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LOTKA–VOLTERRA WITH RANDOMLY FLUCTUATING
ENVIRONMENTS OR “HOW SWITCHING BETWEEN BENEFICIAL

ENVIRONMENTS CAN MAKE SURVIVAL HARDER”1
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We consider two-dimensional Lotka–Volterra systems in a fluctuating
environment. Relying on recent results on stochastic persistence and piece-
wise deterministic Markov processes, we show that random switching be-
tween two environments that are both favorable to the same species can lead
to the extinction of this species or coexistence of the two competing species.

1. Introduction. In ecology, the principle of competitive exclusion formu-
lated by Gause [17] in 1932 and later popularized by Hardin [19], asserts that
when two species compete with each other for the same resource, the “better”
competitor will eventually exclude the other. While there are numerous evidences
(based on laboratory experiences and natural observations) supporting this princi-
ple, the observed diversity of certain communities is in apparent contradiction with
Gause’s law. A striking example is given by the phytoplankton which demonstrate
that a number of competing species can coexist despite very limited resources. As a
solution to this paradox, Hutchinson [24] suggested that sufficiently frequent vari-
ations of the environment can keep species abundances away from the equilibria
predicted by competitive exclusion. Since then, the idea that temporal fluctuations
of the environment can reverse the trend of competitive exclusion has been widely
explored in the ecology literature (see, e.g., [1, 12] and [10] for an overview and
much further references).

Our goal here is to investigate rigorously this phenomenon for a two-species
Lotka–Volterra model of competition under the assumption that the environment
(defined by the parameters of the model) fluctuates randomly between two environ-
ments that are both favorable to the same species. We will precisely describe—in
terms of the parameters—the range of possible behaviors and explain why coun-
terintuitive behaviors—including coexistence of the two species, or extinction of
the species favored by the environments—can occur.
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Throughout, we let R (resp., R+,R∗+) denote the set of real (resp., nonnegative,
positive) numbers.

An environment is a pair E = (A,B) defined by two matrices:

(1) A =
(

a b

c d

)
, B =

(
α

β

)
,

where a, b, c, d,α,β are positive numbers.
The two-species competitive Lotka–Volterra vector field associated to E is the

map FE :R2 �→R2 defined by

(2) FE(x, y) =
{
αx(1 − ax − by),

βy(1 − cx − dy).

Vector field FE induces a dynamical system on R2+ given by the autonomous dif-
ferential equation

(3) (ẋ, ẏ) = FE(x, y).

Here, x and y represent the abundances of two species (denoted the x-species
and y-species for notational convenience) and (3) describes their interaction in
environment E .

Environment E is said to be favorable to species x if

a < c and b < d.

In other words, the intraspecific competition within species x (measured by the
parameter a) is smaller than the interspecific competition effect of species x on
species y (measured by c) and the interspecific competition effect of species y on
species x is smaller that the intraspecific competition within species y.

From now on, we let Envx denote the set of environments favorable to species x.
The following result easily follows from an isocline analysis (see, e.g., [23], Chap-
ter 3.3). It can be viewed as a mathematical formulation of the competitive exclu-
sion principle.

PROPOSITION 1.1. Suppose2 E = (A,B) ∈ Envx. Then, for every (x, y) ∈
R∗+ × R+ the solution to (3) with initial condition (x, y) converges to ( 1

a
,0) as

t → ∞.

2The case E ∈ Envy is similar with (0, 1
d
) in place of ( 1

a ,0). If now c − a and d − b have opposite
signs, then there is a unique equilibrium S ∈ R∗+ × R∗+. If c − a < 0, S is a sink whose basin of
attraction is R∗+ × R∗+. If c − a > 0, S is a saddle whose stable manifold Ws(S) is the graph of a

smooth bijective increasing function R∗+ → R∗+. Orbits below Ws(S) converge to ( 1
a ,0) and orbit

above converge to (0, 1
d
).
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If one now wants to take into account temporal variations of the environment,
the autonomous system (3) should be replaced by the nonautonomous one

