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HYDRODYNAMIC LIMITS AND PROPAGATION OF CHAOS FOR
INTERACTING RANDOM WALKS IN DOMAINS1

BY ZHEN-QING CHEN AND WAI-TONG (LOUIS) FAN

University of Washington and University of Wisconsin

A new non-conservative stochastic reaction–diffusion system in which
two families of random walks in two adjacent domains interact near the in-
terface is introduced and studied in this paper. Such a system can be used
to model the transport of positive and negative charges in a solar cell or the
population dynamics of two segregated species under competition. We show
that in the macroscopic limit, the particle densities converge to the solution of
a coupled nonlinear heat equations. For this, we first prove that propagation
of chaos holds by establishing the uniqueness of a new BBGKY hierarchy.
A local central limit theorem for reflected diffusions in bounded Lipschitz
domains is also established as a crucial tool.
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1. Introduction. The original motivation of this project is to study the trans-
ports of positive and negative charges in solar cells. We model a solar cell by a
domain in Rd that is divided into two disjoint sub-domains D+ and D− by an
interface I , a (d − 1)-dimensional hypersurface, which can be possibly discon-
nected. D+ and D− represent the hybrid medium that confine the positive and the
negative charges, respectively. At microscopic level, positive and negative charges
are initially modeled by N independent reflected Brownian motion (RBM) with
drift on D+ and on D−, respectively. (In this paper, they are actually modeled by
N independent random walks on lattices inside D+ and D− that serve as discrete
approximation of RBM with drifts.) These random motions model the transport of
positive (respectively, negative) charges under an electric potential (see Figure 1).

These two types of particles annihilate each other at a certain rate when they
come close to each other near the interface I . This interaction models the anni-
hilation, trapping, recombination and separation phenomena of the charges. The
interaction distance is of microscopic order ε where Nεd is comparable to 1, and

FIG. 1. I is the interface of D+ and D−.
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the intensity of annihilation per pair is of order λ/ε where λ ≥ 0 is a given pa-
rameter. Intuitively, according to a random time clock which runs with a speed
proportional to the number of pairs (one particle of each type) of distance ε, we
annihilate a pair (picked uniformly among those pairs of distance less than ε) with
an exponential rate of parameter λ/ε. The above scaling guarantees that in the
limit, a nontrivial proportion of particles are annihilated in any time interval. We
investigate the scaling limit of the empirical distribution of positive and negative
charges; that is, the hydrodynamic limit of this interacting diffusion system. We
show that in the macroscopic level, the empirical distribution converges to a deter-
ministic measure whose density satisfies a system of partial differential equations
that has non-linear interaction at the interface.

One of the difficulties that arise in our study is that the dimension of state spaces
of the annihilating random walks keeps changing. Observe that even though the
boundary is fixed and there is no creation of particles, the interactions do affect the
correlations among the particles: Whether or not a positive particle disappears at a
given time affects the empirical distribution of the negative particles, which in term
affects that of the positive particles. This challenge is reflected by the non-linearity
of the macroscopic limit and also by the non-product structure of the system of
equations satisfied by the correlation functions. To overcome these difficulties, we
show that the correlation functions satisfy a new class of BBGKY hierarchy system
that involves boundary terms on the interface, and then represent the hierarchy in
terms of trees.

The study of hydrodynamic limits of particle systems with stochastic dynamics
is of fundamental importance in many areas. This study dates back to the sixth
Hilbert problem in year 1900, which concerns the mathematical treatment of the
axioms of physics, and to Boltzmann’s work on principles of mechanics. Proving
hydrodynamic limits corresponds to establishing the law of large numbers for the
empirical measure of some attributes (such as position, genetic type, spin type,
etc.) of the individuals in the systems. It contributes to our better understand-
ing of the asymptotic behavior of many phenomena, such as chemical reactions
[33], population dynamics [21, 34, 36], super-conductivity [42], quantum dynam-
ics [22], fluid dynamics [26], etc. It reveals fascinating connections between the
microscopic stochastic systems and deterministic partial differential equations that
describe the macroscopic pictures. It also provides approximations via stochastic
models to some partial differential equations that are hard or impossible to solve
directly.

Since the work of Boltzmann and Hilbert, there have been many different lines
of research on stochastic particle systems. Various models were constructed and
different techniques were developed to establish hydrodynamic limits. Among
those techniques, the entropy method [27] and the relative entropy method [42]
are considered to be general methods. Unfortunately, these methods do not seem
to work for our model due to the singular interaction near the interface. Some mod-
els studied in literature are conservative, for example, exclusion processes [29, 30]
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and Fleming–Viot type systems [7, 8]. Reaction–diffusion systems (R–D system)
constitute a class of models that are typically non-conservative. These are sys-
tems which have hydrodynamic limits of the form ∂u

∂t
= 1

2�u+R(u) (a reaction–
diffusion equation, or R–D equation in short), where R(u) is a function in u which
is thought of as the reaction term. R–D systems arise from many different con-
texts and have been studied by many authors. For instance, for the case R(u) is a
polynomial in u, these systems contain the Schlögl’s model and were studied in
[19, 20, 31, 32] on a cube with Neumann boundary conditions, and in [3, 4] on a
periodic lattice. A different type of reaction interaction on the boundaries has been
studied by Funaki in [25], which give rise to a free boundary problem of Stefan
type. Recently, perturbations of the voter models which contain the Lotka–Volterra
systems are considered in [15]. In addition to results on hydrodynamic limit, [15]
also established general conditions for the existence of non-trivial stationary mea-
sures and for extinction of the particles. In [8], Burdzy and Quastel studied an
annihilating-branching system of two types of particles, for which the total num-
ber of particles of each type remains constant over the time. Its hydrodynamic limit
is described by a linear heat equation with zero average temperature.

In contrast, beside being non-conservative, our model gives rise to a system
of nonlinear differential equations that is new. Moreover, the interaction between
two types of particles is singular near the interface of the two media, which gives
rise to a boundary integral term in the hydrodynamic limit. The approach of this
paper provides some new tools that are potentially useful for the study of other
non-equilibrium systems.

We now give some more details on the discrete approximation of the spatial mo-
tions in our modeling. We approximate D± by square lattices Dε± of side length ε,
and then approximate reflected diffusions onD± by continuous time random walks
(CTRWs) on Dε±. The rigorous formulation of the particle system is captured by
the operator Lε in (2.10).

Let X±
i (t) be the position of the particle with index i in D± at time t . We pre-

scribe each particle a mass 1/N and consider the normalized empirical measures

X
N,+
t (dx) := 1

N

∑
α:α∼t

1X+
α (t)

(dx) and X
N,−
t (dy) := 1

N

∑
β:β∼t

1X−
β (t)

(dy).

Here 1y(dx) stands for the Dirac measure concentrated at the point y, while α ∼ t

if and only if the particle X+
α is alive at time t , and β ∼ t if and only if the particle

X−
β is alive at time t . For fixed positive integer N and t > 0, XN,±t is a random

measure on D±. We want to study the asymptotic behavior, when N → ∞ (or
equivalently ε→ 0), of the evolution in time t of the pair (XN,+t ,X

N,−
t ).

1.1. Main results. Our first main result (Theorem 2.21) implies the follow-
ing. Suppose each particle in D± is approximating a RBM with gradient drift
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1
2∇(logρ±), where ρ± ∈ C1(D±) is strictly positive. Then under appropriate as-

sumptions on the initial configuration (X
N,+
0 ,X

N,−
0 ), the normalized empirical

measure (XN,+t (dx),X
N,−
t (dy)) converges in distribution to a deterministic mea-

sure (
u+(t, x)ρ+(x) dx,u−(t, y)ρ−(y) dy

)
for all t > 0, where (u+, u−) is the solution of the following coupled heat equa-
tions:

(1.1)

⎧⎪⎪⎨⎪⎪⎩
∂u+
∂t

= 1

2
�u+ + 1

2
∇(logρ+) · ∇u+, on (0,∞)×D+,

∂u+
∂ �n+

= λ

ρ+
u+u−1I , on (0,∞)× ∂D+

and

(1.2)

⎧⎪⎪⎨⎪⎪⎩
∂u−
∂t

= 1

2
�u− + 1

2
∇(logρ−) · ∇u−, on (0,∞)×D−,

∂u−
∂ �n−

= λ

ρ−
u+u−1I , on (0,∞)× ∂D−,

where �n± is the inward unit normal vector field on ∂D± of D± and 1I is the
indicator function on I . Note that ρ± = 1 corresponds to the particular case when
there is no drift.

The above result tells us that for any fixed time t > 0, the probability distribu-
tion of a randomly picked particle in Dε± at time t is close to c±(t)u±(t, x) when
N is large, where c±(t) = (

∫
D± u±(t))−1 is a normalizing constant. In fact, the

above convergence holds at the level of the path space. That is, the full trajectory
(and hence the joint law at different times) of the particle profile converges to the
deterministic scaling limit described by (1.1) and (1.2), not only its distribution at
a given time.

Question: How about the limiting joint distribution of more than one particle?

Our second main result (Theorem 2.23) answers this question. It asserts that
propagation of chaos holds true for our system; that is, when the number of parti-
cles tends to infinity, their positions appear to be independent of each other. More
precisely, suppose n and m unlabeled particles in Dε+ and Dε−, respectively, are
chosen uniformly among the living particles at time t . Then, as N → ∞, the prob-
ability joint density function for their positions converges to

c(n,m)(t)

n∏
i=1

u+(t, ri)
m∏
j=1

u−(t, sj )

uniformly for (�r, �s) ∈ Dn

+ × D
m

− and for t in any compact time interval, where
c(n,m)(t) is a normalizing constant.
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1.2. Key ideas. A key step in our proof of propagation of chaos (Theo-
rem 2.23) is Theorem 3.7. The latter establishes uniqueness of solution for the
infinite system of equations satisfied by the correlation functions of the particles in
the limit N → ∞. Such infinite system of equations is sometimes called BBGKY-
hierarchy in statistical physics. Our BBGKY hierarchy involves boundary terms
on the interface, which is new to the literature. Our proof of uniqueness involves
a representation and manipulations of the hierarchy in terms of trees. This tech-
nique is related to but different from that in [22] which used Feynman diagrams.
It is potentially useful in the study of other stochastic models involving coupled
differential equations.

To establish hydrodynamic limit result (Theorem 2.21), we employ the classical
tightness plus finite dimensional distribution approach. Tightness of (XN,+,XN,−)
in the Skorokhod space is proved in Theorem 4.4. This together with the propa-
gation of chaos result (Theorem 2.23) establishes the hydrodynamic limit of the
interacting random walks.

Two new tools for discrete approximation of random walks in domains are de-
veloped in this article. Namely, the local central limit theorem (local CLT) for
reflected random walk on bounded Lipschitz domains (Theorem 2.12) and the
“discrete surface measure” (Lemma 2.4). We believe these tools are potentially
useful in many discrete schemes which involve reflected Brownian motions.

Weak convergence of simple random walk on Dε± to RBM has been established
for general bounded domains in [5] and [6]. However, we need more for our model;
namely a local convergence result which guarantees that the convergence rate is
uniform up to the boundary. For this, we establish the local CLT. We further gen-
eralize the weak convergence result and the local limit theorem to deal with RBMs
with gradient drift. There are two reasons for us to consider gradient drift. First,
it is physically natural to assume the particles are subject to an electric potential.
Second, the maximal extension theorem, [13], Theorem 6.6.9, which is a crucial
technical tool used in [5] and [6], has established only in symmetric setting. The
proof of the local CLT is based on a “discrete relative isoperimetric inequality”
(Theorem 5.5) which leads to the Poincaré inequality and the Nash inequality. The
crucial point is that these two inequalities are uniform in ε (scaling of lattice size)
and is invariant under the dilation of the domain D 	→ aD.

The paper is organized as follows. In Section 2, we introduce the stochastic
model and some preliminary facts that will be used later. We then prove the ex-
istence and uniqueness of solution for the coupled PDE. The main results, Theo-
rem 2.21 and Theorem 2.23, will be rigorously formulated. We also mention vari-
ous extensions of our main results in Remark 2.26. Sections 3 and 4 contains the
proof of Theorem 2.23 and Theorem 2.21, respectively. Section 5 is devoted to the
proofs of the discrete relative isoperimetric inequality and the local CLT.

2. Notations and preliminaries. For the reader’s convenience, we list our
notations here:
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Z set of all integers
Z+ {1,2,3, . . .} positive integers
N {0,1,2, . . .} non-negative integers
R set of all real numbers

B(E) Borel measurable functions on E
Bb(E) bounded Borel measurable functions on E
B+(E) non-negative Borel measurable functions on E
C(E) continuous functions on E
Cb(E) bounded continuous functions on E
C+(E) non-negative continuous functions on E
Cc(E) continuous functions on E with compact support
D([0,∞),E) space of càdlàg paths from [0,∞) to E

equipped with the Skorokhod metric

Hm m-dimensional Hausdorff measure
M+(E) space of finite non-negative Borel measures on E

equipped with the weak topology
M≤1(E) {μ ∈M+(E) : μ(E)≤ 1}
M1(E) [or P(E)] {μ ∈M+(E) : μ(E)= 1}
η
ε,±
t (x) number of living particles at x ∈Dε± at time t
(ηεt )t≥0 process with generator Lε = Lε0 +Kε in Definition 2.8

(ξ0
t )t≥0 and (η0

t )t≥0 independent processes with generator Lε0
Eε ND

ε+ ×ND
ε− , state space of (ηεt )t≥0

X
N,±
t (dz) 1

N

∑
x∈Dε± η

±
t (x)1x(dz), the normalized empirical

measure in D±
E M≤1(D+)×M≤1(D−), the state space of

(X
N,+
t ,X

N,−
t )t≥0

{FX
t : t ≥ 0} filtration induced by the process (Xt),

i.e. FX
t = σ(Xs, s ≤ t)

1x indicator function at x or the Dirac measure at x
(depending on the context)

L−→ weak convergence of random variables (or processes)
〈f,μ〉 ∫

f (x)μ(dx)

x ∨ y max{x, y}
x ∧ y min{x, y}
C,C1,C2, . . . positive constants
I ε “ε-point approximation” of I constructed in Lemma 2.4
σε “discrete surface measure” constructed in Lemma 2.4
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Process Semigroup Heat kernel Measure Generator State space

X±(t) P±
t p±(t, x, y) ρ± A± D±

Xε,±(t) P
ε,±
t pε,±(t, x, y) m±

ε A±
ε Dε±

X(n,m)(t) P
(n,m)
t p = p(n,m) ρ = ρ(n,m) A(n,m) D

n

+ ×D
m

−
Xε
(n,m)(t) P

(n,m),ε
t pε = p(n,m),ε mε A(n,m)

ε (Dε+)n × (Dε−)m

where in the above,

p(n,m)
(
t, (�r, �s), (�r ′, �s′)) :=

n∏
i=1

p+(t, ri, r ′i) m∏
j=1

p−(t, sj , s′j ),
ρ(n,m)(�r, �s) :=

n∏
i=1

ρ+(ri)
m∏
j=1

ρ−(sj ).

We also use the following abbreviations:
a.s. almost surely
LDCT Lebesque dominated convergence theorem
CTRW continuous time random walk
RBM reflected Brownian motion
local CLT local central limit theorem
LHS left-hand side
RHS right-hand side
WLOG without loss of generality

DEFINITION 2.1. A Borel subset E of Rd is called Hm-rectifiable if E is a
countable union of Lipschitz images of bounded subsets of Rm with Hm(E) <∞
(as usual, we ignore sets of Hm measure 0). Here Hm denotes the m-dimensional
Hausdorff measure.

DEFINITION 2.2. A bounded Lipschitz domain D ⊂ Rd is a bounded con-
nected open set such that for any ξ ∈ ∂D, there exits rξ > 0 such that B(ξ, rξ )∩D
is represented by B(ξ, rξ )∩{(y′, yd) ∈ Rd : φξ (y′) < yd} for some coordinate sys-
tem centered at ξ and a Lipschitz function φξ with Lipschitz constant M , where
M =MD > 0 does not depend on ξ and is called the Lipschitz constant of D.

ASSUMPTION 2.3. D± are given adjacent bounded Lipschitz domains in Rd

such that I := D+ ∩ D− = ∂D+ ∩ ∂D− is a finite union of disjoint connected
Hd−1-rectifiable sets, ρ± ∈W(1,2)(D±) ∩ C1(D±) are given functions which are
strictly positive, λ > 0 is a fixed parameter.

2.1. Interacting random walks in domains. In this subsection, we describe the
interacting random walk model. We start with some key ingredients needed in
discrete approximation.
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2.1.1. Discrete approximation of surface measure. To capture the boundary
behavior of our processes near the interface I in the discrete scheme, we need
a discrete approximation of the surface measure σ on I . The construction of I ε

and σε in the following lemma is a key to our approximation scheme. For us,
N := {0,1,2, . . .} denotes the set of non-negative integers.

LEMMA 2.4. Suppose D is a bounded Lipschitz domain of Rd . Let I ⊂ ∂D be
closed, connected and Hd−1-rectifiable. Let εj = 2−j for j ∈ N. Then there exist
finite subsets I (j) = I εj of I and functions σ(j) = σεj : I (j) → [εd−1/C,Cεd−1]
such that (a) and (b) below hold simultaneously:

(a)

(2.1) sup
x∈D

#
(
I (j) ∩B(x, s))≤ C

(
s

εj
∨ 1

)d−1
∀s ∈ (0,∞), j ∈ N,

where #A denotes the number of elements in the finite set A, B(x, s)= {y ∈ Rd :
|y−x|< s} is the ball with radius s centered at x, and C is a constant that depends
only on D.

(b) For any equi-continuous and uniformly bounded family F ⊂ C(I),

(2.2) lim
j→∞ sup

f∈F

∣∣∣∣∑
I (j)

f σ(j) −
∫
I
f dσ

∣∣∣∣= 0.

PROOF. We can always split I into small pieces. The point is to guarantee that
each piece is not too small, so that σ(j)/εd−1 ≥ C and that (2.1) holds. Since I is
Hd−1-rectifiable, we have

C−1Rd−1 ≤ sup
x∈I

Hd−1(I ∩B(x,R))≤ CRd−1

for R ∈ (0,1], where C does not depend on R. Since I is closed, it is regular
with dimension d − 1 in the terminology of Section 1 of [17]. Hence by [16] or
Section 2 of [17], we can build “dyadic cubes” for I . More precisely, there exists
a family of partitions {�j }j∈Z of I into “cubes” Q such that:

(i) if j ≤ k, Q ∈�j and Q′ ∈�k , then either Q∩Q′ = ∅ or Q⊂Q′;
(ii) if Q ∈�j , then

C−12j ≤ diam(Q)≤ C2j and

C−12j (d−1) ≤ Hd−1(Q)≤ C2j (d−1);
(iii)

Hd−1({x ∈Q : dist(x, I \Q)≤ r2j
})≤ Cr1/C2j (d−1)

for all Q ∈�j and r > 0.
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Here the constant C is independent of j,Q, or r . Note that Hd−1 is the surface
measure σ of ∂D and that property (iii) tells us that the cubes have relatively small
boundary. In particular, (iii) implies σ(∂Q∩ I )= 0 for all cube Q.

Suppose �j = {U(j)
i }kji=1. We pick one point z(j)i from each U

(j)
i to form

the set I (j). Finally, we define σ(j)(z
(j)
i ) := σ(U

(j)
i ). It follows from (ii) that

σ(j) ∈ [εd−1/C,Cεd−1] for some C which depends only on D. The inequality

(2.1) follows from C−1εd−1
j ≤ σ(U

(j)
i ) and the Lipschitz property of ∂D. It re-

mains to check (2.2).
Fix any η > 0. There exists λ= λ(η) > 0 such that |f (x)−f (y)|< η whenever

|x − y|< λ. Hence for j large enough (depending only on λ),∣∣∣∣∫
I
g dσ −∑

I (j)

gσ(j)

∣∣∣∣= ∣∣∣∣∑
i

(∫
U
(j)
i

g dσ − g
(
z
(j)
i

)
σ
(
U
(j)
i

))∣∣∣∣≤ η
∑
i

σ
(
U
(j)
i

)
= ησ(I).

The desired convergence (2.2) now follows. �

REMARK 2.5. (2.2) implies that we have the weak convergence∑
z∈I (j) σ(j)δz → σ |I on the space M+(I ) of positive finite measure Borel mea-

sures on I . Here δz is the dirac delta measure at z, and σ |I is the surface measure
restricted to I . Equation (2.1) is a control on the number of points locally in I εj .
We call I ε the “ε-point approximation” of I and σε the “discrete surface measure”
associated to I ε .

REMARK 2.6. The above lemma remains true if I is the finite union of disjoint
closed connected and Hd−1-rectifiable subsets of ∂D. This enables us to deal with
disconnected interface I .

2.1.2. Reflected diffusion and random walk approximation. We now describe
the motion of each underlying particle. First, we fix a bounded Lipschitz domain
D ⊂ Rd and any ε > 0. Without loss of generality, we assume that the origin 0 ∈D.
Let εZd be the union of all closed line segments joining nearest neighbors in εZd ,
and (Dε)∗ the connected component of D ∩ εZd that contains the point 0. Set
Dε = (Dε)∗ ∩εZd . We can viewDε as the vertices of a graph whose edges coming
from (Dε)∗. We also denote the graph-boundary ∂Dε := {x ∈ Dε : vε(x) < 2d},
where vε(x) is the degree of x in Dε .

