t > σ̂

∣∣∣|Xt − Xσ̂ | > 1

3
log

(
1 + λ

3

)}
.

Clearly, � > σ̂ on {σ̂ < T } so that P(� > σ̂ ) = P(σ̂ < T ) > 0. Hence,

D := conv
{∣∣ϕn

∣∣
�∧T ;n ≥ 1

}
(4.7)

is not bounded in L0(P ) by the definition of σ̂ . Moreover, since D ⊆ L0+(P )

is convex, there exists by Lemma 2.3 in [10] a partition of � into disjoint sets
�u,�b ∈ F� with P(�u) > 0 such that:

(i) The restriction D|�b
= {g1�b

|g ∈ D} of D to �b is bounded in L0(P ).
(ii) D is hereditarily unbounded in L0(P ) on �u. That is, for every subset

B ∈ F , B ⊆ �u, P(B) > 0, we have that D|B = {g1B |g ∈ D} fails to be bounded
in L0(P ); see Definition 2.2 in [10].

Now, we can have two cases. Either P(�u ∩ {� ≥ T }) > 0 or P(�u ∩ {� < T }) =
P(�u). In the first case, we set F := �u ∩ {� ≥ T }. In the second one, there exists
by the stickiness of S and hence that of X a set F ∈ F with P(F) > 0 such that
F ⊆ �u ∩ {� < T } and supt∈[�,T ] |Xt − X�| < 1

3 log(1 + λ
3 ) on F .

By the continuity of S, we can choose k ∈N sufficiently large such that

sup
t∈[σ̂k,σ̂ ]

|Xt − Xσ̂k
| < 1

3
log

(
1 + λ

3

)

on a set A ∈F with A ⊆ F and P(A) > 0.
Setting τ = σ̂k , we then have (1) by (4.6) and that

sup
t∈[τ,T ]

|Xt − Xτ | < log
(

1 + λ

3

)
on A,

which implies that

|St − Sτ | ≤ λ

3
St for all t ∈ [τ, T ] on A.
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By part (4) of Lemma 2.3 in [10], assertion (ii) above yields the existence of a
sequence (ψn)∞n=1 of convex combinations

(4.8) ψn ∈ conv
{∣∣ϕm

∣∣;m ≥ n
}

such that

P
(
�u ∩ {

ψn
�∧T < n

})
<

1

n
.(4.9)

Since conv{|ϕn|τ∧T ;n ≥ 1} is bounded in L0(P ), we can by an application of
Komlós’s lemma (see, e.g., Lemma A.1 in [26]) assume without loss of generality
that

(4.10) ψn
τ∧T

P -a.s.−−−→ f as n → ∞,

for some f ∈ L0+(P ).
Let (ϕ̂n)∞n=1 be a sequence of convex combinations

ϕ̂n =
Kn∑
k=1

μn
kϕ

mn
k ∈ conv

(
ϕn,ϕn+1, . . .

)
that is obtained from the sequence (ϕn)∞n=1 by taking the same convex weights that
lead to the sequence (ψn)∞n=1 in (4.8) from the sequence (|ϕn|)∞n=1. By (4.10) and
the convexity of the total variation, we can assume by possibly passing to a smaller
set A that still has positive probability P(A) > 0 that there exists a constant c > 0
such that ∣∣ϕ̂n

∣∣
τ∧T ≤ c for all n ∈ N on A.

This proves properties (a) and (c) of part (2).
To establish property (b), we need to consider the following two cases:

(i′) P(Ẑ0
�∧T = 0,A) > 0,

(ii′) P(Ẑ0
�∧T > 0,A) > 0.

In case (i′), it follows from the fact that Ẑ0 = (Ẑ0
t )0≤t≤T is a nonnegative

martingale that G := {Ẑ0
�∧T = 0} ⊆ {Ẑ0

T = 0}. By the duality relation ĝ(x) =
(U ′)−1(ŷ(x)Ẑ0

T ), this implies that ĝ(x) = limn→∞ V
liq
T (ϕ̂n) = ∞ on G. Since S =

(St )0≤t≤T is strictly positive and continuous, we have that 0 < sup0≤t≤T St < ∞
P -a.s. The only way we can have ĝ(x) = limn→∞ V

liq
T (ϕ̂n) = ∞ on G is therefore

that limn→∞ |ϕ̂n|T = ∞ on G by

V
liq
T

(
ϕ̂n) ≤ x −

∫ T

0
Su dϕ̂1,n,↑

u +
∫ T

0
(1 − λ)Su dϕ̂1,n,↓

u + ϕ̂
1,n
T ST − λST

(
ϕ̂

1,n
T

)+
≤ x +

(
sup

0≤t≤T

St

)∣∣ϕ̂1,n
∣∣
T → ∞ on G.
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As |ϕ̂n|τ∧T ≤ c for all n ≥ 1 on A ⊆ G, we have that
∫ T
τ |dϕ̂n

u | → ∞ on
{Ẑ0

�∧T = 0} ∩ A.
In case (ii′), we need to show that the fact that the sequence (ψn)∞n=1 of con-

vex combinations of total variation processes is unbounded in L0(P ) in the sense
of (4.10) implies that the sequence (|ϕ̂n|)∞n=1 of total variations of convex com-
binations is unbounded in L0(P ) in the same sense. While this is not true in
general, it follows in the present situation from the fact that all trading strategies
ϕ̂n = (ϕ̂

0,n
t , ϕ̂

1,n
t )0≤t≤T of any maximising sequence satisfying (4.3) have to buy

and sell on the same sets up to an error that vanishes by Lemma 4.5. Therefore, the
difference between the total variation of the convex combinations and the convex
combination of the total variations vanishes by Lemma 4.5 as well.