(4) (ẋ, ẏ) = FE(t)(x, y),

where, for each t ≥ 0, E(t) is the environment at time t . The investigation of such
dynamics began in the mid 1970s with the analysis of systems living in a peri-
odic environment (typically justified by the seasonal or daily fluctuation of certain
abiotic factors such as temperature or sunlight). In 1974, Koch [25], formaliz-
ing Hutchinson’s ideas, described a plausible mechanism—sustained by numerical
simulations—explaining how two species which could not coexist in a constant
environment can coexist when subjected to an additional periodic kill rate (like
seasonal harvesting or seasonal reduction of the population). More precisely, this
means that FE(t)(x, y) is of the form

FE(t)(x, y) = FE(x, y) − (
p(t)x, q(t)y

)
,

where E ∈ Envx and p(t), q(t) are periodic positive rates. In 1980, Cushing [13]
proves rigorously that, under suitable conditions on E,p and q , such a system may
have a locally attracting periodic orbit contained in the positive quadrant R∗+ ×R∗+.

At the same time and independently, de Mottoni and Schiaffino [14] prove
the remarkable result that, when t → E(t) is T -periodic, every solution to (4) is
asymptotic to a T -periodic orbit and construct an explicit example having a lo-
cally attracting positive periodic orbit, while the averaged system [the autonomous
system (3) obtained from (4) by temporal averaging] is favorable to the x-species.
Papers [13] and [14] are complementary. The first one relies on bifurcations theory.
The second makes a crucial use of the monotonicity properties of the Poincaré map
((x, y) �→ (x(T ), y(T ))) and has inspired a large amount of work on competitive
dynamics (see, e.g., the discussion and the references following Corollary 5.30
in [20]).

Completely different is the approach proposed by Lobry, Sciandra and Nival in
[27]. Based on classical ideas in system theory, this paper considers the question
from the point of view of what is now called a switched system and focuses on the
situation where t → E(t) is piecewise constant and assumes two possible values
E0,E1 ∈ Envx. For instance, Figure 1 pictures two phase portraits (resp., colored in
red and blue) associated to the environments

(5) E0 =
((

1 1
2 2

)
,

(
10
1

))
and E1 =

((
0.5 0.5

0.65 0.65

)
,

(
1
10

))

both favorable to species x. In accordance with Proposition 1.1, we see that all
the red (resp., blue) trajectories converge to the x-axis while a switched trajectory
like the one shown on the picture moves away from the x-axis toward the upper
left direction. This was exploited in [27] to shed light on some paradoxical effect
that had not been previously discussed in the literature: Even when E(t) ∈ Envx
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FIG. 1. An example of a switched trajectory between FE0
(red curves) and FE1

(blue curves) with
E0,E1 given by (5).

for all t ≥ 0 (which is different from the assumption that the average vector field
is induced by some E ∈ Envx) not only coexistence of species but also extinction
of species x can occur.

In the present paper, we will pursue this line of research and investigate thor-
oughly the behavior of the system obtained when the environment is no longer
periodic but switches randomly between E0 and E1 at jump times of a continuous
time Markov chain. Our motivation is twofold: First, realistic models of environ-
ment variability should undoubtedly incorporate stochastic fluctuations. Further-
more, the mathematical techniques involved for analyzing such a process are to-
tally different from the deterministic ones mentioned above and will allow to fully
characterize the long term behavior of the process in terms of quantities which can
be explicitly computed.

1.1. Model, notation and presentation of main results. From now on, we as-
sume given two environments E0,E1 ∈ Envx. For i = 0,1, environment Ei is
defined by (1) with (ai, bi, . . .) instead of (a, b, . . .). We consider the process
{(Xt , Yt )} defined by the differential equation

(6) (Ẋ, Ẏ ) = FEIt
(X,Y ),

where It ∈ {0,1} is a continuous time jump process with jump rates λ0, λ1 > 0.
That is,

P(It+s = 1 − i|It = i,Ft ) = λis + o(s),
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where Ft is the sigma field generated by {Iu, u ≤ t}.
In other words, assuming that I0 = i and (X0, Y0) = (x, y), the process

{(Xt , Yt )} follows the solution trajectory to FEi
with initial condition (x, y) for

an exponentially distributed random time, with intensity λi . Then {(Xt , Yt )} fol-
lows the solution trajectory to FE1−i

for another exponentially distributed random
time, with intensity λ1−i and so on.

