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Recently, Hammond and Sheffield [Probab. Theory Related Fields 157
(2013) 691–719] introduced a model of correlated one-dimensional random
walks that scale to fractional Brownian motions with long-range dependence.
In this paper, we consider a natural generalization of this model to dimen-
sion d ≥ 2. We define a Zd -indexed random field with dependence relations
governed by an underlying random graph with vertices Zd , and we study
the scaling limits of the partial sums of the random field over rectangular
sets. An interesting phenomenon appears: depending on how fast the rect-
angular sets increase along different directions, different random fields arise
in the limit. In particular, there is a critical regime where the limit random
field is operator-scaling and inherits the full dependence structure of the dis-
crete model, whereas in other regimes the limit random fields have at least
one direction that has either invariant or independent increments, no longer
reflecting the dependence structure in the discrete model. The limit random
fields form a general class of operator-scaling Gaussian random fields. Their
increments and path properties are investigated.

1. Introduction. Self-similar processes are important in probability theory
because of their connections with limit theorems and their intensive use in mod-
eling; see, for example, [50]. These are processes (X(t))t∈R that satisfy, for some
H > 0,

(1)
(
X(λt)

)
t∈R

f.d.d.= λH (
X(t)

)
t∈R for all λ > 0,

where “f.d.d.= ” stands for “equal in finite-dimensional distributions.” It is well known
that the only Gaussian processes that are self-similar and have stationary incre-
ments are the fractional Brownian motions. Throughout, we let (BH (t))t∈R denote
a fractional Brownian motion with Hurst index H ∈ (0,1); this is a zero-mean
Gaussian process with covariances given by

Cov
(
BH(t),BH (s)

) = 1

2

(|t |2H + |s|2H − |t − s|2H )
, t, s ∈ R.
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Fractional Brownian motions were first introduced in 1940 by Kolmogorov [25]
and their relevance was first recognized by Mandelbrot and Van Ness [32], who
gave them their name. Invariance principles for fractional Brownian motions have
a long history, since the seminal work of Davydov [15] and Taqqu [49]. As the
limiting objects of stochastic models, fractional Brownian motions have appeared
in various areas, including random walks in random environment [19], telecom-
munication processes [35], interacting particle systems [36] and finance [24], just
to mention a few.

Recently, Hammond and Sheffield [22] proposed a simple discrete model that
scales to fractional Brownian motions with H > 1/2. This model, to be described
below, can be interpreted as a strongly correlated random walk with ±1 jumps. As
the simple random walk can be viewed as the discrete counterpart of the Brownian
motion, the correlated random walks proposed in [22] can be viewed as the discrete
counterparts of the fractional Brownian motions for H > 1/2. In this regime, the
fractional Brownian motion is well known to exhibit long-range dependence [45].

In the present paper, we introduce a discrete random field model that generalizes
the Hammond–Sheffield model to any dimension d ≥ 2 and we study the scaling
limits. Based on this model, we establish invariance principles for a new class of
operator-scaling Gaussian random fields. The operator-scaling random fields are
generalization of self-similar processes (1) to random fields, proposed by Biermé,
Meerschaert and Scheffler [8]. Namely, for a matrix E with all eigenvalues hav-
ing positive real parts, the random field (X(t))t∈Rd is said to be (E,H)-operator-
scaling for some H > 0, if

(2)
(
X

(
λEt

))
t∈Rd

f.d.d.= λH (
X(t)

)
t∈Rd for all λ > 0,

where λE := ∑
k≥0(logλ)kEk/k!. In this paper, we focus on the case that E

is a d × d diagonal matrix with diagonal entries β1, . . . , βd , denoted by E =
diag(β1, . . . , βd). It is worth mentioning that a simple generalization of the self-
similarity would be to take E being the identity matrix in (2), and the advantage
of taking a general diagonal matrix is to be able to accommodate anisotropic ran-
dom fields. Examples of operator-scaling Gaussian random fields include frac-
tional Brownian sheets [23] and Lévy Brownian sheets [46]. Here, our results pro-
vide a new class to this family with corresponding invariance principles. We also
mention that there are other well investigated generalizations of fractional Brow-
nian motions to Gaussian random fields, including distribution-valued ones. See,
for example, [6, 30, 47].

We now give a brief description of the Hammond–Sheffield model and its gen-
eralization to high dimensions. Let us start with the one-dimensional model. Let μ

be a probability distribution with support in {1,2, . . .} that is assumed to be aperi-
odic (to be defined below). Using the sites of Z as vertices, one defines a random
directed graph Gμ by sampling independently one directed edge on each site. The
edge starting at the site i ∈ Z will point backward to the site i − Zi , where Zi is
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a random variable with distribution μ. Here, μ is a probability distribution in the
form of

(3) μ
({n, . . .}) = n−αL(n),

where L is a slowly varying function and α ∈ (0,1/2). This choice of α guaran-
tees that the graph Gμ has a.s. infinitely many components, each being a tree with
infinite vertices. Conditioning on Gμ, one then defines (Xj )j∈Z such that:

• Xj = Xi if j and i are in the same component of the graph,
• Xj and Xi are independent otherwise, and
• marginally each Xi has the distribution (1 − p)δ−1 + pδ1 for some p ∈ (0,1).

The partial-sum process Sn = ∑n
i=1 Xi,n ≥ 1, can be interpreted as a correlated

random walk. Hammond and Sheffield [22], Theorem 1.1, proved that

(4)
(

S�nt� −ES�nt�
nα+1/2L(n)

)
t∈[0,1]

⇒ σ
(
Bα+1/2(t)

)
t∈[0,1]

as n → ∞ in D([0,1]), with the constant σ explicitly given. Here and in the se-
quel, we let “⇒” denote convergence in distribution [10]. Hammond and Sheffield
[22] actually established a strong invariance principle for the convergence (4).

To generalize the Hammond–Sheffield model to high dimensions, we start by
constructing a random graph Gμ with vertices Zd . Similarly, at each vertex i ∈ Zd

we first sample independently a random edge of length Zi , according to a prob-
ability distribution μ, and connect i to i − Zi . The distribution μ has support
within {1,2, . . .}d , intuitively meaning that all the edges are directed toward the
southwest when d = 2. Throughout, we assume that the additive group generated
by the support of μ is all Zd , and in short we say that μ is aperiodic. Most impor-
tantly, the distribution μ is assumed to be in the strict domain of normal attraction
of (E, ν), denoted by μ ∈ D(E, ν), for a matrix E = diag(1/α1, . . . ,1/αd) with
αi ∈ (0,1), i = 1, . . . , d , and an infinitely divisible probability measure ν on Rd+.
That is, if (ξ i )i≥1 are i.i.d. copies with distribution μ, then

(5) n−E
n∑

i=1

ξ i ⇒ ν.

This assumption is a natural generalization of (3) to high dimensions. We again
focus on the case that Gμ has infinitely many components, which turns out to be
exactly the case that q(E) := trace(E) > 2, and given Gμ we define (Xj )j∈Zd

similarly as in dimension one. Remark that q(E) > 2 is trivially satisfied for d ≥ 2,
due to the restriction on αi ∈ (0,1). Remark also that when d ≥ 2, sometimes it is
more practical to express (5) in terms of nonstandard multivariate regular variation,
and in this case nothing needs to be assumed in terms of the spectral measure of
ν. See Section 2 for detailed descriptions of the measure μ, the random graph Gμ

and the model.



OPERATOR-SCALING GAUSSIAN RANDOM FIELDS 1193

The key feature of our model is that the underlying random graph induces a par-
tial order of Zd . Models with such a feature have been considered in literature. In
particular, the so-called partially ordered models have been recently introduced by
Deveaux and Fernández [18]. Applications of such models include notably image
and texture analysis [14]. Our model may be formulated alternatively as a partially
ordered model. However, we do not pursue this direction here, as the current setup
serves our purpose better.

In this paper, we will investigate the scaling limits of partial sums over increas-
ing rectangles of the random fields described above. For this purpose, we introduce

Sn(t) := ∑
j∈R(n,t)

Xj , n = (n1, . . . , nd) ∈ Nd, t = (t1, . . . , td) ∈ [0,1]d

with R(n, t) = ∏d
k=1[0, nktk − 1] ∩Zd . Surprisingly, the limit theorems are much

more complicated in high dimensions. In order to obtain an invariance principle for
Sn(t), one cannot simply require mini=1,...,d ni → ∞ as most of the limit theorems
for random fields do (see, e.g., [5, 16, 28]). Instead, one needs to investigate

(6) SE′
n (t) := ∑

j∈R(nE′1,t)

Xj

with a diagonal matrix E′ = diag(β1, . . . , βd).
The contribution of our main result, Theorem 5, is twofold. First, we establish

invariance principles to operator-scaling Gaussian random fields. Such limit the-
orems, rare in the literature, justify the usage of such Gaussian random fields in
various applications, including particularly texture analysis [4, 9, 44] and hydrol-
ogy [2]. Second, unexpectedly, Theorem 5 reveals the following surprising phe-
nomenon: for different E′, the limiting random field may not be the same. More-
over, in the special case with E′ = cE for some c > 0, the dependence structure of
the limiting random field is determined by the measure ν. This case is referred to as
the critical regime. For the noncritical regime, one can still obtain invariance prin-
ciples under different normalizations depending on both E and E′, although the
limiting random field has degenerate dependence structure (either invariant, i.e.,
completely dependent, or independent increments) along at least one direction. To
the best of our knowledge, the existence of such a critical regime has been rarely
seen in the literature, except for the recent results by Puplinskaitė and Surgailis
[38, 39]. They investigated a different model in dimension 2, and referred to the
same phenomenon as the scaling-transition phenomenon.

Below we briefly summarize the phenomenon of critical regime.

Critical regime: Here, we refer to the case of taking E′ = E in (6).

THEOREM 1. Assume that μ ∈ D(E, ν) for some diagonal matrix E =
diag(1/α1, . . . ,1/αd) with αi ∈ (0,1), i = 1, . . . , d , and a probability measure ν
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on Rd+. Assume α1 < 1/2 if d = 1. Let ψ be the characteristic function of ν. Then(
SE

n (t) −ESE
n (t)

n1+q(E)/2

)
t∈[0,1]d

⇒ (
W(t)

)
t∈[0,1]d ,

in the space D([0,1]d), where the limit Gaussian random field (W(t))t∈Rd has
zero-mean and covariance function

Cov
(
W(t),W(s)

)
= σ 2

X

∫
Rd

d∏
k=1

(eitkyk − 1)(eiskyk − 1)

2π |yk|2
∣∣logψ(y)

∣∣−2
dy, t, s ∈ Rd,

where an explicit expression of σ 2
X is given in (21) below.

The limit Gaussian random field is easily seen to be (E,H)-operator-scaling
with H = 1+q(E)/2. For this new class of random fields, we study its increments
and the Hölder regularity of the sample paths in Section 5.

Noncritical regime: For the case E′ in (6) is not a multiple of E, the situation be-
comes much more subtle. One can still obtain invariance principles with appropri-
ate normalization depending on both E and E′. However, in the noncritical regime
the limiting random fields no longer reflects fully the long-range dependence in-
herited from Gμ. In particular, the covariance function of the limiting random field
becomes degenerate in certain directions: along these directions, the covariance
function becomes the one of a fractional Brownian motion with either H = 1/2
(the standard Brownian motion, which is memoryless) or H = 1 [the case of com-
plete dependence with W(t) = tZ, t ≥ 0 for a common standard Gaussian random
variable Z]. Accordingly, along these directions the increments of the Gaussian
random fields are independent or translation invariant, respectively. A general in-
variance principle is established in Section 4, and properties of the limiting random
fields are investigated in Section 5. Here, we only state the invariance principle for
d = 2. In the noncritical regime, the limit Gaussian random field is a fractional
Brownian sheet with Hurst indices H1 and H2. However, we do not see a frac-
tional Brownian sheet in the limit in high dimensions most of the time: a complete
characterization of when it appears is given in Proposition 6 below.

THEOREM 2. Assume d = 2. Let μ ∈ D(E, ν) with E = diag(1/α1,1/α2) and
set E′ = diag(1/α1,1/α′

2) with α1, α2 ∈ (0,1), α2 �= α′
2. Then, depending on the

relation between α1, α2 and α′
2, the following weak convergence holds:(

SE′
n (t) −ESE′

n (t)

nβ

)
t∈[0,1]2

⇒ (
W(t)

)
t∈[0,1]2,

in the space D([0,1]2), where the limit Gaussian random field (W(t))t∈R2 has
zero-mean and covariance function in the form of

Cov
(
W(t),W(s)

) = σ 2
Xσ 2 Cov

(
BH1(t1),BH1(s1)

)
Cov

(
BH2(t2),BH2(s2)

)
.
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Here, β,σ 2,H1,H2 and hence {W(t)}t∈[0,1]2 all depend on α1, α2 and α′
2. In par-

ticular, there are four different possibilities as follows:

(i) α′
2 > α2, α2 ∈ (0,1/2): β = α2

α′
2
+ 1

2( 1
α1

+ 1
α′

2
), H1 = 1

2 , H2 = 1
2 + α2.