To see this, we observe that we can assume without loss of generality after
possibly passing to a smaller set A that inf0≤u≤�∧T Ẑ0

u > c̄ for some c̄ > 0. This
follows by the minimum principle for supermartingales. Then we can choose j ∈N

sufficiently large such that the sets Bc
1,j = {Ẑ0S − Ẑ1 ≤ 1

j
} and Bc

2,j = {Ẑ1 −
Ẑ0(1 −λ)S ≤ 1

j
}, where B1,j = {Ẑ0S − Ẑ1 > 1

j
} and B2,j = {Ẑ1 − Ẑ0(1 −λ)S >

1
j
} are as defined in Lemma 4.5, are disjoint on {inf0≤u≤�∧T Ẑ0

u > c̄}. Therefore,

we can estimate on {inf0≤u≤�∧T Ẑ0
u > c̄} that

∣∣ϕ̂1,n
∣∣
�∧T =

∣∣∣∣∣
Kn∑
k=1

μn
kϕ

1,mn
k

∣∣∣∣∣
�∧T

=
∣∣∣∣∣
Kn∑
k=1

μn
k

(
ϕ1,mn

k ,↑ − ϕ1,mn
k ,↓)∣∣∣∣∣

�∧T

=
∣∣∣∣∣
Kn∑
k=1

μn
k

(
1Bc

1,j
• ϕ1,mn

k ,↑ − 1Bc
2,j

• ϕ1,mn
k ,↓

+ 1B1,j
• ϕ1,mn

k ,↑ − 1B2,j
• ϕ1,mn

k ,↓)∣∣∣∣∣
�∧T

≥
Kn∑
k=1

μn
k

(
1Bc

1,j
• ϕ

1,mn
k ,↑

�∧T + 1Bc
2,j

• ϕ
1,mn

k ,↓
�∧T

)

−
Kn∑
k=1

μn
k

(
1B1,j

• ϕ
1,mn

k ,↑
�∧T + 1B2,j

• ϕ
1,mn

k ,↓
�∧T

)

=
Kn∑
k=1

μn
k

∣∣ϕ1,mn
k
∣∣
�∧T − 2

Kn∑
k=1

μn
k

(
1B1,j

• ϕ
1,mn

k ,↑
�∧T + 1B2,j

• ϕ
1,mn

k ,↓
�∧T

)
.
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Similarly, we also obtain on {inf0≤u≤�∧T Ẑ0
u > c̄} that

∣∣ϕ̂0,n
∣∣
�∧T ≥

Kn∑
k=1

μn
k

∣∣ϕ0,mn
k
∣∣
�∧T − 2

Kn∑
k=1

μn
k

(
1B1,j

• ϕ
0,mn

k ,↓
�∧T + 1B2,j

• ϕ
0,mn

k ,↑
�∧T

)
.

Combining both estimates gives on {inf0≤u≤�∧T Ẑ0
u > c̄} that

∣∣ϕ̂n
∣∣
�∧T ≥ ψn

�∧T − 2
Kn∑
k=1

μn
k

(
1B1,j

• ϕ
1,mn

k ,↑
�∧T + 1B2,j

• ϕ
1,mn

k ,↓
�∧T

+ 1B1,j
• ϕ

0,mn
k ,↓

�∧T + 1B2,j
• ϕ

0,mn
k ,↑

�∧T

)
.

Since we have

1B1,j
• ϕ

1,n,↑
T + 1B2,j

• ϕ
1,n,↓
T

P−→ 0,

1B1,j
• ϕ

0,n,↓
T + 1B2,j

• ϕ
0,n,↑
T

P−→ 0,

by Lemma 4.5, this implies that |ϕ̂n|�∧T
P−→ ∞ on {inf0≤u≤�∧T Ẑ0

u > c̄} and, there-

fore, that
∫ T
τ |dϕ̂n

u | P−→ ∞ on {inf0≤u≤�∧T Ẑ0
u > c̄}∩A, as |ϕ̂n|τ∧T ≤ c for all n ≥ 1

on A. �

After the preparations above, we can now show that σ̂ = ∞ P -a.s. This proves
parts (1) and (2) of Theorem 4.1. Assertions (3) and (4) then follow from Proposi-
tion 3.3.

LEMMA 4.7. Under the assumptions of Theorem 4.1, we have that σ̂ = ∞
P-a.s.

That is, for any maximising sequence ϕn = (ϕ
0,n
t , ϕ

1,n
t )0≤t≤T ∈ Aλ

adm(x) of
trading strategies satisfying (4.3), we have that C := conv{|ϕn|T ;n ≥ 1} is
bounded in L0(P ).