For η > 0 small enough, the set

Kη = {
(x, y) ∈ R2+ : η ≤ x + y ≤ 1/η

}
is positively invariant under the dynamics induced by FE0 and FE1 . It then attracts
every solution to (6) with initial condition (x, y) ∈ R2+ \ {0,0}. Fix such η > 0 and
let

M = Kη × {0,1}.
Set Zt = (Xt , Yt , It ). Since Zt eventually lies in M [whenever (X0, Y0) 	= (0,0)],
we may assume without loss of generality that Z0 ∈ M and we let M be the state
space of the process {Zt }t≥0.

The extinction set of species y is the set

M
y
0 = {

(x, y, i) ∈ M : y = 0
}
.

Extinction set of species x, denoted Mx
0 , is defined similarly (with x = 0 instead

of y = 0) and the extinction set is defined as

M0 = Mx
0 ∪ M

y
0 .

The process {Zt } defines a homogeneous Markov process on M leaving invariant
the extinction sets Mx

0 ,M
y
0 and the interior set M \ M0.

It is easily seen that {Zt } restricted to one of the sets M
y
0 or Mx

0 is positively
recurrent. In order to describe its behavior on M \ M0, we introduce the invasion
rates of species y and x as

(7) �y =
∫

β0(1 − c0x)μ(dx,0) +
∫

β1(1 − c1x)μ(dx,1),

and

(8) �x =
∫

α0(1 − b0y)μ̂(dy,0) +
∫

α1(1 − b1y)μ̂(dy,1),

where μ (resp., μ̂) denotes the invariant probability measure3 of {Zt } on M
y
0 (resp.,

Mx
0 ).
Note that the quantity βi(1 − cix) is the (per-capita) growth rate of species y

in environment Ei in the limit y → 0. Hence, �y measures the long term effect of

3Here, M
y
0 and Mx

0 are identified with [η,1/η] × {0,1} so that μ and μ̂ are measures on R∗+ ×
{0,1}.
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species x on the growth rate of species y when this later has low density. When
�y is positive (resp., negative) species y tends to increase (resp., decrease) from
low density. Coexistence criteria based on the positivity of average growth rates go
back to Turelli [33] and have been used for a variety of deterministic [16, 21, 29]
and stochastic [5, 10, 11, 15] models. However, these criteria are seldom express-
ible in terms of the parameters of the model (average growth rates are hard to
compute) and typically provide only local information on the behavior of the pro-
cess near the boundary. Here surprisingly, �x and �y can be computed and their
signs fully characterize the behavior of the process.

Our main results can be briefly summarized as follows:

(i) The invariant measures μ, μ̂ and the invasion rates �y and �x can be explic-
itly computed in terms of the parameters Ei , λi, i = 0,1 (see Section 2).

(ii) For all u, v ∈ {+,−} there are environments E0,E1 ∈ Envx and rates λ0, λ1
such that Sign(�x) = u and Sign(�y) = v. Thus, in view of assertion (iii)
below, the assumption that both environments are favorable to species x is
not sufficient to determine the outcome of the competition.

(iii) Let (u, v) = (Sign(�x),Sign(�y)). Assume X0 > 0 and Y0 > 0. Then (u, v)

determines the long term behavior of {Zt } as follows:
(a) (u, v) = (+,−) ⇒ extinction of species y:

With probability one Yt → 0 and the empirical occupation measure of
{Zt } converges to μ (see Theorem 3.1).

(b) (u, v) = (−,+) ⇒ extinction of species x:
With probability one Xt → 0 and the empirical occupation measure of

{Zt } converges to μ̂ (see Theorem 3.3).
(c) (u, v) = (−,−) ⇒ extinction of one species:

With probability one either Xt → 0 or Yt → 0. The event {Yt → 0}
has positive probability. Furthermore, if the initial condition X0 is suffi-
ciently small or (−,+) is feasible4 for E0,E1, then the event {Xt → 0}
has positive probability (see Theorem 3.4).