(ii) α′
2 > α2, α2 ∈ (1/2,1): β = 1 + 1

2α1
+ 1

α′
2

− 1
2α2

,H1 = 1
2 + α1(1 − 1

2α2
),

H2 = 1.
(iii) α′

2 < α2, α1 ∈ (0,1/2): β = 1 + 1
2( 1

α1
+ 1

α′
2
), H1 = 1

2 + α1, H2 = 1
2 .

(iv) α′
2 < α2, α1 ∈ (1/2,1): β = α2

α′
2
(1 − 1

2α1
) + 1

α1
+ 1

2α′
2
, H1 = 1, H2 = 1

2 +
α2(1 − 1

2α1
).

Explicit expressions of σ 2 in these cases can be found in the proof of Theorem 2
in Section 5.

The main result of the paper, Theorem 5, is a unified version of invariance prin-
ciples for general d ∈ N, E = diag(1/α1, . . . ,1/αd) and arbitrary E′, from which
both Theorems 1 and 2 follow as immediate corollaries. Theorem 5 also provides
a general principle to determine the correct normalization order, the limit covari-
ance function, and hence the directions of degenerate dependence. We have just
seen that in dimension 2 there are already 4 different noncritical regimes. For gen-
eral d ≥ 3, the situation becomes more complicated.

The core of the proofs is an application of the martingale central limit theorem,
thanks to the key observation that the random field of interest can be represented
as a linear random field in the form of

(7) Xi = ∑
j∈Zd

qjX∗
i−j , i ∈ Zd,

of which the innovations (X∗
j )j∈Zd are multiparameter martingale differences.

Hammond and Sheffield [22] also made essential use of the martingale central
limit theorem, although the representation as a linear process as in (7) was not
explicit. This representation plays a key role in our proofs, as from there when ver-
ifying conditions in the martingale central limit theorem, thanks to the structure of
the linear process, we can deal with the coefficients qj and innovations X∗

j sepa-
rately. This framework, or more generally the martingale approximation method,
has been carried out successfully in dimension one to establish invariance prin-
ciples for fractional Brownian motions for general stationary processes [17]. To
extend this framework to high dimensions, a notorious difficulty is to find a conve-
nient multiparameter martingale to work with. It is well known that the martingale
approximation method applied to stationary random fields is not as powerful as
to stationary sequences, as pointed out a long time ago by Bolthausen [12]. For-
tunately, our specific model can be represented exactly as a simple linear random
field with martingale-difference innovations as in (7).

Once the representation of linear random fields in (7) is established, the main
work lies in the computation of the limit of the covariance functions. This step
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is heavily based on the analysis of Fourier transforms of the linear coefficients
(qi)i∈Zd , the asymptotic property of which is essentially determined by ν. Analyz-
ing the Fourier transforms is a standard tool to compute the covariance functions
for stationary linear random fields; see, for example, [28, 38, 39]. To complete the
invariance principle, the tightness is established. At last, to develop the sample-
path properties we apply recent results in Biermé and Lacaux [7].

The rest of the paper is organized as follows. In Section 2, we describe in details
the random-field model. Section 3 provides a general central limit theorem that
serves our purpose. Section 4 establishes a general invariance principle that applies
to both critical and noncritical regimes. Some properties of the limit random fields
are provided in Section 5.

Throughout the paper, we use the following usual notation. Let d ≥ 1 be an
integer. On Rd , we consider the partial order (also denoted by <) defined by t < s
if tj < sj for all j = 1, . . . , d , where t = (t1, . . . , td) and s = (s1, . . . , sd). In the
same way, we use the notation >, ≤, ≥. We write t ≮ s as soon as tj ≥ sj for at
least one j = 1, . . . , d , and in the same way, we use ≯, �, �. We denote by [t, s]
the set [t1, s1] × · · · × [td , sd ] and we write |t |∞ for max{|tj |, j = 1, . . . , d}, and
|t |1 for

∑d
j=1 |tj |. Furthermore, write N = {0,1, . . .} and N∗ = {1,2, . . .}.

2. The model. In this section, we will give a detailed description of our ran-
dom field model {Xi}i∈Zd , of which the dependence structure is determined by an
underlying random graph Gμ. The asymptotic properties of the random graph are
determined by a probability measure μ on {1,2, . . .}d , which is assumed to be in
the strict domain of normal attraction of an E-operator stable measure ν on Rd+.
Some simple properties of the model will be derived. In particular, we show that
the random field of interest can be represented as a linear random field, of which
the innovations are stationary multiparameter martingale differences.

2.1. The random graph. On Zd , we consider the random directed graph Gμ,
associated to μ, defined as follows:

• Let (Zn)n∈Zd be i.i.d. random variables with distribution μ.
• For each n ∈ Zd , let en be the outward edge from n to n − Zn.
• Gμ is the graph with all sites of Zd as vertices and random directed edges

{en,n ∈ Zd}.
The graph Gμ is then composed of (possibly) several disconnected components

and each component is a tree. The upcoming Proposition 1 shows that, almost
surely, the number of components of Gμ is one or is infinite.

We first introduce the following notation. For n ∈ Zd , we denote by An the
ancestral line of n, that is the set of all elements k ∈ Zd for which there exists a
directed connection from n to k (taking the orientations of the edges into account).
Note that, in distribution, An can be described by the range of the random walk
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(n − Sk)k≥0 where (Sk)k≥0 is the random walk starting at 0 with step distribu-
tion μ. In particular, since μ is supported by Nd∗ , any element k in An satisfies
k < n. Observe that the condition that the support of μ generates the group Zd is
equivalent to the fact that P(An ∩ Am �=∅) > 0 for all n, m ∈ Zd .

For n ∈ Zd , we set qn = P(0 ∈ An). We clearly have qn = 0 as soon as 0 ≮ n,
except for q0 = 1. Further, since each edge is generated independently at each site,
for any n, k ∈ Zd ,

P(k ∈ An) = qn−k.

PROPOSITION 1. If
∑

k∈Nd q2
k converges, then Gμ has almost surely infinitely

many components whereas if
∑

k∈Nd q2
k diverges, then Gμ has almost surely only

one component.

We start by proving the following lemma.

LEMMA 1. (i) If
∑

k∈Nd q2
k converges then for all n ∈ Zd ,

P(A0 ∩ An �=∅) =
( ∑

k∈Nd

q2
k

)−1 ∑
k∈Zd

qkqk+n.

(ii) If
∑

k∈Nd q2
k diverges then P(A0 ∩ An �= ∅) = 1 for all n ∈ Zd .

PROOF. The proof follows an idea developed in Hammond and Sheffield [22],
Lemma 3.1, for the dimension 1. Let G′

μ be an independent copy of Gμ. We denote
by A′

n the ancestral line of n with respect to G′
μ. On one hand, one has

E
∣∣A0 ∩ A′

n

∣∣ = ∑
k∈Zd

P(k ∈ A0)P(k ∈ An) = ∑
k∈Zd

qkqk+n.

On the other hand,

E
∣∣A0 ∩ A′

n

∣∣ = P(A0 ∩ An �= ∅)E
∣∣A0 ∩ A′

0
∣∣ = P(A0 ∩ An �= ∅)

∑
k∈Nd

q2
k

and thus (i) follows.
If

∑
k∈Nd q2

k = ∞, then E|A0 ∩A′
0| = ∞. But E|A0 ∩A′

0| can also be computed
as

E
∣∣A0 ∩ A′

0
∣∣ = ∑

k≥0

P
(∣∣A0 ∩ A′

0
∣∣ > k

)
(8)

= ∑
k≥0

P
(
A0 ∩ A′

0 �= {0})k = 1

1 − P(A0 ∩ A′
0 �= {0}) .
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Thus, E|A0 ∩ A′
0| = ∞ if and only if P(A0 ∩ A′

0 �= {0}) = 1, and in this situation
|A0 ∩ A′

0| = ∞ almost surely. Now, since the group generated by the support of μ

covers Zd , we know that, for all n ∈ Zd , there exists k0 ∈ Zd such that

P
(
k0 ∈ A0 and k0 − n ∈ A′

0
) = P

(
k0 ∈ A0 ∩ A′

n

)
> 0.

But, since |A0 ∩A′
0| = ∞ a.s., we infer that |Ak0 ∩A′

k0−n| = ∞ also a.s., and thus

P(A0 ∩ An �= ∅) = P(Ak0 ∩ Ak0−n �=∅) ≥ P
(|Ak0 ∩ A′

k0−n| = ∞) = 1,

which proves (ii). �

PROOF OF PROPOSITION 1. If C := ∑
k∈Nd q2

k < ∞, from Lemma 1(i), we
get

P(A0 ∩ An �= ∅) = C−1
∑

k∈Zd

qkqk+n

≤ C−1
( ∑

k∈Zd ,k+n≥0

q2
k

)1/2( ∑
k∈Zd ,k≥0

q2
k+n

)1/2

= C−1
( ∑

k∈Zd ,k≥−n

q2
k

) 1
2
( ∑

k∈Zd ,k≥n

q2
k

) 1
2
,

which goes to 0 as |n|∞ → ∞. Thus, P(A0 ∩ An �= ∅) → 0 as |n|∞ → ∞, and
we can build a sequence (nk)k∈N ⊂ Zd , iteratively, such that for each k ∈ N,

P

(
Ank

∩
(

k−1⋃
j=0

Anj

)
�= ∅

)
≤ 1

k2 .

By the Borel–Cantelli lemma, we see that, almost surely, the ancestral lines Ank
,

for all k large enough, are disjoint from each other. This proves the first part of the
proposition.

The second part of the proposition is clear from Lemma 1(ii). �

2.2. The measure. From now on, we always consider a probability measure
μ on Nd∗ which is aperiodic (the additive group generated by the support of μ

is all Zd ) and such that μ ∈ D(E, ν) for an infinitely divisible full probability
measure ν on Rd+ and a matrix E = diag(1/α1, . . . ,1/αd) with αi ∈ (0,1) for all
i = 1, . . . , d . Recall that we mean by μ ∈ D(E, ν) that if (ξ i )i≥1 are i.i.d. copies
with distribution μ, then

(9) n−E
n∑

i=1

ξ i ⇒ ν.



OPERATOR-SCALING GAUSSIAN RANDOM FIELDS 1199

Note that, since the distribution of each coordinate is in the strict domain of normal
attraction of a positive stable law and since positive α-stable laws only exist for
α ∈ (0,1), the condition αi ∈ (0,1) for all i = 1, . . . , d is necessary.

Consider the characteristic function ψ(t) = ∫
Rd+ eit ·x dν(x) of ν. It follows from

(9) that the log-characteristic function logψ is then an E-homogeneous function,
that is,

for all t > 0 and x ∈ Rd, logψ
(
tEx

) = t logψ(x).

See (12) below. Further, logψ(0) = 0 and for all x �= 0, | logψ(x)| > 0.
One can also describe μ in the framework of multivariate regular variation.

Consider the triplet representation of ν as an infinitely divisible distribution [34],
equation (3.17). Then [34], Corollary 8.2.11 states that (9) implies that the triplet
has the form (0,0, φ), with φ satisfying

(10) lim
n→∞nμ

(
nEA

) = φ(A)

for all A ∈ B(Rd) bounded away from 0 and φ(∂A) = 0. Conversely, [34], Corol-
lary 8.2.11, also shows that (10) implies (9) with a possibly centering on the left-
hand side and ν determined by the triplet (a,0, φ) with a possible drift term a.
However, under the assumption αi ∈ (0,1), it follows from [34], Theorem 8.2.7,
that a = 0 and the centering can be set as zero.

In view of (10), μ is said to have nonstandard multivariate regular variation with
exponent E and exponent measure φ. Most of the applications in the literature
of multivariate regular variation, however, focus on the case that α1 = · · · = αd .
In this case, (10) is referred to as multivariate regular variation in the literature.
Standard references on (standard) multivariate regular variation include [42, 43].
References on nonstandard multivariate regular variation include [40], [43], Chap-
ter 6. See also some recent development in [41]. Some examples are given at the
end of the subsection.

We denote by P the Fourier transform of the measure μ, that is,

P(t) = ∑
k∈Nd

μ
({k})eit ·k, t ∈ Rd .

Note that the assumption that the additive group generated by the support of μ is
all Zd is equivalent to:

P(t) = 1 if and only if the coordinates of t belong to 2πZ;
see, for example, Spitzer [48], page 76.