Suppose ρ ∈W 1,2(D)∩C1(D) is strictly positive. Define

E(f, g) := 1

2

∫
D

∇f (x) · ∇g(x)ρ(x) dx.

Since D is Lipschitz, (W 1,2(D),E) is a regular Dirichlet form on L2(D;ρ) and so
there is a ρ-symmetric diffusion X associated with it (cf. for example, [11]).
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DEFINITION 2.7. We call X the (Id×d, ρ)-reflected diffusion, where Id×d is
the d × d identity matrix. When ρ = 1, X is called the reflected Brownian motion
(RBM) in D. Hence, a (Id×d, ρ)-reflected diffusion is a RBM in D with drift
1
2∇ logρ.

The L2-infinitesimal generator of X is

A = 1

2ρ
∇ · (ρ∇)= 1

2
�+ 1

2
∇(logρ) · ∇.

Moreover, X has the Skorokhod representation:

dXt = dBt + 1

2
∇ logρ(Xt) dt + �n(Xt) dLt for t ≥ 0,Px-a.s. x ∈D,(2.3)

where �n is the inward unit normal of ∂D and L is the positive continuous addi-
tive function (PCAF) of X whose Revuz measure is 1

2σ (cf. [11]). We call L the
boundary local time of X.

Next, we define Xε to be a continuous time random walk (CTRW) on Dε with
exponential waiting time of parameter d

ε2 and one step transition probabilities

pxy := μxy∑
y μxy

,

where {μxy : x, y ∈Dε} are symmetric weights (conductances) to be constructed
in two steps as follows: First, for every x ∈Dε \ ∂Dε and i = 1,2, . . . , d , define

μx,x+ε �ei :=
(

1 + 1

2
ln
ρ(x + ε �ei)
ρ(x)

)(
ρ(x)+ ρ(x + ε �ei)

2

)
εd−2

2
,(2.4)

μx,x−ε �ei :=
(

1 + 1

2
ln

ρ(x)

ρ(x − ε �ei)
)(

ρ(x)+ ρ(x − ε �ei)
2

)
εd−2

2
.(2.5)

Clearly, μxy = μyx for all x, y ∈ Dε \ ∂Dε . Note that since ρ is C1 and strictly
positive on D, when ε is sufficiently small, μx,x+ε �ei and μx,x−ε �ei are strictly pos-
itive for every x ∈Dε \ ∂Dε and i = 1,2, . . . , d . Second, we define

μxy :=
⎧⎪⎨⎪⎩
μyx, if x ∈ ∂Dε, y ∈Dε \ ∂Dε,

εd−2

2
, if x, y ∈ ∂Dε are adjacent in Dε.

Note that μxy = μyx for all x, y ∈ Dε . Here is the heuristic reason of the above
construction. We need Ex[Xt ] = limε→0 Ex[Xε

t ]. When t is small, Ex[Xt ] ≈
∇h(Xt)t and Ex[Xε

t ] ≈ d
ε2Ex[1 step]t where ρ = e2h. So we need

(2.6)
∂h(x)

∂xi
≈ d

ε

μx,x+ε �ei −μx,x−ε �ei
μ(x)

for 1 ≤ i ≤ d.
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We also need limε→0 E (ε)(f, f )= E(f, f ) for any f ∈ C1(D), where E (ε) and E
are the Dirichlet forms of Xε and X, respectively. This is true if

(2.7)
μx,x+ε �ei +μx,x−ε �ei

εd−2 ≈ ρ(x).

Assume further that μ(x) = d
ε2 ε

d = dεd−2 (since the holding time is d
ε2 , we are

assuming the symmetrizing measure is εd at x ∈ Dε \ ∂Dε). Solving (2.6) and
(2.7), we have

μx,x+ε �ei ≈ εd−2

2

(
ρ(x)+ ε

∂h(x)

∂xi

)
.

Finally, the requirement that μxy = μyx motivates our final definition for μx,x+ε �ei .
Here we took the advantage that the drift is of gradient form ∇h.

We call Xε the ε-approximation of X. Clearly, Xε is symmetric with respect to
the measure mε defined by

mε(x) := ε2

d

∑
y

μxy.

Since ρ ∈C1(D), there exists a constant C > 0 such that

C−1 ≤ inf
x

mε(x)

εd
≤ sup

x

mε(x)

εd
≤ C.(2.8)

Moreover, limε→0
mε(x

ε)

εd
= ρ(x) whenever xε ∈Dε converges to x ∈D.

A special but important case is when ρ ≡ 1. In this case, X is simply the re-
flected Brownian motion on D, and Xε is a simple random walk on the graph Dε .
It is proved in [5] that Xε converges weakly to the reflected Brownian motion X
as ε→ 0.

Recall that by Assumption 2.3, we are given ρ± ∈ W(1,2)(D±) ∩ C1(D±).
We denote by X± a (Id×d, ρ±)-reflected diffusion in D±, and by Xε,± the
ε-approximation of X±.

2.1.3. Random walks with interaction. Fix ε = εj = 2−j (j ∈ N) and N =
2jd such that Nεd = 1. Assume there are N “+” particles in Dε+ and N “−”
particles in Dε− at t = 0. Each particle moves as an independent CTRW Xε,± (see
the previous subsection) in its respective domain Dε±. Let I ε be the finite subset of
I defined in Lemma 2.4. For each z ∈ I ε , pick an z+ ∈Dε+ and an z− ∈Dε− which
are closest to z (see Figure 2). A pair of particles of opposite charges at (z+, z−) is
being killed with a certain rate to be explained. Note that for ε small enough, we
have supz∈I ε |z± − z| ≤ 2Mε, where M is the Lipschitz constant of I .

The state space of the particle system is the collection of configurations

(2.9) Eε := {
ηε = (

ηε,+, ηε,−
) : ηε,± :Dε± →N

}
.



HYDRODYNAMIC LIMITS AND PROPAGATION OF CHAOS 1311

FIG. 2. z ∈ I ε ⊂ I, z± ∈Dε±.

The state of the particle system at time t is a random element ηεt = (η
ε,+
t , η

ε,−
t ) ∈

Eε . Here ηε,±t (x) stands for the number of “±” particles at x ∈Dε± at time t . We
omit ε and N for convenience when there is no ambiguity. For example, we write
ηt and m(x) in place of ηεt and mε(x), respectively. In what follows, 1x denotes
the indicator function at x.

DEFINITION 2.8. ηt is defined to be the unique strong Markov process which
has the generator L= Lε given by

(2.10) Lε := Lε0 +Kε,

where Lε0 is the generator of two families of independent random walks in Dε+ and
Dε−, respectively, with no annihilation between them, namely

Lε0f (η) := d

ε2

∑
x,y∈Dε+

η+(x)p+
xy

{
f
(
η+ − 1x + 1y, η−)− f (η)

}
(2.11)

+ d

ε2

∑
x,y∈Dε−

η−(x)p−
xy

{
f
(
η+, η− − 1x + 1y

)− f (η)
}

and Kε is the operator corresponding to annihilation between particles of opposite
signs at the interface I ε , namely

(2.12) Kεf (η) := λ

ε

∑
z∈I ε

�ε(z)η
+(z+)η−(z−)

{
f
(
η+ − 1z+, η

− − 1z−
)− f (η)

}
,

where p±
xy is the one-step transition probabilities for the CTRWXε,± onDε± (with-

out any interaction) and

(2.13) �ε(z) := σε(z)

εd−1

ε2d

m(z+)m(z−)
with σε and I ε being constructed by Lemma 2.4.
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The expression for Kε comes from the underlying assumptions of the model:
First, the term η+(z+)η−(z−) is combinatorial in nature. Since there are
η+(z+)η−(z−) pairs of particles at position (z+, z−), the chance of killing is pro-
portional to the number of ways of selecting a pair of particles near the interface.
Second, each pair of particles near I disappears at rate (λ/ε)�ε(z) where λ is a
parameter. Intuitively, in the limit, the amount of annihilation in a neighborhood of
a point is proportional to the surface area of the interface I in that neighborhood.
The scaling 1/ε is suggested by the observation that there are about 1/ε “layers”
starting from the interface I , so that the chance for a particle to arrive near I is of
order ε.�ε(z) is comparable to 1 and can be viewed as a normalizing constant with
respect to the lattice. This choice (2.13) is justified in the proof of Theorem 3.5.

2.2. Heat kernel and discrete heat kernel. Throughout this subsection, D is a
bounded Lipschitz domain in Rd , ρ ∈W(1,2)(D) ∩ C1(D) is strictly positive, X
is a (Id×d, ρ)-reflected diffusion. It is well known (cf. [1, 28] and the references
therein) that X has a transition density p(t, x, y) with respect to the symmetriz-
ing measure ρ(x) dx [i.e., Px(Xt ∈ dy) = p(t, x, y)ρ(y) dy and p(t, x, y) =
p(t, y, x)], that p is locally Hölder continuous and hence p ∈ C((0,∞)×D×D),
and that we have the followings: For any T > 0, there are constants c1 ≥ 1 and
c2 ≥ 1 such that

(2.14)
1

c1td/2
exp

(−c2|y − x|2
t

)
≤ p(t, x, y)≤ c1

td/2
exp

(−|y − x|2
c2t

)
for every (t, x, y) ∈ (0, T ] ×D ×D. Using (2.14) and the Lipschitz assumption
for the boundary, we can check that for any T > 0,

sup
x∈D

sup
0<δ≤δ0

1

δ

∫
Dδ
p(t, x, y) dy ≤ C

t1/2
for t > 0 and(2.15)

sup
x∈D

∫
∂D
p(t, x, y)σ (dy)≤ C

t1/2
(2.16)

for t ∈ [0, T ], where C =C(D,T ) and δ0 = δ0(D) > 0 are constants. We suppress
the dependence of all constants on ρ.

On other hand, suppose g ∈ Bb([0, T ] × ∂D). Then for t ∈ [0, T ] and x ∈D,

(2.17) Ex
[∫ t

0
g(s,Xs) dLs

]
= 1

2

∫ t

0

∫
∂D
g(s, y)p(s, x, y)ρ(y)σ (dy) ds.

Now let Xε be the ε-approximation of X with symmetrizing measure mε . The
transition density pε of Xε with respect to the measure mε is

(2.18) pε(t, x, y) := Px(Xε
t = y)

mε(y)
, t > 0, x, y ∈Dε.

Clearly, pε is strictly positive and is symmetric in x and y.
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We will prove in Section 5 that pε enjoys two-sided Gaussian bound and is
jointly Hölder continuous uniform in ε ∈ (0, ε0) for some ε0 > 0, and that pε

converges to p uniformly on compact subsets of (0,∞) × D × D. In rigorous
terms, we have the following three results. The important point is that the constants
involved in these results do not depend on ε.

THEOREM 2.9 (Gaussian upper bound). There exist Ck = Ck(d,D,ρ,T ) >

0, k = 1,2, and ε0 = ε0(d,D,ρ,T ) ∈ (0,1] such that for every ε ∈ (0, ε0) and
x, y ∈Dε ,

(2.19) pε(t, x, y)≤ C1

(ε ∨ t1/2)d exp
(
−C2

|x − y|2
t

)
for t ∈ [ε, T ],

and

(2.20) pε(t, x, y)≤ C1

(ε ∨ t1/2)d exp
(
−C2

|x − y|
t1/2

)
for t ∈ (0, ε).

Observe that (2.19) implies that (2.20) also holds for t ∈ [ε, T ].
THEOREM 2.10 (Gaussian lower bound). There exist Ck = Ck(d,D,ρ,T ) >

0, k = 1,2, and ε0 = ε0(d,D,ρ,T ) ∈ (0,1] such that for every ε ∈ (0, ε0) and
x, y ∈Dε ,

(2.21) pε(t, x, y)≥ C1

(ε ∨ t1/2)d exp
(
−C2

|x − y|2
t

)
for t ∈ (0, T ].

THEOREM 2.11 (Hölder continuity). There exist positive constants γ =
γ (d,D,ρ), ε0(d,D,ρ) and C(d,D,ρ) such that for all ε ∈ (0, ε0), we have

(2.22)
∣∣pε(t, x, y)− pε

(
t ′, x′, y′)∣∣≤C

(|t − t ′|1/2 + |x − x′| + |y − y′|)γ
(t ∧ t ′)σ/2(1 ∧ t ∧ t ′)d/2 .

THEOREM 2.12 (Local CLT).

lim
n→∞ sup

t∈[a,b]
sup
x,y∈D

∣∣p(2−n)(t, x, y)− p(t, x, y)
∣∣= 0

for any compact interval [a, b] ⊂ (0,∞).

To establish the tightness of {(XN,+,XN,−)}, we need the following uniform
estimate for the heat kernel pε(t, x, y) of CTRW on Dε near the boundary of Dε .
It is the discrete analog of (2.16).

LEMMA 2.13. There exist C = C(d,D,ρ,T ) > 0 and ε0 = ε0(d,D,ρ) > 0
such that

(2.23) sup
x∈Dε

εd−1
∑

y∈∂Dε

pε(t, x, y)≤ C

ε ∨ t1/2
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for all t ∈ [0, T ] and ε ∈ (0, ε0). Here ∂Dε is the graph-boundary of Dε , which is
all the vertices in Dε with degree less than 2d .

PROOF. Fix θ ∈ [0, T ]. By the Gaussian upper bound in Theorem 2.9, we have∑
y∈∂Dε

pε(θ, x, y)

≤ C1

(ε ∨ θ1/2)d

∑
y∈∂Dε

exp
(−|y − x|
ε ∨ θ1/2

)

= C1

(ε ∨ θ1/2)d

∫ ∞
0

∣∣{y ∈Dε : ∣∣f (y)∣∣> r
}∣∣dr

by setting f (y)= 1∂Dε(y) exp
(−|y − x|
ε ∨ θ1/2

)

= C1

(ε ∨ θ1/2)d

∫ 1

0

∣∣{∂Dε ∩B(x, (ε ∨ θ1/2)(− ln r)
)}∣∣dr (since f ≤ 1)

= C1

(ε ∨ θ1/2)d+1

∫ ∞
0

∣∣{∂Dε ∩B(x, s)}∣∣ exp
( −s
ε ∨ θ1/2

)
ds

[
where s = (

ε ∨ θ1/2)(− ln r)
]

≤ C1

(ε ∨ θ1/2)d
∨ C2

εd−1(ε ∨ θ1/2)d+1

∫ ∞
0

sd−1 exp
( −s
ε ∨ θ1/2

)
ds

≤ 1

εd−1

(
C1

ε ∨ θ1/2 ∨ C2

ε ∨ θ1/2

∫ ∞
0

wd−1e−w dw
)

where w = s

ε ∨ θ1/2 .

Here Ci are all constants which depend only on d , D and T . Note that in the
second last line, we used the fact that |{∂Dε ∩B(x, s)}| ≤ C((s/ε)d−1 ∨ 1), which
follows from Lemma 2.4. The proof is now complete. �

In general, we use “±” for quantities related to X±. For example, A±,
(P±

t )t≥0 and p±(t, x, y) denote the generator, semigroup and transition den-
sity of the reflected diffusion X± in D± with respect to ρ±(x) dx. In addition,
we use “ε” for quantities related to the CTRWs in the discrete domains Dε±.
For example, pε,±(t, x, y) denotes the transition density of the CTRW Xε,±
on Dε± with respect to the measure m±

ε . We also denote pε(t, (�r, �s), (�r ′, �s′)) :=∏n
i=1p

ε,+(t, ri, r ′i )
∏m
j=1p

ε,−(t, sj , s′j ) for (�r, �s) ∈ (Dε+)n × (Dε−)m.
By applying Lemma 2.13 to pε,±(t, x, y), then by the boundedness of �ε in

(2.13), Theorem 2.12, Lemma 2.4 and LDCT, we have the following approxima-
tion for the local time of X± on I .
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PROPOSITION 2.14 (Discrete local time).

(2.24) lim
ε→0

∫ t

0

∑
z∈I ε

pε,±(θ, x, z±)σε(z) dθ =
∫ t

0

∫
I
p±(θ, x, z)σ (dz) dθ.

2.3. Hydrodynamic limit: System of nonlinear PDEs. In this subsection, we
provide suitable notion of solutions for the coupled PDE (1.1) and (1.2), and then
prove the existence and uniqueness of the solution. Throughout this subsection,
D is a bounded Lipschitz domain, ρ ∈W(1,2)(D) ∩ C1(D) is strictly positive, X
is a (Id×d, ρ)-reflected diffusion, {Pt } and p(t, x, y) are the semigroup and the
transition density of X, with respect to the measure ρ(x) dx.

Observe that (1.1) is a second order parabolic equation for u+ with Robin
boundary condition, and (1.2) is a similar equation for u−. This leads us to consider
the following Robin boundary problem, where g ∈ Bb([0,∞)× ∂D) is arbitrary.

(2.25)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂t
=Au, on (0,∞)×D,

∂u

∂ �n = 1

ρ
gu, on (0,∞)× ∂D,

u(0, ·)= ϕ, on D.

By Itô’s formula and the Skorokhod representation forX, we see that a classical
solution of (2.25), should it exists, has the probabilistic representation

(2.26) u(t, x) := Ex
[
ϕ(Xt)e

− ∫ t
0 g(t−s,Xs) dLs ],

where L is the boundary local time of X. We first show that the function u defined
by (2.26) is continuous.

LEMMA 2.15. Suppose ϕ ∈ Bb(D), g ∈ B+
b ([0, T ] × ∂D) and u is de-

fined by (2.26). Then u ∈ C((0, T ] × D). Moreover, if ϕ ∈ C(D), then u ∈
C([0, T ] ×D).

PROOF. Observe that for any r ∈ [0, t],
u(t, x)= Ex

[
ϕ(Xt)e

− ∫ t
r g(t−s,Xs) dLs e−

∫ r
0 g(t−s,Xs) dLs ]

= Ex
[
ϕ(Xt)e

− ∫ t
r g(t−s,Xs) dLs ](2.27)

+Ex
[
ϕ(Xt)e

− ∫ t
r g(t−s,Xs) dLs (e− ∫ r

0 g(t−s,Xs) dLs − 1
)]
.

By Markov property, the first term is

Ex
[
EXr

[
ϕ(Xt−r )e−

∫ t−r
0 g(t−r−s,Xs) dLs ]]= Ex

[
u(t − r,Xr)

]
.

Since X has the strong Feller property (see [1]) and u is bounded, x 	→ Ex[u(t −
r,Xr)] is continuous on D for any fixed t > 0 and r ∈ (0, t).
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The second term of (2.27) converges to zero uniformly on (0, T ]×D, as r → 0.
This is because its absolute value is bounded by

‖ϕ‖Ex[1 − e−
∫ r

0 g(t−s,Xs) dLs ]
≤ ‖ϕ‖Ex

[∫ r

0
g(t − s,Xs) dLs

]
by mean-value theorem

≤ ‖ϕ‖‖g‖1

2

∫ r

0

∫
∂D
p(s, x, y)σ (dy) ds

≤ ‖ϕ‖‖g‖C√
r by (2.16).

Hence, u is continuous in x ∈D.
By a similar calculation as in (2.27), we have

u(t + a, x)− u(t, x)

= Ex
[
u(t,Xa)− u(t, x)

]
+Ex

[
ϕ(Xt+a)e−

∫ t+a
a g(t+a−s,Xs) dLs (e− ∫ a

0 g(t+a−s,Xs) dLs − 1
)]
.

Hence,∣∣u(t + a, x)− u(t, x)
∣∣

≤ Ex
[∣∣u(t,Xa)− u(t, x)

∣∣]
+ ‖ϕ‖Ex

[∫ a

0
g(t + a − s,Xs) dLs

]
by mean-value theorem

≤
∫
D

∣∣u(t, z)− u(t, x)
∣∣p(a, x, z) dz

+ ‖ϕ‖‖g‖1

2

∫ a

0

∫
∂D
p(s, x, z)σ (dz) ds.

Both terms go to 0 uniformly in x ∈D as a goes to 0. [In fact, the first term goes
to 0 uniformly since the semigroup Pt is strongly continuous on C(D). For the
second term,

∫ a
0
∫
∂D p(s, x, z)σ (dz) ds ≤ 2C1

√
a +C2a also goes to 0 uniformly

in x.] Hence u is continuous in t ∈ (0, T ] uniformly in x ∈ D. Therefore, u ∈
C((0, T ] × D). If ϕ ∈ C(D), we can extend the above argument to show that
u ∈ C([0, T ] ×D). �

REMARK 2.16. In fact, one can allow g to be unbounded and show that the
conclusion of Lemma 2.15 remains true if gσ satisfies a Kato class condition:

lim
a→0

sup
x∈D

∫ a

0

∫
∂D
p(s, x, z)

∣∣g(t + a − s, z)
∣∣σ(dz) ds = 0.



HYDRODYNAMIC LIMITS AND PROPAGATION OF CHAOS 1317

PROPOSITION 2.17. Suppose ϕ ∈C(D) and g ∈ B+
b ([0, T ] × ∂D). Then

u(t, x) := Ex
[
ϕ(Xt)e

− ∫ t
0 g(t−s,Xs) dLs ]

is the unique element in C([0, T ] ×D) that satisfies the following integral equa-
tion:

(2.28) u(t, x)= Ptϕ(x)− 1

2

∫ t

0

∫
∂D
p(t − r, x, y)g(r, y)u(r, y)ρ(y)σ (dy) dr.