(d) (u, v) = (+,+) ⇒ persistence:
There exists a unique invariant (for {Zt }) probability measure � on

M \M0 which is absolutely continuous with respect to the Lebesgue mea-
sure dxdy ⊗ (δ0 +δ1); and the empirical occupation measure of {Zt } con-
verges almost surely to �. Furthermore, for generic parameters, the law
of the process converge exponentially fast to � in total variation. (see
Theorem 4.1).

The density of � cannot be explicitly computed, still its tail behavior
[Theorem 4.1(ii)] and the topological properties of its support are well
understood (see Theorem 4.5).

4By this, we mean that there are jump rates λ′
0, λ′

1 such that the associated invasion rates verify
Sign(�′

x) = − and Sign(�′
y) = +.
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The proofs rely on recent results on stochastic persistence given in [4] built upon
previous results obtained for deterministic systems in [16, 21, 22, 29] (see also
[32] for a comprehensive introduction to the deterministic theory), stochastic dif-
ferential equations with a small diffusion term in [5], stochastic differential equa-
tions and random difference equations in [30, 31]. We also make a crucial use of
some recent results on piecewise deterministic Markov processes obtained in [2, 3]
and [7].

The paper is organized as follows. In Section 2, we compute �x and �y and de-
rive some of their main properties. Section 3 is devoted to the situation where one
invasion rate is negative and contains the results corresponding to the cases (iii),
(a), (b), (c) above. Section 4 is devoted to the situation where both invasion rates
are positive and contains the results corresponding to (iii), (d). Section 5 presents
some illustrations obtained by numerical simulation and Section 6 contains the
proofs of some propositions stated in Section 2.

2. Invasion rates. As previously explained, the signs of the invasion rates are
crucial to characterize the long term behavior of {Zt }. In this section we compute
these rates and investigate some useful properties of the maps

(λ0, λ1) �→ �x(λ0, λ1),�y(λ0, λ1)

and their zero sets.
Set pi = 1

ai
and γi = λi

αi
. Here, for notational convenience, [p0,p1] (resp.,

]p0,p1[) stands for the closed (resp., open) interval with boundary points p0,p1
even when p1 < p0, and M

y
0 is seen as a subset of R∗+ × {0,1}.

The following proposition characterizes the behavior of the process on the ex-
tinction set M

y
0 . The proof (given in Section 6) heavily relies on the fact that the

process restricted to M
y
0 , reduces to a one-dimensional ODE with two possible

regimes for which explicit computations are possible. It is similar to some results
previously obtained in [8] for linear systems.

PROPOSITION 2.1. The process {Zt = (Xt , Yt , It )} restricted to M
y
0 has a

unique invariant probability measure μ satisfying:

(i) If p0 = p1 = p

μ = δp ⊗ ν,

where ν = λ0
λ1+λ0

δ1 + λ1
λ1+λ0

δ0.
(ii) If p0 	= p1

μ(dx,1) = h1(x)1[p0,p1](x) dx,

μ(dx,0) = h0(x)1[p0,p1](x) dx,
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where

h1(x) = C
p1|x − p1|γ1−1|p0 − x|γ0

α1x1+γ0+γ1
,

h0(x) = C
p0|x − p1|γ1 |p0 − x|γ0−1

α0x1+γ0+γ1

and C (depending on p1,p0, γ1, γ0) is defined by the normalization condition∫
]p0,p1[

(
h1(x) + h0(x)

)
dx = 1.

For all x ∈]p0,p1[ define

(9) θ(x) = |x − p0|γ0−1|p1 − x|γ1−1

x1+γ0+γ1

and

(10) P(x) =
[
β1

α1
(1 − c1x)(1 − a0x) − β0

α0
(1 − c0x)(1 − a1x)

]
a1 − a0

|a1 − a0| .
Recall that the invasion rate of species y is defined [see equation (7)] as the growth
rate of species y averaged over μ. It then follows from Proposition 2.1 the follow-
ing.