PROOF. We argue by contradiction and assume that P(σ̂ < ∞) > 0. Then
there exists by (2) of Lemma 4.6 a stopping time τ , a set A ⊆ {τ < T } with
P(A) > 0, a constant c > 0 and a sequence (ϕ̂n)∞n=1 of convex combinations

ϕ̂n ∈ conv
(
ϕ̄n, ϕ̄n+1, . . .

)
such that we have on A that:

(a)
∫ τ

0 |dϕ̂n
u | ≤ c for all n,

(b)
∫ T
τ |dϕ̂n

u | → ∞, as n → ∞,
(c) |St − Sτ | ≤ λ

3St for all t ∈ [τ, T ].
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As we can assume without loss of generality that ϕ̂
1,n
T = 0, we obtain by com-

bining (a)–(c) with the self-financing condition (2.1) under transaction costs simi-
larly as in (4.2) that

V
liq
T

(
ϕ̂n) = ϕ̂

0,n
T

≤ x −
∫ T

0
Su dϕ̂1,n

u − λ

∫ T

0
Su dϕ̂1,n,↓

u

(4.11)

= ϕ̂0,n
τ + ϕ̂1,n

τ Sτ −
∫ T

τ
(Su − Sτ ) dϕ̂1,n

u − λ

∫ T

τ
Su dϕ̂1,n,↓

u

≤ ϕ̂0,n
τ + ϕ̂1,n

τ Sτ − 2

3
λ

∫ T

τ
Su dϕ̂1,n,↓

u → −∞, as n → ∞, on A.

Note that ϕ̂
1,n
T = 0 implies that

∫ T
τ dϕ̂

1,n,↓
u → ∞, as n → ∞, on A by (b).

Since ϕ̂n ∈ conv(ϕn,ϕn+1, . . . ), the sequence (ϕ̂n)∞n=1 also has to satisfy

U
(
V

liq
T

(
ϕ̂n)) L1(P )−→ U

(
ĝ(x)

)
.

However, this contradicts (4.11) and we therefore have that P(σ̂ < ∞) = 0. �

PROOF OF THEOREM 4.1. We only need to prove (2). This immediately im-
plies (1) and (3) and (4) by Proposition 3.3. As explained after the statement
of Theorem 4.1 on page 1428, the assumptions of the duality Theorem 3.1 are
satisfied under the assumptions of Theorem 4.1 and by Lemma 4.2. This al-
lows us to apply the duality Theorem 3.1 to obtain a maximising sequence ϕn =
(ϕ

0,n
t , ϕ

1,n
t )0≤t≤T ∈ Aλ

adm(x) of self-financing and admissible trading strategies
and a random variable ĝ = ĝ(x) ∈ L0(P ;R ∪ {∞}) such that E[U(ĝ(x))] = u(x)

and

V
liq
T

(
ϕn) P−→ ĝ(x),

(4.12)

U
(
V

liq
T

(
ϕn)) L1(P )−→ U

(
ĝ(x)

)
.

By Lemma 4.7, we then have that C := conv{|ϕn|T ;n ≥ 1} is bounded in L0(P ).
Therefore, there exists a sequence (ϕ̂n)∞n=1 of convex combinations

ϕ̂n ∈ conv
(
ϕn,ϕn+1, . . .

)
and a self-financing trading strategy ϕ̂ = (ϕ̂0

t , ϕ̂
1
t )0≤t≤T under transaction costs

such that

P
[(

ϕ̂
0,n
t , ϕ̂

1,n
t

) n→∞−−−→ (
ϕ̂0

t , ϕ̂
1
t

)
,∀t ∈ [0, T ]] = 1(4.13)

by Proposition 3.4 in [12] (and its application in the proof of Theorem 3.5 therein).
The sequence (ϕ̂n)∞n=1 then also satisfies (4.12), which completes the proof. �
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5. A case study: Fractional Brownian motion and exponential utility. We
resume here the theme of (exponential) fractional Brownian motion which was
briefly discussed in the Introduction. In fact, the challenge posed by this example
was an important motivation for the present research.

Fractional Brownian motion has been proposed by B. Mandelbrot [43] as a
model for stock price processes more than 50 years ago. Until today, this idea poses
a number of open problems. From a mathematical point of view, a major difficulty
arises from the fact that fractional Brownian motion fails to be a semimartingale
(except for the Brownian case H = 1

2 ). Tools from stochastic calculus are therefore
hard to apply and it is difficult to reconcile this model with the usual no arbitrage
theory of mathematical finance. Indeed, it was shown in ([26], Theorem 7.2) that
a stochastic process which fails to be a semimartingale automatically allows for
arbitrage (in a sense which was made precise in Theorem 7.2). In the special case
of fractional Brownian motion, this was also shown directly by C. Rogers [48].

One way to avoid this deadlock arising from the violation of the no-arbitrage
paradigm is the consideration of proportional transaction costs. The introduction
of proportional transaction costs λ, for arbitrarily small λ > 0, makes the arbitrage
opportunities disappear. Theorem 4.1 applies perfectly to the case of fractional
Brownian motion, for any Hurst index H ∈ (0,1). As utility function U , we may,
for example, choose exponential utility U(x) = −e−x . Hence, we dispose of a
duality theory for fractional Brownian motion under transaction costs and, in par-
ticular, we may find a shadow price process Ŝ which is a semimartingale.