Let Gμ be the random graph associated to μ as defined in Section 2.1. The
asymptotic behavior of {qk}k∈Nd will play a key role in our analysis. It is essen-
tially determined by the measure μ ∈ D(E, ν). We denote by Q the Fourier series
with coefficients qk = P(0 ∈ Ak), that is,

Q(t) = ∑
k∈Nd

qke
it ·k.
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Using that qk = ∑
j∈Nd∗ μ({j})qk−j for k > 0, we see that both Fourier series are

linked by the relation

Q(t) = 1

1 − P(t)
.

From Lemma 1, we see that

P(A0 ∩ An �= ∅) = cn(|Q|2)
c0(|Q|2) ,

where ck(|Q|2) denotes the Fourier coefficient of index k of |Q|2 = QQ. This
relation explains why the Fourier series Q plays a crucial role in the study of the
random graph.

The two following lemmas are key results concerning the behavior of Q at 0.

LEMMA 2. Let μ ∈ D(E, ν) be as described above and ψ the characteristic
function of ν. Then∣∣Q(x)

∣∣ = ∣∣1 − P(x)
∣∣−1 = g(x)

| logψ(x)| , x ∈ [−π,π ]d,

where g is continuous and positive with g(0) = 1.

PROOF. Let us use a change of variables in polar coordinates. As in [34],
Chapter 6, we define a new norm on Rd , related to the matrix E, by

(11) ‖x‖E =
∫ 1

0

∣∣rEx
∣∣1

r
dr,

where here | · | denotes the Euclidean norm. The unit ball SE = {x ∈ Rd |‖x‖E = 1}
associated to this norm is a compact set of Rd \ {0} and every vector in Rd \ {0}
can be uniquely written as rEθ with r > 0 and θ ∈ SE , since for any x �= 0, the
map t �→ ‖tEx‖E is strictly increasing on (0,∞).

Since μ ∈ D(E, ν), we have

P
(
n−Eθ

)n → ψ(θ) as n → ∞, uniformly in θ ∈ SE,

from which we infer that

(12) t logP
(
t−Eθ

) → logψ(θ) as t → ∞, uniformly in θ ∈ SE;
see [31], page 159. Using that log(1 + x) ∼ x as x → 0 and that P is continuous
at 0, we obtain

t
(
P

(
t−Eθ

) − 1
) → logψ(θ) as t → ∞, uniformly in θ ∈ SE.

Thus, for all ε > 0, there exists T > 0 such that for all t > T ,∣∣∣∣ | logψ(t−Eθ)|
|P(t−Eθ) − 1| − 1

∣∣∣∣ =
∣∣∣∣ | logψ(θ)|
t |P(t−Eθ) − 1| − 1

∣∣∣∣ ≤ ε uniformly in θ ∈ SE.
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Now, set g(·) = | logψ(·)(P (·) − 1)−1|. The function g is clearly continuous and
positive on [−π,π ]d \ {0}. Set δ = infθ∈SE

‖T −Eθ‖E > 0. Then for all x such that
‖x‖E < δ, x = t−E

0 θ0 with θ0 ∈ SE and t0 > T , and thus∣∣g(x) − 1
∣∣ = ∣∣g(

t−E
0 θ0

) − 1
∣∣ ≤ ε.

Thus, g is continuous at 0 and g(0) = 1. �

We are thus interested by the function x �→ logψ(x), which is a continuous
E-homogeneous function that only vanishes at 0. Recall that q(E) = trace(E).

LEMMA 3. If φ : Rd → R is a continuous E-homogeneous function that only
vanishes at 0, then for any p > 0, x �→ |φ(x)|−p is locally integrable in Rd if and
only if q(E) > p.

PROOF. There exists a unique finite Radon measure σE on SE which allows
the change of variable∫

Rd
f (t) dt =

∫ +∞
0

∫
SE

f
(
rEθ

)
rq(E)−1 dσE(θ) dr,

for all f ∈ L1(Rd) (see [8], Proposition 2.3). Thus, using the E-homogeneity of
φ, one has∫

{‖x‖E≤1}
∣∣φ(x)

∣∣−p
dx =

∫ 1

0

∫
SE

rq(E)−1∣∣φ(
rEθ

)∣∣−p
dσE(θ) dr

=
∫ 1

0
rq(E)−1−p dr

∫
SE

∣∣φ(θ)
∣∣−p

dσE(θ).

The second integral is finite because |φ| is continuous and positive on the compact
set SE , and the first integral is finite if and only if q(E) > p. �

As a first consequence, we get the following proposition.

PROPOSITION 2. Let μ ∈ D(E, ν). The random graph Gμ has almost surely
infinitely many components if and only if q(E) > 2.

Note that, when d = 1, the condition q(E) > 2 becomes α1 < 1
2 , which cor-

responds to the condition assumed in [22]. When d ≥ 2, since αi ∈ (0,1) for all
i = 1, . . . , d , then the condition q(E) > 2 is always satisfied.

PROOF OF PROPOSITION 2. As a consequence of Lemma 2, using Parseval
identity, we get∑

k∈Nd

q2
k = 1

(2π)d

∫
[−π,π ]d

∣∣Q(x)
∣∣2 dx = 1

(2π)d

∫
[−π,π ]d

∣∣g(x)
∣∣2∣∣logψ(x)

∣∣−2
dx.
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Since g is bounded and bounded away from 0 on any compact set, we see that∑
k∈Nd q2

k < +∞ if and only if x �→ | logψ(x)|−2 is integrable on [−π,π ]d . The
function x �→ logψ(x) being E-homogeneous, by Lemma 3, it is the case if and
only if q(E) > 2 and the result follows from Proposition 1. �

To conclude the section, we give few examples of possible probability measure
μ ∈ D(E, ν).

EXAMPLE 1 (Product measure). Let μ be the product measure μ1 ⊗· · ·⊗μd ,
where each μi is a regularly varying measure on N∗ with index αi ∈ (0,1) such
that

μi

([n,∞)
) ∼ cin

−αi ,

for some ci > 0. Then, each μi belongs to the strict domain of normal attraction
(with normalization n−1/αi ) of a positive αi-stable law νi ; see [11], Theorem 8.3.1.
Positive α-stable laws only exist for α ∈ (0,1), and then their characteristic func-
tions are given by

ϕ(t) = exp
{
−γ |t |α

(
1 − i sgn(t) tan

(
π

2
α

))}
,

for some γ > 0. See [11], Theorem 8.3.2. In this situation, the measure μ belongs
to the strict domain of normal attraction of the measure ν = ν1 ⊗ · · ·⊗ νd which is
a full E-operator stable distribution, with E = diag(1/α1, . . . ,1/αd). The charac-
teristic function ψ of ν is such that

logψ(x) =
d∑

j=1

γj |xj |αj

(
1 − i sgn(xj ) tan

(
π

2
αj

))
,

for some γj > 0.

EXAMPLE 2 (Standard multivariate regular variation). For the standard mul-
tivariate regular variation, that is, when α1 = · · · = αd = α, many examples have
been known from the studies of heavy-tailed random vector X = (X1, . . . ,Xd) ∈
Rd , in the literature of heavy-tailed time series. An extensively investigated condi-
tion for multivariate regular variation is

(13)
P(|X| > ux,X/|X| ∈ ·)

P(|X| > u)
⇒ x−ασ (·) as u → ∞, for all x > 0,

for | · | a norm on Rd and σ a probability measure on B(S) for S = {x ∈ Rd :
|x| = 1}. See, for example, [1]. It is known that (10) implies (13) (see, e.g., [29],
Theorem 1.15).

The measure σ is often referred to as the spectral measure, which captures the
dependence of extremes. For example, the case that σ concentrates on the d-axis
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with equal mass means that, in view of (13), the extremes of the stationary pro-
cesses are asymptotically independent. For more theory and examples on spec-
tral measures reflecting asymptotic dependence of the extremes, we refer to [42],
Chapter 5.

EXAMPLE 3 (Polar coordinate). A standard procedure to obtain nonstandard
regularly varying random vectors is via the representation using polar coordinates.
We use the norm ‖ · ‖E introduced in (11) to identify Rd \ {0} with (0,∞) × SE

for the unit ball SE = {x ∈ Rd |‖x‖E = 1} such that every vector in Rd \ {0} can be
uniquely written as rEθ with r > 0 and θ ∈ SE . By [34], Theorem 6.1.7, in case of
(9) [equivalently (10)], φ can be taken to have the polar coordinate representation

φ(A) =
∫ ∞

0

∫
SE

1{tEθ∈A}σ(dθ)
dt

t2 ,

for some finite Borel measure σ on SE . In our case, since μ has support contained
in Nd∗ , φ is a measure on Rd+, and σ is a finite measure on S+

E = SE ∩Rd+. Identi-
fying Rd+ \ {0} with (0,∞)× S+

E , to obtain a multivariate regular varying measure
as in (10), it suffices to show

(14) μ
(
(r,∞) × �

) ∼ r−1σ(�) as r → ∞, for all � ∈ B
(
S+

E

)
.

This follows from a standard argument showing that {(r,∞) × �}r>0,�∈B(S+
E ) are

a convergence determining class.
A standard procedure to construct a random vector of which the distribution μ

satisfies (14) is the following. Let R be a nonnegative random variable with P(R >

r) ∼ σ(S+
E )r−1 as r → ∞. Let � be a random element in S+

E with probability
σ/σ(S+

E ). Assume that R and � are independent. Then RE� is regularly varying
in Rd+ in the sense of (14). Indeed,

P
(
RE� ∈ (r,∞) × �

) = P(R > r,� ∈ �) ∼ r−1σ(�) as r → ∞.

The so-obtained distributions can then be modified to become distributions on Nd∗
with the same regular-variation property. We omit the details.

REMARK 1. For our main results to hold, we do not impose any assumption on
the spectral measures σ in Examples 2 and 3. The only assumption is the nonstan-
dard multivariate regular variation with indices α1, . . . , αd ∈ (0,1), and α1 < 1/2
when d = 1.

2.3. The random field. We now associate a random field (Xj )j∈Zd to the ran-
dom graph Gμ. Assume that μ ∈ D(E, ν) as in the preceding section, with the
diagonal matrix E satisfying q(E) > 2, and let p ∈ (0,1). We proceed as follows.

First, generate the random directed graph Gμ as described in previous sections,
which has almost surely infinitely many connected components in this situation.
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Let {Ci |i ≥ 1} denote the collection of disjoint components and associate to each
component Ci a random variable εi such that (εi)i≥1 are i.i.d. with distribution
given by P(εi = 1) = p and P(εi = −1) = 1 − p. Finally, for all j ∈ Zd , set Xj =
εi where i is such that j ∈ Ci . This construction implies that Xj = Xk as soon as
j and k belong to the same component of Gμ, and they are independent otherwise.

REMARK 2. The one-dimensional Hammond–Sheffield model can also be
formulated as an example of the so-called chains with complete connections [22].
This general class of models has a long history with different names, and is very
similar to but not the same as the Gibbs measures on Z; see [20, 21] for more
references. Recently, Deveaux and Fernández [18] extended chains with complete
connections to the so-called partially ordered models. It would be interesting to
formulate our model in their framework.

For all n ∈Nd , we introduce the partial sum:

Sn = ∑
j∈[0,n−1]

Xj .

Our aim is to establish a functional central limit theorem (invariance principle)
for the partial sums Sn (with centering and appropriate normalization) when n

goes to infinity with a specific relative speed in each direction. We will distinguish
different regimes. We first show, in this section, that (Xj )j∈Zd can be seen as
a linear random field with martingale differences innovations, and thus, Sn is a
partial sum of a linear random field.

For all j ∈ Zd , we define the σ -fields σj = σ {Xk|k < j} and σ j = σ {Xk|k �
j}. Note that, for j < n, the value of Xn conditioned on σj is obtained by sampling
the ancestral line An and taking the value of Xk where k is the first site of the
ancestral line An which is strictly smaller than j . We denote

(15) X∗
j = Xj −E(Xj |σj ) = Xj −E(Xj |σ j ).

The equality E(Xj |σ j ) = E(Xj |σj ) comes from the fact that starting from j , the
next site in the ancestral line Aj is necessarily strictly smaller than j . Then for
all j ∈ Zd , E(X∗

j |σ j ) = 0 and X∗
j is measurable with respect to σ j+eq for all

q = 1, . . . , d , where eq is the qth canonical unit vector of Rd . In particular, the
random variables X∗

j are orthogonal to each other, that is, E(X∗
jX∗

k) = 0 as soon
as j �= k.

LEMMA 4. In the above setting,

Var
(
X∗

0
) =

( ∑
k∈Nd

q2
k

)−1
Var(X0).
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PROOF. Let Z0 be the random variable with distribution μ that gives the first
ancestor of 0. We have X0 = ∑

k>0 1{Z0=k}X−k and E(X0|σ0) = ∑
k>0 pkX−k ,

where pk = μ({k}) for all k > 0. Therefore,

E
(
X∗2

0
) = E

((∑
k>0

(1{Z0=k} − pk)X−k

)2)
(16)

= ∑
k>0

∑
�>0

E
(
(1{Z0=k} − pk)(1{Z0=�} − p�)

)
E(X−kX−�).