COROLLARY 2.2.

(11) �y =

⎧⎪⎪⎨
⎪⎪⎩

1

λ0 + λ1

(
λ1β0(1 − c0p) + λ0β1(1 − c1p)

)
, if p0 = p1 = p,

p0p1C

∫
]p0,p1[

P(x)θ(x) dx, if p0 	= p1.

The expression for �x is similar. It suffices in equation (11) to permute αi and
βi , and to replace (ai, ci) by (di, bi).

2.1. Jointly favorable environments. For all 0 ≤ s ≤ 1, we let Es = (As,Bs)

be the environment defined by

(12) sFE1 + (1 − s)FE0 = FEs .

Then, with the notation of Section 1.1,

Bs =
(

αs

βs

)
=

(
sα1 + (1 − s)α0
sβ1 + (1 − s)β0

)

and

As =
(

as bs

cs ds

)
=

⎛
⎜⎜⎝

sα1a1 + (1 − s)α0a0

αs

sα1b1 + (1 − s)α0b0

αs
sβ1c1 + (1 − s)β0c0

βs

sβ1d1 + (1 − s)β0d0

βs

⎞
⎟⎟⎠ .



3762 M. BENAÏM AND C. LOBRY

Environment Es can be understood as the environment whose dynamics (i.e., the
dynamics induced by FEs ) is the same as the one that would result from high
frequency switching giving weight s to E1 and weight (1 − s) to E0.5

Set

(13) I = {0 < s < 1 : as > cs}
and

(14) J = {0 < s < 1 : bs > ds}.
It is easily checked that I (resp., J ) is either empty or is an open interval which

closure is contained in ]0,1[.
To get a better understanding of what I and J represent, observe that:

• If s ∈ I c ∩ J c, then Es is favorable to species x.
• If s ∈ I ∩ J , then Es is favorable to species y.
• If s ∈ I ∩ J c, then FEs has a positive sink whose basin of attraction contains the

positive quadrant (stable coexistence regime).
• If s ∈ I c ∩J , then FEs has a positive saddle whose stable manifold separates the

basins of attractions of (1/as,0) and (0,1/ds) (bi-stable regime).

We shall say that E0 and E1 are jointly favorable to species x if for all s ∈
[0,1] environment Es is favorable to species x; or, equivalently, I = J = ∅. We let
Env⊗2

x ⊂ Envx ×Envx denote the set of jointly favorable environments to species x.

REMARK 1. Set R = β0α1
α0β1

and u = sα1
αs

. Then a direct computation shows that
sβ1
βs

= u
u(1−R)+R

. Thus,

cs − as = u

(
c1

1

u(1 − R) + R
− a1

)
+ (1 − u)

(
c0

R

u(1 − R) + R
− a0

)

= Au2 + Bu + C

u(1 − R) + R

with

A = (a1 − a0)(R − 1),

B = (2a0 − c0 − a1)R + (c1 − a0),

and

C = (c0 − a0)R.

5More precisely, standard averaging or mean field approximation implies that the process
{(Xu,Yu)} with initial condition (x, y) and switching rates λ0 = st, λ1 = (1 − s)t converges in
distribution, as t → ∞, to the deterministic solution of the ODE induced by FEs

and initial condition
(x, y).
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Then

(15) I 	= ∅⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A 	= 0,

� = B2 − 4AC > 0,

0 <
−B − √

�

2A
< 1.

The condition for J 	= ∅ is obtained by replacing ai by bi and ci by di in the
definitions of A,B,C above, R being unchanged.

REMARK 2. The characterization given in Remark 1 shows that Env⊗2
x is a

semi algebraic subset of Envx × Envx.

The following proposition is proved in Section 6. It provides a simple expression
for �y in the limits of high and low frequency switching.

PROPOSITION 2.3. The map

�y : R∗+ ×R∗+ �→R,

λ0, λ1 �→ �y(λ0, λ1)

[as defined by formulae (11)] satisfies the following properties:

(i) If I = ∅, then for all λ0, λ1

�y(λ0, λ1) < 0.