Let us define the setting more formally. As driver of our model S, we fix a
standard Brownian motion (Wt)−∞<t<∞, indexed by the entire real line, in its
natural (right continuous, saturated) filtration (Ft )−∞<t<∞. We let the Brownian
motion W run from −∞ on in order to apply the elegant integral representation
below (5.1) due to Mandelbrot and van Ness; see [44].

We note that the Brownian motion (Wt)0≤t≤T , now indexed by [0, T ], has the
integral representation property with respect to the filtration (Ft )0≤t≤T . The only
difference to the more classical setting, where we consider the filtration (Gt )0≤t≤T

generated by (Wt)0≤t≤T is that F0 is not trivial anymore. But this causes little
trouble. We simply have to do all the arguments conditionally on F0.

Fix a Hurst parameter H ∈ (0,1) \ {1
2 }. We may define the fractional Brownian

motion (Bt )0≤t≤T = (BH
t )0≤t≤T as

Bt = C(H)

∫ t

−∞
(
(t − s)H− 1

2 − (|s|H− 1
2 1(−∞,0)

))
dWs, 0 ≤ t ≤ T ,

(5.1)

where C(H) is some constant which is not relevant in the sequel [see [44], Sec-
tion 1.1 or [48], formula (1.1)].

We may further define a nonnegative stock price process S = (St )0≤t≤T by let-
ting

St = exp(Bt ), 0 ≤ t ≤ T ,(5.2)
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or, slightly more generally,

St = exp(σBt + μt), 0 ≤ t ≤ T ,(5.3)

for some σ > 0 and μ ∈R. For the sake of concreteness, we stick to (5.2). We now
are in a situation covered by Theorem 4.1.

As regards the stickiness of S, this property (Definition 2.1) of (exponential)
fractional Brownian motion has been shown by P. Guasoni [30]. We also fix trans-
action costs λ > 0 and U(x) = −e−x , as well as an initial capital x ∈ R, for exam-
ple, x = 0. By Theorem 4.1, we may find a primal optimizer ϕ̂ = (ϕ̂0

t , ϕ̂
1
t )0≤t≤T ,

a dual optimiser Ẑ = (Ẑ0
t , Ẑ

1
t )0≤t≤T which is a λ-consistent price system, as well

as a shadow price process Ŝ = Ẑ1

Ẑ0 . From this general theorem, we know that Ẑ0

is a uniquely determined martingale and that Ẑ1 is a local martingale. It seems
rather obvious that in the present case (5.2) or (5.3) the process Ẑ1 is, in fact, also
a martingale, but we do not need this result and, therefore, do not attempt to prove
it.

These general and rather innocent looking results have some striking conse-
quences, also outside the realm of mathematical finance. They imply that the frac-
tional Brownian paths may touch the paths of an Itô process in a one-sided way
(Theorem 5.3 below).

Let us draw some conclusions from Theorem 4.1.

LEMMA 5.1. In the above setting of exponential fractional Brownian motion,
the martingale (Ẑ0

t )0≤t≤T has a representation as

Ẑ0
t = Ẑ0

0 exp
(
−

∫ t

0
α̂u dWu − 1

2

∫ t

0
α̂2

u du

)
, 0 ≤ t ≤ T ,(5.4)

for some R-valued predictable [with respect to the filtration (Ft )0≤t≤T ] process
α̂ = (α̂t )0≤t≤T such that

∫ T
0 α̂2

t dt < ∞ almost surely.
The process X̂ = log(Ŝ) is an Itô process and may be represented as

X̂t = X̂0 +
∫ t

0

(
σ̂u dWu +

(
μ̂u − σ̂ 2

u

2

)
du

)
, 0 ≤ t ≤ T ,(5.5)

where σ̂ and μ̂ are R-valued predictable processes such that
∫ T

0 σ̂ 2
t dt as well

as
∫ T

0 |μ̂t |dt are a.s. finite. In fact, Ŝ = exp(X̂) is a local martingale under the

measure Q̂ defined by dQ̂
dP

= Ẑ0
T . We therefore have the relation

α̂u = μ̂u

σ̂u

, u ∈ [0, T ].(5.6)

This equality holds m ⊗ P almost surely, where m is Lebesgue-measure on [0, T ].
The equality is defined to hold true in the case when the right-hand side is of the
form 0

0 .
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PROOF. We know from Theorem 4.1 that Ẑ0 and Ẑ1 are local martingales
so that we may apply the martingale representation theorem which implies (5.4).
We deduce that Ŝ = Ẑ1

Ẑ0 as well as X̂ = log(Ŝ) are Itô processes which yields a

representation of the form (5.5). Passing again to Ŝ = exp(X̂), we obtain

dŜt

Ŝt

= σ̂t dWt + μ̂t dt,

which implies equality (5.6) by Girsanov and the fact that Ŝ is a local martingale
under Q. �

Before formulating the main result of this section, we still need some prepara-
tion which also is of some independent interest.

LEMMA 5.2. For 0 < λ < 1, denote by u(λ)(x) the corresponding indirect
utility function (2.4). Then

(5.7) u(λ)(x) = −f (λ)e−x, 0 < λ < 1,

where f (λ) is a nondecreasing function taking values in (0,1] and

(5.8) lim
λ↘0

f (λ) = 0.