PROOF. By Lemma 2.15, u(t, x) := Ex[ϕ(Xt)e−
∫ t

0 g(t−s,Xs) dLs ] lies in
C([0, T ] ×D). Moreover, by Markov property and (2.17), we have

u(t, x)= Ex
[
ϕ(Xt)

]−Ex
[
ϕ(Xt)

(
1 − e−

∫ t
0 g(t−s,Xs) dLs )]

= Ptϕ(x)−Ex
[
ϕ(Xt)e

− ∫ t
r g(t−s,Xs) dLs ∣∣r=t

r=0

]
= Ptϕ(x)−Ex

[
ϕ(Xt)

∫ t

0
g(t − r,Xr)e

− ∫ t
r g(t−s,Xs) dLs dLr

]
= Ptϕ(x)−Ex

[∫ t

0
g(t − r,Xr)E

Xr
[
ϕ(Xt−r )e−

∫ t−r
0 g(t−r−s,Xs) dLs ]dLr]

= Ptϕ(x)−Ex
[∫ t

0
g(t − r,Xr)u(t − r,Xr) dLr

]
= Ptϕ(x)− 1

2

∫ t

0

∫
∂D
p(r, x, y)g(t − r, y)u(t − r, y)ρ(y)σ (dy) dr.

Hence, u satisfies the integral equation. It remains to prove uniqueness. Sup-
pose ũ ∈ C([0, T ] × D) also satisfies the integral equation. Then w = u − ũ ∈
C([0, T ] ×D) solves

(2.29) w(t, x)= −1

2

∫ t

0

∫
∂D
p(t − r, x, y)g(r, y)w(r, y)ρ(y)σ (dy) dr.

By a Gronwall type argument and (2.16), we can show that w = 0. More precisely,
let ψ(s)= supx∈D |w(s, x)|. Then by (2.16) we have

0 ≤ ψ(t)≤
∫ t

0

Cψ(r)√
t − r

dr ∀t ∈ [0, T ]

= ∂

∂t

∫ t

0
2Cψ(r)

√
t − r dr.

Integrating both sides with respect to t on an interval [0, t0], we have

0 ≤
∫ t0

0
ψ(t) dt ≤

∫ t0

0
2Cψ(r)

√
t0 − r dr.
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From this, we have ψ = 0 on [0, t0], where t0 > 0 is small enough so that
2C

√
t0 < 1. Let ψ̃(t)=ψ(t + t0), we can show that

0 ≤ ψ̃(t)≤
∫ t

0

Cψ̃(r)√
t − r

dr ∀t ∈ [0, T − t0]

and repeat the above argument to obtain ψ̃ = 0 on [0, t0] (i.e. ψ = 0 on [0,2t0]).
Inductively, we obtain ψ = 0 on [0, T ]. �

DEFINITION 2.18. The function u defined by the probabilistic representa-
tion (2.26) (or equivalently in Proposition 2.17) is called a probabilistic solution
of (2.25).

It can actually be shown that u is weakly differentiable and solve (2.25) in the
distributional sense (see [14], Section 3). However, our method only requires con-
tinuity of the solutions. Now we come to our coupled equations.

PROPOSITION 2.19. For T > 0, consider the Banach space�T = C([0, T ]×
D+)× C([0, T ] ×D−) with norm ‖(u, v)‖ := ‖u‖ + ‖v‖. Suppose u+(0)= f ∈
C(D+) and u−(0)= g ∈ C(D−). Then there is a unique element (u+, u−) ∈�T

which satisfies the coupled integral equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u+(t, x)= P+
t f (x)

− λ

2

∫ t

0

∫
I
p+(t − r, x, z)

[
u+(r, z)u−(r, z)

]
ρ+(y) dσ(z) dr,

u−(t, y)= P−
t g(y)

− λ

2

∫ t

0

∫
I
p−(t − r, y, z)

[
u+(r, z)u−(r, z)

]
ρ−(y) dσ(z) dr.

(2.30)

Moreover, (u+, u−) satisfies⎧⎨⎩u+(t, x)= Ex
[
f
(
X+
t

)
e−λ

∫ t
0 u−(t−s,X+

s ) dL
+
s
]
,

u−(t, y)= Ey
[
g
(
X−
t

)
e−λ

∫ t
0 u+(t−s,X−

s ) dL
−
s
]
,

(2.31)

where L± is the boundary local time of X± on the interface I .

PROOF. Define the operator S on �T by S(u, v)= (S+v,S−u), where

S+v(t, x)= Ex
[
f
(
X+
t

)
e−λ

∫ t
0 v(t−s,X+

s ) dL
+
s
]

for (t, x) ∈ [0, T ] ×D+,

S−u(t, y)= Ey
[
g
(
X−
t

)
e−λ

∫ t
0 u(t−s,X−

s ) dL
−
s
]

for (t, y) ∈ [0, T ] ×D−.
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Lemma 2.15 implies that S maps into �T . Moreover, for (t, x) ∈ [0, T ] ×D+,∣∣(S+v1 − S+v2
)
(t, x)

∣∣
= ∣∣Ex[f (X+

t

)(
e−λ

∫ t
0 v1(t−s,Xs) dL+

s − e−λ
∫ t

0 v2(t−s,X+
s ) dL

+
s
)]∣∣

≤ ‖f ‖Ex
[∣∣∣∣λ∫ t

0
v1(t − s,Xs) dL

+
s − λ

∫ t

0
v2
(
t − s,X+

s

)
dL+

s

∣∣∣∣]
= ‖f ‖λEx

[∫ t

0

∣∣v1
(
t − s,X+

s

)− v2
(
t − s,X+

s

)∣∣dL+
s

]
≤ λ‖f ‖‖v1 − v2‖Ex[L+

t

]
= λ‖f ‖‖v1 − v2‖1

2

∫ t

0

∫
I
p+(s, x, y)ρ+(y)σ (dy) ds

≤ C1λ
√
T ‖f ‖‖v1 − v2‖.

A similar result holds for S−u1 − S−u2. Hence,∥∥S(u1, v1)− S(u2, v2)
∥∥= ∥∥S+v1 − S+v2

∥∥+ ∥∥S−u1 − S−u2
∥∥

≤ C1λ
√
T ‖u0‖‖v1 − v2‖ +C2λ

√
T ‖v0‖‖u1 − u2‖

≤ γ
∥∥(u1, v1)− (u2, v2)

∥∥
for some γ < 1 when T is small enough.

Hence, there is a T0 > 0 such that S : �T0 → �T0 is a contraction map. By
Banach fixed point theorem, there is a unique element (u�, v�) ∈ �T0 such that
(u�, v�)= S(u�, v�). By Proposition 2.17, (u�, v�) is the unique weak solution to
the coupled PDE on [0, T0].

Repeat the above argument, with u0(·) replaced by u�(T0, ·), and v0(·) replaced
by v�(T0, ·). We see that, since ‖u�(T0, ·)‖ ≤ ‖u0‖, ‖v�(T0, ·)‖ ≤ ‖v0‖ and Ci
(i = 1,2) are the same, we can extend the solution of the coupled PDE uniquely
to [T0,2T0]. Iterating the argument, we have for any T > 0, the coupled PDE has
a unique weak solution in �T . Invoke Proposition 2.17 once more, we obtain the
desired implicit probabilistic representation (2.31).

Finally, by using Markov property as in the proof of Proposition 2.17, we see
that (2.31) and (2.30) are equivalent. �

As in Definition 2.18, we introduce the following definition.

DEFINITION 2.20. The pair of functions (u+, u−) satisfying equation (2.30)
is called a probabilistic solution of (1.1) and (1.2).

2.4. Main results (rigorous statements). In this paper, we always assume the
scaling Nεd = 1 holds for simplicity, so that the interacting random walk model
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is parameterized by a single parameter N which is the initial number of particles
in each of Dε+ and Dε−. More precisely, for each fixed N , we set ε = N−1/d and
let (ηεt )t≥0 be a Markov process having generator Lε defined in (2.10) and having
initial distribution satisfies

∑
x∈Dε+ η

ε,+
0 (x)=∑

y∈Dε− η
ε,−
0 (y)=N . We define the

empirical measures

X
N,±
t (dz) := 1

N

∑
x∈Dε±

η
ε,±
t (x)1x(dz).

It is clear that (XN,+t ,X
N,−
t )t≥0 is a continuous time Markov process (inheriting

from that of ηt ) with state space

E :=M≤1(D+)×M≤1(D−),
where M≤1(E) denotes the space of non-negative Borel measures on E with mass
at most 1. M≤1(E) is a closed subset of M+(E), where the latter denotes the space
of finite non-negative Borel measures on E equipped with the following metric:

(2.32) ‖μ− ν‖ :=
∞∑
k=1

1

2k
|〈μ,φk〉 − 〈ν,φk〉|

1 + |〈μ,φk〉 − 〈ν,φk〉| ,

where {φk : k ≥ 1} is any countable dense subset of C(E). The topology induced
by this metric is equivalent to the weak topology [i.e. ‖μn − μ‖ → 0 if and only
if 〈μn,f 〉 → 〈μ,f 〉 for all f ∈ C(E)]. Under this metric, M+(D) is a complete
separable metric space, hence so are E and the Skorokhod spaceD([0, T ],E) (see,
e.g., Theorem 3.5.6 of [23]). Here is our first main result.

THEOREM 2.21 (Hydrodynamic Limit). Suppose Assumption 2.3 holds and
the sequence of initial configurations ηε0 satisfies the following conditions:

(i) X
N,±
0

L−→u±
0 (z) dz in M≤1(D±), where u±

0 ∈C(D±).
(ii) limN→∞ supz∈Dε± E[(ηε,±0 (z))2]<∞.

Then for any T > 0, as ε→ 0 along the sequence εj = 2−j , we have(
XN,+,XN,−

) L−→(
ν+, ν−) ∈D([0, T ],E),

where (ν+, ν−) is the deterministic element in C([0, T ],E) such that(
ν+
t (dx), ν

−
t (dy)

)= (
u+(t, x)ρ+(x) dx,u−(t, y)ρ−(y) dy

)
for all t ∈ [0, T ], and (u+, u−) is the probabilistic solution of the coupled PDEs
(1.1) and (1.2) with initial value (u+

0 , u
−
0 ).

Theorem 2.21 gives the limiting probability distribution of one particle ran-
domly picked in Dε± at time t . This is the 1-particle distribution in the terminology
of statistical physics.
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Question: What is the limiting joint distribution of more than one particle?

Before stating the answer, we need to introduce a standard tool in the study
of stochastic particle systems: the notion of correlation functions.2 Recall that the
state space of ηε = (ηεt )t≥0 is Eε defined in (2.9). We denote by

�εn,m :=
{
ξ = (

ξ+, ξ−) ∈Eε : ∣∣ξ+∣∣ :=∑
x

ξ+(x)= n,
∣∣ξ−∣∣ :=∑

y

ξ−(y)=m

}
the set of configurations with n and m particles in Dε+ and Dε−, respectively. We
then define A :Eε ×Eε →R in such a way that whenever ξ ∈�εn,m,

(2.33) A(ξ, η) :=A+(ξ+, η+)A−(ξ−, η−) := ∏
x∈D+

A
η+(x)
ξ+(x)

∏
x∈D−

A
η−(x)
ξ−(x),

where n 	→ Ank is the Poisson polynomial3 of order k, namely An0 := 1 and Ank :=
n(n − 1) · · · (n − k + 1) for k ≥ 1 (in particular, Ank = 0 for k > n). Note that
Ank is the number of permutations of k objects chosen from n distinct objects. So
A(ξ, η) is the total number of possible site to site pairings between labeled particles
having configuration ξ with a subset of labeled particles having configuration η.
An alternative representation of (2.33) will be given in (3.5).

Convention: For (�r, �s) ∈ (Dε+)n× (Dε−)m and η ∈�εN,M , we defineA((�r, �s), η)
to be A(ξ, η) with ξ = (

∑
i δri ,

∑
j δsj ).

DEFINITION 2.22. Let Pη is the law of a process with generator Lε and ini-
tial distribution η satisfying the two conditions specified in Theorem 2.21. For all
t ≥ 0, we define

(2.34) γ ε(ξ, t) := γ ε,(n,m)(ξ, t) := εd(n+m)

αε(ξ)
Eη

[
A(ξ, ηt )

]
for all ξ ∈�εn,m, where

(2.35) αε(ξ) :=mε(�r, �s) :=
n∏
i=1

m+
ε (ri)

m∏
j=1

m−
ε (sj ),

when ξ = (
∑
i δri ,

∑
j δsj ). By convention, we also have γ ε((�r, �s), t) := γ ε(ξ, t).

Note that γ ε depends on the initial configuration of η.

2More precisely, we will be using correlation functions for unlabeled particles. We refer the readers
to [35] for the relation between labeled and unlabeled correlation functions.

3The notation Ank is suggested by the fact that E[A�k ] = θk when � is a Poisson random variable
with mean θ .
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Intuitively, suppose we randomly pick n and m living particles in D+
and D−, respectively at time t , then (�r, �s) 	→ γ ε,(n,m)((�r, �s), t) is the joint proba-
bility density function for their positions, up to a normalizing constant. Therefore,
it is natural that γ ε,(n,m) defined by (2.34) is called the (n,m)-particle correlation
function.

The next is our second main result, propagation of chaos, for our system. It
says that when the number of particles tends to infinity, they appears to be inde-
pendent of each other. Mathematically, the correlation function factors out in the
limit N → ∞.

THEOREM 2.23 (Propagation of Chaos). Under the same condition as in The-
orem 2.21, for all n,m ∈ N and any compact interval [a, b] ⊂ (0,∞),

lim
ε→0

sup
(�r,�s)∈Dn

+×Dm
−

sup
t∈[a,b]

∣∣∣∣∣γ ε((�r, �s), t)−
n∏
i=1

u+(t, ri)
m∏
j=1

u−(t, sj )
∣∣∣∣∣= 0,

where (u+, u−) is the weak solution of the coupled PDE.

To investigate the intensity of killing near the interface, we define JN,± ∈
D([0,∞),M+(D±)) by

J
N,+
t (A) := εd−1

∑
z∈I ε

�(z)η+
t (z+)η−

t (z−)1A(z+) for A⊂D+,(2.36)

J
N,−
t (B) := εd−1

∑
z∈I ε

�(z)η+
t (z+)η−

t (z−)1B(z−) for B ⊂D−.(2.37)

Clearly, 〈JN,+t ,1〉 = 〈JN,−t ,1〉, which measures the number of encounters of the
two types of particles near I . An immediately corollary of Theorem 2.23 is the
following, which is what we need to identify the limit of (XN,+,XN,−).

COROLLARY 2.24. For any fixed t ∈ (0,∞) and φ ∈ C(D±), we have

lim
N→∞E

[〈
J
N,±
t , φ

〉]= 1

2

∫
I
u+(t, y)u−(t, y)φ(y)σ (dy),

lim
N→∞E

[(〈
J
N,±
t , φ

〉)2]=
(

1

2

∫
I
u+(t, y)u−(t, y)φ(y)σ (dy)

)2
,

lim
N→∞E

[〈
X
N,±
t , φ

〉]= 〈
u±(t), φ

〉
ρ±,

lim
N→∞E

[(〈
X
N,±
t , φ

〉)2]= (〈
u±(t), φ

〉
ρ±
)2
,

where 〈u±(t), φ〉ρ± := ∫
D± u±(t, y)φ(y)ρ±(y) dy.
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PROOF. We only need to apply Theorem 2.23 for the cases (n,m) = (1,1)
and (n,m)= (1,0). By definition,

γ ε(1r , t)= εd

m+(r)
Eη

[
η+
t (r)

]
and

γ ε(1r + 1s, t)= ε2d

m+(r)m−(s)
Eη

[
η+
t (r)η

−
t (s)

]
.

Using (2.8) and Lemma 2.4, we get the first two equations via Theorem 2.23. Using
(2.8) and the assumption that ρ± ∈ C(D±), we have the last two equations again
by Theorem 2.23. �

REMARK 2.25 (Conditions on η0). The two conditions for the initial config-
uration η0 in Theorem 2.21 are mild and natural. They are satisfied, for example,

when each particle has the same random initial distribution
u±

0 (z)∑
D± u

±
0

. Condition (ii)

guarantees that, asymptotically, there is no “blow up” of number of particles at any
site. More precisely, this technical condition is imposed so that we have

(2.38) sup
t≥0

E
[〈

1, JN,+t

〉2]≤ C <∞ for sufficiently large N.

The above can be easily checked by comparing with the process η that has no
annihilation (i.e., η has generator Lε0). Alternatively, we can use the comparison
result (3.11) to prove (2.38).

REMARK 2.26 (Generalization). We can generalize our results in a number of
ways by the same argument. For example, the initial number of particles inD+ and
D− can be different, the condition Nεd = 1 can be relaxed to limN→∞Nεd → 1
where ε depends on N . The annihilation constant λ can be replaced by a space
and time dependent function λ(t, x) ∈ C([0,∞)× I ). The diffusion coefficients
in D+ and D− can be different. The condition “XN,±0 has mass one for all N” can

be replaced by “the mass of XN,±0 is uniformly bounded in N”. More generally,
the same method can be extended to deal with similar models with more than two
types of particles. In a subsequent work [12], we study a related model in which
particles move as continuous reflected diffusions.

The remaining part of this paper is devoted to the proof of Theorem 2.21 and
Theorem 2.23. We first prove Theorem 2.23 because the proof of Theorem 2.21
relies on Theorem 2.23.

3. Propagation of chaos.

3.1. Duality. The starting point of our analysis is the discrete integral equation
for γ ε in Lemma 3.2. At the heart of its proof is the dual relation in Lemma 3.1,



1324 Z.-Q. CHEN AND W.-T. (L.) FAN

which says that the two independent processes ξ0 = (ξ0
t )t≥0 and η0 = (η0

t )t≥0 of
independent random walks with no interaction are dual to each other with respect
to the function A(ξ,η)

αε(ξ)
, where ξ, η ∈ Eε . Such kind of dual formula for the whole

grid Zd appeared in [4] and in Chapter 15 of [10].

LEMMA 3.1 (Duality for independent processes). Let ξ0 = (ξ0
t )t≥0 and η0 =

(η0
t )t≥0 be independent continuous time Markov processes on Eε with generator

Lε0 defined in Definition 2.8. Then we have

(3.1) E

[
A(ξ0

t , η
0
0)

αε(ξ
0
t )

]
= E

[
A(ξ0

0 , η
0
t )

αε(ξ
0
0 )

]
for every t ≥ 0.

PROOF. Assume ξ0
0 ∈ �εn,m and η0

0 ∈ �εN,M . Then we have ξ0
t ∈ �εn,m and

η0
t ∈ �εN,M for all t ≥ 0. Without loss of generality, we may assume N ≥ n ≥ 1

and M ≥m≥ 1 as otherwise both sides inside expectations of (3.1) are zero by the
definition of A(ξ, η).

Denote U the map that sends (�r, �s) ∈ (Dε+)n × (Dε−)m to (
∑
i δri ,

∑
j δsj ) ∈

�εn,m for any (n,m). We first focus on D+ in Step 1 and Step 2 below.

Step 1. For any �r ∈ (Dε+)n and η+ ∈ �εN,0, fix some �x+ = (x+
1 , . . . , x

+
N) ∈

U−1(η+). Then by the definition (2.33) of A,

A+(�r, η+)= �
{�i : �x+

�i = �r},(3.2)

where n-tuples �i := (i1, . . . , in) consist of distinct positive integers in the set
{1,2, . . . ,N}, �x+

�i := (x+
ii
, . . . , x+

in
) and �S denotes the number of elements in the

finite set S.
Step 2. Denote by P

η+
0 the law of the unlabeled process (η0

t )t≥0 starting from
η+ ∈�εN,0 and has generator Lε0. Let �x+ = (x+

1 , . . . , x
+
N) ∈U−1(η+), and �X+,ε

t :=
(X

+,ε
1 (t), . . . ,X

+,ε
N (t)) be independent CTRWs in Dε+ starting from �x, whose law

will be denoted as P�x+
. Then by (3.2), we have

E
η+
0

[
A
(�r, η0

t

)]= E
[
�
{
n-tuples �i : �X+,ε

�i (t)= �r}]
(3.3)

= ∑
�i: n-tuples

P
�x+
�i
( �X+,ε

�i (t)= �r),
where P

�x+
�i is the law of { �X+,ε

�i (t); t ≥ 0}. Denote by pε(θ, �z. �w) the transition den-

sity of n independent CTRWs in Dε+. By Chapman–Kolmogorov equation, we
have for any θ ∈ [0, t],

P
�x+
�i
( �X+,ε(t)= �r)= ∑

�z∈(Dε+)n
pε
(
θ, �x+

�i , �z
)
pε(t − θ, �z, �r)m(�z)m(�r).
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Putting this into (3.3), we have

E
η+
0

[
A
(�r, η0

t

)]=mε(�r)
∑
�z

∑
�i
P

�x+,ε
�i
( �X+

�i (θ)= �z)pε(t − θ, �z, �r)

=mε(�r)
∑
�z
E
η+
0

[
A
(�z, η0

θ

)]
pε(t − θ, �z, �r) by (3.3) again

(3.4)
=mε(�r)

∑
�z
E
η+
0

[
A
(�z, η0

θ

)]
pε(t − θ, �r, �z) by symmetry of pε

=mε(�r)E
[
A( �Y+,ε

t−θ , η0
θ )

mε( �Y+,ε
t−θ )

]
,

where E is the expectation corresponding the probability measure under which the
coordinate processes of { �Y+,ε

t ; t ≥ 0} are independent CTRWs with �Y+,ε
0 = �r and

are independent of (η0
t )t≥0.