(ii) For all s ∈]0,1[

lim
t→∞�y

(
ts, t (1 − s)

) = βs

(
1 − cs

as

)⎧⎪⎪⎨
⎪⎪⎩

> 0, if s ∈ I,

= 0, if s ∈ ∂I,

< 0, if s ∈]0,1[\I ,

lim
t→0

�y
(
ts, t (1 − s)

) = (1 − s)β0

(
1 − c0

a0

)
+ sβ1

(
1 − c1

a1

)
< 0;

REMARK 3. Similarly:

(i) If J = ∅, then for all λ0, λ1�x(λ0, λ1) > 0.
(ii) For all s ∈]0,1[

lim
t→∞�x

(
ts, t (1 − s)

) = αs

(
1 − bs

ds

)⎧⎪⎪⎨
⎪⎪⎩

< 0, if s ∈ J,

= 0, if s ∈ ∂J,

> 0, if s ∈]0,1[\J ,

lim
t→0

�x
(
ts, t (1 − s)

) = (1 − s)α0

(
1 − b0

d0

)
+ sα1

(
1 − b1

d1

)
> 0.
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The next result follows directly from Proposition 2.3 and Remark 3.

COROLLARY 2.4. For u, v ∈ {+,−}, let

Ru,v = {
λ0 > 0, λ1 > 0 : Sign

(
�x(λ0, λ1)

) = u,Sign
(
�y(λ0, λ1)

) = v
}
.

Then:

(i) R+− 	= ∅,
(ii) I ∩ J c 	= ∅⇒ R+,+ 	= ∅,

(iii) J ∩ I c 	= ∅⇒ R−,− 	= ∅,
(iv) I ∩ J 	=∅ ⇒ R−,+ 	=∅.

By using Proposition 2.3 combined with a beautiful argument based on second-
order stochastic dominance Malrieu and Zitt [28] recently proved the next result.
It answers a question raised in the first version of the present paper.

PROPOSITION 2.5 (Malrieu and Zitt [28]). If I =]s0, s1[ 	=∅ the set{
(s, t) ∈]0,1[×R∗+ : �y

(
ts, t (1 − s)

) = 0
}

is the graph of a continuous function

I �→R∗+, s �→ t (s)

with lims→s0 t (s) = lims→s1 t (s) = ∞. In particular, implication (iv) in Corol-
lary 2.4 is an equivalence.

Figure 2 below represents the zero set of s, t �→ �y(ts, (1 − t)s) for the envi-
ronments given in Section 5 for ρ = 3.

FIG. 2. Zero set of �y(ts, (1 − t)s) for the environments given in Section 5 and ρ = 3.
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3. Extinction. In this section, we focus on the situation where at least one
invasion rate is negative and the other nonzero. If invasion rates have different
signs, the species which rate is negative goes extinct and the other survives. If both
are negative, one goes extinct and the other survives.

The empirical occupation measure of the process {Zt } = {Xt,Yt , It } is the (ran-
dom) measure given by

�t = 1

t

∫ t

0
δZs ds.

Hence, for every Borel set A ⊂ M,�t(A) is the proportion of time spent by {Zs}
in A up to time t .

Recall that a sequence of probability measures {μn} on a metric space E (such
as M,Mi

0 or R2+) is said to converge weakly to μ (another probability measure on
E) if

∫
f dμn → ∫

f dμ for every bounded continuous function f : E �→R.
Recall that pi = 1

ai
.

THEOREM 3.1 (Extinction of species y). Assume that �y < 0,�x > 0 and
Z0 = z ∈ M \ M0. Then the following properties hold with probability one:

(a) lim supt→∞
log(Yt )

t
≤ �y.

(b) The limit set of {Xt,Yt } equals [p0,p1] × {0}.
(c) {�t } converges weakly to μ, where μ is the probability measure on M

y
0

defined in Proposition 2.1.