PROOF. The fact that u(λ) is of the form (5.7) is a well-known scaling property
of exponential utility.

Let us analyze the function f (λ). It is obvious that f (λ) in nondecreasing and
takes its values in (0,1]. As regards (5.8), it follows from [48] (or the proof of
Theorem 7.2 in [26]) that we may find, for ε > 0 and M > 0, a simple predictable
process ϑ of the form

ϑt =
N−1∑
i=0

gi1�τi ,τi+1 �(t),

where gi ∈ L∞(�,Fτi
, P ) and 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T are stopping times

such that, for S = exp(B),

(5.9) (ϑ • S)T =
N∑

i=0

gi(Sτi+1 − Sτi
)

satisfies (ϑ • S)T ≥ −1 almost surely and P [(ϑ • S)T ≥ M] > 1 − ε.
For 0 < λ < 1, we may ϑ interpret also in the setting of transaction costs. More

formally: associate to ϑ a λ-self-financing process ϕ = (ϕ0, ϕ1) as above starting
at (ϕ0

0, ϕ1
0) = (0,0), such that ϕ1 = ϑ1(0,T ) and ϕ0 is defined by having equality

in (2.1). Choosing λ > 0 sufficiently small, we obtain ϕ0
T ≥ −2 almost surely as

well as P [ϕ0
T ≥ M − 1] > 1 − ε. This readily shows (5.8). �
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We now can formulate a consequence of the above results on portfolio optimi-
sation which seems remarkable, independently of the above financial applications,
as a general result on the pathwise behaviour of fractional Brownian motion: they
may touch Itô processes in a nontrivial way without involving local time or related
concepts pertaining to the reflection of Brownian motion.

THEOREM 5.3. Let (Bt )0≤t≤T be fractional Brownian motion with Hurst in-
dex H ∈ (0,1) \ {1

2} and α > 0 [which corresponds to α = − log(1 − λ) in the
above setting of transaction costs].

There is an Itô process (Xt)0≤t≤T such that

Bt − α ≤ Xt ≤ Bt, 0 ≤ t ≤ T ,(5.10)

holds true almost surely.
In addition, X can be constructed in such a way that (eXt )0≤t≤T is a local

martingale under some measure Q equivalent to P . For ε > 0, we may choose
α > 0 sufficiently small so that the trajectory (Xt)0≤t≤T touches the trajectories
(Bt )0≤t≤T as well as the trajectories (Bt − α)0≤t≤T with probability bigger than
1 − ε.

PROOF. The theorem is a consequence of Theorem 4.1 and Lemma 5.1 where
we simply take X = X̂.

We only have to show the last assertion. It translates into the setting of Theo-
rem 4.1 as the statement that, for ε > 0, there is λ0 > 0 such that, for 0 < λ < λ0,
we have with probability bigger than 1 − ε that (ϕ̂t )0≤t≤T is not constant. Indeed,
apart from the trivial case ϕ̂t ≡ (x,0) of no trading there must be some buying as
well as some selling of the stock, as the investor starts and finishes with zero hold-
ings of stock. As this can only happen if Ŝt = St or Ŝt = (1 − λ)St , respectively,
we must have equality in (5.10) for both cases for some t ∈ [0, T ]. To show that
this case occurs with probability bigger than 1 − ε, for sufficiently small enough
α > 0, assume to the contrary that there are η > 0 and arbitrary small α > 0 such
that the optimal trading strategy ϕ̂ remains constant with probability bigger than η.
This contradicts (5.8) as then we have

uλ(0) ≤ −η. �

Let us comment on the interpretation of the above theorem. Using the above
construction, define σ and τ to be the stopping time

σ = inf
{
t ∈ [0, T ] : Xt = Bt − α

}
, τ = inf

{
t ∈ [0, T ] : Xt = Bt

}
,

which for sufficiently small α > 0, satisfies P [σ < ∞] = P [τ < ∞] > 1 − ε.
Here, the equality P [σ < ∞] = P [τ < ∞] follows from the fact that, since we
start and end with zero holdings in stock, any position that is bought or sold has to
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be liquidated before time T . We may suppose w.l.o.g. that τ < σ (the case σ < τ

is analogous). Consider the difference process

Dt = Bt − Xt, 0 ≤ t ≤ T ,(5.11)

which is nonnegative and vanishes for t = τ . We formulate a consequence of the
above considerations.

COROLLARY 5.4. On the set {τ < σ } we have that σ ≤ T almost surely,
and that the process (Dt)τ≤t≤σ starts at zero, remains nonnegative and ends at
Dσ = α.

This statement should be compared to the well-known fact that there are no stop-
ping times τ < σ such that P [τ < T ] = P [σ ≤ T ] > 0 and such that Bσ −Bτ > α,
almost surely on {τ < T }. Indeed, this follows from the stickiness property (Def-
inition 2.1) of fractional Brownian motion proved by P. Guasoni ([30]; compare
also [33]). Adding to B the Itô process X somewhat miraculously changes this
behaviour of B drastically as formulated in the above corollary.

APPENDIX: AN ABSTRACT VERSION OF THE DUALITY THEOREM

The basic idea to prove the Duality Theorem 3.1 under transaction costs is, as
in [20], to reduce it to an abstract version of the duality theorem in the frictionless
case in [50]. We provide this abstract version that is what was actually shown in
the proof of Theorem 2.2 in [50] below. It might find other applications as well.