Step 3. Now we work on D+ ×D−. For any (�r, �s) ∈ (Dε+)n × (Dε−)m and η=
(η+, η−) ∈�εN,M , take �x = (x+

1 , . . . , x
+
N,x

−
1 , . . . , x

−
M) ∈U−1(η). As in Step 1, we

have

A
(
(�r, �s), η)= �

{
(�i, �j) : (�x+

�i , �x
−
�j
)= (�r, �s)},(3.5)

where �i runs over all n-tuples �i := (i1, . . . , in) consisting of distinct positive inte-
gers in the set {1,2, . . . ,N}, and �j over all m-tuples �j := (j1, . . . , jm) consisting
of distinct positive integers in the set {1,2, . . . ,M}.

Denote by P
η
0 the law of the unlabeled process (η0

t )t≥0 starting from η ∈�εN,M
and has generator Lε0. Since all processes on Dε+ are independent of those on Dε−,
we can proceed as in Step 2 [via (3.5)] to obtain

(3.6) E
η
0

[
A
(
(�r, �s), η0

t

)]=mε(�r, �s)E
[
A( �Y εt−θ , η0

θ )

mε( �Y εt−θ )
]

for θ ∈ [0, t],

where �Y ε := (Y
+,ε
1 , . . . , Y+,ε

n , Y
−,ε
1 , . . . , Y−,ε

m ) is independent of η0 with �Y ε0 =
(�r, �s), and its components are mutually independent CTRWs on Dε±, respectively.
The proof is now complete by taking θ = 0. �

We now formulate the discrete integral equations that we need. Recall the defi-
nition of Kε from (2.12) and the definition of γ ε((�r, �s), t) from (2.34).

LEMMA 3.2 (Discrete integral equation for γ ε). For any ε > 0, t > 0,
(�r, �s) ∈ (Dε+)n × (Dε−)m, non-negative integers n,m and initial distribution η0,
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we have

γ ε
(
(�r, �s), t)= ∑

( �r ′, �s′)
γ ε
((�r ′, �s′),0)pε(t, (�r, �s), (�r ′, �s′))m(�r ′, �s′)

(3.7)

+
∫ t

0

∑
( �r ′, �s′)

pε
(
t − s, (�r, �s), (�r ′, �s′))E[KεA((�r ′, �s′), ηs)]εd(n+m) ds,

where Kε acts on the η-variable of A((�r, �s), η).

PROOF. Starting from (3.1), we can obtain Lemma 3.2 by “integration by
parts” as follows.

Let P(ξ0) and P(η0) be the laws of ξ0 and η0, respectively. Equation (3.1) is
equivalent to saying that for any ξ and η, we have

E(ξ0)

[
A(ξ0

w,η)

αε(ξ0
w)

∣∣∣∣ξ0
0 = ξ

]
= E(η0)

[
A(ξ, η0

w)

αε(ξ)

∣∣∣∣η0
0 = η

]
(3.8)

for every w ≥ 0.

Taking w = t − s, we see that (3.8) is in turn equivalent to

F (ξ)s (η) := P
(ξ0)
t−s

(
A(·, η)
αε(·)

)
(ξ)= P

(η0)
t−s

(
A(ξ, ·)
αε(ξ)

)
(η)=:G(η)

s (ξ)

(3.9)
for every s ∈ [0, t] and t ≥ 0,

where P (ξ
0)

t and P (η
0)

t are the transition semigroup of ξ0 and η0, respectively, and
they act on the ξ and η variables in A(ξ,η)

αε(ξ)
, respectively. Therefore, with Lε0 acting

on the η variable, we have

(3.10)
∂

∂s
F (ξ)s (η)= ∂

∂s
G(η)
s (ξ)= −Lε0P

(η0)
t−s

(
A(ξ, ·)
αε(ξ)

)
(η)= −Lε0F

(ξ)
s (η).

Recall that ηt is the configuration process of our interacting system with genera-
tor Lε0 +Kε (see Definition 2.8). Fix ξ and consider the function (s, η) 	→ Fs(η) :=
F
(ξ)
s (η). We have

Ms := Fs(ηs)− F0(η0)−
∫ s

0

(
∂Fr

∂r
+Lε0Fr +KεFr

)
(ηr) dr

is a Fη
s -martingale for s ∈ [0, t]. By (3.10) and the fact that Eη[Mt ] = Eη[M0] =

0, where Pη is the law of (ηt )t≥0 starting from η, we have

0 = Eη
[
A(ξ, ηt )

αε(ξ)

]
− P

(ξ0)
t

(
A(·, η)
αε(·)

)
(ξ)−

∫ t

0
Eη

[
KεP

(ξ0)
t−r

(
A(·, ηr)
αε(·)

)
(ξ)

]
dr

for all ξ and η. This is equivalent to the stated equation in the lemma. �
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It is clear that KεA(ξ, η) ≤ 0. Hence, as an immediate consequence of
Lemma 3.2, we have the following comparison result:

(3.11) γ ε
(
(�r, �s), t)≤ ∑

( �r ′, �s′)
γ ε
((�r ′, �s′),0)pε(t, (�r, �s), (�r ′, �s′))m(�r ′, �s′)

for all t > 0 and (�r, �s) ∈ (Dε+)n × (Dε−)m.

3.2. Annihilation near the interface. For any ξ = (ξ+, ξ−) ∈ Eε , we let
ξ+
(x) = ξ+(x)1x , the element that has only ξ+(x) number of particles at x, and

none elsewhere. Similarly, we denote ξ−(y)1y by ξ−
(y) and set ξ(x,y) = (ξ+(x)1x,

ξ−(y)1y).

LEMMA 3.3. Let Kε be the operator defined in (2.12) and acts on the
η-variable of A(ξ, η). Then

(3.12) KεA(ξ, η)= ∑
z∈I ε

A(ξ − ξ(z+,z−), η) ·KεA(ξ(z+,z−), η).

Moreover, if ξ ∈� := {ξ : ξ±(z±)≤ 1 for every z ∈ I ε}, then

KεA(ξ, η)= −λ
ε

∑
z∈I ε:ξ+(z+)=1

�ε(z)A(ξ + 1(0,z−), η)(3.13)

− λ

ε

∑
z∈I ε:ξ−(z−)=1

�ε(z)A(ξ + 1(z+,0), η)(3.14)

− λ

ε

∑
z∈I ε:ξ(z+,z−)=(1,1)

�ε(z)A(ξ, η).(3.15)

PROOF. Observe that A(ξ − ξ(x,y), η)A(ξ(x,y), η)=A(ξ, η). Consequently

λ

ε
�ε(z)η

+(z+)η−(z−)
(
A(ξ, η− 1(z+,z−))−A(ξ, η)

)
= λ

ε
�ε(z)η

+(z+)η−(z−)A(ξ − ξ(z+,z−), η)

× (
A(ξ(z+,z−), η− 1(z+,z−))−A(ξ(z+,z−), η)

)
=A(ξ − ξ(z+,z−), η)K

εA(ξ(z+,z−), η).

Thus, (3.12) holds. On other hand,

KεA(ξ(z+,z−), η)=�ε(z)
λ

ε
η+(z+)η−(z−)

×
⎧⎨⎩−1, if ξ(z+, z−)= (1,0) or (0,1),

1 − η+(z+)− η−(z−), if ξ(z+, z−)= (1,1).
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Observe also that for x ∈Dε+ and y ∈Dε−,

A(ξ − ξ(x,y), η)η
+(x)η−(y)=A(ξ − ξ(x,y) + 1(x,y), η)

and

A(ξ − ξ(x,y))η
+(x)2η−(y)

=A(ξ − ξ(x,y), η)
(
η+(x)2 − η+(x)+ η+(x)

)
η−(y)

=A(ξ − ξ(x,y), η)A
(
21x, η+)η−(y)+A(ξ − ξ(x,y), η)η

+(x)η−(y)

=A(ξ − ξ(x,y) + 21(x,0) + 1(0,y), η)+A(ξ, η).

Similarly,

A(ξ − ξ(x,y), η)η
+(x)η−(y)2 =A(ξ − ξ(x,y) + 1(x,0) + 21(0,y), η)+A(ξ, η).

From the above calculations and (3.12), we see that for ξ ∈�,

KεA(ξ, η)= −λ
ε

∑
z∈I ε:ξ(z+,z−)=(1,0)

�ε(z)A(ξ + 1(0,z−), η)

− λ

ε

∑
z∈I ε:ξ(z+,z−)=(0,1)

�ε(z)A(ξ + 1(z+,0), η)

− λ

ε

∑
z∈I ε:ξ(z+,z−)=(1,1)

�ε(z)
(
A(ξ, η)+A(ξ + 1(0,z−), η)

+A(ξ + 1(z+,0), η)
)
,

which gives the desired formula. �

3.3. Uniform bound and equi-continuity. We extend to define γ ε,(n,m)(·, t)
continuously on D

n

+ ×D
m

− while preserving the supremum and the infinmum in
each small ε-cube. We can accomplish this by the interpolation described in [2] or
[41], or by a sequence of harmonic extensions along simplexes with increasing di-
mensions (described in [24]). Recall that the definition of γ ε,(n,m)(·, t) depends on
the initial configuration η0 of the interacting random walks (see Definition 2.22),
which satisfies the two conditions in Theorem 2.21.

THEOREM 3.4. There exists ε0 > 0 such that for any (n,m) ∈ N × N, the
family of functions {γ ε((�r, �s), t)}ε∈(0,ε0) is uniformly bounded and equi-continuous
onD

n

+×Dm

−×(0,∞), which is uniform in the initial configuration η0 that satisfies
the two conditions in Theorem 2.21.
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PROOF. We first prove uniform boundedness. By (3.11) and the Gaussian up-
per bound in Theorem 2.9, we have

γ ε
(
(�r, �s), t)≤ ∑

( �r ′, �s′)
γ ε
((�r ′, �s′),0)pε(t, (�r, �s), (�r ′, �s′))m( �r ′, �s′)

≤
(
C

td/2

)n+m ∑
( �r ′, �s′)∈Dn

+×Dm
−

A
((�r ′, �s′), η0

)
εd(n+m)

whenever ε ∈ (0, ε0).

Since the initial distribution η0 = (η+
0 , η

−
0 ) has the property that

∑
x∈Dε+ η

+
0 (x)=∑

y∈Dε− η
−
0 (y)= ε−d , we have∑

(�r,�s)∈Dn
+×Dm

−

A
(
(�r, �s), η0

)
εd(n+m)

=
( ∑

�r∈Dn
+

A+(�r, η+
0

))( ∑
�s∈Dm

−

A−(�s, η−
0

))
εd(n+m)

(3.16)

≤
( ∑

�r∈Dn
+

n∏
i=1

η+
0 (ri)

)( ∑
�s∈Dm

−

m∏
j=1

η−
0 (sj )

)
εd(n+m) since Ank ≤ nk

≤
n∏
i=1

( ∑
ri∈D+

η+
0 (ri)ε

d

) m∏
j=1

( ∑
sj∈D−

η−
0 (sj )ε

d

)
= 1.

Thus there exist ε0 = ε0(d,D,ρ) and C = C(d,D,ρ) > 0 such that for all t ∈
(0,∞), (n,m) ∈ N×N and ε ∈ (0, ε0),

(3.17) sup
ε∈(0,ε0)

sup
ξ∈�εn,m

γ ε(ξ, t)≤
(
C

td/2

)n+m
.

We next show that both terms on the right-hand side of (3.7) are equi-
continuous. Recall that we can rewrite the equation (3.7) as

γ ε
(
(�r, �s), t)= Fε

(
(�r, �s), t)+Gε((�r, �s), t),

where

Fε
(
(�r, �s), t) := ∑

( �r ′, �s′)
γ ε
((�r ′, �s′),0)pε(t, (�r, �s), (�r ′, �s′))m( �r ′, �s′),

Gε((�r, �s), t) :=
∫ t

0

∑
( �r ′, �s′)

pε
(
t − s, (�r, �s), (�r ′, �s′))E[KεA((�r ′, �s′), ηs)]εd(n+m) ds.
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Now let (�r, �s), ( �p, �q) ∈ (Dε+)n × (Dε−)m and 0< t < �≤ ∞. For the first term,∣∣Fε((�r, �s), t)− Fε
(
( �p, �q), �)∣∣

=
∣∣∣∣ ∑
( �r ′, �s′)

(
pε
(
t, (�r, �s), (�r ′, �s′))− pε

(
�, ( �p, �q), (�r ′, �s′)))

×E
[
A
((�r ′, �s′), η0

)]
εd(n+m)

∣∣∣∣
≤
(

sup
( �r ′, �s′)

∣∣pε(t, (�r, �s), (�r ′, �s′))− pε
(
�, ( �p, �q), (�r ′, �s′))∣∣)

×E0

[ ∑
( �r ′, �s′)

A
((�r ′, �s′), η0

)
εd(n+m)

]

≤ sup
( �r ′, �s′)

∣∣pε(t, (�r, �s), (�r ′, �s′))− pε
(
�, ( �p, �q), (�r ′, �s′))∣∣,

where we have used (3.16) in the last line. By the uniform Hölder continuity
of pε(t, (�r, �s), (�r ′, �s′)) (see Theorem 5.12 below) and the fact that p±(t, x, y) ∈
C((0,∞)×D± ×D±), we see that {Fε} is equi-continuous at ((�r, �s), t). For the
second term, note that

(3.18) Gε(( �p, �q), �)−Gε((�r, �s), t)=
∫ �

t
H (1)(s) ds +

∫ t

0
H(2)(s) ds,

where

H(1)(s) := ∑
( �r ′, �s′)

pε
(
�− s, ( �p, �q), (�r ′, �s′))E[KεA((�r ′, �s′), ηs)]εd(n+m)

and

H(2)(s) := ∑
( �r ′, �s′)

[
pε
(
�− s, (�r, �s), (�r ′, �s′))− pε

(
t − s, ( �p, �q), (�r ′, �s′))]

×E
[
KεA

((�r ′, �s′), ηs)]εd(n+m).
In the remaining, we will show that Gε is equi-continuous. We first deal with H(1)

in (3.18).
As in (3.16), we have∑

( �r ′, �s′)
pε
(
θ1, ( �p, �q), (�r ′, �s′))A((�r ′, �s′), ηθ2

)
εd(n+m)

(3.19)

≤
n∏
i=1

(∑
r ′i

pε
(
θ1,pi, r

′
i

)
η+
θ2

(
r ′i
)
εd
) m∏
j=1

(∑
s′j

pε
(
θ1, qj , s

′
j

)
η−
θ2

(
s′j
)
εd
)
.



HYDRODYNAMIC LIMITS AND PROPAGATION OF CHAOS 1331

On other hand, using (3.11), the Chapman Kolmogorov equation and assump-
tion (ii) for η0, in this order, we have

(3.20) sup
θ1,θ2>0

sup
a∈Dε+

E

[( ∑
x∈Dε+

pε(θ1, a, x)η
+
θ2
(x)εd

)2]
≤ C

for large enough N , where C > 0 is a constant.

∑
( �r ′, �s′)

pε
(
θ1, ( �p, �q), (�r ′, �s′))∣∣E[KεA((�r ′, �s′), ηθ2

)]∣∣εd(n+m)
≤ E

[
λ

ε

∑
z∈I

η+
θ2
(z+)η−

θ2
(z−)

× ∑
( �r ′, �s′)

pε
(
θ1, ( �p, �q), (�r ′, �s′))2A((�r ′, �s′), ηθ2

)
εd(n+m)

]

≤ 2E

[〈
1, JNθ2

〉 n∏
i=1

(∑
r ′i

pε
(
θ1,pi, r

′
i

)
η+
θ2

(
r ′i
)
εd
)

×
m∏
j=1

(∑
s′j

pε
(
θ1, qj , s

′
j

)
η−
θ2

(
s′j
)
εd
)]

≤ C uniformly for θ1 > 0, θ2 > 0, ( �p, �q) ∈ (
Dε+

)n × (
Dε−

)m and

ε > 0 small enough.

We have used (3.19) for the second inequality. The last inequality follows from
Hölder’s inequality, (2.38) and (3.20). Therefore for any (n,m),

sup
θ1,θ2>0

sup
( �p,�q)∈(Dε+)n×(Dε−)m

∑
( �r ′, �s′)

pε
(
θ1, ( �p, �q), (�r ′, �s′))

(3.21)
× ∣∣E[KεA((�r ′, �s′), ηθ2

)]∣∣εd(n+m) ≤ C

for large enough N , where C > 0 is a constant. Hence,
∫ �
t |H(1)(s)|ds ≤ C(�−

t)→ 0 as �→ t , uniformly for ( �p, �q), s ∈ (t, �) and ε small enough. Finally, we
deal with H(2). For any h ∈ (0, t), we have

∣∣∣∣∫ t

0
H(2)(s) ds

∣∣∣∣≤ ∫ t−h
0

∣∣H(2)(s)
∣∣ds +

∫ t

t−h
∣∣H(2)(s)

∣∣ds.
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By (3.21), we have
∫ t
t−h |H(2)(s)|ds ≤ Ch. By the Hölder continuity of pε (cf.

Theorem 5.12),∫ t−h
0

∣∣H(2)(s)
∣∣ds

≤
∫ t−h

0
sup
( �r ′, �s′)

∣∣pε(�− s, (�r, �s), (�r ′, �s′))− pε
(
t − s, ( �p, �q), (�r ′, �s′))∣∣

×E

[
λ

ε

∑
z∈I

η+
s (z+)η−

s (z−)
∑
( �r ′, �s′)

2A
((�r ′, �s′), ηs)εd(n+m)]ds

≤ (t − h)C
|�− t |σ1 + ‖(�r, �s)− ( �p, �q)‖σ2

hσ3
for sufficiently small ε > 0,

where σi (i = 1,2,3) are positive constants. Since h ∈ (0, t) is arbitrary, we see
that | ∫ t0 H(2)(s) ds| → 0 as |�− t | + ‖(�r, �s)− ( �p, �q)‖ → 0, uniformly for small
enough ε > 0. Hence, Gε is equi-continuous at an arbitrary ((�r, �s), t) ∈ (Dε+)n ×
(Dε−)m × (0,∞). �

From Theorem 3.4 and a diagonal selection argument, it follows that for any
sequence εk → 0 there is a subsequence along which γ ε converges onD

n

+ ×D
m

− ×
(0, T ), uniformly on the compacts, to some γ (n,m) ∈ C(Dn

+ ×D
m

− × (0, T )), for
every (n,m) ∈ N×N. Our goal is to show that

γ
(n,m)
t (�r, �s)=

n∏
i=1

u+(t, ri)
m∏
j=1

u−(t, sj ).

We will achieve this by first showing that both � = {γ (n,m)} and �
(n,m)
t :=∏n

i=1 u+(t, ri)
∏m
j=1 u−(t, sj ) satisfy the same an infinite hierarchy of equations,

and then establishing uniqueness of the hierarchy.

3.4. Limiting hierarchy. Note thatDn+ ×Dm− is a bounded Lipschitz domain in
R(n+m)d , and that the boundary ∂(Dn+×Dm−) contains the disjoint union

⋃n
i=1 ∂

i+∪⋃m
j=1 ∂

j
− where

∂i+ := (
D+ × · · · × ( ith

∂D+ ∩ I )× · · · ×D+
)×Dm−,(3.22)

∂
j
− :=Dn+ × (

D− × · · · × ( j th
∂D− ∩ I )× · · · ×D−

)
.(3.23)

We define the function ρ = ρ(n,m) :Dn+×Dm− →R by ρ(�r, �s) :=∏n
i=1 ρ+(ri)×∏m

j=1 ρ−(sj ). We also denote p(t, (�r, �s), (�r ′, �s′)) := ∏n
i=1p

+(t, ri, r ′i ) ×∏m
j=1p

−(t, sj , s′j ), where p± is the transition density of the reflected diffusion

X± on D± with respect to the measure ρ±(x) dx. We now characterize the subse-
quential limits of {γ ε}ε>0:
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THEOREM 3.5. Let ηε0 be a sequence of initial configurations that satisfy the
two conditions in Theorem 2.21, with ε = N−1/d . Denote by �ε = {γ ε,(n,m); t ≥
0, n,m ∈ N} the correlation functions for the interacting random walks with initial
configuration ηε0. Let � = {γ (n,m)t ; t ≥ 0, n,m ∈ N} be any subsequential limit (as
ε → 0) of �ε = {γ ε,(n,m); t ≥ 0, n,m ∈ N}. Then the following infinite system of
hierarchical equations holds:

γ
(n,m)
t (�r, �s)=

∫
Dn+×Dm−

�(n,m)(�a, �b)p(t, (�r, �s), (�a, �b))ρ(�a, �b)d(�a, �b)
− λ

2

∫ t

0

(
n∑
i=1

∫
∂i+
γ
(n,m+1)
θ

(�a, (�b, ai))p(t − θ, (�r, �s), (�a, �b))
(3.24)

× ρ(�a, �b)
ρ+(ai)

dσ(n,m)(�a, �b)+
m∑
j=1

∫
∂
j
−
γ
(n+1,m)
θ

(
(�a, bj ), �b))

× p
(
t − θ, (�r, �s), (�a, �b))ρ(�a, �b)

ρ−(bj )
dσ(n,m)(�a, �b)dθ,

where d(�a, �b) is the Lebesgue measure on Rn+m, σ(n,m) is the surface measure of
∂(Dn+ ×Dm−) and �(n,m)(�a, �b) :=∏n

i=1 u
+
0 (ai)

∏m
j=1 u

−
0 (bj ).