REMARK 4. It follows from Theorem 3.1 that the marginal empirical occupa-
tion measure of {Xt,Yt } converges to the marginal

μ(dx,0) + μ(dx,1)

=
⎧⎪⎨
⎪⎩

δp, if p0 = p1 = p,

Cθ(x)

[
p1

α1
|x − p0| + p0

α0
|p1 − x|

]
dx, if p0 	= p1

with θ given by (9) and C is a normalization constant.

COROLLARY 3.2. Suppose that E0 and E1 are jointly favorable to species x.
Then conclusions of Theorem 3.1 hold for all positive jump rates λ0, λ1.

PROOF. The proof follows from Theorem 3.1, Proposition 2.3(i) and Re-
mark 3(i). �

If E0 and E1 are not jointly favorable to species x, then (by Proposition 2.3
and Remark 3) there are jump rates such that �x < 0 or �y > 0. The following
theorems tackle the situation where �x < 0. It show that, despite the fact that
environments are favorable to the same species, this species can be the one who
loses the competition.
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THEOREM 3.3 (Extinction of species x). Assume that �x < 0,�y > 0 and
Z0 = z ∈ M \ M0. Then the following properties hold with probability one:

(a) lim supt→∞
log(Xt )

t
≤ �x.

(b) The limit set of {Xt,Yt } equals {0} × [p̂0, p̂1].
(c) {�t } converges weakly to μ̂, where p̂i = 1

di
and μ̂ is the probability measure

on Mx
0 defined analogously to μ [by permuting αi and βi , and replacing (ai, ci)

by (di, bi)].

THEOREM 3.4 (Extinction of some species). Assume that �x < 0,�y < 0 and
Z0 = z ∈ M \ M0. Let Extincty (resp., Extinctx) be the event defined by assertions
(a), (b) and (c) in Theorem 3.1 (resp., Theorem 3.3). Then

P(Extincty) + P(Extinctx) = 1 and P(Extincty) > 0.

If furthermore z is sufficiently close to Mx
0 or I ∩ J 	= ∅ then

P(Extinctx) > 0.

3.1. Proofs of Theorems 3.1, 3.3 and 3.4.

Proof of Theorem 3.1. The strategy of the proof is the following. Assumption
�x > 0 is used to show that the process eventually enter a compact set disjoint
from Mx

0 . Once in this compact set, it has a positive probability (independently
on the starting point) to follow one of the dynamics FEi

until it enters an arbitrary
small neighborhood of M

y
0 . Assumption �y < 0 is then used to prove that, starting

from this latter neighborhood, the process converges exponentially fast to M
y
0 with

positive probability. Finally, positive probability is transformed into probability
one, by application of the Markov property.

Recall that Zt = (Xt , Yt , It ). For all z ∈ M we let Pz denote the law of {Zt }t≥0
given that Z0 = z and we let Ez denote the corresponding expectation.

If E is one of the sets M,M \ M0,M \ Mx
0 or M \ M

y
0 , and h : E �→ R is a

measurable function which is either bounded from below or above, we let, for all
t ≥ 0 and z ∈ E,

(16) Pth(z) = Ez

(
h(Zt)

)
.

For 1 > ε > 0 sufficiently small, we let

Mx
0,ε = {

z = (x, y, i) ∈ M : x < ε
}

and

M
y
0,ε = {

z = (x, y, i) ∈ M : y < ε
}

denote the ε neighborhoods of the extinction sets.



LOTKA–VOLTERRA WITH RANDOMLY FLUCTUATING ENVIRONMENTS 3767

Let V x : M \ Mx
0 �→R and V y : M \ M

y
0 �→R be the maps defined by

V x(
(x, y, i)

) = − log(x) and V y(
(x, y, i)

) = log(y).

The assumptions �x > 0,�y < 0 and compactness of M0 imply the following
lemma.

LEMMA 3.5. Let �x > αx > 0 and −�y > αy > 0. Then there exist T >

0, θ > 0, ε > 0 and 0 ≤ ρ < 1 such that for all z ∈ Mh
0,ε \ Mh

0 ,h ∈ {x,y}:
(i) PT V h(z)−V h(z)

T
≤ −αh,

(ii) PT (eθV h
)(z) ≤ ρeθV h

(z).