But

(17) E(X−kX−�) = P(A−k ∩ A−� �=∅)E
(
X2

0
) + P(A−k ∩ A−� =∅)E(X0)

2

and

(18) E
(
(1{Z0=k} − pk)(1{Z0=�} − p�)

) = 1{k=�}pk − pkp�.

Combining (16), (17) and (18), we get

E
(
X∗2

0
) = E

(
X2

0
)(

1 − ∑
k>0

∑
�>0

pkp�P(A−k ∩ A−� �= ∅)

)
− ∑

k>0

∑
�>0

pkp�P(A−k ∩ A−� = ∅)E(X0)
2

= (
E

(
X2

0
) −E(X0)

2) ∑
k>0

∑
�>0

pkp�P(A−k ∩ A−� = ∅)

= Var(X0)P
(
A0 ∩ A′

0 = {0}),
where A′

0 is an independent copy of A0. Finally, as we saw in (8) in the proof
of Lemma 1,

∑
k∈Nd q2

k = E|A0 ∩ A′
0| = P(A0 ∩ A′

0 = {0})−1 and the proof is
complete. �

Now, for all j ∈ Zd , we introduce

�j (X) = ∑
ε∈{0,1}d

(−1)d−|ε|1E(X|σj+ε),

where |ε|1 = ε1 + · · · + εd .
Remark that, since E(Xj |σj+ε) = E(Xj |σj ) for all ε ∈ {0,1}d with the excep-

tion of ε = 1 for which E(Xj |σj+1) = Xj , we have

(19) �j (Xj ) = Xj −E(Xj |σj ) = X∗
j .

More generally, we have the following lemma.

LEMMA 5. For all j , k ∈ Zd ,

�j (Xk) = qk−jX∗
j ,

which vanishes when k ≯ j .
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PROOF. The result is clear when k = j [see (19)]. In the case k ≤ j , k �= j ,
we easily see that �j (Xk) = 0.

Now, assume k � j . By linearity, we have

�j (Xk) = �j (Xk1{j∈Ak}) + �j (Xk1{j /∈Ak}).
Using first that Xk1{j∈Ak} = Xj1{j∈Ak}, and then that {j ∈ Ak} is independent of
σj+1, we obtain

�j (Xk1{j∈Ak}) = �j (Xj )P(j ∈ Ak) = qk−jX∗
j .

Denote by a(k,j) the first element of the ancestral line Ak that is ≤ j and remark
that a(k,j) is independent of σj+1. Then

�j (Xk1{j /∈Ak})

= ∑
�≤j ,��=j

�j (Xk1{a(k,j)=�}) = ∑
�≤j ,� �=j

�j (X�)P
(
a(k,j) = �

)
.

But �j (X�) = 0 for all � ≤ j , � �= j , and we finally have

�j (Xk1{j /∈Ak}) = 0,

which completes the proof. �

LEMMA 6. For all k ∈ Zd , the series
∑

j∈Zd �j (Xk) converges in L2 and

Xk −E(Xk) = ∑
j∈Zd

�j (Xk).

PROOF. First, remark that by stationarity we may only consider the case where
k = 0. The sum in the statement can be written as

∑
j∈Nd �−j (X0) since the other

terms vanish. We denote by n1 the vector (n, . . . , n) where n ∈ N. By Lemma 5,
we have

E
(( ∑

j∈[0,n1]
�−j (X0)

)2)
= E

(
X∗2

0
)( ∑

j∈[0,n1]
q2
j

)
and the right-hand side converges to Var(X0) as n → ∞ thanks to Lemma 4.
Now, by construction, the random variables

∑
j∈[0,n1] �−j (X0) and X0 −∑

j∈[0,n1] �−j (X0) are orthogonal. To see this last fact, note that for all l ≤ 0
and j ≤ 0, E(E(X0|σl)|σj ) = E(X0|σmin{l,j}), where the minimum is taken on
each coordinate. Thus, we get

E
((

X0 −E(X0) − ∑
j∈[0,n1]

�−j (X0)

)2)

= Var(X0) −E
(( ∑

j∈[0,n1]
�−j (X0)

)2)
→ 0

as n → ∞. �
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From Lemmas 6 and 5, we get that (Xj −E(Xj ))j∈Zd is the linear random field
given by the innovations (X∗

j )j∈Zd and the filter (qj )j∈Zd . That is, for all k ∈ Zd ,

Xk −E(Xk) = ∑
j∈Zd

qk−jX∗
j .

Hence, we proved the following proposition.

PROPOSITION 3. For all n ∈ Nd ,

Sn −E(Sn) = ∑
j∈Zd

bn,jX∗
j ,

where bn,j = ∑
k∈[0,n−1] qk−j . Further, for any n ∈ Nd , bn = (bn,j )j∈Zd belongs

to �2(Zd), that is, ‖bn‖2 := ∑
j∈Zd b2

n,j < ∞.

3. A central limit theorem. We still assume μ ∈ D(E, ν), where ν is a full
E-operator stable law on Rd+ with E = diag(1/α1, . . . ,1/αd), with αi ∈ (0,1) and
α1 ∈ (0,1/2) if d = 1. The random field (Xj )j∈Zd is the random field defined in
Section 2.3. In view of Proposition 3, we want to establish central limit theorems
for the sequences of L2 random variables∑

j∈Zd

cn,jX∗
j , n ≥ 1

with general coefficients cn = (cn,j )j∈Zd ∈ �2(Zd). Recall the definition of X∗
j in

(15). It turns out that a simple assumption on cn for a central limit theorem is given
by

(20) lim
n→∞ sup

j∈Zd

|cn,j |
‖cn‖ = 0.

The aim of this section is to prove the following central limit theorem.

THEOREM 3. Let cn = (cn,j )j∈Zd be a sequence in �2(Zd) satisfying (20).
Then

1

‖cn‖
∑

j∈Zd

cn,jX∗
j ⇒ N

(
0, σ 2

X

)
as n → ∞,

where

(21) σ 2
X := Var

(
X∗

0
) = Var(X0)∑

k∈Nd q2
k

.
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As a preparation, we prove the following theorem which is an adaptation of
a theorem of McLeish [33]. McLeish’s result applies to triangular arrays of Z-
indexed martingale differences, and here we need a version for Zd -indexed martin-
gale differences in the lexicographical order. Recall that in the lexicographical or-
der, for i,j ∈ Zd, i �= j , we write i ≺ j if, with m := min{q = 1, . . . , d : iq �= jq},
im < jm. A collection of σ -fields {Fi}i∈Zd is called a filtration in the lexicograph-
ical order, if Fi ⊂ Fj for all i ≺ j . In this case, we say that integrable random
variables (ξi)i∈Zd are martingale differences with respect to {Fi}i∈Zd if

ξi ∈ Fi+ed
and E(ξi |Fi) = 0 for all i ∈ Zd,

where ed = (0, . . . ,0,1) ∈ Zd .

THEOREM 4 (McLeish [33]). Let (ξn,j )n∈N,j∈Zd be a collection of random

variables satisfying
∑

j∈Zd ξn,j ∈ L2 for all n ∈ N. Assume that for each n ∈ N,
(ξn,j )j∈Zd are martingale differences with respect to a filtration {Fn,j }j∈Zd in the
lexicographical order. If:

(i) limn→∞ maxj∈Zd |ξn,j | = 0 in probability,
(ii) supn∈N E(maxj∈Zd ξ2

n,j ) < ∞,

(iii) limn→∞
∑

j∈Zd ξ2
n,j = σ 2 > 0 in probability,

then ∑
j∈Zd

ξn,j ⇒ N
(
0, σ 2)

as n → ∞.

PROOF. Let us explain how one can derive this theorem from Theorem 2.3
in [33] which is stated for finite sets of random variables at each n. First, since∑

j∈Zd ξn,j ∈ L2, one can find a sequence of finite rectangles �n in Zd such that∑
j∈Zd\�n

ξn,j converges to 0 in L2 as n → ∞. Thus, the conclusion of Theorem 4
holds as soon as ∑

j∈�n

ξn,j ⇒ N
(
0, σ 2)

as n → ∞.

Furthermore, for each n, using the lexicographical order on the finite set �n, one
can re-index the random variables (ξn,j )j∈�n and the σ -fields {Fn,j }j∈�n in order
to fit with the statement of [33], Theorem 2.3. Now, it suffices to observe that
conditions (i), (ii) and (iii) imply those of [33], Theorem 2.3. �

We also need the following lemma.

LEMMA 7. Let cn = (cn,j )j∈Zd be a sequence in �2(Zd) such that (20) holds.
Then

lim
n→∞

1

‖cn‖2

∑
j∈Zd

c2
n,jX∗2

j = E
(
X∗2

0
)

in L2.
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PROOF. We start by showing that

(22) Cov
(
X∗2

i ,X∗2
j

) → 0 as |i − j |∞ → ∞.

Observe that X∗
j = Xj − ∑

�>0 p�Xj−�. Let X∗
j ,k = Xj − ∑

�∈{1,...,k}d p�Xj−�.

For any j ∈ Zd , using that |X∗
j | ≤ 2, we get

∣∣X∗2
j − X∗2

j ,k

∣∣ ≤ 4
∣∣X∗

j − X∗
j ,k

∣∣ = 4
∣∣∣∣ ∑
�∈[1,∞)d\[1,k]d

p�Xj−�

∣∣∣∣.
Thus, since |Xj | = 1 for all j ∈ Zd ,

(23) sup
j∈Zd

∣∣X∗2
j − X∗2

j ,k

∣∣ ≤ 4μ
([1,∞)d \ [1, k]d)

a.s., for all k > 0.

Now, introduce

Ri,j ,k =
{( ⋃

�∈i−[0,k]d
A�

)
∩

( ⋃
m∈j−[0,k]d

Am

)
= ∅

}
.

We have

P
(
Rc

i,j ,k

) ≤ ∑
�∈i−[0,k]d

∑
m∈j−[0,k]d

P(A� ∩ Am �= ∅).

But, from Lemma 1(i), we see that P(A� ∩ Am �= ∅) → 0 as |� − m|∞ → ∞ and
thus, for any k ≥ 1,

(24) P
(
Rc

i,j ,k

) → 0 as |i − j |∞ → ∞.

Fix ε > 0 and, using (23), let k ∈ N be such that supj∈Zd |X∗2
j − X∗2

j ,k| < ε. From
(24), for |i − j |∞ large enough, we have P(Rc

i,j ,k) < ε and we obtain

E
(
X∗2

i X∗2
j

) = E
(
X∗2

i,kX
∗2
j ,k

) + O(ε) = E
(
X∗2

i,kX
∗2
j ,k|Ri,j ,k

) + O(ε)

= E
(
X∗2

i,k|Ri,j ,k

)
E

(
X∗2

j ,k|Ri,j ,k

) + O(ε)

= E
(
X∗2

i,k

)
E

(
X∗2

j ,k

) + O(ε) = E
(
X∗2

i

)
E

(
X∗2

j

) + O(ε).

This proves (22).
To prove the lemma, fix ε > 0 and let K be such that |Cov(X∗2

j ,X∗2
i )| ≤ ε as

soon as |i − j |∞ > K . One has

E
(

1

‖cn‖2

∑
j∈Zd

c2
n,jX∗2

j −E
(
X∗2

0
))2

= ∑
j∈Zd

c2
n,j

‖cn‖2

∑
i∈Zd

c2
n,i

‖cn‖2 Cov
(
X∗2

j ,X∗2
i

)
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≤ ∑
j∈Zd

c2
n,j

‖cn‖2

∑
|i−j |∞≤K

c2
n,i

‖cn‖2

∣∣Cov
(
X∗2

j ,X∗2
i

)∣∣
+ ε

∑
j∈Zd

c2
n,j

‖cn‖2

∑
|i−j |∞>K

c2
n,i

‖cn‖2

≤ sup
k∈Zd

c2
n,k

‖cn‖2

∑
|i−0|∞≤K

∣∣Cov
(
X∗2

0 ,X∗2
i

)∣∣ + ε,

and the first term of the right-hand side goes to 0 as n → ∞ because |Cov(X∗2
0 ,

X∗2
i )| is bounded and supk∈Zd c2

n,k = o(‖cn‖2) by assumption. �

PROOF OF THEOREM 3. Recall that we write σj = σ {Xk|k < j} and σ j =
σ {Xk|k � j}, and we already have seen for all j ∈ Zd ,

E(Xj |σj ) = E(Xj |σ j ).

We now consider the σ -fields Fj = σ {Xk|k ≺ j}. We have σj ⊂ Fj ⊂ σ j for all
j ∈ Zd , and thus, for all j ∈ Zd , we also have

E(Xj |Fj ) = E(Xj |σj ).