REMARK 3.6. (i) The equation expresses γ (n,m)t as an integral in time involv-
ing γ (n,m+1) and γ (n+1,m), thus forming a coupled chain of equations. In statistical
physics, it is sometimes called the BBGKY hierarchy.4 It describes the evolution
of the limiting (n,m)-particle correlation functions and hence the dynamics of the
particles.

(ii) By Proposition 2.17, (3.24) is equivalent to

γ
(n,m)
t (�r, �s)= E(�r,�s)

[
�(n,m)(X(n,m)(t))

(3.25)

− λ

∫ t

0
(ϒγs)

(n,m)(X(n,m)(t − s)
)
dL(n,m)s

]
.

Here L(n,m) is boundary local time of X(n,m), the symmetric reflected diffusion on
Dn+ ×Dm− corresponding to (I(n+m)d×(n+m)d, ρ(n,m)), and (ϒv)(n,m) is a function

4BBGKY stand for N. N. Bogoliubov, Max Born, H. S. Green, J. G. Kirkwood, and J. Yvon, who
derived this type of hierarchy of equations in the 1930s and 1940s in a series papers.
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on ∂(Dn+ ×Dm−) defined as

(ϒv)(n,m)(�r, �s) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v(n,m+1)(�r, (�s, ri))ρ(n,m)(�r, �s)
ρ+(ri)

, if (�r, �s) ∈ ∂i+;

v(n+1,m)((�r, sj ), �s)ρ(n,m)(�r, �s)
ρ−(sj )

, if (�r, �s) ∈ ∂j−;
0, otherwise.

Observe that the coordinate processes of X(n,m) consist of n independent copies of
reflected diffusions inD+ andm independent copies of reflected diffusions inD−.

(iii) It is easy to check by using (ii) and Proposition 2.17 that

γ̃
(n,m)
t (�r, �s) :=

n∏
i=1

u+(t, ri)
m∏
j=1

u−(t, sj )

is a solution of (3.24), where (u+, u−) is the weak solution of the coupled PDEs
(1.1)–(1.2) with initial value (u+

0 , u
−
0 ). This implies that the limiting hierarchy

(3.24) admits an explicit product form solution.

PROOF OF THEOREM 3.5. Recall that � := {ξ : ξ±(z±)≤ 1 for every z ∈ I ε}.
We can rewrite (3.7) as

γ ε
(
(�r, �s), t)= ∑

(�a,�b)
γ ε
(
(�a, �b),0)pε(t, (�r, �s), (�a, �b))m(�a, �b)

+
∫ t

0

∑
(�a,�b)/∈�

pε
(
t − s, (�r, �s), (�a, �b))E[KεA((�a, �b), ηs)]εd(n+m) ds(3.26)

+
∫ t

0

∑
(�a,�b)∈�

pε
(
t − s, (�r, �s), (�a, �b))E[KεA((�a, �b), ηs)]εd(n+m) ds.

Fix any (n,m) ∈ N×N, t > 0 and (�r, �s) ∈ (Dε+)n × (Dε−)m. By a simple counting
argument and conditions for ηε0 specified in Theorem 2.21, we see that the first
term in (3.26) equals

Eη
ε
0

[ ∑
(�a,�b)∈(Dε+)n×(Dε−)m

pε
(
t, (�r, �s), (�a, �b)) n∏

i=1

η+(ai)
m∏
j=1

η+(bj )
]

+ o(N)

= Eη
ε
0

[
n∏
i=1

〈
X
N,+
0 ,pε(t, ri, ·)〉 m∏

j=1

〈
X
N,−
0 ,pε(t, sj , ·)〉

]
+ o(N),

which converges to E(�r,�s)[�(n,m)(X(n,m)(t))] by Theorem 2.12 and assumption
(i) for the initial distributions. Here P(�r,�s) is the probability measure for X(n,m)
starting at (�r, �s).
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We now prove that the second term in (3.26) tends to 0 as ε→ 0. The integrand
with respect to ds is at most

E

[
λ

ε

∑
z∈I

η+
θ (z+)η

−
θ (z−)

(3.27)

× ∑
(�a,�b)/∈�

pε
(
t − θ, (�r, �s), (�a, �b))2A((�a, �b), ηθ )εd(n+m)].

Note that {(�a, �b) /∈�} is a subset of

(3.28)
⋃
w∈I

[(
n⋃
k=2

{
(�a, �b) : �a(w+)= k

})∪
(
m⋃
�=2

{
(�a, �b) : �b(w−)= �

})]
,

and that for fixed w ∈ I and k ∈ {2, . . . , n}, we further have{
(�a, �b) : �a(w+)= k

}= ⋃
i1,...,ik
distinct

{
(�a, �b) : ai1 = · · · = aik =w+

}
.

Now we restrict the sum over {(�a, �b) /∈ �} in (3.27) to the subset {(�a, �b) : ai1 =
· · · = aik =w+}, where w ∈ I , k ∈ {2, . . . , n} and (i1, . . . , ik) are fixed. Moreover,
we denote (a1, . . . , ak) by �ak and (ak+1, . . . , an) by �a \ �ak . Then

E

[
λ

ε

∑
z∈I

η+
θ (z+)η

−
θ (z−)

× ∑
{(�a,�b):ai1=···=aik=w+}

pε
(
t − θ, (�r, �s), (�a, �b))2A((�a, �b), ηθ )εd(n+m)]

≤ pε
(
t − θ, (r1, . . . , rk), (w+, . . . ,w+)

)
× εkd

∑
(�a\ �ak,�b)

pε(t − θ, �r \ �rk, �a \ �ak)

× p(t − θ, �s, �b)εd(n+m−k) · λ
ε
E

[∑
z∈I

η+
θ (z+)η

−
θ (z−)2A

(
(�a, �b), ηθ )]

≤ Cεkd

(t − θ)kd/2

λ

ε
#
∣∣I ε∣∣ sup

(�a,�b)
E
[
η+
θ (z+)η

−
θ (z−)2A

(
(�a, �b), ηθ )]

≤ λε(k−1)d

(t − θ)kd/2
C where C = C(n,m, θ, d,D±)

≤ λεd

(t − θ)kd/2
C =O

(
εd
)

since k ≥ 2.
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The second to the last inequality above follows from the bound #|I ε| ≤ Cε−(d−1)

(see Lemma 2.4) and the uniform upper bound (3.17). Repeat the above argu-
ment for the other subsets of {(�a, �b) /∈�} and use the fact #|I ε| ≤ Cε−(d−1) again
[for w ∈ I in (3.28)], we have, for any θ ∈ (0, t), (3.27) is of order ε and hence
converges to 0 uniformly for (�r, �s), as ε→ 0. The second term in (3.26) then con-
verges to 0, by (3.21) and LDCT.

For the third term in (3.26), we split the integrand with respect to dθ into three
terms corresponding to (3.13), (3.14) and (3.15), respectively. The term corre-
sponding to (3.13) equals

−λ
ε

∑
(�a,�b)∈�

pε
(
t − s, (�r, �s), (�a, �b)) ∑

z∈I ε
�a(z+)=1

�(z)A
((�a, (�b, z−)), ηθ )εd(n+m)

= −λ
ε

∑
z∈I ε

∑
(�a,�b)∈�
�a(z+)=1

pε
(
t − s, (�r, �s), (�a, �b))�(z)A((�a, (�b, z−)), ηθ )εd(n+m)

= −λ
ε

∑
z∈I ε

�(z)

n∑
i=1

∑
(�a,�b)∈�
ai=z+

pε
(
t − s, (�r, �s), (�a, �b))A((�a, (�b, z−)), ηθ )εd(n+m)

= −λ
ε

∑
z∈I ε

�(z)

n∑
i=1

pε(t − s, ri, z+)

× ∑
(�a\ai ,�b)∈�

pε
(
t − s, (�r \ ri, �s), (�a \ ai, �b))

× m((�a, (�b, z−))
εd(n+m+1) γ ε

((�a, (�b, z−)), θ)εd(n+m)
= −λ

n∑
i=1

∑
(�a\ai ,�b)∈�

pε
(
t − s, (�r \ ri, �s), (�a \ ai, �b))m(�a \ ai, �b)

× ∑
z∈I ε

σε(z)p
ε(t − s, ri, z+)γ ε

((�a, (�b, z−)), θ).
By Theorem 2.12 and Lemma 2.4,

lim
ε→0

∑
z∈I ε

σε(z)p
ε(t − s, ri, z+)γ ε

((�a, (�b, z−)), θ)
=
∫
I
p(t − s, ri, z)γθ

(�a, (�b, z))dσ(z)
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and the convergence is uniform for ri ∈Dε+. Therefore, by applying Theorem 2.12
again, the term corresponding to (3.13) converges to

−λ
n∑
i=1

∫
∂i+
γθ
(�a, (�b, ai))p(t − θ, (�r, �s), (�a, �b))

× ρ(n,m)(�r, �s)
ρ+(ri)

d �b da1 · · ·dσ(ai) · · ·dan.
We repeat the same argument for the term corresponding to (3.14). Moreover,

note that the term corresponding to (3.15) will not contribute to the limit as ε→ 0,
by the same argument we used for the second term in (3.26). Therefore, the inte-
grand of the second term in (3.26) converges to

−λ
n∑
i=1

∫
∂i+
γθ
(�a, (�b, ai))p(t − θ, (�r, �s), (�a, �b))

× ρ(n,m)(�a, �b)
ρ+(ai)

d �b da1 · · ·dσ(ai) · · ·dan,

−λ
m∑
j=1

∫
∂
j
−
γθ
(
(�a, bj ), �b)p(t − θ, (�r, �s), (�a, �b))

× ρ(n,m)(�a, �b)
ρ−(bj )

d�a db1 · · ·dσ(bj ) · · ·dbm.

The integral for θ ∈ (0, t) in the third term in (3.26) then converges to the desired
quantity, by (3.21) and LDCT. The proof is complete. �

In view of Remark 3.6(iii), the proof of Theorem 2.23 (Propagation of Chaos)
will be complete once we establish the uniqueness of the solution of the limiting
hierarchy (3.24). This will be accomplished in Theorem 3.7 in the next subsection.

3.5. Uniqueness of infinite hierarchy. Uniqueness of BBGKY hierarchy is an
important issue in statistical physics. For example, it is a key step in the derivation
of the cubic non-linear Schrödinger equation from the quantum dynamics of many
body systems obtained in [22]. Our BBGKY hierarchy (3.24) is new to the litera-
ture and the proof of its uniqueness involves a representation and manipulations of
the hierarchy in terms of trees. The technique is related but different from that in
[22], which used the Feynman diagrams.

Note that, by Theorem 3.5, γ (n,m)t can be extended continuously to t = 0.
Uniqueness of solution for the hierarchy will be established on a subset of the
space

C
([0, T ],D) := ⊕

(n,m)∈N×N

C
([0, T ],Dn

+ ×D
m

−
)
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equipped with the product topologies induced by the uniform norm ‖ · ‖(T ,n,m) on
[0, T ] ×D

n

+ ×D
m

−.

THEOREM 3.7 (Uniqueness of the infinite hierarchy). Given any T > 0. Sup-
pose βt = {β(n,m)t } ∈ C([0, T ],D) is a solution to the infinite hierarchy (3.24) with
zero initial condition (i.e., β0 =�= 0) and satisfies ‖β(n,m)t ‖(T ,n,m) ≤ Cn+m for

some C ≥ 0. Then we have ‖β(n,m)t ‖(T ,n,m) = 0 for every n,m ∈ N.

The remaining of this subsection is devoted to give a proof of this theorem.

Convention in this subsection: β = {β(n,m)} will always denote the functions
stated in Theorem 3.7. For notational simplicity, we will also assume λ = 2 and
ρ± = 1. The proof for the general case is the same. We will also drop T from the
notation ‖β(n,m)t ‖(T ,n,m).

It is convenient to rewrite the infinite hierarchy (3.24) in a more compact form
as

γ
(n,m)
t = P

(n,m)
t �(n,m)

(3.29)

−
∫ t

0
P
(n,m)
t−s

(
n∑
i=1

V +
i γ

(n,m+1)
s +

m∑
j=1

V −
j γ

(n+1,m)
s

)
ds,

where V +
i γ

(n,m+1) is a measure concentrated on ∂i+ defined as

V +
i γ

(n,m+1) := γ (n,m+1)(�a, (�b, ai))dσ(n,m)|∂i+(�a, �b)
= γ (n,m+1)(�a, (�b, ai))dσ |I (ai) d(�a \ ai) d �b.

Here σ(n,m)|∂i+ is the surface measure of ∂(Dn+ ×Dm−) restricted to ∂i+. Similarly,

V −
j γ

(n+1,m) is a measure concentrating on ∂j− defined as

V −
j γ

(n+1,m) := γ (n+1,m)((�a, bj ), �b)dσ(n,m)|∂j−(�a, �b)
= γ (n+1,m)((�a, bj ), �b)dσ |I (bj ) d�a d(�b \ bj ).

3.5.1. Duhamel tree expansion. We now describe the infinite hierarchy in de-
tail. It is natural and illustrative to represent the infinite hierarchy in terms of a tree
structure, with the “root” at the top and the “leaves” at the bottom. Fix two positive
integers n and m. We construct a sequence of finite trees {T(n,m)N :N = 0,1,2, . . .}
recursively as follows.

1. T
(n,m)
0 is the root, with label (n,m).

2. T
(n,m)
1 is constructed from T

(n,m)
0 by attaching n+m new vertices (call them

leaves of T(n,m)1 ) to it. More precisely, we attach n +m new vertices to the root
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FIG. 3. T
(n,m)
1 .

by drawing n “+” edges and m “−” edges from the root. Those new leaves drawn
by the “+” edges are labeled (n,m+ 1), while those drawn by the “−” edges are
labeled (n+ 1,m). We also label the edges as {+i}ni=1 and {−j }mj=1 (see Figure 3).

3. When N = 2, we view each of the n+m leaves of T(n,m)1 as a “root” (with
a new label, being either (n,m + 1) or (n + 1,m)), and then attach new leaves
(leaves of T(n,m)2 ) to it by drawing “±” edges. Hence there are (m+n)(m+n+ 1)
new leaves, coming from n2 +m(n+ 1) new “+” edges and n(m+ 1)+m2 new
“−” edges.

4. Having drawn T
(n,m)
N−1 , we construct T(n,m)N by attaching new edges and new

leaves from each leaf of T(n,m)N−1 by the same construction, viewing a leaf of T(n,m)N−1
as a “root”.

In T
(n,m)
N , the root is connected to each leaf by a unique path �θ = (θ1, θ2, . . . , θN)

formed by the “±” edges. Moreover, such a path passes through a sequence of la-
bels formed by the leaves of T(n,m)k (k = 1,2, . . . ,N ). We denote these labels by
�l(�θ)= (l1(�θ), l2(�θ), . . . , lN(�θ)). For example, when (n,m)= (2,5),N = 3 and the
path is �θ = (+1,−6,−5). Then �l(�θ)= ((2,6), (3,6), (4,6)) and the path connects
the root to a leaf of T(2,5)3 with label (4,6). Note that the label is not one-to-one.
For example, �l(+1,−6,−5)= �l(+2,−6,−4).

For mnemonic reason, we use the same notation T
(n,m)
N to denote the collection

of paths that connect the root to a leaf in T
(n,m)
N . By induction, the total number of

paths (or the total number of leaves) is

(3.30) (n+m)(n+m+ 1) · · · (n+m+N − 1)= (n+m+N − 1)!
(n+m− 1)! .

Iterating (3.29) N times gives

β
(n,m)
t = −

∫ t

t2=0
P
(n,m)
t−t2

(
n∑
i=1

V +
i β

(n,m+1)
t2

+
m∑
j=1

V −
j β

(n+1,m)
t2

)
dt2

= · · ·
(3.31)

= (−1)N
∫ t

t2=0

∫ t2

t3=0
· · ·

∫ tN

tN+1=0
dt2 · · ·dtN+1

× ∑
�θ∈T(n,m)N

P
(n,m)
t−t2 Vθ1P

l1(�θ)
t2−t3Vθ2P

l2(�θ)
t3−t4Vθ3 · · ·P lN−1(�θ)

tN−tN+1
VθNβ

lN (�θ)
tN+1

,
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where Vθi (for i = 1,2, . . . ,N ) is defined by V+i
= V +

i and V−j
= V −

j . For exam-

ple, if (n,m)= (2,5), N = 3 and the path is �θ = (+1,−6,−5), then

P (n,m)Vθ1P
l1(�θ)Vθ2P

l2(�θ)Vθ3β
l3(�θ) = P (2,5)V +

1 P
(2,6)V −

6 P
(3,6)V −

5 β
(4,6).

3.5.2. Telescoping via Chapman–Kolmogorov equation. By (3.30), the right-
hand side of (3.31) is a sum of (n + m)(n + m + 1) · · · (n + m + N − 1) terms
of multiple integrals. We will apply the bound ‖β(p,q)t ‖(p,q) ≤ Cp+q to each term,
and then simplify the integrand using Chapman–Kolmogorov equation.

We demonstrate this for the twelve terms for the case (n,m,N)= (1,2,2). The
twelve terms on the right-hand side of (3.31) are

P
(1,2)
t−t2

{
V +

1 P
(1,3)
t2−t3

(
V +

1 β
(1,4)
t3

+ (
V −

1 + V −
2 + V −

3

)
β
(2,3)
t3

)
+ V −

1 P
(2,2)
t2−t3

((
V +

1 + V +
2

)
β
(2,3)
t3

+ (
V −

1 + V −
2

)
β
(3,2)
t3

)
(3.32)

+ V −
2 P

(2,2)
t2−t3

((
V +

1 + V +
2

)
β
(2,3)
t3

+ (
V −

1 + V −
2

)
β
(3,2)
t3

)}
.

The first four terms came from the leftmost leaf of the previous level, we group

them together to obtain, for (x, y1, y2) ∈D+ ×D
2
−,∣∣P (1,2)t−t2 V

+
1 P

(1,3)
t2−t3

(
V +

1 β
(1,4)
t3

+ (
V −

1 + V −
2 + V −

3

)
β
(2,3)
t3

)
(x, y1, y2)

∣∣
≤ C5

∫
dσ

(
x′)dy′

1 dy
′
2p

(1,2)(t − t2, (x, y1, y2),
(
x′, y′

1, y
′
2
))

×
(∫

dσ(a) db1 db2 db3 +
∫
da dσ(b1) db2 db3

+
∫
da db1 dσ(b2) db3 +

∫
da db1 db2 dσ(b3)

)
× p(1,3)

(
t2 − t3,

(
x′, y′

1, y
′
2, x

′), (a, b1, b2, b3)
)

= C5
∫
dσ

(
x′)p+(t − t2, x, x

′)(∫ dσ(a)p+(t2 − t3, x
′, a

)
+
∫
dσ(b1)p

−(t − t3, y1, b1)+
∫
dσ(b2)p

−(t − t3, y2, b2)

+
∫
dσ(b3)p

−(t2 − t3, x
′, b3

))
.

Note the telescoping effect upon using the Chapman–Kolmogorov equation for the
middle two terms in the last equality above gives rise to t − t3 rather than t2 − t3.

We apply (2.16) to obtain∥∥P (1,2)t−t2 V
+
1 P

(1,3)
t2−t3

(
V +

1 β
(1,4)
t3

+ (
V −

1 + V −
2 + V −

3

)
β
(2,3)
t3

)∥∥
(1,2)

≤ C5 C+√
t − t2

(
C+√
t2 − t3

+ 2C−√
t − t3

+ C−√
t2 − t3

)
,
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FIG. 4. S
(1,2)
2 together with 5 leaves in S

(1,2)
3 .

where C± = C(D±, T ) are positive constants. Repeat the above argument for the
remaining eight terms of (3.32), we obtain∥∥β(1,2)t

∥∥
(1,2) ≤ C5

∫ t

t2=0

∫ t2

t3=0

C+√
t − t2

(
C+√
t2 − t3

+ 2C−√
t − t3

+ C−√
t2 − t3

)
(3.33)

+ 2C−√
t − t2

(
C+√
t − t3

+ C+√
t2 − t3

+ C−√
t − t3

+ C−√
t2 − t3

)
.

The key is to visualize the twelve terms on the right as 12 paths of T(1,2)2 with the

edges relabeled. We denote this relabeled tree by S
(1,2)
2 (see Figure 4, ignoring the

five leaves in S
(1,2)
3 at the moment). More precisely, since all twelve terms on the

right are of the form C±√
tp−t2

C±√
tq−t3 , we only need to record the indexes (p, q) and

the ± sign. For example, the first four terms can be represented by

(+1+2,+1−1,+1−1,+1−2).

Each +1−1 corresponds to C+√
t−t2

C−√
t−t3 and hence it appears twice. In S

(1,2)
2 ,

these four paths are formed by a +1 edge followed by four edges with labels
{+2,−1,−1,−2}.

In general, we obtain S
(n,m)
N by relabeling the edges of T(n,m)N , while keeping

the labels for the vertices and the ± sign for the edges. The relabeling of edges are
performed as follows:

1. At level 1, we assign the number “1” to all the edges connected to the root.
Hence, we have n “+1” edges and m “−1” edges, rather than the labels {+i}ni=1

and {−j }mj=1 (see Figure 5 for S(n,m)1 ).

FIG. 5. S
(n,m)
1 .