To that end, let C be a closed, convex, solid and bounded subset of L0+(P ) con-
taining the constant 1, set C(x) = xC for all x > 0 and Cb(x) = ⋃∞

n=1{C(x+n)−n}
for all x ∈ R. Denote by D the polar of C in L0+(P ) given by C◦ = {h ∈
L0+(P )|E[gh] ≤ 1 ∀g ∈ C} and set D(y) = yD for all y > 0. Note that, since
1 ∈ C, we have that E[h] ≤ 1 for all h ∈ D. Suppose that D = {h ∈ D|h > 0 and
E[h] = 1} is nonempty and such that D is the closed, convex and solid hull of D

in L0+(P ). Denote by D the L1(P )-closure of D given by D = {h ∈D|E[h] = 1}.
As shown in Theorem 3.2 of [41], the properties of the sets C(x) and D(y) above

are the ones that are needed to establish the duality theory for utility maximisation
on the positive half-line. The following theorem presents an extension of this result
to utility functions on the whole real line.

THEOREM A.1. Under the assumptions above, suppose that U :R →R satis-
fies the Inada conditions, has reasonable asymptotic elasticity, that is, AE∞(U) :=
limx→∞ xU ′(x)

U(x)
< 1 and AE−∞(U) := limx→−∞

xU ′(x)
U(x)

> 1, and that

(A.1) u(x) := sup
g∈CU (x)

E
[
U(g)

]
< U(∞)
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for some x ∈ R, where

CU(x) = {
g ∈ L0(

P ;R∪ {∞})|∃gn ∈ Cb(x) such that

U(gn) ∈ L1(P ) and U(gn)
L1(P )−→ U(g)

}
.

Then:

(1) The primal value function u, defined in (A.1), and the dual value function

v(y) := inf
h∈D

E
[
V (yh)

]
,

where V (y) := supx∈R{U(x)−xy} for y > 0 denotes the Legendre transform of U ,
are conjugate, that is,

u(x) = inf
y>0

{
v(y) + xy

}
, v(y) = sup

x∈R
{
u(x) − xy

}
,

and continuously differentiable. The functions u and −v are strictly concave and
satisfy the Inada conditions:

lim
x→−∞u′(x) = ∞, lim

y→∞v′(y) = ∞,

lim
x→∞u′(x) = 0, lim

y→0
v′(y) = −∞.

The primal value function u has reasonable asymptotic elasticity.
(2) For y > 0, the solution ĥ(y) ∈ D to the dual problem

(A.2) E
[
V (yh)

] → min!, h ∈ D,

exists, is unique and the map y �→ ĥ(y) is continuous in variation norm.
(3) For x ∈ R, the solution ĝ(x) ∈ CU(x) to the primal problem

(A.3) E
[
U(g)

] → max!, g ∈ CU(x),

exists, is unique and given by

(A.4) ĝ(x) = (
U ′)−1(

ŷ(x)ĥ
(
ŷ(x)

))
,

where ŷ(x) = u′(x).
(4) We have the formulae

v′(y) = E
[
ĥ(y)V ′(yĥ(y)

)]
and xu′(x) = E

[
ĝ(x)U ′(ĝ(x)

)]
,

where we use the convention that 0 · ∞ = 0, if the random variables are of this
form.

PROOF. The proof follows along the same arguments as that of Theorem 2.2 in
[50] after replacing each of the approximating problems (16) in [50] by its abstract
version, that is, problem (3.4) in [41], and using Theorem 3.2 in [41] instead of
Theorem 2.2 in [41].
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Indeed, let S̃ = (S̃t )0≤t≤T be a locally bounded semimartingale price process
that admits an equivalent local martingale measure (ELMM) Q ∼ P so that the set
Me(S̃) of all ELMM for S̃ is nonempty. Denote by X (x) the set of all nonnegative
wealth processes starting with initial capital x, that is,

Xt = x + ϑ • S̃t ≥ 0, 0 ≤ t ≤ T ,

where ϑ ∈ L(S̃) is an S̃-integrable predictable process, and by Y(y) the set of all
supermartingale deflators for S̃, that is, nonnegative optional strong supermartin-
gales Y = (Yt )0≤t≤T starting at Y0 = y such that YX = (YtXt )0≤t≤T is a nonneg-
ative supermartingale for all X ∈ X (1). Then the abstract sets above correspond to
the following sets in [50]:

C �
{
g ∈ L0+(P )|∃X ∈ X (1) such that g ≤ XT

}
,

C(x) �
{
g ∈ L0+(P )|∃X ∈ X (x) such that g ≤ XT

}
, x > 0,

Cb(x) �
∞⋃

n=1

{
C(x + n) − n

}
,

D �
{
YT |Y ∈ Y(1)

}
,

D(y) �
{
YT |Y ∈ Y(y)

}
, y > 0,

D �
{
dQ

dP

∣∣∣Q ∈ Me(S̃)

}
,

D �
{
dQ

dP

∣∣∣Q ∈ Ma(S̃)

}
.