Thus, by definition [see (15)], the random field (X∗
j )j∈Zd is composed of mar-

tingale differences with respect to the filtration {Fj }j∈Zd defined above in the
lexicographical order. Now in order to establish Theorem 3, we apply Theorem 4
to

ξn,j := cn,j

‖cn‖X∗
j and Fn,j := Fj = σ {Xk|k ≺ j}.

Note that |X∗
j | ≤ 2, and by Lemma 4 the conditions (i), (ii) and (iii) are satisfied

with σ 2
X = σ 2 = E(X∗2

0 ) = Var(X∗
0) = (

∑
k∈Nd q2

k)−1 Var(X0). The proof is thus
complete. �

The following lemma gives another useful condition on the coefficients
(cn,j )j∈Zd for Theorem 3.

LEMMA 8. If (cn,j )j∈Zd is a sequence in �2(Zd) that satisfies, for all q =
1, . . . , d ,

(25) lim
n→∞

1

‖cn‖2

∑
j∈Zd

∣∣c2
n,j − c2

n,j+eq

∣∣ = 0,

where eq is the qth vector of the canonical basis of Rd , then (20) holds.
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PROOF. We use an idea of [37]. Assume that (20) does not hold. Then there
exist ε > 0, a sequence (nk)k≥1 such that nk → ∞ as k → ∞, and a sequence
(j k)k≥1 such that cnk,j k

> ε‖cnk
‖ for all k ∈ N. Choose M > 0 such that Mdε2 >

1. One has, for all k ∈ N,

‖cnk
‖2 ≥ ∑

j∈[0,M−1]d
c2
nk,j k+j ≥ Mdc2

nk,jk
− ∑

j∈[0,M−1]d

∣∣c2
nk,j k+j − c2

nk,j k

∣∣.
Hence,

(26)
(
Mdε2 − 1

)‖cnk
‖2 ≤ ∑

j∈[0,M−1]d

∣∣c2
nk,j k+j − c2

nk,j k

∣∣.
But, if j ∈ [0,M − 1]d , then

∣∣c2
nk,jk

− c2
nk,jk+j

∣∣ ≤
�(λ)∑
i=1

∣∣c2
nk,λi

− c2
nk,λi+1

∣∣,
where λ = (λ0,λ1, . . . ,λ�) is any path from λ0 = j k to λ� = j k + j , with |λi −
λi+1|1 = 1. Since j ∈ [0,M − 1]d , we can always choose the path λ of length
� = �(λ) smaller than dM . Thus, we get∣∣c2

nk,jk
− c2

nk,jk+j

∣∣ ≤ dM sup
q=1,...,d

sup
k∈Zd

∣∣c2
nk,k

− c2
nk,k+eq

∣∣
≤ dM

d∑
q=1

∑
k∈Zd

∣∣c2
nk,k

− c2
nk,k+eq

∣∣.
Together with (26), this contradicts (25). �

REMARK 3. Using the Cauchy–Schwarz inequality, we also see that the con-
dition

(27) lim
n→∞

1

‖cn‖2

∑
j∈Zd

(cn,j − cn,j+eq )
2 = 0 for all q = 1, . . . , d,

implies (25), and thus by Lemma 8, implies (20). This last observation leads to an
improvement in Theorem 3.1 in Biermé and Durieu [5]. The conditions (i) and (ii)
of this theorem are equivalent to our conditions (20) and (27), respectively. Thus,
the condition (i) in [5], Theorem 3.1, is unnecessary.

4. An invariance principle. The aim of the section is to establish a general
invariance principle for partial sums of the random field (Xj )j∈Zd defined in Sec-
tion 2.
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4.1. Main result. Recall that (Xj )j∈Zd are associated to the random graph Gμ,
with μ ∈ D(E, ν). We consider partial sums on finite rectangular subsets of Zd .
As we will see, the growth of the rectangles will be determinant in the invariance
principle and different limit random fields appear at different regimes. For the gen-
eral case, consider a matrix E′ = diag(1/α′

1, . . . ,1/α′
d) with α′

i > 0, i = 1, . . . , d

and the partial-sum process

SE′
n (t) = ∑

j∈[0,nE′
t−1]

Xj n ≥ 1 and t = (t1, . . . , td) ∈ [0,1]d .

The result will depend on both E′ and E.
We introduce several parameters. First, for all k = 1, . . . , d , set ρk := αk/α

′
k ,

and consider

(28) γ0 = γ0
(
E,E′) := min

{
γ ∈ {ρ1, . . . , ρd}

∣∣∣ ∑
k:γ≥ρk

1

αk

> 2,
∑

k:γ>ρk

1

αk

≤ 2
}
.

Note that γ0 is well defined by the assumption q(E) > 2, and is completely deter-
mined by E and E′. Given γ0 > 0, define the sets

I< := {
k ∈ {1, . . . , d}|γ0 < ρk

}
,

I= := {
k ∈ {1, . . . , d}|γ0 = ρk

}
,

I> := {
k ∈ {1, . . . , d}|γ0 > ρk

}
.

This gives a partition of {1, . . . , d}. We also write I≤ := I< ∪I= and I≥ := I= ∪I>.
The sets I> and I< consist of the directions in which the limit random field exhibit
degenerate dependence structure. Remark that, by construction,

|I=| ≥ 1 and |I>| ≤ 1.

According to these subsets of {1, . . . , d}, we consider subspaces of Rd given by

H< := {
x ∈ Rd |xk = 0 for k /∈ I<

}
,

and similarly H=,H>,H≤,H≥. Let π<, π=, π>, π≤, and π≥ denote orthogonal
projections to the corresponding subspaces, and let λ<,λ=, λ>,λ≤, and λ≥ denote
the Lebesgue measures on the corresponding subspaces. For π of any proceeding
projection, πE is a linear operator on Rd ; accordingly there is a corresponding
diagonal matrix, which we also denote by πE with a slight abuse of notation.

Next, we define another diagonal matrix E′′ (that only depends on E and E′)
by

E′′ := diag
(
γ1/α

′
1, . . . , γd/α′

d

)
with γk := γ0

ρk

∨ 1, k = 1, . . . , d.

By the definition of E′′, one has

(29) π≤E′′ = π≤E′ and π≥E′′ = γ0π≥E.

Further, E′′ − γ0E is strictly positive on H<. We can now state our main result.
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THEOREM 5. Assume μ ∈ D(E, ν) with E = diag(1/α1, . . . ,1/αd) with αi ∈
(0,1), i = 1, . . . , d , and α1 ∈ (0,1/2) if d = 1. Let E′ = diag(1/α′

1, . . . ,1/α′
d),

with α′
i > 0, i = 1, . . . , d , and γ0 defined as in (28). If q(π>E) < 2, then(

SE′
n (t) −E(SE′

n (t))

nγ0+q(E′)−q(E′′)/2

)
t∈[0,1]d

⇒ (
W(t)

)
t∈[0,1]d ,

as n → ∞, in the Skorohod space D([0,1]d), where (W(t))t∈Rd is a zero-mean
Gaussian process with covariances given by

Cov
(
W(t),W(s)

)
= σ 2

X

( ∏
k∈I<

Cov
(
B1/2(tk),B1/2(sk)

))

×
( ∏

k∈I>

tksk

2π

)∫
H≥

∣∣logψ(y)
∣∣−2 ∏

k∈I=

(eitkyk − 1)(eiskyk − 1)

2π |yk|2 dλ≥(y),

with B1/2 a standard Brownian motion on R, ψ is the characteristic function of ν,
and σ 2

X is given in (21).

In the expression of covariance above and in the sequel, it is understood that
when I< or I> is empty, the corresponding product equals 1.

This theorem reveals that taking different summing rectangles may lead to dif-
ferent limits, under different normalizations. To the best of our knowledge, such
a phenomenon has not been noticed in the literature until very recently [38, 39]
for a different model. We elaborate on this phenomenon of scaling transition in
Section 5.

REMARK 4. Observe that one can write Cov(W(t),W(s)) = σ 2
X

(2π)d
C(t, s)

with

(30) C(t, s) :=
( ∏

k∈I>

tksk

)∫
Rd

∣∣logψ(π≥y)
∣∣−2

( ∏
k∈I≤

(eitkyk − 1)(eiskyk − 1)

|yk|2
)

dy,

because of the identity ([46], Proposition 7.2.8)

(31)
∫
R

(eity − 1)(eisy − 1)

2π |y|1+2H
dy = CH Cov

(
BH(t),BH (s)

)
, t, s ∈ R,H ∈ (0,1)

with

CH = π

H�(2H) sin(Hπ)
.
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Both Theorems 1 and 2 follow directly from Theorem 5.

PROOF OF THEOREM 1. In the critical regime corresponding to Theorem 1,
E = E′ and I< = I> = ∅. In addition to I< = I> = ∅, it also follows that H≥ =
Rd and λ≥ is the Lebesgue measure on Rd . Theorem 1 now follows immediately.

�

The proof of Theorem 2 is slightly more computational. As it corresponds to a
special case that the limit W is a fractional Brownian sheet, which will be discussed
in Section 5.2, the proof is postponed there.

REMARK 5. By definition (28), q(π>E) ≤ 2. The condition q(π>E) < 2 in
Theorem 5 cannot be dropped. It is easy to construct an example with q(π>E) = 2,
and as can be seen at the end of the proof of Lemma 9, in this case the asymptotic
estimate of the covariance no longer holds. Moreover, in view of results for d = 2
(Theorem 2), this corresponds to the cases α′

2 > α2, α2 = 1/2 or α′
2 < α2, α1 =

1/2. In these cases, we conjecture that the limiting random fields are still fractional
Brownian sheets with (H1,H2) = (1/2,1) and (H1,H2) = (1,1/2), respectively,
that is, the dependence is degenerate in both directions. So q(π>E) = 2 may be
viewed as another critical regime in the noncritical regime. Since the paper is
already quite involved, and this regime seems to preserve the least dependence, we
do not pursue the investigation of this case here.

REMARK 6. As we will see below in the proof, essentially we establish an
invariance principle for linear random field (Xj )j∈Zd with

Xj = ∑
i∈Zd

qj−iX
∗
i , j ∈ Zd,

where (X∗
i )i∈Zd are stationary martingale-difference innovations and (qi)i∈Zd are

real Fourier coefficients of certain function Q(t). This is a standard framework to
obtain linear random fields in the literature, and we comment briefly on connec-
tions between our results and others:

(i) First, the same invariance principle should hold if the innovations are re-
placed by other weakly dependent random fields (weakly dependent in the sense
of, e.g., [5, 28, 51]). These results can be viewed as generalizations of the seminal
work of Davydov [15] on invariance principles for linear processes.

(ii) Second, from the modeling point of view, the specific choices of Q(t) [in
terms of μ ∈ D(E, ν)], and hence (qj )j∈Zd are new. However, although our as-
sumption on Q(t) is very general, not all possible operator-scaling Gaussian ran-
dom fields can show up in the limit; in particular, the Hammond–Sheffield model
in high dimensions does not scale to fractional Brownian sheets except for a few
cases in terms of Hurst indices shown in Proposition 6. The aforementioned results
[5, 28, 51] all include linear random-field models scaling to fractional Brownian
sheets, for flexible choices of Hurst indices.
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(iii) At last, when the innovation random fields exhibit strong dependence, the
limiting object could be more complicated ([28]).

4.2. Proof of the main result. The rest of the section is devoted to the proof of
Theorem 5. Using Proposition 3, we get

(32) SE′
n (t) −E

(
SE′

n (t)
) = ∑

j∈Zd

bn,j (t)X∗
j ,

with bn(t) = (bn,j (t))j∈Zd ∈ �2(Zd) and

(33) bn,j (t) = ∑
k∈[0,nE′

t−1]
qk−j .

Recall that (X∗
j )j∈Zd are stationary martingale differences.

The proof of Theorem 5 is now divided into three steps. The key step is to
compute the covariance, which is done in Section 4.2.1. Then we proceed with
the standard argument to show the weak convergence by first establishing finite-
dimensional convergence in Section 4.2.2 and then the tightness in Section 4.2.3.
The matrices E and E′, and thus γ0 and E′′, are fixed as in the assumptions of the
theorem.

4.2.1. Covariances. From (32), we obtain for t, s ∈ [0,1]d ,

Cov
(
SE′

n (t), SE′
n (s)

) = σ 2
X

〈
bn(t), bn(s)

〉
,

where, 〈bn(t), bn(s)〉 := ∑
k∈Zd bn,k(t)bn,k(s). The asymptotic behavior of the

covariances are given in the following lemma where un ∼
n→∞ vn stands for

limn→∞ un/vn = 1.

LEMMA 9. For all t, s ∈ [0,1]d ,

σ 2
X

〈
bn(t), bn(s)

〉 ∼
n→∞ n2γ0+2q(E′)−q(E′′) Cov

(
W(t),W(s)

)
.