1342 Z.-Q. CHEN AND W.-T. (L.) FAN

2. At level k ≥ 2, consider the set �+ := {+1, . . . ,+1,+2,+3, . . . ,+k} in
which we have n copies of +1 (hence there are n + k − 1 elements in �+, in
which n of them are +1). Similarly, let �− := {−1, . . . ,−1,−2,−3, . . . ,−k} in
which we have m copies of −1. For an arbitrary leaf ξ of T(n,m)k−1 , let Rξ be the

labels of (the edges of) the path from the root to ξ in S
(n,m)
k−1 , counting with multi-

plicity. Finally, the collection of new labels of the edges below ξ , denoted by Lξ ,
is chosen in such a way that

�+ ∪�− =Rξ ∪Lξ (counting multiplicity).

Since |Rξ | = k − 1 and |Lξ | = n+m+ k − 1 (again, counting multiplicity), the
cardinalities of the two sides match:

(n+ k − 1)+ (m+ k − 1)= (k − 1)+ (n+m+ k − 1).

Induction shows that Rξ ⊂ �+ ∪ �− and the choice for Lξ is unique. For ex-
ample, for leaf ξ = (1,3) of T

(1,2)
1 , Rξ = {+1}, �+ := {+1,+2} and �− :=

{−1, ,−1,−2}. So Lξ = {+2,−1, ,−1,−2}, which gives the new labels to the
edges below ξ ; see Figure 4.

As a further illustration, we continue to “grow” S
(1,2)
2 (see Figure 4) by adding

suitably labeled edges to leaves of S(1,2)2 . Precisely, let ξ be a leaf of S(1,2)2 .

• If Rξ = {+1,+2}, then Lξ = {+3,−1,−1,−2,−3} [this is the case for the left-
most leaf, which has label (1,4)].

• If Rξ = {+1,−1}, then Lξ = {+2,+3,−1,−2,−3} (shown in Figure 4).
• If Rξ = {+1,−2}, then Lξ = {+2,+3,−1,−1,−3}.
• If Rξ = {−1,+1}, then Lξ = {+2,+3,−1,−2,−3}.
• If Rξ = {−1,+2}, then Lξ = {+1,+3,−1,−2,−3}.
• If Rξ = {−1,−1}, then Lξ = {+1,+2,+3,−2,−3}.
• If Rξ = {−1,−2}, then Lξ = {+1,+2,+3,−1,−3}.

For mnemonic reason, we use the same notation S
(n,m)
N to denote the collection

of paths from the root to the leaves of S(n,m)N . Any such path is represented by the
ordered (new) labels of the edges. We now “forget” the sign of the edges and only
record the integer labels. For example, the path (−1,+1,−2,+3) is replaced by
(1,1,2,3).

Using the hypothesis ‖β(n,m)t ‖(n,m) ≤ Cn+m (of Theorem 3.7) and applying
Chapman–Kolmogorov equation to (3.31), and then applying (2.16), we obtain
the following lemma by the same argument that we used to obtain (3.33).

LEMMA 3.8. ∥∥β(n,m)t

∥∥
(n,m) ≤ Cn+m+N(C+ ∨C−)NI (n,m)N (t),
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where

I
(n,m)
N (t) :=

∫ t

t2=0
· · ·

∫ tN

tN+1=0

× ∑
�υ∈S(n,m)N

1√
(tυ1 − t2)(tυ2 − t3) · · · (tυN − tN+1)

dt2 · · ·dtN+1.

Our goal is to show that I (n,m)N (t) ≤ (Ct)N/2 for some C = C(n,m) > 0. This

will imply ‖β(n,m)t ‖(n,m) = 0 for t > 0 small enough. Clearly, we have

I
(n,m)
N (t) ≤ (n+m+N − 1)!

(n+m− 1)!
×
∫ t

t2=0
· · ·

∫ tN

tN+1=0

1√
(t − t2)(t2 − t3) · · · (tN − tN+1)

dt2 · · ·dtN+1

= (n+m+N − 1)!
(n+m− 1)!

(πt)N/2

�(N+2
2 )

.

Unfortunately, this crude bound is asymptotically larger than (Ct)N/2 for any
C > 0.

3.5.3. Comparison with a “dominating” tree. Note that

I
(1,2)
3 (t)≤

∫ t

t2=0

∫ t2

t3=0

∫ t3

t4=0

(
3√
t − t2

)(
2√
t2 − t3

+ 2√
t − t3

)

×
(

2√
t3 − t4

+ 2√
t2 − t4

+ 1√
t − t4

)
dt2 dt3 dt4.

This is obtained by comparing the labels in S
(1,2)
3 with a “dominating” labeling, in

which the labels of the edges below every leaf of S(1,2)2 is {3,3,2,2,1} (the ± sign
is discarded). This trick enables us to group the terms at each level.

For the general case, let ξ be an arbitrary leaf of S(n,m)k−1 . Note that in Lξ , each
of the integers 2,3, . . . , k appears at most twice and the integer 1 appears at most
n+m times. We compare Lξ with the “dominating” label L̃ξ defined in Table 1.

In the last row, if n+m+N − 1 is even, then a = b= (N − n−m+ 3)/2 and
c= b+1; if n+m+N−1 is odd, then a = (N−n−m+2)/2 and b= c= a+1.

We can now group the terms in each level k as a sum of k terms to obtain

I
(n,m)
N (t)≤

∫ t

t2=0

∫ t2

t3=0
· · ·

∫ tN

tN+1=0

(
n+m√
t − t2

)(
2√
t2 − t3

+ n+m− 1√
t − t3

)

×
(

2√
t3 − t4

+ 2√
t2 − t4

+ n+m− 2√
t − t4

)
· · ·
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TABLE 1
“Dominating” label at different levels

Level k |L̃ξ | = |Lξ | L̃ξ

1 n+m 1,1,1, . . . ,1
2 n+m+ 1 2,2,1,1,1, . . . ,1
3 n+m+ 2 3,3,2,2,1,1,1, . . . ,1
· · · · · · · · ·
n+m− 1 2(n+m)− 2 n+m− 1, n+m− 1, n+m− 2, . . . ,3,3,2,2,1,1
n+m 2(n+m)− 1 n+m,n+m,n+m− 1, n+m− 1, . . . ,3,3,2,2,1
n+m+ 1 2(n+m) n+m+ 1, n+m+ 1, n+m,n+m, . . . ,3,3,2,2
n+m+ 2 2(n+m)+ 1 n+m+ 2, n+m+ 2, n+m+ 1, . . . ,3,3,2
· · · · · · · · ·
N n+m+N − 1 N,N,N − 1,N − 1, . . . , c, b, a

×
(

2√
tn+m − tn+m+1

+ · · · + 2√
t2 − tn+m+1

+ 1√
t − tn+m+1

)

×
N∏

k=n+m+1

(
2√

tk − tk+1
+ 2√

tk−1 − tk+1
+ · · ·

+ 2√
t2 − tk+1

)
dt2 · · ·dtN+1.

In the last term, we have used the observation that when k > n+m, the smallest
element in L̃ξ is at least 2 and so the sum stops before reaching 1/

√
t − tk+1. From

this and simple estimates like

2√
t3 − t4

+ 2√
t2 − t4

+ n+m− 2√
t − t4

≤ 2(n+m)

3

(
1√
t3 − t4

+ 1√
t2 − t4

+ 1√
t − t4

)
,

we have derived the following lemma.

LEMMA 3.9. For any (n,m), N and 0 ≤ tN+1 ≤ tN ≤ · · · ≤ t2 ≤ t , we have

∑
�υ∈S(n,m)N

1√
(tυ1 − t2)(tυ2 − t3) · · · (tυN − tN+1)

≤ (n+m)(n+m)

(n+m)! 2N
N+1∏
i=2

(
i−1∑
j=1

1√
tj − ti

)
.
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In particular,

I
(n,m)
N (t)≤ (n+m)(n+m)

(n+m)! 2NJN(t),

where

JN(t) :=
∫ t

0

∫ t2

0
· · ·

∫ tN

0

N+1∏
i=2

(
i−1∑
j=1

dti√
tj − ti

)
.

3.5.4. Estimating JN . Our goal in this section is show that JN(t) ≤ (Ct)N/2

for some C > 0. Our proof relies on the following recursion formula pointed out
to us by David Speyer:

(3.34) JN(t)=
N∑
k=1

1

k!
∑

n2+n3+···+nk+1=N
n2,n3,...,nk+1≥1

k+1∏
j=2

∫ t

0

Jnj−1(tj )√
t − tj

dtj .

We assume (3.34) for now and use it to establish the following lemma. The proof
of (3.34) will be given immediately after it.

LEMMA 3.10. JN(t) is homogeneous in the sense that

JN(t)= JN · tN/2 where JN := JN(1).

Moreover,

2N ≤ JN ≤ (N + 1)NπN/2

(N + 1)! .

PROOF. JN(t)= JN · tN/2 is obvious from (3.34) after a change of variable.
Let MN be the collection of functions f : {2,3, . . . ,N + 1} → {1,2, . . . ,N} sat-
isfying f (i) < i. We can rewrite JN(t1) as

(3.35) JN(t1)= ∑
f∈MN

∫ t1

t2=0

∫ t2

t3=0
· · ·

∫ tN

tN+1=0

N+1∏
i=2

dti√
tf (i) − ti

.

This is a sum of N ! terms. When we put t1 = 1, the smallest term is∫ 1

t2=0

∫ t2

t3=0
· · ·

∫ tN

tN+1=0

N+1∏
j=2

dtj√
1 − tj

= 1

N !
(∫ 1

0

1√
1 − s

ds

)N
= 2N

N ! .

Hence, we have the lower bound 2N ≤ JN . Unfortunately, the largest term is ex-
actly ∫ 1

t2=0

∫ t2

t3=0
· · ·

∫ tN

tN+1=0

N∏
i=1

dtj√
tj−1 − tj

= πN/2

�(N+2
2 )

,
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which grows faster than CN for any C ∈ (0,∞). Hence for the upper bound, we
will employ the recursion formula (3.34). We apply the homogeneity to the right-
hand side of (3.34) to obtain

JN =
N∑
k=1

1

k!
∑

n2+n3+···+nk+1=N
n2,...,nk+1≥1

k+1∏
j=2

Jnj−1

∫ 1

0

t
(nj−1)/2
j√

1 − tj

dtj .

The integrals are now simple one dimensional and can be evaluated:

(3.36) JN =
N∑
k=1

1

k!
∑

n2+n3+···+nk+1=N
n2,...,nk+1≥1

k+1∏
j=2

(
Jnj−1 ·

√
π�((nj + 1)/2)

�((nj + 2)/2)

)
.

Since
√
π�((nj+1)/2)
�((nj+2)/2) ≤ √

π , we have JN ≤ KN , where KN is defined by the
recursion

KN =
N∑
k=1

1

k!
∑

n2+n3+···+nk+1=N
n2,...,nk+1≥1

k+1∏
j=2

(Knj−1 · √π)

with K0 = 1. The generating function φ(x) := ∑∞
N=0KNx

N of KN clearly sat-
isfies φ(x) = exp(

√
πxφ(x)). We thus see that φ(x) = W(−√

πx)/(−√
πx),

where W is the Lambert W function. By Lagrange inversion theorem (see The-
orem 5.4.2 of [39]), W(z) = ∑∞

k=1(−k)k−1zk/k! (for |z| < 1/e). Hence by com-

paring coefficients in the series expansion of φ(x), we have KN = (N+1)NπN/2

(N+1)! as
desired. �

REMARK 3.11. By Stirling’s formula, (N+1)NπN/2

(N+1)! ∼ (
√
πe)N [where a(N)∼

b(N) means limN→∞ a(N)
b(N)

= 1]. Hence JN ≤ CN for some C > 0. Monte Carlo

simulations suggests that JN ∼ πN . The recursion (3.36) also makes it clear that
JN ’s are all in Q[π ] (polynomials in π with rational coefficients) and makes it

easy to compute them recursively. This is because
√
π�((nj+1)/2)
�((nj+2)/2) is rational if nj is

odd and is a rational multiple of π if nj is even. For example, J1 = 2, J2 = 2 + π

and J3 = 4 + 10π
3 .

We now turn to the proof the recursion formula (3.34) which is restated in the
following lemma.

LEMMA 3.12.

(3.37) JN(t)=
N∑
k=1

1

k!
∑

n2+n3+···+nk+1=N
n2,n3,...,nk+1≥1

k+1∏
j=2

∫ t

0

Jnj−1(tj )√
t − tj

dtj

provided that we set J0(t)= 1.
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PROOF. The proof is based on standard combinatorial methods for working
on sums over planar rooted trees (see [39]).

Step 1: Summing over labeled trees. Recall (3.35). There are N ! elements in
MN . We can visualize each of them as a rooted tree with vertex set {1,2, . . . ,N +
1} and a directed edge from i to f (i) for each i. For example, the 6 elements of
M3 can be represented by

The trees are drawn so that arrows point upwards and the children of a given
vertex are listed from left to right. Note that the second and forth tree of the list are
the same up to relabeling the vertices. The idea is to group terms in (3.35) like this
together. First, we rewrite (3.35) in terms of trees. Let DN be the set of “decreasing
trees”, which are trees whose vertices are labeled by {1,2, . . . ,N + 1} and such
that i < j whenever there is an edge i ← j . Then

(3.38) JN(t1)= ∑
T ∈DN

∫
t1≥t2≥···≥tN+1≥0

∏
(i←j)∈Edge(T )

dtj√
ti − tj

.

Step 2: Summing over unlabeled trees. A planar tree is a rooted unlabeled tree
where, for each vertex, the children of that vertex are ordered. We draw a planar
tree so that its children are ordered from left to right. Here are the 5 planar rooted
trees on 3 + 1 vertices:
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Let Tk be the set of planar rooted trees with k vertices. In general, there are
(2N)!

N !(N+1)! (the Catalan number) elements in TN+1, see Exercise 6.19 in [39]. We
now group all the integrals in (3.38) with the same planar tree. For example, two
different labeled trees (the second and forth in our list of labeled trees) both give
the same unlabeled planar tree (which is the second in the above list). We redraw
this unlabeled planar tree T0 below and attach letters {a, b, c, d} to T0 for later use.

The integrands corresponding to the second and forth labeled trees are

dt2 dt3 dt4√
(t1 − t2)(t2 − t4)(t1 − t3)

and
dt2 dt3 dt4√

(t1 − t2)(t2 − t3)(t1 − t4)
.

They are the same to

dtb dtc dtd√
(ta − tb)(ta − tc)(tb − td)

,

once we relabel the variables by the vertices of T0. That is, (1,2,3,4) →
(a, b, c, d) for the first term and (1,2,3,4)→ (a, b, d, c) for the second.

We now go back and keep track of the bounds of integration. In the first integral,
they are ta ≥ tb ≥ tc ≥ td and, in the second integral, they are ta ≥ tb ≥ td ≥ tc. We
can group these together as

ta ≥ tb, ta ≥ tc, tb ≥ td , tb > tc,

which is the same as ta ≥ tb ≥ tc and tb ≥ td .
In general, the inequality constraints we have are of two types. First, whenever

we have an edge u ← v, we get the inequality tu ≥ tv . Second, if v and w are
children of u with v to the left of w, then tv ≥ tw . Let P(T , t1) be the polytope cut
out by these inequalities where t1 is the variable at the root. We have proved

(3.39) JN(t1)= ∑
T∈TN+1

∫
P(T ,t1)

∏
(u←v)∈Edge(T )

dtv√
tu − tv

,

Step 3: Grouping terms for which the root has degree k. We abbreviate

ω(T , t1) := ∏
(u←v)∈Edge(T )

dtv√
tu − tv
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if T has more than one vertex [otherwise ω(T , t1) := 1]. Then (3.39) translates
into

(3.40) JN(t1)= ∑
T ∈TN+1

∫
P(T ,t1)

ω(T , t1).

Fix an integer k and let T be a tree whose root has degree k. Removing the root
leaves behind k children, denoted in chronical order by t2, . . . , tk+1, and k planar
subtrees Tj having tj as its root for 2 ≤ j ≤ k + 1. Then

∫
P(T ,t1)

ω(T , t1)=
∫
t1≥t2≥···≥tk+1≥0

k+1∏
j=2

dtj√
t1 − tj

∫
P(Tj ,tj )

ω(Tj , tj ).

Hence, group together the terms where the root has degree k, we have

JN(t1)=
N∑
k=1

∑
T2,...,Tk+1

∫
t1≥t2≥···≥tk+1≥0

k+1∏
j=2

dtj√
t1 − tj

∫
P(Tj ,tj )

ω(Tj , tj ).(3.41)

Here the summation conditions include that
∑k+1
j=2 |Tj | = N and each different

ordering of (T2, T3, . . . , Tk+1) are considered to be different, where |Tj | is the
number of vertices in Tj . This abbreviation applies whenever

∑
T2,...,Tk+1

ap-
pears.

On other hand, we have by applying (3.40) to each Jnj−1(tj ) below that

N∑
k=1

1

k!
∑

n2+n3+···+nk+1=N
n2,...,nk+1≥1

k+1∏
j=2

∫ t1

0

Jnj−1(tj )√
t1 − tj

dtj

=
N∑
k=1

1

k!
∑

n2+n3+···+nk+1=N
n2,...,nk+1≥1

k+1∏
j=2

∑
|Tj |=nj

∫ t1

0

dtj√
t1 − tj

∫
P(Tj ,tj )

ω(Tj , tj )

(3.42)

=
N∑
k=1

1

k!
∑

T2,...,Tk+1

k+1∏
j=2

∫ t1

0

dtj√
t1 − tj

∫
P(Tj ,tj )

ω(Tj , tj )

=
N∑
k=1

1

k!
∑

T2,...,Tk+1

∫
[0,t1]k+1

k+1∏
j=2

dtj√
t1 − tj

∫
P(Tj ,tj )

ω(Tj , tj ).

Step 4: Identifying the integrals. It remains to show that (3.41) is equal to
(3.42). Let Sk denote the space of permutations of {2,3, . . . , k + 1}. Then the
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right-hand side of (3.42) is equal to
N∑
k=1

1

k!
∑

T2,...,Tk+1

∑
σ∈Sk

∫
t1≥tσ (2)≥···≥tσ (k+1)≥0

k+1∏
j=2

dtσ(j)√
t1 − tσ (j)

×
∫
P(Tσ(j),tσ (j))

ω(Tσ(j), tσ (j))

=
N∑
k=1

1

k!
∑
σ∈Sk

∑
T2,...,Tk+1

∫
t1≥s2≥···≥sk+1≥0

k+1∏
j=2

dsj√
t1 − sj

∫
P(Tσ(j),sj )

ω(Tσ(j), sj )

=
N∑
k=1

1

k!
∑
σ∈Sk

∑
T2,...,Tk+1

∫
t1≥s2≥···≥sk+1≥0

k+1∏
j=2

dsj√
t1 − sj

∫
P(Tj ,sj )

ω(Tj , sj )

=
N∑
k=1

∑
T2,...,Tk+1

∫
t1≥t2≥···≥tk+1≥0

k+1∏
j=2

dtj√
t1 − tj

∫
P(Tj ,tj )

ω(Tj , tj ),

which is JN(t) by (3.41). This completes the proof of the lemma. �

3.5.5. Proof of uniqueness.

PROOF OF THEOREM 3.7. By Lemma 3.8, Lemma 3.9 and Lemma 3.10, we
have ∥∥β(n,m)t

∥∥
(n,m) ≤ C1(n,m)C2(D+,D−, T )N tN/2(3.43)

for all t ∈ [0, T ] and N ∈ N. This implies that there is a constant τ > 0 so
that ‖β(n,m)t ‖(n,m) = 0 for t ≤ τ and for all (n,m) ∈ N × N. Note that β̃t :=
βτ+t also satisfies the hierarchy (3.29), and that β̃0 = 0. Using the hypothesis
‖β(n,m)t ‖(T ,n,m) ≤Cn+m, we can extend to obtain ‖β(n,m)t ‖(n,m) = 0 for t ∈ [0, T ].

�

4. Hydrodynamic limits. This section is devoted to the proof of Theo-
rem 2.21. Throughout this section, we assume the conditions of Theorem 2.21
hold.

4.1. Constructing martingales. Since ηt = ηεt has a finite state space, we know
that for all bounded function F : R+ ×Eε → R that is smooth in the first coordi-
nate with sup(s,x) | ∂F∂s (s, x)|<C <∞, we have two F

η
t -martingales below:

(4.1) M(t) := F(t, ηt )− F(0, η0)−
∫ t

0

∂F

∂s
(s, ηs)+LF(s, ·)(ηs) ds

and

(4.2) N(t) :=M(t)2 −
∫ t

0
L
(
F 2(s, ·))(ηs)− 2F(s, ηs)LF(s, ·)(ηs) ds,
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where L = Lε is the generator defined in (2.10). See Lemma 5.1 (page 330) of
[29] or Proposition 4.1.7 of [23] for a proof. We will use this fact to construct
some important martingales in Lemma 4.1 below.

In general, suppose X = (Xt)t≥0 is a CTRW in a finite state space E, whose
one step transition probability is pxy and mean holding time at x is h(x). Its in-
finitesimal generator of X is the discrete operator

Af (x) := 1

h(x)

∑
y∈E

pxy
(
f (y)− f (x)

)
.

The formal adjoint A∗ of A is defined by

A∗f (x) := ∑
y∈E

(
1

h(y)
pyxf (y)− 1

h(x)
pxyf (x)

)
.

It can be easily checked that

(4.3)
〈
f,A∗g

〉= 〈Af,g〉 where 〈f,g〉 := 1

N

∑
x∈E

f (x)g(x).