Note that Cb(x) corresponds to the set of all random variables g ∈ L0(P ) that are
bounded from below and such that there exists X ∈ Xb(x) such that g ≤ XT , where
Xb(x) is the set of all wealth processes that are uniformly bounded from below,
that is, there exists some M > 0 such that

Xt = x + ϑ • S̃t ≥ −M, 0 ≤ t ≤ T .

Conversely, replacing the “concrete sets” above in the proof of Theorem 2.2 in
[50] and using the “abstract version” of the duality results for utility functions on
the positive half-line in Theorem 3.2 of [41] instead of Theorem 2.2 in [41] with
the “abstract sets” yields the proof of the abstract version of the theorem. This is
clear for all steps of the proof except step 1, step 3 and step 10.

In step 1, it is used that by part (iv) of Theorem 2.2 in [41] the dual optimiser
for the utility maximisation problem on the positive half-line can be approximated
by the Radon–Nikodym derivatives of an ELMMs. To ensure this in our “abstract
setting”, one has by Proposition 3.2 in [41] to use that the set D is the closed,
convex and solid hull of D in L0+(P ) and that D is closed under countable convex
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combinations. This follows immediately from the assumption that D is convex and
closed in probability and an application of the the monotone convergence theorem.

Step 3 and step 10 show in addition dynamic properties of the primal and dual
optimiser that we do not assert and, therefore, do not need to prove here. �

Applying the abstract duality theorem above to portfolio optimisation under
transaction costs then allows us to prove Theorem 3.1.

PROOF OF THEOREM 3.1. We begin by recalling some of the definitions for
portfolio optimisation under transaction costs for utility functions on the positive
half-line from [20].

For x > 0, we denote by Aλ(x) the set of all self-financing trading strate-
gies ϕ = (ϕ0

t , ϕ
1
t )0≤t≤T under transaction costs starting with initial endowment

(ϕ0
0, ϕ1

0) = (x,0) that are 0-admissible, that is, V
liq
t (ϕ) ≥ 0 for all t ∈ [0, T ].

The set Bλ(y) of all optional strong supermartingale deflators consists of all
pairs of nonnegative optional strong supermartingales Y = (Y 0

t , Y 1
t )0≤t≤T such

that Y 0
0 = y, Y 1 = Y 0S̃ for some [(1 − λ)S,S]-valued process S̃ = (S̃t )0≤t≤T and

Y 0(ϕ0 + ϕ1S̃) = Y 0ϕ0 + Y 1ϕ1 is a nonnegative optional strong supermartingale
for all ϕ ∈ A(1). Note that Zλ

e ⊆Zλ
a ⊆ Bλ(1).

We define the following sets:

Cλ = Cλ(1) = {
V

liq
T (ϕ)|ϕ ∈Aλ(1)

}
,

Cλ(x) = {
V

liq
T (ϕ)|ϕ ∈ Aλ(x)

}
, x > 0,

Dλ = Dλ(1) = {
Y 0

T |Y ∈ Bλ(1)
}
,

Dλ(y) = {
Y 0

T |Y ∈ B(y)
} = yDλ, y > 0,

Dλ = {
Z0

T |Z ∈ Zλ
e

}
,

D
λ = {

Z0
T |Z ∈ Zλ

a

}
.

Under the assumptions of Theorem 3.1, we have by Lemma A.1 in [20] that
Cλ is a closed, convex and bounded subset of L0+(P ) containing the constant 1,
that Dλ coincides with the polar (Cλ)◦ of Cλ in L0+(P ) and that Dλ is the closed,
convex and solid hull of Dλ in L0+(P ).

In order to deduce the Duality Theorem 3.1 by applying the abstract version
(Theorem A.1) for C = Cλ, D = Dλ, D = Dλ and D = D

λ
, we therefore only

need to verify that

Dλ = {
h ∈ Dλ|h > 0 and E[h] = 1

}
,(A.5)

D
λ = {

h ∈ Dλ|E[h] = 1
}
.(A.6)
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We begin with (A.6). Recall that by the definition of Dλ there exists Y =
(Y

0
t , Y

1
t )0≤t≤T ∈ Bλ(1) such that Y

0
T = h. Since Y

0 = (Y
0
t )0≤t≤T is a nonnega-

tive optional strong supermartingale starting at Y
0
0 = 1, the condition E[Y 0

T ] =
E[h] = 1 implies that Y

0
is a true martingale, and hence càdlàg. To see the lo-

cal martingale property of Y
1 = (Y

1
t )0≤t≤T , we need to use the local bounded-

ness of S = (St )0≤t≤T . Let (τn)
∞
n=1 be a localising sequence of stopping times

tending stationarily to T such that sup0≤t≤T S
τn
t ≤ n on {S0 ≤ n}. Since Y

1

is a nonnegative optional strong supermartingale, we only need to show that

E[Y 1
τn

1{S0≤n}] ≥ E[Y 1
01{S0≤n}] to establish the local martingale property of Y

1

with localising sequence (σn)
∞
n=1 of stopping times given by σn = τn1{S0≤n}.