PROOF. Define for m ∈ N and x ∈R,

Dm(x) =
m∑

l=0

eilx = ei(m+1)x − 1

eix − 1
,

and for x ∈ Rd , the trigonometric polynomial

Kn(t,x) = ∑
j∈Zd

1j∈[0,nE′
t−1]e

ij ·x =
d∏

k=1

D�n1/α′
k tk−1�(xk),

where �·� stands for the integer part. Recall that since

Q(x) = ∑
j∈Zd

qjeij ·x,
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the sequence bn(t) [defined in (33)] is obtained by the convolution product of the
Fourier coefficients of Kn(t, ·) and Q with Q(x) = Q(−x) since (qj )j∈Zd is a
real sequence. It follows that bn,k(t) is the kth Fourier coefficient of QKn(t, ·).
Therefore, using Bessel–Parseval identity, we get〈

bn(t), bn(s)
〉 = 1

(2π)d

∫
[−π,π ]d

Q(x)Kn(t,x)Q(x)Kn(s,x) dx

= 1

(2π)d

∫
[−π,π ]d

∣∣Q(x)
∣∣2 d∏

k=1

D�n1/α′
k tk−1�(xk)D�n1/α′

k sk−1�(xk) dx(34)

= n−q(E′′)

(2π)d

∫
nE′′ [−π,π ]d

�n(y, t, s) dy,

where

�n(y, t, s)

= ∣∣Q(
n−E′′

y
)∣∣2 d∏

k=1

D�n1/α′
k tk−1�

(
n−γk/α

′
kyk

)
D�n1/α′

k sk−1�
(
n−γk/α

′
k yk

)
.

According to Lemma 2 and the E-homogeneity of logψ , one has

n−2γ0
∣∣Q(

n−E′′
y
)∣∣2 = n−2γ0

∣∣g(
n−E′′

y
)∣∣2∣∣logψ

(
n−γ0En−(E′′−γ0E)y

)∣∣−2

= ∣∣g(
n−E′′

y
)∣∣2∣∣logψ

(
n−(E′′−γ0E)y

)∣∣−2
.

Thus,

lim
n→∞n−2γ0

∣∣Q(
n−E′′

y
)∣∣2 = ∣∣logψ(π≥y)

∣∣−2
,

because E′′ −γ0E is null on H≥ and strictly positive on H< and g(0) = 1. Further,
for all n ∈ N∗, y ∈ nE′′ [−π,π ]d ,

(35) n−2γ0
∣∣Q(

n−E′′
y
)∣∣2 ≤ max

x∈[−π,π ]d
∣∣g(x)

∣∣2 sup
z∈H<

∣∣logψ(z + π≥y)
∣∣−2

.

Now, remark that for all t ∈ [0,1] and y ∈ R,

lim
n→∞n−1D�nt−1�

(
n−γ y

) =
⎧⎪⎨⎪⎩

eity − 1

iy
, if γ = 1,

t, if γ > 1,

and if |n−γ y| ≤ π , then

∣∣n−1D�nt−1�
(
n−γ y

)∣∣ =
∣∣∣∣sin(�nt�n−γ y/2)

n sin(n−γ y/2)

∣∣∣∣ ≤
⎧⎪⎨⎪⎩

π min
{

1,
1

|y|
}
, if γ = 1,

π

2
, if γ > 1,
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where we have used that 2
π
|x| ≤ | sin(x)| ≤ |x| ∧ 1 for x ∈ [−π/2, π/2] and that

|t | ≤ 1. Since γk > 1 if and only if k ∈ I>, we infer

�n(y, t, s) ∼ n2γ0+2q(E′)∣∣logψ(π≥y)
∣∣−2

(36)

×
( ∏

k∈I>

tksk

)( ∏
k∈I≤

(eitkyk − 1)(eiskyk − 1)

|yk|2
)

as n → ∞ and for all t , s ∈ [0,1]d ,

(37) n−2γ0−2q(E′)∣∣�n(y, t, s)
∣∣ ≤ π2d max

x∈[−π,π ]d
∣∣g(x)

∣∣2h(y),

with

(38) h(y) := sup
x∈H<

∣∣logψ(x + π≥y)
∣∣−2 ∏

k∈I≤
min

{
1,

1

|yk|2
}
.

Applying the dominated convergence theorem to (34), (36) and (37) and using
(30), to show the desired result it remains to prove that h is integrable on Rd .

Formally, write∫
Rd

h(y) dy =
∫
H<

∫
H≥

h(y) dλ< ⊗ λ≥(y)

=
∫
H<

∏
k∈I<

min
{

1,
1

|yk|2
}

dλ<(y)

×
∫
H≥

sup
x∈H<

∣∣logψ(x + y)
∣∣−2 ∏

k∈I=
min

{
1,

1

|yk|2
}

dλ≥(y),

where the first integral in the right-hand side is understood to be 1 if H< = {0}
(i.e. I< =∅). By Fubini’s theorem, h is integrable over Rd if

(39)
∫
H<

∏
k∈I<

min
{

1,
1

|yk|2
}

dλ<(y) < ∞

and ∫
H≥

h(y) dλ≥(y)

(40)

=
∫
H≥

sup
x∈H<

∣∣logψ(x + y)
∣∣−2 ∏

k∈I=
min

{
1,

1

|yk|2
}

dλ≥(y) < ∞.

The integrability condition (39) is obvious. For (40), let us remark that the
function y ∈ H≥ �→ infx∈H< | logψ(x + y)| is (π≥E)-homogeneous and since
q(π≥E) > 2, by Lemma 3, the function y ∈ H≥ �→ supx∈H<

| logψ(x + y)|−2

is locally integrable on H≥ with respect to λ≥. Together with the fact that
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supx∈H<
| logψ(x + y)|−2 is bounded by 1 for π=y large enough, this shows that

(40) holds in the case H> = {0}. For the case H> �= {0}, the preceding considera-
tions show that ∫

H≥
1{‖π>y‖π>E≤1}h(y) dλ≥(y) < ∞,

with the definition of ‖ · ‖π>E given in (11). Moreover,∫
H≥

1{‖π>y‖π>E>1}h(y) dλ≥(y)

≤
∫
H>

1{‖y‖π>E>1} sup
x∈H≤

∣∣logψ(x + y)
∣∣−2

dλ>(y)

×
∫
H=

∏
k∈I=

min
{

1,
1

|yk|2
}

dλ=(y).

The second integral is clearly finite. For the first one, since y ∈ H> �→
infx∈H≤ | logψ(x + y)| is (π>E)-homogeneous and q(π>E) < 2, one has∫

H>

1{‖y‖π>E>1} sup
x∈H≤

∣∣logψ(x + y)
∣∣−2

dλ>(y)

=
∫ +∞

1
rq(π>E)−3

∫
Sπ>E

sup
x∈H≤

∣∣logψ(x + θ)
∣∣−2

dσπ>E(θ) < ∞,

where Sπ>E is the unit sphere of H> with respect to ‖ · ‖π>E and σπ>E is the
Radon measure on Sπ>E such that dλ> = rq(π>E)−1 dr dσπ>E . This shows that
(40) holds, and thus the function h in (38) is integrable over Rd . �

4.2.2. Finite-dimensional convergence. We start by showing that the coeffi-
cients bn,j (t) defined in (33) satisfy the condition (20) of Theorem 3 in the fol-
lowing lemma.

LEMMA 10. For all t ∈ (0,1]d and all q = 1, . . . , d ,

lim
n→∞

1

‖bn(t)‖2

∑
j∈Zd

∣∣b2
n,j (t) − b2

n,j+eq
(t)

∣∣ = 0

and (20) holds.

PROOF. Fix � ∈ {1, . . . , d} and t ∈ (0,1]d be fixed. Using the Cauchy–
Schwarz inequality,

∑
j∈Zd

∣∣b2
n,j (t) − b2

n,j+e�
(t)

∣∣ ≤
( ∑

j∈Zd

(
bn,j (t) − bn,j+e�

(t)
)2

) 1
2
2
∥∥bn(t)

∥∥.
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So, it is enough to show that∑
j∈Zd

(
bn,j (t) − bn,j+e�

(t)
)2 = o

(∥∥bn(t)
∥∥2)

.

But we have

bn,j (t) − bn,j+e�
(t) = ∑

k∈[0,nE′
t−1]

with k�=�n1/α′
� t��−1

qk−j − ∑
k∈[0,nE′

t−1]
with k�=0

qk−j−e�
.

Thus, ∑
j∈Zd

(
bn,j (t) − bn,j+e�

(t)
)2 ≤ 2

∑
j∈Zd

( ∑
k∈[0,nE′

t−1]
with k�=0

qk−j

)2
.

Let ε > 0. Using Lemma 9, we get

lim sup
n→∞

1

‖bn(t)‖2

∑
j∈Zd

( ∑
k∈[0,nE′

t−1]
with k�=0

qk−j

)2

≤ lim sup
n→∞

1

‖bn(t)‖2

∑
j∈Zd

( ∑
k∈[0,nE′

t−1]
with k�≤εn

1/α′
� t�−1

qk−j

)2

= lim sup
n→∞

‖bn(t1, . . . , t�−1, εt�, t�+1, . . . , td)‖2

‖bn(t)‖2

= V (t1, . . . , t�−1, εt�, t�+1, . . . , td)

V (t)
,

where V (t) := C(t, t) with the covariance function C(·, ·) defined in (30). We
conclude the proof of the lemma using that, for any t ∈ (0,1]d ,

V (t1, . . . , t�−1, εt�, t�+1, . . . , td) → 0 as ε → 0.

The fact that (20) holds is a consequence of Lemma 8. �

To prove the finite-dimensional convergence, we use the Cramèr–Wold de-
vice. Let m ∈ N, t1, . . . , tm ∈ [0,1]d , λ1, . . . , λm ∈ R, and consider S

(m)
n =∑m

k=1 λkS
E′
n (tk). One has

S(m)
n −E

(
S(m)

n

) = ∑
j∈Zd

dn,jX∗
j ,
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where dn,j := ∑m
k=1 λkbn,j (tk) and Var(S(m)

n ) = ‖dn‖2 Var(X∗
0). Using Lemma 9,

we get

‖dn‖2 =
m∑

k=1

m∑
�=1

λkλ�

〈
bn(tk), bn(t�)

〉

∼
n→∞

n2γ0+2q(E′)−q(E′′)

(2π)d

m∑
k=1

m∑
�=1

λkλ�C(tk, t�),

where C is defined in (30).
If

∑m
k=1

∑m
�=1 λkλ�C(tk, t�) = 0, then 1

nγ0+q(E′)−q(E′′)/2 (S
(m)
n − E(S

(m)
n )) con-

verges to 0 in L2. If
∑m

k=1
∑m

�=1 λkλ�C(tk, t�) > 0, we get that for each k =
1, . . . ,m,

∥∥bn(tk)
∥∥2 ∼

n→∞ ‖dn‖2 C(tk, tk)∑m
k=1

∑m
�=1 λkλ�C(tk, t�)

.

Thus, since the bn,j (tk) satisfy (20),

sup
j

|dn,j | ≤
m∑

k=1

λk sup
j

∣∣bn,j (tk)
∣∣ =

m∑
k=1

λko
(∥∥bn(tk)

∥∥) = o
(‖dn‖)

.

This proves that (20) also holds for the dn,j and Theorem 3 applies to S
(m)
n . We

thus proved the finite-dimensional convergence.

4.2.3. Tightness. To prove the tightness, by Bickel and Wichura [3], following
[51] and [27], it is enough to show that for some p > 0 there exist γ > 1 and C > 0
such that for all t = (t1, . . . , td) ∈ [0,1]d ,

E
∣∣∣∣SE′

n (t) −E(SE′
n (t))

nγ0+q(E′)− q(E′′)
2

∣∣∣∣p ≤ C

d∏
j=1

t
γ
j .

Recall from equation (34) that for all t ∈ [0,1]d , we have

∥∥bn(t)
∥∥2 = n−q(E′′)

(2π)d

×
∫
nE′′ [−π,π ]d

∣∣Q(
n−E′′

y
)∣∣2(

d∏
k=1

∣∣D�n1/α′
k tk−1�

(
n−γk/α

′
kyk

)∣∣2)
dy.

For any δ ∈ (0,1), observe that | sin2(x)| = | sin1−δ(x)‖ sin1+δ(x)| ≤ min{|x|1−δ,

|x|2} for all x, and | sin(x)| ≥ 2
π
|x| for x ∈ [−π/2, π/2]. Then, for all n and y such
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that |ny| ≤ π and all t ∈ [0,1], one has

n−2∣∣D�nt−1�
(
n−1y

)∣∣2 = sin2(�nt� y
2n

)

n2 sin2(
y
2n

)

≤ min
{

π2

21−δ

t1−δ

|y|1+δ
,
π2

4
t2

}
≤ π2

21−δ
t1−δ min

{
1

|y|1+δ
,1

}
,

and thus,

n−2∣∣D�nt−1�
(
n−γ y

)∣∣2 ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π2

21−δ
t1−δ min

{
1

|y|1+δ
,1

}
, if γ = 1,

π2

4
t2, if γ > 1.