We denote by A±
ε the generator of the CTRW X±,ε on Dε±, respectively, and

by A∗,±
ε the corresponding formal adjoint. In our case, h(x) = hε(x) = ε2/d for

all x. We can check that if f ∈ C2(D±), then

(4.4) lim
ε→0

A±
ε f

(
xε
)= A±f (x) whenever xε ∈Dε± converges to x ∈D±.

LEMMA 4.1. For any φ ∈ Bb(D+),

M(t) :=M
+,N
φ (t)

(4.5)

:= 〈
φ,X

N,+
t

〉− 〈
φ,X

N,+
0

〉− ∫ t

0

〈
A+
ε φ,X

N,+
s

〉
ds + λ

∫ t

0

〈
JN,+s , φ

〉
ds

is an F
η
t -martingale for t ≥ 0, where JN,+ is the measure-valued process defined

by (2.36). Moreover, if φ ∈ C1(D+), then there is a constant C > 0 independent of
N so that for every T > 0,

(4.6) E
[

sup
t∈[0,T ]

M2(t)
]
≤ CT

N
.

Similar statements hold for XN,−.

PROOF. The lemma follows by applying (4.1) and (4.2) to the function

F(s, η) := f (η) := 1

N

∑
x∈D+

φ+(x)η+(x), (s, η) ∈ [0,∞)×Eε.
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We spell out the details here for completeness. Observe that f (ηt ) = 〈φ,XN,+t 〉.
Fix x0 ∈ Dε+, and define η+

x0
to be the function from Eε to R which maps η to

η+(x0). Then by the definition of L= Lε in (2.10),

(4.7) Lη+
x0
(η)= (

A∗,+
ε η+)(x0)−

∑
{z∈I ε :z+=x0}

λ

ε
�(z)η+

t (z+)η−
t (z−).

Similarly, for y0 ∈Dε−, we have

(4.8) Lη−
y0
(η)= (

A∗,−
ε η−)(y0)−

∑
{z∈I ε :z−=y0}

λ

ε
�(z)η+

t (z+)η−
t (z−).

Hence, by linearity of L, (4.7) and then (4.3), we have

Lf (η)= 1

N

∑
x∈D+

φ(x)
(
Lη+

x

)
(η)

= 1

N

∑
x∈D+

φ(x)
(
A∗,+
ε η+(x)

)− λ

Nε

∑
z∈I ε

�(z)η+(z+)η−(z−)φ(z+)

= 1

N

∑
x∈D+

η+(x)
(
A+
ε φ(x)

)− λ

Nε

∑
z∈I ε

�(z)η+(z+)η−(z−)φ(z+).

Hence,

(4.9) Lf (ηs)= 〈
A+
ε φ,X

N,+
s

〉− λ

Nεd

〈
JN,+s , φ

〉
and M(t) is an F

η
t -martingale by (4.1). Next, we compute E[〈M〉t ]. Note that

L
(
f 2)(η)= 1

N2

∑
a∈Dε+

∑
b∈Dε+

φ+(a)φ+(b)L(ηaηb)(η),

where L(ηaηb) can be computed explicitly using (2.10). Hence from (4.2), we can
check that

E
[
M2(t)

]= E
[〈M〉t

]= E

[∫ t

0
L
(
f 2)(ηs)− 2f (ηs)Lf (ηs) ds

]
=
∫ t

0
E
[
g(ηr)

]
dr,

where

g(η)= 1

N2

( ∑
y,z∈D+

η+(z)h−1(z)pzy
(
φ(y)− φ(z)

)2
+ λ

ε

∑
z∈I ε

�(z)η(z+)η−(z−)
(−φ(z+))2)
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≤ 1

N2

(
ε2‖∇φ‖2

∑
x∈D+

η(x)h−1(x)+ λ

ε
‖φ‖2

∑
z∈I ε

�(z)η+(z+)η−(z−)
)

≤ d‖∇φ‖2

N
+ λ‖φ‖2

N2

(
1

ε

∑
z∈I ε

�(z)η+(z+)η−(z−)
)
.

After taking expectation for g(ηr), the first term is the last display is of order at
most 1/N since φ ∈ C1(D+), while the second term inside the bracket is of order
at most 1/N , uniformly in r ∈ [0, t], by (2.38). Hence E[M2(t)] ≤ C

N
for some

C = C(φ,d,D±, λ). Doob’s maximal inequality then gives (4.6). �

REMARK 4.2. From the second term of (4.9), we see that if the parameter of
the killing time is of order λ/ε, then we need Nεd to be comparable to 1.

4.2. Tightness. The following simple observation is useful for proving tight-
ness when the transition kernel of the process has a singularity at t = 0. It says that
we can break down the analysis of the fluctuation of functionals of a process on
[0, T ] into two parts. One part is near t = 0, and the other is away from t = 0 where
we have a bound for a higher moment. Its proof, which is based on the Prohorov’s
theorem, is simple and is omitted (detail can be found in [24]).

LEMMA 4.3. Let {YN } be a sequence of real valued processes such that t 	→∫ t
0 YN(r) dr is continuous on [0, T ] a.s., where T ∈ [0,∞). Suppose the following

holds:

(i) There exists q > 1 such that limN→∞E[∫ Th |YN(r)|q dr] < ∞ for any
h > 0,

(ii) limα↘0 limN→∞ P(
∫ α

0 |YN(r)|dr > ε0)= 0 for any ε0 > 0.

Then {∫ t0 YN(r) dr; t ∈ [0, t]}N∈N is tight in C([0, T ],R).

Here is our tightness result for {(XN,+,XN,−)}. We need Lemma 4.3 in the
proof mainly because we do not know if limN→∞E

∫ T
0 〈A+

ε ϕ+,XN,+s 〉2 ds is finite
or not.

THEOREM 4.4. The sequence {(XN,+,XN,−)} is relatively compact in
D([0, T ],E) and any subsequential limit of the laws of {(XN,+,XN,−)} carries
on C([0, T ],E). Moreover, for all ϕ± ∈ C2(D±),{∫ t

0

〈
JN,+s , ϕ±

〉
ds

}
,

{∫ t

0

〈
A+
ε ϕ+,XN,+s

〉
ds

}
and

{∫ t

0

〈
A−
ε ϕ−,XN,−s

〉
ds

}
are all tight in C([0, T ],R).
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PROOF. We write X± in place of XN,± for convenience. By Stone–Weierstrass
theorem, C2(D±) is dense in C(D±) in uniform topology. It suffices to check
that {(〈X+, φ+〉, 〈X−, φ−〉)} is relatively compact in D([0, T ],R2) for all φ± ∈
C2(D±) (cf. Proposition 1.7 (page 54) of [29]) for this weak tightness criterion).
By Prohorov’s theorem (see, for example, Theorem 1.3 and Remark 1.4 of [29]),
{(〈X+, φ+〉, 〈X−, φ−〉)} is relatively compact inD([0, T ],R2) if (1) and (2) below
holds:

(1) For all t ∈ [0, T ] and ε0 > 0, there exists a compact set K(t, ε0)⊂ R2 such
that

sup
N

P
((〈
X+
t , φ

+〉, 〈X−
t , φ

−〉) /∈K(t, ε0)
)
< ε0;

(2) For all ε0 > 0,

lim
δ→0

lim
N→∞P

(
sup

|t−s|<δ
0≤s,t≤T

∣∣(〈X+
t , φ

+〉, 〈X−
t , φ

−〉)− (〈
X+
s , φ

+〉, 〈X−
s , φ

−〉)∣∣
R2 > ε0

)
= 0.

We first check (1). Since φ± is bounded on D± and |〈X+
t ,1〉| ≤ 1 for all t ∈

[0,∞), we can always take K = [−‖φ+‖,‖φ+‖] × [−‖φ−‖,‖φ−‖].
To verify (2), since |(x1, y1)− (x2, y2)|R2 ≤ |x1 − x2|+ |y1 − y2|, we only need

to focus on X+. By Lemma 4.1,∣∣〈φ,X+
t

〉− 〈
φ,X+

s

〉∣∣
(4.10)

=
∣∣∣∣∫ t

s

〈
A+
ε φ,X

+
r

〉
dr −

∫ t

s

λ

Nεd

〈
JN,+r , φ

〉
dr + (

Mφ(t)−Mφ(s)
)∣∣∣∣.

So we only need to verify (2) with 〈φ,X+
t 〉 − 〈φ,X+

s 〉 replaced by each of the 3
terms on RHS of the above equation (4.10).

For the first term of (4.10), we apply Lemma 4.3 for the case q = 2 and YN(r)=
〈A+

ε φ,X
+
r 〉. Since φ ∈ C2(D+), we have

sup
x∈Dε\∂Dε

∣∣A+
ε φ(x)

∣∣≤ C(φ) and sup
x∈∂Dε

∣∣εA+
ε φ(x)

∣∣≤ C(φ)

for some constant C(φ) which only depends on φ. Using Lemma 2.13, we have

E
[〈∣∣A+

ε φ
∣∣,XN,+r

〉]≤ 1

N

N∑
i=1

∑
Dε

∣∣A+
ε φ(·)

∣∣pε,+(r, xi, ·)mε(·)
≤ C1(d,D+, φ)+ C2(d,D+, φ)

ε ∨ r1/2 ,

which is in L1[0, T ] as a function in r . This implies hypothesis (ii) of Lemma 4.3,
via the Chebyshev’s inequality. Hypothesis (i) of Lemma 4.3 can be verified easily
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using the upper bound (3.17) for the correlation function, or by direct comparison
to the process without annihilation:

E
[〈|Aεφ|,X+

r

〉2]≤
(

1

N

N∑
i=1

E
[
Aεφ

(
Xi
r

)])2

+ 1

N2

N∑
i=1

E
[
(Aεφ)

2(Xi
r

)]

− 1

N2

N∑
i=1

(
E
[
Aεφ

(
Xi
r

)])2
≤ C(d,D,φ)

(
1 + 1√

r
+ 1

r

)
.

For the second term of (4.10), by (2.38) we have limN→∞E[∫ T0 〈1, JNr 〉2 dr]<
∞. Hence, (2) holds for this term by Lemma 4.3.

For the third term of (4.10), by Chebyshev’s inequality, Doob’s maximal in-
equality and Lemma 4.1, we have

P
(

sup
|t−s|<δ

∣∣Mφ(t)−Mφ(s)
∣∣> ε0

)
≤ 1

ε2
0

E
[(

sup
|t−s|<δ

∣∣Mφ(t)−Mφ(s)
∣∣)2]

≤ 1

ε2
0

E
[(

2 sup
t∈[0,T ]

∣∣Mφ(t)
∣∣)2]

≤ 16E
[
Mφ(T )

2]≤ C

N
.

We have proved that (2) is satisfied. Hence, {(XN,+,XN,−)} is relatively compact.
Using (2) and the metric of E, we can check that any subsequential limit L∗ of the
laws of {(XN,+,XN,−)} concentrates on C([0,∞),E). �

REMARK 4.5. In general, to prove tightness for (Xn,Yn) inD([0, T ],A×B),
it is NOT enough to prove tightness separately for (Xn) and (Yn) in D([0, T ],A)
and D([0, T ],B), respectively. (However, the latter condition implies tightness in
D([0, T ],A) × D([0, T ],B) trivially). See Exercise 22(a) in Chapter 3 of [23].
For example, (1[1+ 1

n
,∞)

,1[1,∞)) converges in DR[0,∞) × DR[0,∞) but not in

DR2[0,∞). The reason is that the two processes can jump at different times (t = 1
and t = 1+ 1

n
) that become identified in the limit (only one jump at t = 1); this can

be avoided if one of the two processes is C-tight (i.e., has only continuous limiting
values), which is satisfied in our case since XN,+ and XN,− turns out to be both
C-tight.

REMARK 4.6. Even without condition (ii) of Theorem 2.21 for η0, we can
still verify hypothesis (i) of Lemma 4.3. Actually, applying (4.5) to suitable test
functions, we have

(4.11) lim
α→0

lim
N→∞E

[∫ α

0

〈
JN,+s ,1

〉
ds

]
= 0.
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4.3. Identifying the limit. Suppose (X∞,+,X∞,−) is a subsequential limit of
(XN,+,XN,−), say the convergence is along the subsequence {N ′}. By the Sko-
rokhod representation theorem, the continuity of the limit in t and [23], Theo-
rem 3.10.2, there exists a probability space (�,F,P) such that

(4.12) lim
N ′→∞ sup

t∈[0,T ]
∥∥(X+,N ′

t ,X
−,N ′
t

)− (
X

∞,+
t ,X

∞,−
t

)∥∥
E

= 0 P-a.s.

Hence, we have for any t > 0 and φ ∈C(D+),
lim

N ′→∞E
[〈
X+
t , φ

〉]= E
[〈
X

+,∞
t , φ

〉]
and

lim
N ′→∞E

[(〈
X+
t , φ

〉)2]= E
[(〈
X

+,∞
t , φ

〉)2]
.

Combining with Corollary 2.24, we have〈
X

+,∞
t , φ

〉= 〈
u+(t), φ

〉
ρ+ P-a.s. for every t ≥ 0 and for φ.

Here we have used the simple fact that if E[X] = (E[X2])1/2 = a, then X = a a.s.
Suppose {φk} is a countable dense subset of C(D+). Then for every t ≥ 0,〈

X
∞,+
t , φk

〉= 〈
u+(t), φk

〉
ρ+ for every k ≥ 1 P-a.s.

Since X∞,+ ∈ C((0,∞),M+(D+)), we can pass to rational numbers to obtain〈
X

∞,+
t , φk

〉= 〈
u+(t), φk

〉
ρ+ for every t ≥ 0 and k ≥ 1 P-a.s.

Hence,

X
∞,+
t (dx)= u+(t, x)ρ+(x) dx for every t ≥ 0 P-a.s.

Similarly,

X
∞,−
t (dy)= u−(t, y)ρ−(y) dy for every t ≥ 0 P-a.s.

In conclusion, any subsequential limit is the dirac delta measure

δu+(t,x) dx,u−(t,y) dy ∈M1
(
D
([0,∞),E

))
.

This together with Theorem 4.4 completes the proof of Theorem 2.21.

5. Local central limit theorem. Suppose D ⊂ Rd is a bounded Lips-
chitz domain and ρ ∈ W 1,2(D) ∩ C1(D) is strictly positive. Suppose X is a
(Id×d, ρ)-reflected diffusion and Xε be an ε-approximation of X, described in
the Section 2.1.2. In this section, we prove the local central limit theorem (The-
orem 2.12), the Gaussian upper bound (Theorem 2.9) and the Hölder continuity
(Theorem 5.12) for pε . The proofs are standard once we establish a discrete ana-
logue of a relative isoperimetric inequality (Theorem 5.5) for bounded Lipschitz
domains.
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5.1. Discrete relative isoperimetric inequality. Note that any Lipschitz do-
main enjoys the uniform cone property and any bounded Hd−1-rectifiable set
has finite perimeter. Hence, by Corollary 3.2.3 (page 165) and Theorem 6.1.3
(page 300) of [37], we have the following relative isoperimetric inequality.

PROPOSITION 5.1 (Relative isoperimetric inequality). Let D ⊂ Rd be a
bounded Lipschitz domain and r ∈ (0,1). Then

(5.1) S(r,D) := sup
U∈G

|U | d−1
d

σ (∂U ∩D) <∞,

where G is the collection of open subsets U ⊂D such that |U | ≤ r|D| and ∂U ∩D
is Hd−1-rectifiable. Moreover, S(r,D)= S(r, aD) for all a > 0.

In this subsection, we establish a discrete analogue for the relative isoperimetric
inequality in Theorem 5.5. First, we study the scaled graph aDε and gather some
basic properties of a continuous time random walk on a finite set.

5.1.1. CTRW on scaled graph aDε . Recall the mε-symmetric CTRW Xε on
Dε defined in the Section 2.1.2. The Dirichlet form (E (ε), l2(mε)) of Xε in l2(mε)
is given by

E (ε)(f, g) := 1

2

∑
x,y∈Dε

(
f (y)− f (x)

)(
g(y)− g(x)

)
μxy,(5.2)

where μxy = μD
ε

x,y are the conductance on the graph Dε defined in the Sec-

tion 2.1.2. The stationary measure π = πD
ε

of Xε is given by π(x) = mε(x)/

m(Dε), where m(Dε) :=∑
x∈Dε mε(x).

We now consider the scaled graph aDε = (aD)aε , which is an approximation
to the bounded Lipschitz domain aD by square lattice aεZd . Clearly the degrees
of vertices are given by vaD

ε
(ax)= vD

ε
(x). Define the function ρ(aD) on aD by

ρ(aD)(ax) := ρ(x). Then define the CTRW XaDε
using ρ(aD) as we have done

for Xε using ρ. Let paεaD be the transition density of XaDε
with respect to the

symmetrizing measure maD
ε
. Then

(5.3) adpaεaD
(
a2t, ax, ay

)= pεD(t, x, y)

for every t > 0, ε > 0, a > 0 and x, y ∈Dε .
We will simply write m and π for the symmetrizing measure and the stationary

probability measure when there is no ambiguity for the underlying graph.
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5.1.2. An extension lemma. Following the notation of [38], we letG be a finite
set, K(x,y) be a Markov kernel on G and π the stationary measure of K . Note
that a Markov chain on a finite set induces a natural graph structure as follows. Let
Q(e) := 1

2(K(x, y)π(x)+K(y,x)π(y)) for any e = (x, y) ∈G×G. Define the
set of directed edges E := {e= (x, y) ∈G×G :Q(e) > 0}.

We use the following 2 different notions for the “boundary” of A⊂G:

∂eA := {
e= (x, y) ∈E : x ∈A,y ∈G \A or y ∈A,x ∈G \A},

∂A := {
x ∈A : ∃y ∈G \A such that (x, y) ∈E}.

Set

Q(∂eA) := 1

2

∑
e∈∂eA

Q(e)= 1

2

∑
x∈A,y∈G\A

(
K(x,y)π(x)+K(y,x)π(y)

)
.

DEFINITION 5.2. For any r ∈ (0,1), define

Sπ(r,G) := sup
{A⊂G:π(A)≤r}

2|A|(d−1)/d

|∂eA| and

(5.4)

S̃π (r,G) := sup
{A⊂G:π(A)≤r}

π(A)(d−1)/d

Q(∂eA)
.

We call 1/S̃π (r,G) an isoperimetric constant of the chain (K,π). It provides rich
information about the geometric properties of G and the behavior of the chain
(cf. [38]).

In our case, G= aDε , π(x)= m(x)
m(aDε)

and K(x,y)= pxy in aDε , where px,y
is the one-step transition probabilities of XaDε

defined in Section 2.1.2. For a = 1
and A⊂Dε , we have

∂eA = {
(x, y) ∈ (

A× (
Dε \A))∪ ((

Dε \A)×A
) :

the line segment (x, y] ⊂D
}
,

∂A = {
x ∈A : ∃y ∈Dε \A such that |x − y| = ε

and the line segment [x, y] ⊂D
}
,

∂̃A := {
x ∈A : ∃y ∈ εZd such that |x − y| = ε and (x, y] ∩ ∂D �= ∅

}
,

�A := ∂̃A \ ∂A.
In this notation, we have ∂Dε = ∅, ∂̃Dε = {x ∈Dε : v(x) < 2d}, A ∩ ∂̃Dε = ∂̃A

and ∂̃Dε =�A∪ (∂A∩ ∂̃Dε)∪ (∂̃Dε \A). See Figure 6 for an illustration.

DEFINITION 5.3. We say that A⊂Dε is grid-connected if ∂eA1 ∩ ∂eA2 �= φ

whenever A is the disjoint union of A1 and A2.
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FIG. 6. W1 :=⋃
x∈A(Ux ∩D).

It is easy to check that A is grid-connected if and only if for every x, y ∈ A,
there exists {x1 = x, x2, . . . , xm−1, xm = y} ⊂ A such that each line segments
[xj , xj+1] ⊂ D and |xj − xj+1| = ε. A subset A ⊂ Dε is grid-connected if and
only if for every x, y ∈ A, there exists {x1 = x, x2, . . . , xm−1, xm = y} ⊂ A such
that each line segments [xj , xj+1] ⊂D and |xj − xj+1| = ε.

The following is a key lemma which allows us to derive the relative isoperimet-
ric inequality for the discrete setting from that in the continuous setting, and hence
leads us to Theorem 5.5.

LEMMA 5.4 (Extension of sub-domains). Let πsrw be the stationary measure
of the simple random walk (SRW) on Dε . For any r ∈ (0,1), there exist positive
constants ε1(d,D, r), M1(d,D, r) and M2(d,D, r) such that if ε ∈ (0, ε1), then
for all grid-connected A ⊂ Dε with πsrw(A) ≤ r , we can find a connected open
subset U ⊂D which contains A and satisfies:

(a) ∂U ∩D is Hd−1-rectifiable,
(b) |U | ≤ 49r+1

50 |D|,
(c) εd |A| ≤M1|U |,
(d) M2ε

d−1|∂A| ≥ σ(∂U ∩D).

PROOF. Since the proof for each r ∈ (0,1) is the same, we just give a proof
for the case r = 1/2.

For x ∈ εZd , let Ux := ∏d
i=1(xi − ε

2 , xi + ε
2) be the cube which contains x.