For this, consider, for m ≥ n, the self-financing trading strategy ϕm =
(ϕ

0,m
t , ϕ

1,m
t )0≤t≤T under transaction costs that starts at ϕm

0 = (1,0), sells 1
m

shares of stock immediately after time 0 on {S0 ≤ n} and, if τm < T , buys
them back again at time τm. That is, ϕ1,m = (− 1

m
1�0,T � + 1

m
1�τm,T �)1{S0≤n} and

ϕ0,m = 1 + ( 1
m

(1 − λ)S01�0,T � − 1
m

Sτm1�τm,T �)1{S0≤n}. The liquidation value of
this strategy is given by

V
liq
t

(
ϕm) = 1 +

(
1

m
(1 − λ)S0 − 1

m
Sτm∧t

)
1{S0≤n} ≥ 0, 0 ≤ t ≤ T .

Therefore, ϕm is 0-admissible and Y
0
ϕ0,m + Y

1
ϕ1,m is an optional strong super-

martingale so that

1 ≥ E
[
Y

0
0+ϕ

0,m
0+ + Y

1
0+ϕ

1,m
0+

]
= E

[
Y

0
0

(
1 + 1

m
(1 − λ)S01{S0≤n}

)
− 1

m
Y

1
0+1{S0≤n}

]

≥ E
[
Y

0
τn

ϕ0,m
τn

+ Y
1
τn

ϕ1,m
τn

]
≥ E

[(
Y

0
τn

ϕ0,m
τn

+ Y
1
τn

ϕ1,m
τn

)
1{τm=T } + Y

0
τn

V liq
τn

(
ϕm)

1{τm<T }
]

= E

[(
Y

0
τn

(
1 + 1

m
(1 − λ)S01{S0≤n}

)
− 1

m
Y

1
τn

1{S0≤n}
)
1{τm=T }

]

+ E

[
Y

0
τn

(
1 + 1

m
(1 − λ)S01{S0≤n} − 1

m
Sτn1{S0≤n}

)
1{τm<T }

]
.

By the martingale property of Y
0
, this implies

− 1

m
E

[
Y

1
0+1{S0≤n}

] ≥ − 1

m
E

[
Y

1
τn

1{S0≤n}1{τm=T }
]

(A.7)

− 1

m
E

[
Y

0
τn

(1 − λ)Sτn1{S0≤n}1{τm<T }
]
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and, therefore,

E
[
Y

1
τn

1{S0≤n}
] ≥ E

[
Y

1
0+1{S0≤n}

]
after multiplying both sides of (A.7) with m and then sending m to infinity, where

we use that P(τm < T ) → 0, as m → ∞. As Y
0 = (Y

0
t )0≤t≤T and S = (St )0≤t≤T

are both càdlàg, we can modify Y
1 = (Y

1
t )0≤t≤T at time 0 by setting Y

1
0 = Y

1
0+

to obtain that Y = (Y
0
t , Y

1
t )0≤t≤T is a pair consisting of a martingale Y

0
and

a local martingale Y
1

such that there exists an [(1 − λ)S,S]-valued process

such that Y
1 = Y

0
S̄. So we get that there exists Y = (Y

0
, Y

1
) ∈ Zλ

a such that

Y
0
T = h and, therefore, (A.6). If Y

0
T = h > 0, then Y = (Y

0
, Y

1
) ∈ Zλ

e , which
proves (A.5). �

The following auxiliary result was used in the proof of Lemma 4.5.

LEMMA A.2. Under the assumptions of Theorem A.1, let (gn)
∞
n=1 be any

sequence of random variables in Cb(x) satisfying U(gn)
L1(P )−−−→ U(ĝ(x)). Then

ĥ(ŷ(x))gn
L1(P )−−−→ ĥ(ŷ(x))ĝ(x).

PROOF. Since U ′ is nonnegative and decreasing, we can estimate(
U(gn) − U

(
ĝ(x)

))− ≥ U ′(ĝ(x)
)(

gn − ĝ(x)
)−

.

Together with the L1-convergence of U(gn) to U(ĝ(x)), this implies that(
U ′(ĝ(x)

)(
gn − ĝ(x)

)−)∞
n=1

is uniformly integrable, and hence that

U ′(ĝ(x)
)(

gn − ĝ(x)
)− L1(P )−−−→ 0,

since U(gn)
L1(P )−−−→ U(ĝ(x)) yields that gn

P−→ ĝ(x) ∈ L0(P ;R∪{∞}) by the strict
monotonicity of U . Therefore, we obtain that

(A.8) lim
n→∞E

[
U ′(ĝ(x)

)(
gn − ĝ(x)

)] ≥ 0

by the generalised version of Fatou’s lemma. By parts (3) and (4) of Theorem A.1,
we have that U ′(ĝ(x)) = ŷ(x)ĥ(ŷ(x)) ∈ ŷ(x)D and

(A.9) E
[
U ′(ĝ(x)

)(
gn − ĝ(x)

)] = ŷ(x)E
[
ĥ
(
ŷ(x)

)(
gn − ĝ(x)

)] ≤ 0.

Combining (A.8) and (A.9) gives limn→∞ E[U ′(ĝ(x))(gn − ĝ(x))] = 0 and, there-
fore, that

U ′(ĝ(x)
)(

gn − ĝ(x)
)+ L1(P )−−−→ 0.

The convergence ĥ(ŷ(x))gn
L1(P )−−−→ ĥ(ŷ(x))ĝ(x) then follows, since U ′(ĝ(x)) =

ŷ(x)ĥ(ŷ(x)). �
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