Recalling that γk/α
′
k > 1 if and only if k ∈ I>, together with (35), this shows that

there exists a constant C > 0 such that

n−2γ0−2q(E′)+q(E′′)∥∥bn(t)
∥∥2

≤ C

( ∏
j∈I>

t2
j

)( ∏
j∈I≤

t1−δ
j

)

×
∫
Rd

sup
x∈H<

∣∣logψ(x + π≥y)
∣∣−2 ∏

j∈I≤
min

{
1

|yj |1+δ
,1

}
dy.

One can show that this last integral is finite by proceeding exactly as we did to
show the integrability of the function h in (38). The important point is that 1 +
δ > 1 to guarantee the integrability of 1

|y|1+δ at infinity. Hence, for a new constant

C′ > 0,

n−2γ0−2q(E′)+q(E′′)∥∥bn(t)
∥∥2 ≤ C′

( ∏
j∈I>

t2
j

)( ∏
j∈I≤

t1−δ
j

)
≤ C′

d∏
j=1

t1−δ
j .

Let p > 2. Using Burkholder’s inequality and the preceding inequality, there exists
a constant cp > 0 such that

E
∣∣∣∣SE′

n (t) −E(SE′
n (t))

nγ0+q(E′)−q(E′′)/2

∣∣∣∣p ≤ cpE
( ∑

j∈Zd

b2
n,j (t)

n2γ0+2q(E′)−q(E′′) X
∗2
j

)p
2

≤ cp

( ‖bn(t)‖2

n2γ0+2q(E′)−q(E′′)

)p
2

≤ cpC′p/2
d∏

j=1

t
(1−δ)p/2
j ,

which gives the tightness by choosing δ > 1 − 2
p

.
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5. Properties of the limit field. In this section, we focus on the zero-mean
Gaussian random field (W(t))t∈Rd arising in the limit in Theorem 5. Recall that
this random field depends on both E and E′.

5.1. Increments. We may consider a harmonizable representation of W , de-
fined on the whole space Rd by

W(t) = σX

( ∏
k∈I>

tk

)∫
Rd

( ∏
k∈I≤

eitkyk − 1

iyk

)∣∣logψ(π≥y)
∣∣−1M̃(dy),

for all t ∈ Rd , with σX given in (21), and M̃ is a centered complex-valued Gaus-
sian measure on Rd with Lebesgue control measure (see [52]). The harmonizable
representation shows that the random field has stationary rectangular increments.
In the sequel, we let (e1, . . . , ed) denote the canonical basis of Rd . Rectangular
increments of W are defined for s < t by

W
([s, t]) = ∑

ε∈{0,1}d
(−1)d+|ε|1W

(
s1 + ε1(t1 − s1), . . . , sd + εd(td − sd)

)
= �

(1)
t1−s1

�
(2)
t2−s2

· · ·�(d)
td−sd

W(s),

where |ε|1 = ε1 + · · · + εd and �
(j)
δ corresponds to the directional increment of

step δ ∈ R in direction j for 1 ≤ j ≤ d , defined by

�
(j)
δ W(t) = W(t + δej ) − W(t).

A direct consequence of Theorem 5 are the following properties of the random
field W .

PROPOSITION 4. The random field W satisfies the following properties:

(i) stationary rectangular increments: for any fixed s ∈ Rd ,(
W

([s, t]))s<t

f.d.d.= (
W

([0, t − s]))s<t ≡ (
W(t − s)

)
s<t ;

(ii) (E′,H)-operator-scaling property: for all λ > 0(
W

(
λE′

t
))

t∈Rd

f.d.d.= (
λHW(t)

)
t∈Rd ,

with H = γ0 + q(E′) − q(E′′)
2 and E′′ satisfying (29).

PROOF. Property (i) can be proved by observing that W [s, t] corresponds to
the limit of partial sums of a stationary random field over a rectangle area, after
normalization. By stationarity, the distributions of the partial sums, and hence the
limit, depend only on t − s, up to certain boundary effect which needs to be taken
care of. Alternatively, the stationary increment property can also be derived from
the covariance function. The proof is omitted.
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We only prove (ii) here. Recall the definition of C(t, s) in (30). By the change
of variables,

yk �→
{
λ1/α′

kyk, k ∈ I≤,

λγ0/αkyk, k ∈ I>,

we have

C
(
λE′

t, λE′
s
) =

( ∏
k∈I>

λ2/α′
k tksk

)∫
Rd

1

| logψ(λ−γ0Eλγ0Eπ≥y)|2

×
( ∏

k∈I≤

(eitkλ
1/α′

k yk − 1)(eiskλ
1/α′

k yk − 1)

2π |yk|2
)

dy

=
( ∏

k∈I>

λ2/α′
k

)
λ2γ0

( ∏
k∈I≤

λ1/α′
k

)( ∏
k∈I>

λ−γ0/αk

)
C(t, s)

= λ2γ0+q(E′)+q(π>E′)−γ0q(π>E)C(t, s),

where in the second equality we also used the fact that logψ(λEy) = λ logψ(y).
On the other hand, recalling (29), we have

q
(
E′) − 1

2
q
(
E′′) = q

(
E′) − 1

2
q
(
π≤E′) − γ0

2
q(π>E)

= 1

2
q
(
E′) + 1

2
q
(
π>E′) − γ0

2
q(π>E).

The desired result thus follows. �

We can say more about the directional increments �
(j)
δ W(t). First of all, as a

special case of Proposition 4(i), W(t) viewed as a process indexed by tj ∈ R has
stationary increments. Moreover, simple dependence properties in the directions
corresponding to I> and I<, if not empty, are given below. Following ideas from
[39], Definition 2.2, we state the following proposition. Recall that |I>| ≤ 1.

PROPOSITION 5. The random field W satisfies the following properties:

(i) When I> = {j}, the random field W has invariant increments in the direc-
tion ej : for all h, δ ∈ R, t ∈ Rd , we have �

(j)
δ W(t + hej ) = �

(j)
δ W(t).

(ii) When I< �= ∅, the random field W has independent increments in any di-
rection ej with j ∈ I<: for all δ > 0, t ∈ Rd , �

(j)
δ W(t) is independent from W(t).

PROOF. Let 〈ej 〉⊥ denote the subspace of Rd orthogonal to ej . Let π〈ej 〉⊥ and
λ〈ej 〉⊥ denote the corresponding projection and Lebesgue measure, respectively.

First, let us simply remark that for I> = {j}, δ ∈ R, and t ∈ Rd ,

�
(j)
δ W(t) = δW

(
π〈ej 〉⊥(t) + ej

)
,
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which does not depend on tj . The desired statement then follows. For the second
statement, when j ∈ I<,

�
(j)
δ W(t) = σX

( ∏
k∈I>

tk

)

×
∫
Rd

eitj yj (eiδyj − 1)

iyj

( ∏
k∈I≤;k �=j

eitkyk − 1

iyk

)∣∣logψ(π≥y)
∣∣−1M̃(dy).

Therefore,

Cov
(
�

(j)
δ W(t),W(t)

) = Cej
(t)

∫
R

(eiδyj − 1)(1 − eitj yj )

|yj |2 dyj ,

with

Cej
(t)

:= σ 2
X

( ∏
k∈I>

tk

)2 ∫
〈ej 〉⊥

∏
k∈I≤;k �=j

∣∣∣∣eitkyk − 1

iyk

∣∣∣∣2∣∣logψ(π≥y)
∣∣−2

dλ〈ej 〉⊥(y).

Hence,

Cov
(
�

(j)
δ W(t),W(t)

) = 2πCej
(t)Cov

(
B1/2(tj + δ) − B1/2(tj ),B1/2(tj )

)
,

with B1/2 a standard Brownian motion on R. By independent increments of B1/2,

we obtain that Cov(�
(j)
δ W(t),W(t)) = 0 for δ ≥ 0. Since W is a Gaussian field,

we conclude that �
(j)
δ W(t) is independent from W(t). �

Let us mention that our definitions of invariant and independent increments are
not the ones used in [39], Definition 2.2. However, we remark that invariant incre-
ments in the direction ej lead to invariant rectangular increments in the sense that,
for all δ ∈ R, and s < t

W
([s + δej , t + δej ])=W

([s, t]).
This follows from the fact that

W
([s + δej , t + δej ]) = �

(1)
t1−s1

�
(2)
t2−s2

· · ·�(d)
td−sd

W(s + δej ).

Indeed, computing first �
(j)
tj−sj

W(s + δej ) = �
(j)
tj−sj

W(s), we obtain the desired
result.

When the increments are either invariant or independent in at least one direc-
tion, we say that W has degenerate increments. Otherwise, we say that W has
nondegenerate increments.
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EXAMPLE 4. When d = 2, choosing E′ = diag(1, β) for β > 0 as in [39]
we obtain that |I=| = 2 if and only if ρ1 = ρ2, that is β = α2

α1
. It follows that for

β �= α2
α1

, one has |I=| = 1 and W has either independent or invariant increments in
the orthogonal direction. However, when β = α2

α1
we get

W(t) = σX

∫
R2

( 2∏
k=1

eitkyk − 1

iyk

)∣∣logψ(y)
∣∣−1M̃(dy) for all t ∈R2.

In this case, W has nondegenerate increments. Recall that all possible noncritical
cases in d = 2 have been provided in Theorem 2 in the Introduction.

More generally, for d ≥ 2 we can state the following scaling-transition property.

COROLLARY 1. The random field (Xj )j∈Zd , defined in Section 2.3, exhibits
a scaling-transition in the sense that:

(i) If there exists c > 0 such that E′ = cE, then W has nondegenerate incre-
ments.

(ii) Otherwise, W has degenerate increments. That is, there exists at least one
direction in which the increments of the limit random field are either invariant or
independent.

In the sequel, we need to control the variance of the directional increments. By
Proposition 5, for all u ∈ Rd, δ ∈ R,

Var
(
�

(j)
δ W(u)

) = δ2 Var
(
W

(
π〈ej 〉⊥(u) + ej

))
, j ∈ I>

and

(41) Var
(
�

(j)
δ W(u)

) = |δ|Var
(
W

(
π〈ej 〉⊥(u) + ej

))
, j ∈ I<.

The control for j ∈ I= is a little more involved, as summarized in the following
lemma.

LEMMA 11. There exist some constants C such that for all u ∈ [−1,1]d, δ ∈
R, j ∈ I=, the following inequalities hold:

(a) If |I>| = 1 or I> =∅ and αj < 1/2,

(42) Var
(
�

(j)
δ W(u)

) ≤ C|δ|2βj with βj = αj

(
1 − q(π>E)

2

)
+ 1

2
.

(b) If I> = ∅, αj = 1/2, then

(43) Var
(
�

(j)
δ W(u)

) ≤ C max
(
δ2, |δ|2Hj

)
for all Hj ∈ (0,1).
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(c) If I> = ∅, αj > 1/2, then

(44) Var
(
�

(j)
δ W(u)

) ≤ Cδ2.

PROOF. Recall (31). For j ∈ I=, for all u ∈ [−1,1]d and δ ∈ R,

Var
(
�

(j)
δ W(u)

) =
(
σX

∏
k∈I>

uk

)2 ∫
R

∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2fj (yj ) dyj ,

with

fj (yj ) =
∫
〈ej 〉⊥

∏
k∈I≤;k �=j

∣∣∣∣eiukyk − 1

iyk

∣∣∣∣2∣∣logψ
(
π≥(y + yjej )

)∣∣−2
dλ〈ej 〉⊥(y).