Since A is grid-connected, we have (W1)
o is connected in Rd , where (W1)

o is the
interior of W1 :=⋃

x∈A(Ux ∩D). (See Figure 6 for an illustration.)
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Note that we cannot simply take U = (W1)
o because (d) may fail, for ex-

ample when �A contributes too much to ∂U ∩ D, that is, when (W1)� :=
∂W1 ∩ (

⋃
x∈�A ∂Ux) is large. However, �A ⊂ ∂̃Dε is close to ∂D and so we

can fill in the gaps between �A and ∂D to eliminate those contributions. In this
process, we may create some extra pieces for ∂U ∩ D, but we will show that
those pieces are small enough. Following this observation, we will eventually take
U = (W1 ∪W2)

o where W2 ⊂Dh for some small enough h > 0.
Since D is a bounded Lipschitz domains, we can choose h > 0 small enough

so that |Dh| < |D|/200. Moreover, πsrw(A) < 1/2 implies εd |A| ≤ εd |∂(Dε)| +
msrw(D

ε)/2. So we can choose ε small enough so that |W1| ≤ εd |A| ≤ 101
200 |D|.

Hence, U satisfies (b). By Lipschitz property again, there exists M1 > 0 such that
|Ux ∩D| ≥ |Ux |/M1 = εd/M1 for any x ∈Dε . Hence, (c) is satisfied.

It remains to construct W2 in such a way that W2 ⊂Dh for some small enough
h > 0 (more precisely, for h small enough so that |Dh| < |D|/200) and that (a)
and (d) are satisfied. We will construct W2 in 3 steps:

Step 1: (Construct W3 to seal the opening between ∂D and the subset of (W1)∂
which are close to ∂D. See Figure 7.) Write �A = �1A ∪�2A where �2A :=
�A \�1A and

�1A := {
x ∈�A : ∃y ∈ ∂A such that max

{|xi − yi | : 1 ≤ i ≤ d
}= 1

}
.

Points in �1A are marked in solid black in Figure 7. For x ∈ �1A, consider the
following closed cube centered at x:

Tx := ⋃
y∈B̂(x,10Rε)

Uy where R = √
d(M + 1).

FIG. 7. W3 is the shaded part.
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FIG. 8. W4 is the shaded part.

Let "x be the union of all connected components of Tx ∩D whose closure inter-
sects Ux and define

W3 := ⋃
x∈�1A

"x.

Step 2 (Fill in the gaps between ∂D and (W1)� near �2. See Figure 8.): Note
that

⋃
x∈�1A

∂Ux does not contribute to ∂(W1 ∪W3) ∩ D. Let W4 be the union
of all connected components of D \ (W1 ∪W3) whose closure intersects Ux for
some x ∈�2A.

Step 3: Finally, take W2 := W3 ∪ W4, and set U := (W1 ∪ W3 ∪ W4)
o. (See

Figure 9.)
It is clear that U is connected and ∂U ∩D ⊂ ⋃

x∈εZd ∂Ux is piecewise linear,
so (a) is satisfied. For any W ⊂D, we have ∂W ∩D =W∂ ∪W� ∪W∇ , where

W∂ := ∂W ∩
( ⋃
x∈∂A

∂Ux

)
, W� := ∂W ∩

( ⋃
x∈�A

∂Ux

)
and

W∇ := ∂W
∖ ( ⋃

x∈∂A∪�A
∂Ux

)
.

Therefore, σ(∂W ∩D)≤ σ(W∂)+ σ(W�)+ σ(W∇) whenever the corresponding
surface measures are defined. It is clear that by construction we have:

• (W1)∇ = ∅,
• (W1 ∪ W3)∂ ⊂ (W1)∂ , (W1 ∪ W3)� ⊂ (W1)�2, (W1 ∪ W3)∇ ⊂⋃

x∈�1

⋃
y∈B̂(x,10Rε) ∂Uy where (W1)�2 is defined analogously as (W1)�, with

� replaced by �2,
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FIG. 9. U is the shaded part.

• U∂ ⊂ (W1 ∪W3)∂ ,U� = ∅,U∇ ⊂ (W1 ∪W3)∇ .

Now σ(U∂) ≤ σ((W1)∂) ≤ |∂A|2dεd−1. Moreover, each x ∈ ∂A is adjacent to
at most 3d − 1 points in �1A ∪ �A, and for each x ∈ �1A, there are at most
|B̂(10Rε)| ≤ (20R + 1)d cubes in Tx . So we have

σ(U∇)≤ σ
(
(W1 ∪W3)∇

)≤ (
3d − 1

)|∂A|(20R + 1)d2dεd−1.

Hence, (d) is satisfied.
Since diam(Tx) < 20R

√
dε, we have W3 ⊂ D(20R

√
d+1)ε . To complete the

proof, it suffices to show that W4 ⊂ D(10R)ε . This is equivalent to show that any
curve in D \W1 ∪W3 starting from any point in (W1)�2 must lie in D(10R)ε .

Let γ [0,1] be an arbitrary continuous curve starting at an arbitrary point
p ∈ (W1)�2 such that γ (0,1) ⊂ D \ W1 and dist(γ (t), ∂D) > (10R)ε for some
t ∈ (0,1]. Define �Dε := (

⋃
x∈Dε Ux)

o ∩ D. Since (W1)� ⊂ ∂(�Dε) ∩ D ⊂⋃
z∈∂̃Dε ∂Uz and sup

z∈∂̃Dε dist(z, ∂D) < ε, the time when γ first exits D \ �Dε

must be less than t by continuity of γ . That is,

τ := inf
{
s > 0 : γ (s) ∈

( ⋃
z∈∂Dε\A

∂Uz

)
∩D

}
< t.

It suffices to show that γ (0, τ ] ∩"x �= ∅ for some x ∈ �1A. We do so by con-
structing a continuous curve γ̃ which is close to γ and passes through ∂Ux for
some x ∈�1A.

Since sups∈[0,τ ] dist(γ (s), ∂D) < 2Rε, we can choose ε small enough (depend-
ing only on D) and split [0, τ ] into finitely many disjoint intervals I ’s so that
the 4Rε-tube of each γ (I ) lies in a coordinate ball B(I) of D. For s ∈ I , project
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FIG. 10. γ and A corresponding continuous γ̃ ⊂ ∂(�Dε )∩D.

γ (s) vertically upward (along the dth coordinate of B(I)) onto ∂(�Dε) ∩ D to
obtain γ̂ (s). Note that γ̂ maybe discontinuous even in the interior of I . How-
ever, it is continuous on [0, τ ] except possibly for finitely many points. Let {0 ≤
s1 < s2 < · · · < sm ≤ τ } be the collection of discontinuities for γ̂ ([0, τ ]). Then
0 < |γ̂ (sj−)− γ̂ (sj+)| ≤ 2Rε and we can connect γ̂ (sj−) to γ̂ (sj+) by a con-
tinuous curve βj : [0,1] −→ ∂(�Dε)∩D ∩B(γ̂ (sj−),8Rε)∩B(γ̂ (sj+),8Rε).

Define γ̃ : [0, τ +m] −→ ∂(�Dε) ∩D to be the continuous curve obtained by
concatenating γ̂ and {βj : j = 1,2, . . . ,m} (see Figure 10). Then γ̃ (0)= γ̂ (0)=
p ∈ (W1)�2 and γ̃ (τ + m) = γ̂ (τ ) = γ (τ) ∈ ∂(�Dε) ∩ D \ (∂W1 ∩ D). By the
continuity of γ̃ , there is some t∗ ∈ (0, τ +m) such that γ̃ (t∗) ∈ (W1)�1 . (Roughly
speaking, on ∂̃Dε , �2A is separated from ∂̃Dε \A by �1A.)

Now for some 1 ≤ j ≤m, we have γ̃ (t∗) and γ (sj ) are connected in D \�Dε ⊂
D \W1, and∣∣γ̃ (t∗)− γ (sj )

∣∣≤ ∣∣γ̃ (t∗)− γ̂ (sj )
∣∣+ ∣∣γ̂ (sj )− γ (sj )

∣∣≤ 8Rε+Rε.

Hence, γ̃ (t∗) ∈ ∂Ux for some x ∈�1A. We therefore have γ (sj ) ∈"x . The proof
is now complete. �

5.1.3. Discrete relative isoperimetric inequality. Let πsrw be the stationary
measure of the simple random walk (SRW) on the graph under consideration and
recall Definition 5.2.
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THEOREM 5.5 (Discrete relative isoperimetric inequality). For every r ∈
(0,1), there exists Ŝsrw = Ŝsrw(d,D, r) ∈ (0,∞) and ε1 = ε1(d,D, r) ∈ (0,∞)

such that

sup
ε∈(0,ε1)

Ssrw
(
r,Dε)≤ Ŝsrw,

and

S̃srw
(
r,Dε)≤ 2d(msrw(D

ε))1/d

ε
Ŝsrw for every ε ∈ (0, ε1).

PROOF. We can also assume that A is grid-connected. This is because

|A|(d−1)/d

|∂eA| ≤ |A1|(d−1)/d

|∂eA1| ∨ |A2|(d−1)/d

|∂eA2|
whenever A=A1 ∪A2 with ∂eA1 ∩∂eA2 = φ and A1 ∩A2 = ∅. From Lemma 5.4
and Proposition 5.1, we have

sup
ε∈(0,ε1)

sup
{A⊂Dε:π(A)≤r}

|A|(d−1)/d

|∂A| ≤M2M
(d−1)/d
1 S

(
49r + 1

50
,D

)
.

We thus have the first inequality since 4d|∂A| ≥ |∂eA| ≥ 2|∂A|. The second in-

equality follows from the first since Q(e)= (ε)d

2dm(Dε)
. �

For the CTRW XaDε
on aDε , we let π be the stationary measure. Observe that,

because πaD
ε
(aA)= πD

ε
(A) and m(aDε)= adm(Dε), we have

(5.5) Sπ
(
r, aDε)= Sπ

(
r,Dε) and S̃π

(
r, aDε)= S̃π

(
r,Dε)

for all a > 0 and r > 0. Hence, we only need to consider the case a = 1. In view
of Theorem 5.5 and (2.8), we have (taking r = 1/2):

COROLLARY 5.6. There exist positive constants Ŝ = Ŝ(d,D,ρ), ε1 =
ε1(d,D,ρ) and Ĉ = Ĉ(d,D,ρ) such that

sup
ε∈(0,ε1)

Sπ
(
1/2,Dε)≤ Ŝ, and(5.6)

S̃π
(
1/2,Dε)≤ Ĉ

ε
Ŝ for every ε ∈ (0, ε1).(5.7)

As an immediate consequence of Corollary 5.6 and (5.5), we have the following
Poincaré inequality.
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COROLLARY 5.7 (Poincaré inequality). There exist ε1 = ε1(d,D,ρ) > 0
such that

|D|ad−2

16Ĉ2Ŝ2

∥∥f − 〈f 〉π
∥∥2
l2(π) ≤ EaεaD(f )

for all f ∈ l2(aDε,π), ε ∈ (0, ε1), a > 0. Here 〈f 〉π := ∑
fπ , Ĉ and Ŝ are the

same constants in Corollary 5.6, and EaεaD is the Dirichlet form in l2(maD
ε
) of the

CTRW XaDε
[see (5.2)].

PROOF. By Corollary 5.6, the isoperimetric constant

I := inf
π(A)≤1/2

Q(∂A)

π(A)
≥ 21/d 1

S̃
≥ 21/d ε

ĈŜ
.

Hence, by the Cheeger’s inequality (see [38], Lemma 3.3.7),

inf
f

EaεaD(f )
‖f − 〈f 〉π‖2

l2(π)

≥ dm(aDε)

(aε)2

I2

8
≥ |D|

16

ad−2

Ĉ2Ŝ2

when ε > 0 is small enough. �

The above Poincaré inequality already tells us a positive lower bound for the
spectral gap of XaDε

and hence gives us an estimate for the mixing time. However,
we will state a stronger result in Proposition 5.9 in the next subsection.

5.2. Nash’s inequality and Poincaré inequality. The discrete relative isoperi-
metric inequality leads to the following two functional inequalities; namely, a
Poincaré inequality and a Nash inequality that are uniform in ε and in scaling
D 	→ aD. The uniformity in scaling helps proving the near diagonal lower bound
for pε .

THEOREM 5.8 (Nash’s inequality and Poincaré inequality uniform in ε and in
scaling). There exist ε1 = ε1(d,D,ρ) > 0 and C = C(d,D,ρ) > 0 such that

∥∥f − 〈f 〉π
∥∥2(1+2/d)
l2(π)

≤ 8S̃π
(
1/2,Dε)2( (aε)2

dm(aDε)
EaεaD(f )

)
‖f ‖4/d

l1(π)
,(5.8)

‖f ‖2(1+2/d)
l2(m)

≤ C
(
EaεaD(f )+ (ĈŜa)−2‖f ‖2

l2(m)

)‖f ‖4/d
l1(m)

(5.9)

for every f ∈ l2(aDε), ε ∈ (0, ε1) and a ∈ (0,∞), where Ĉ and Ŝ are the same
constants in Corollary 5.6; 〈f 〉π := ∑

fπ and EaεaD is the Dirichlet form in
l2(maD

ε
) of the CTRW XaDε

[see (5.2)].

PROOF. Note that (aε)2

dm(aDε)
EaεaD(f ) is the Dirichlet form of the unit speed

CTRW with the same one-step transition probabilities as that of XaDε
. Hence
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(5.8) follows directly from [38], Theorem 3.3.11, and (5.7). For (5.9), let R =
(2

1
d δaε)−1 with δ ≥ (ĈŜa)−1. For any nonempty subset A⊂ aDε ,

Q(∂A)+ 1
R
π(A)

π(A)
d−1
d

≥ 1

Ŝ
∧ 1

R

(
1

2

) 1
d ≥ (

(ĈŜ)−1 ∧ aδ)ε = (ĈŜ)−1ε.

Hence,

(5.10) sup
A⊂aDε

π(A)
d−1
d

Q(∂A)+ 1
R
π(A)

≤ ĈŜ

ε
.

By [38], Theorem 3.3.10,

‖f ‖2(1+2/d)
l2(π)

≤ 16
(
C

ε

)2( (aε)2

dm(aDε)
EaεaD(f )+

1

8R2 ‖f ‖2
l2(π)

)
‖f ‖4/d

l1(π)
.

Using (2.8) and the facts ‖f ‖2
l2(π)

= (m(aDε))−1‖f ‖2
l2(m)

and ‖g‖l1(π) =
(m(aDε))−1‖f ‖l1(m), we get the desired inequality (5.9). �

5.3. Mixing time. By the Poincaré inequalities in (5.8) and [38], Corol-
lary 2.3.2, we obtain an estimate on the time needed to reach stationarity.

PROPOSITION 5.9 (Mixing time estimate). There exists C > 0 which depends
only on d such that∣∣∣∣paεaD(t, x, y)− 1

m(aDε)

∣∣∣∣≤ Cmin
{
(aĈŜ)d t−d/2, 1

(aε)d
exp

( −dt
8(aĈŜ)2

)}
for every t > 0, x, y ∈ aDε , ε ∈ (0, ε1) and a > 0. Here Ĉ and Ŝ are the constants
in Corollary 5.6.

PROOF. By (5.8) and Theorem 2.3.1 of [38], we have∣∣∣∣m(aDε)paεaD((aε)2d
t, x, y

)
− 1

∣∣∣∣≤ (
d(8S̃2)

2t

)d/2
.

After simplification and using (5.7), we obtain the upper bound which is of order
t−d/2. On other hand, by Corollary 5.7 and [38], Lemma 2.1.4, we obtain the
exponential term on the right-hand side. �

5.4. Gaussian bound and uniform Hölder continuity of pε . Equipped with the
Nash inequality (5.9) and the Poincaré inequality (5.8), one can follow a now stan-
dard procedure (see, for example, [9] or [18]) to obtain two sided Gaussian esti-
mates for pε . In the following, C1, C2 and ε0 are positive constants which depends
only on d,D,ρ and T .

More precisely, we only need the Nash inequality (5.9) and Davies’ method to
obtain the following Gaussian upper bound.
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THEOREM 5.10. There exist constants Ci =Ci(d,D,ρ,T ) > 0, i = 1,2, and
ε0 = ε0(d,D,ρ,T ) ∈ (0,1] such that

paεaD(t, x, y)≤
C1

(aε ∨ t1/2)d exp
(
C2

a2 t −
|y − x|2
(aε)2 ∨ t

)
for every t ≥ aε, ε ∈ (0, ε0), a > 0 and x, y ∈ aDε . Moreover, the following
weaker bound holds for t ∈ (0, T ]:

paεaD(t, x, y)≤
C1

(aε ∨ t1/2)d exp
(
C2

a2 t −
|y − x|
aε ∨ t1/2

)
.

In particular, this implies the upper bound in Theorem 2.9 which is the case when
a = 1.

We can then apply the Poincaré inequality (5.8) and argue as in Section 3 of
[18] to obtain the near diagonal lower bound. A more comprehensive proof is
given in [24].

LEMMA 5.11.

pε(t, x, y)≥ C2

(ε ∨ t1/2)d
for every (t, x, y) ∈ (0,∞)×Dε ×Dε with |x − y| ≤ C1t

1/2 and ε ∈ (0, ε0).

The Gaussian lower bound for pε in Theorem 2.10 then follows from the Lip-
schitz property of D and a well-known chaining argument (see, for example,
page 329 of [40]). Therefore, we have the two-sided Gaussian bound for pε as
stated in Theorem 2.9 and Theorem 2.10. It then follows from a standard “os-
cillation” argument (cf. Theorem 1.31 in [41] or Theorem II.1.8 in [40]) that pε

is Hölder continuous in (t, x, y), uniformly in ε. More precisely, is the following
theorem.

THEOREM 5.12. There exist positive constants α(d,D,ρ), β(d,D,ρ),
ε0(d,D,ρ) and C(d,D,ρ) such that for all ε ∈ (0, ε0), we have

(5.11)
∣∣pε(t, x, y)− pε

(
t ′, x′, y′)∣∣≤ C

(|t − t ′|1/2 + ‖x − x′‖ + ‖y − y′‖)α
(t ∧ t ′)β/2[1 ∧ (t ∧ t ′)d/2] .

5.5. Proof of local CLT. The following weak convergence result for RBM
with drift is a natural generalization of [5], Theorem 3.3.

THEOREM 5.13. Let D ⊂ Rd be a bounded domain whose boundary ∂D has
zero Lebesque measure. Suppose D also satisfies:

C1(D) is dense in W 1,2(D).

Suppose ρ ∈ W 1,2(D) ∩ C1(D) is strictly positive. Then for every T > 0, as
k→ ∞:
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(i) (X2−k
,Pm) converges weakly to the stationary process (X,Pρ) in the Sko-

rokhod space D([0, T ],D).
(ii) (X2−k

,Pxk ) converges weakly to (X,Px) in the Skorokhod space
D([0, T ],D) whenever xk converges to x ∈D.

PROOF. For (i), the proof follows from a direct modification of the proof of
[5], Theorem 3.3. Recall the definition of the one-step transition probabilities pxy ,
defined in the paragraph that contains (2.4) and (2.5). Observe that, since ρ ∈
C1(D), approximations using Taylor’s expansions in the proofs of [5], Lemma 3.1
and Lemma 2.2, continue to work with the current definition of pxy . Thus, we have

lim
k→∞E2−k

(f, f )= 1

2

∫
D

∣∣∇f (x)∣∣2ρ(x) dx ∀f ∈ C1(D),

and

lim
k→∞L(2

−k)f = 1

2
�f + 1

2
∇(logρ) · ∇f uniformly in D,∀f ∈C∞

c (D).

The process Xε has a Lévy system (Nε(x, dy), t), where for x ∈Dε ,

Nε(x, dy)= d

ε2

∑
z:z↔x

pxzδ{z}(dy).

Following the same calculations as in the proof of [5], Theorem 3.3, while noting
that [13], Theorem 6.6.9 (in place of [5], Theorem 1.1) can be applied to han-
dle general symmetric reflected diffusions as in our present case, we get part (i).
Part (ii) follows from part (i) by a localization argument (cf. [6], Remark 3.7). �

We can now present the proof of the local CLT.

PROOF OF THEOREM 2.12. For each ε > 0 and t > 0, we extend pε(t, ·, ·) to
D ×D in such a way that pε is nonnegative and continuous on (0,∞)×D ×D,
and that both the maximum and the minimum values are preserved on each cell
in the grid εZd . This can be done in many ways, say by the interpolation de-
scribed in [2], or a sequence of harmonic extensions along the simplexes (described
in [24]).

Consider the family {td/2pε}ε of continuous functions on (0,∞)×D×D. The-
orem 2.9 and Theorem 5.12 give us uniform pointwise bound and equi-continuity
respectively. By Arzela–Ascoli theorem, it is relatively compact. That is, for any
sequence {εn} ⊂ (0,1] which decreases to 0, there is a subsequence {εn′ } and a
continuous q : (0,∞)×D ×D −→ [0,∞) such that pεn′ converges to q locally
uniformly.

On other hand, by part (ii) of Theorem 5.13, if the original sequence {εk} is a
subsequence of {2−k}, then q = p. More precisely, the weak convergence implies
that for all t > 0,∫

D
φ(y)p(t, x, y) dy =

∫
D
φ(y)q(t, x, y) dy for all φ ∈ Cc(D) and x ∈D.
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Then by the continuity of both p and q in the second coordinate, we have q = p

on (0,∞)×D×D. Since p(t, ·, ·) and q(t, ·, ·) are continuous onD×D (cf. [1]),
we obtain p = q on (0,∞)×D ×D. In conclusion, we have pε converges to p
locally uniformly through the sequence {εn = 2−n;n≥ 1}. �
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