This is a locally integrable function over R for all values of αj ∈ (0,1) due to
the fact that | logψ(π≥y)| is a π≥E-homogeneous function, q(π≥E) > 2, and
Lemma 3. Furthermore, by E-homogeneity and polar coordinate x = τ(x)Eθ(x),∣∣logψ(x)

∣∣−1

= | logψ(π>x)| + |xj |αj

| logψ(x)|
(∣∣logψ(π>x)

∣∣ + |xj |αj
)−1

= τ(x)| logψ(π>θ(x))| + τ(x)|θj (x)|αj

τ (x)| logψ(θ(x))|
(∣∣logψ(π>x)

∣∣ + |xj |αj
)−1

≤ c1
(∣∣logψ(π>x)

∣∣ + |xj |αj
)−1

with c1 = maxθ∈SE
(| logψ(π>θ)| + |θj |αj )/| logψ(θ)|. Thus,

fj (yj ) ≤ c2
1

∫
〈ej 〉⊥

∏
k∈I≤;k �=j

∣∣∣∣eiukyk − 1

iyk

∣∣∣∣2(∣∣logψ(π>y)
∣∣ + |yj |αj

)−2
dλ〈ej 〉⊥(y)

= c2
1

( ∏
k∈I≤;k �=j

∫
R

∣∣∣∣eiukyk − 1

iyk

∣∣∣∣2 dyk

)

×
∫
H>

(∣∣logψ(π>y)
∣∣ + |yj |αj

)−2
dλ>(y),

where the last integral in the right-hand side has to be reduced to |yj |−2αj if H> =
{0} and otherwise is equal to∫

H>

|yj |−2αj
(∣∣logψ

((|yj |αj
)−E

π>y
)∣∣ + 1

)−2
dλ>(y)

= |yj |−2αj+αj q(π>E)
∫
H>

(∣∣logψ(π>y)
∣∣ + 1

)−2
dλ>(y) =: |yj |−2βj+1c2
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with βj = αj (1 − q(π>E)/2) + 1/2. We have thus obtained

fj (yj ) ≤ c3|yj |−2βj+1 with c3 = c2
1c2

∏
k∈I≤;k �=j

(2πuk).

Recall that |I>| ≤ 1.
(a) In case that |I>| = 1, q(π>E) > 1, and thus βj < 1. Therefore, by the above

calculation and (31),

(45) Var
(
�

(j)
δ W

(
u(j))) ≤ σ 2

Xc3

∫ ∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2|yj |−2βj+1 dyj = σ 2
Xc3Cβj

|δ|2βj .

In case that |I>| = 0, βj = αj + 1/2. If αj < 1/2, then the same bound (45) holds.
(b) If αj = 1/2, then for any Hj ∈ (0,1),∫

R

∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2fj (yj ) dyj ≤ δ2
∫
|yj |≤1

fj (yj ) dyj

+ c3

∫
|yj |>1

∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2|yj |−2Hj+1 dyj

≤ c4 max
(
δ2, |δ|2Hj

)
,

with

c4 = max
u∈[−1,1]d

∫
〈ej 〉⊥

∏
k∈I≤;k �=j

∣∣∣∣eiukyk − 1

iuk

∣∣∣∣2∣∣logψ(π≥y)
∣∣−2

dλ〈ej 〉⊥(y) + c3CHj
.

Therefore,

Var
(
�

(j)
δ W

(
u(j))) ≤ σ 2

Xc4 max
(
δ2, |δ|2Hj

)
.

(c) At last, if αj > 1/2, then βj > 1, the function fj is integrable on R and∫
R

∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2fj (yj ) dyj ≤ δ2
∫
R

fj (yj ) dyj .

It then follows that

Var
(
�

(j)
δ W

(
u(j))) ≤ c5δ

2,

with

c5 = σ 2
X sup

u∈[−1,1]d

∫
Rd

∏
k∈I≤;k �=j

∣∣∣∣eiukyk − 1

iyk

∣∣∣∣2∣∣logψ(π≥y)
∣∣−2

dy.
�
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5.2. Fractional Brownian sheets. Here, we give a complete characterization
of when W is a fractional Brownian sheet. Recall that a zero-mean Gaussian ran-
dom field (X(t))t∈Rd is a standard fractional Brownian sheet with Hurst index
(H1, . . . ,Hd) ∈ (0,1]d if

Cov
(
X(t),X(s)

) = 1

2d

d∏
i=1

(|ti |2Hi + |si |2Hi − |ti − si |2Hi
)
.

Remark that we include the degenerate case that Hurst index equals 1.
For the limit random field W , the covariance function can be factorized accord-

ing to different directions as

Cov
(
W(t),W(s)

)
= σ 2

X

(2π)|I>|
( ∏

k∈I<

Cov
(
B1/2(tk),B1/2(sk)

))( ∏
k∈I>

tksk

)
�(t, s),

with �(t, s) only depending on {tk, sk}k∈I= , given by

�(t, s) :=
∫
H≥

∣∣logψ(y)
∣∣−2 ∏

k∈I=

(eitkyk − 1)(eiskyk − 1)

2π |yk|2 dλ≥(y).

Recall CH in (31).

PROPOSITION 6. The random field W is a fractional Brownian sheet, if and
only if |I=| = 1. In this case, �(t, s) has the following expressions:

in case I= = {j}, I> = ∅,

(46) �(t, s) = ∣∣logψ(ej )
∣∣−2

Cαj+1/2 Cov
(
Bαj+1/2(tj ),Bαj+1/2(sj )

);
in case I= = {j}, I> = {k},
(47) �(t, s) =

∫
H>

∣∣logψ(y + ej )
∣∣−2

dλ>(y)CHj
Cov

(
BHj

(tj ),BHj
(sj )

)
,

with Hj = αj (1 − 1/(2αk)) + 1/2.

PROOF. We first prove the “if part.” Suppose I= = {j}. In the case I> = ∅,

�(t, s) =
∫
R

∣∣logψ(yjej )
∣∣−2 (eitj yj − 1)(eisj yj − 1)

2π |yj |2 dyj

=
∫
R

∣∣logψ
((|yj |αj

)E
ej

)∣∣−2 (eitj yj − 1)(eisj yj − 1)

2π |yj |2 dyj

=
∫
R

∣∣logψ(ej )
∣∣−2 (eitj yj − 1)(eisj yj − 1)

2π |yj |2+2αj
dyj .
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Thus, by (31), in case I= = {j}, I> = ∅, (46) follows. In the case I> �= ∅,

�(t, s) =
∫
R

∫
H>

∣∣logψ(y + yjej )
∣∣−2 (eitj yj − 1)(eisj yj − 1)

2π |yj |2 dλ>(y) dyj

=
∫
R

∫
H>

|yj |−2αj | logψ
((|yj

∣∣−αj
)E

(y + yjej )
)∣∣−2

× (eitj yj − 1)(eisj yj − 1)

2π |yj |2 dλ>(y) dyj

=
∫
H>

∣∣logψ(y + ej )
∣∣−2

dλ>(y)

∫
R

(eitj yj − 1)(eisj yj − 1)

2π |yj |2+2αj−αj q(π>E)
dyj .

That is, in case I= = {j}, I> �= ∅, for Hj = αj (1 − q(π>E)/2) + 1/2, (47) fol-
lows.

Next, we prove the “only if part.” Suppose W is a fractional Brownian sheet with
Hurst indices H1, . . . ,Hd . From Proposition 4, W is also (E′,H)-operator-scaling
with H = γ0 + q(E′) − q(E′′)/2. Then it follows that

H1

α′
1

+ · · · + Hd

α′
d

= γ0 + q
(
E′) − q

(
E′′)/2,

or equivalently

(48)
∑
k∈I≤

1

α′
k

(Hk − 1/2) + ∑
k∈I>

1

α′
k

(Hk − 1) = γ0

(
1 − 1

2

∑
k∈I>

1

αk

)
.

We consider the variance. By the assumption that W is a fractional Brownian sheet,
and the fact that W has stationary directional increments, for all j ∈ {1, . . . , d}, for
all δ ∈R,

(49) Var
(
�

(j)
δ W(u)

) = |δ|2Hj Var
(
W

(
π〈ej 〉⊥(u) + ej

))
.

Recall that |I>| ≤ 1. We first consider the case I> = ∅. In this case:

• for k ∈ I<, comparing (49) and (41) yields Hk = 1/2,
• for k ∈ I=, αk < 1/2, comparing (49) and (42) yields Hk = αk + 1/2,
• for k ∈ I=, αk = 1/2, comparing (49) and (43) yields Hk = 1,
• for k ∈ I=, αk > 1/2, comparing (49) and (44) yields Hk = 1.

Then (48) becomes ∑
k∈I=,αk>1/2

γ0

2αk

+ ∑
k∈I=,αk≤1/2

γ0 = γ0.

Since αk < 1, it then follows that |I=| = 1. Similarly, in the case I> �= ∅, say
I> = {1}, it follows from comparing the corresponding inequalities that:
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• H1 = 1,
• for k ∈ I<, Hk = 1/2,
• for k ∈ I=, Hk = αk(1 − 1/(2α1)) + 1/2.

Then (48) becomes ∑
k∈I=

γ0

(
1 − 1

2α1

)
= γ0

(
1 − 1

2α1

)
,

which implies |I=| = 1. �

REMARK 7. When the limit is a fractional Brownian sheet, in directions cor-
responding to I>, I< (if not empty) and I=, the Hurst indices equals 1, 1/2 and
some value in (1/2,1), respectively. Thus, W exhibits long-range dependence in
the directions corresponding to I≥.

As a concrete example, we prove Theorem 2.

PROOF OF THEOREM 2. Case (i): when α′
2 > α2, α2 ∈ (0,1/2). In this case,

γ0 = ρ2 = α2/α
′
2, E′′ = diag(1/α1,1/α′

2), I< = {1}, I= = {2}, β = α2/α
′
2 +

1
2( 1

α1
+ 1

α′
2
) and H1 = 1/2 are straightforward. Then, by (46), H2 = 1

2 + α2 and

σ 2 = CH2 | logψ(0,1)|−2.
Case (ii): when α′

2 > α2, α2 ∈ (1/2,1). In this case, γ0 = ρ1 = 1, E′′ = E, I> =
{2}, I= = {1}, β = 1 + 1

2α1
+ 1

α′
2

− 1
2α2

and H2 = 1 are straightforward. Then, by

(47), H1 = 1
2 + α1(1 − 1

2α2
) and σ 2 = CH1

∫
R | logψ(1, y)|−2 dy.

The calculation of cases (iii) and (iv) are similar, and thus omitted. One obtains
that σ 2 = CH1 | logψ(1,0)|−2 for case (iii) and σ 2 = CH2

∫
R | logψ(y,1)|−2 dy for

case (iv). �

5.3. Sample-path properties. We conclude this section by the following gen-
eral sample-path properties for the random field W that is a consequence of [7],
Proposition 5.3.

PROPOSITION 7. There exists a modification W ∗ of W on [0,1]d such that
for all ε > 0, almost surely there exists a finite random variable Z such that for all
s, t ∈ [0,1]d , ∣∣W ∗(t) − W ∗(s)

∣∣ ≤ Zρ(t, s)log
(
1 + ρ(s, t)−1)1/2+ε

,

with

ρ(s, t) = ∑
j∈I>

|tj − sj | +
∑
j∈I<

|tj − sj |1/2 + ∑
j∈I=

|tj − sj |Hj

where, for j ∈ I=:
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(a) Hj = αj (1 − q(π>E)/2)+ 1/2 if either |I>| = 1 or I> = ∅ and αj < 1/2,
(b) Hj can take any value in (0,1) if I> =∅ and αj = 1/2, and
(c) Hj = 1 if I> =∅ and αj > 1/2.

PROOF. Let us consider E′′′ the diagonal matrix with entries corresponding to
1 for j ∈ I>, 2 for j ∈ I< and 1/Hj for j ∈ I=. Let τE′′′ be the radial part with
respect to E′′′ according to [7], equation (9). Let us quote that since t �→ ρ(0, t)

is E′′′ homogeneous and strictly positive on Rd � {0}, following ideas of Clausel
and Vedel [13], Theorem 3.2, the function t �→ ρ(0, t)/τE′′′(t) is continuous and
strictly positive on the compact set SE′′′ . It follows that we may find C,C′ > 0
such that for all t ∈ Rd ,

CτE′′′(t) ≤ ρ(0, t) ≤ C ′τE′′′(t).

Therefore, by [7], Proposition 5.3 (with β = 0), to show Proposition 7 we prove
for t, s ∈ [0,1]d that

(50)
√
E

((
W(t) − W(s)

)2) =
√

Var
(
W(t) − W(s)

) ≤ Cρ(s, t).

For t, s ∈ [0,1]d , considering as in [26], the sequence (u(j))0≤j≤d defined by
u(0) = s and u(j+1) = u(j) + (tj − sj )ej for 0 ≤ j ≤ d −1, we get W(t)−W(s) =∑d

j=1 �
(j)
(tj−sj )W(u(j)). Hence,

√
Var

(
W(t) − W(s)

) ≤
d∑

j=1

√
Var

(
�

(j)
(tj−sj )W

(
u(j)

))
.

Now to obtain (50), it suffices to apply the bounds on the directional increments
established in Lemma 11. Observe that in the case j ∈ I=, I> = ∅, since δ =
tj − sj ∈ [−1,1], the right-hand side of (43) becomes C|δ|2Hj . The details are
omitted. The proof is thus complete. �

Let us mention that we probably could improve this result. Actually, following
[52], it is sufficient to get a similar lower bound on the variance on [ε,1]d to estab-
lish condition (C1), from which Theorem 4.2 follows, saying that the inequality is
true for ε = 0 and Z has finite moments of any order.
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