PROOF. The proof can be deduced from Propositions 6.1 and 6.2 proved in a
more general context in [4]; but for convenience and completeness we provide a
simple direct proof. We suppose h = y. The proof for h = x is identical.

(i) For all Z0 = z /∈ M
y
0

(17) V y(Zt ) − V y(z) =
∫ t

0
H(Zs) ds,

where

H(x, y, i) = βi(1 − cix − diy).

Thus, by taking the expectation,

PT V y(z) − V y(z)

T
= 1

T

∫ T

0
PsH(z) ds =

∫
H dμz

T ,

where

μz
T (·) = 1

T

∫ T

0
Ps(z, ·).

We claim that for some T > 0 and ε > 0
∫

H dμz
T < −αy whenever z ∈ M

y
0,ε .

By continuity (in z), it suffices to show that such a bound holds true for all z ∈
M

y
0 . By Feller continuity, compactness and uniqueness of the invariant probability

measure μ on M
y
0 , every limit point of {μz

T : T > 0, z ∈ M
y
0 } equals μ. Thus,

limT →∞
∫

Hμz
T = ∫

H dμ = �y < −αy uniformly in z ∈ M
y
0 . This proves the

claim and (i).
(ii) Composing equality (17) with the map v �→ eθv and taking the expectation

leads to

PT

(
eθV y)

(z) = eθV y(z)el(θ,z),

where

l(θ, z) = log
(
Ez

(
eθ

∫ T
0 H(Zs) ds)).
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By standard properties of the log-laplace transform, the map θ �→ l(θ, z) is smooth,
convex and verifies

l(0, z) = 0,

∂l

∂θ
(0, z) = Ez

(∫ T

0
H(Zs) ds

)
= PT V y(z) − V y(z)

and

0 ≤ ∂2l

∂θ2 (θ, z) ≤ (
T ‖H‖∞

)2
,

where ‖H‖∞ = supz∈M |H(z)|. Thus, for all z ∈ M
y
0,ε \ M

y
0

l(θ, z) ≤ T θ
(−αy + ‖H‖2∞T θ/2

)
.

This proves (ii), say for θ = αy

‖H‖2∞T
and ρ = e

− α2
y

2‖H‖2∞ . �

Define, for h = x,y, the stopping times

τh,Out
ε = min

{
k ∈ N : ZkT ∈ M \ Mh

0,ε

}
and

τh,In
ε = min

{
k ∈ N : ZkT ∈ Mh

0,ε

}
.

Step 1. We first prove that there exists some constant c > 0 such that for all
z ∈ M \ Mx

0

(18) Pz

(
τ

y,In
ε/2 < ∞) ≥ c.

Set Vk = V x(ZkT ) + kαxT , k ∈ N. It follows from Lemma 3.5(i) that {V
k∧τ

x,Out
ε

} is
a nonnegative supermartingale. Thus, for all z ∈ Mx

0,ε \ Mx
0

αxTEz

(
k ∧ τ x,Out

ε

) ≤ Ez(Vk∧τ
x,Out
ε

) ≤ V0 = V x(z).

That is,

(19) Ez

(
τ x,Out
ε

) ≤ V x(z)

αxT
< ∞.

Now, (1/ai,0) is a linearly stable equilibrium for FEi
whose basin of attraction

contains R∗+ × R+ (see Proposition 1.1). Therefore, there exists k0 ∈ N such that
for all z = (x, y, i) ∈ M \ Mx

0,ε and k ≥ k0

�
Ei

kT (x, y) ∈ {
(u, v) ∈ R+ ×R+ : v < ε/2

}
.

Here, �Ei stands for the flow induced by FEi
. Thus, for all z = (x, y, i) ∈ M \Mx

0,ε

(20) Pz

(
Zk0T ∈ M

y
0,ε/2

) ≥ P(It = i for all t ≤ k0T |I0 = i) = e−λik0T ≥ c,
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where c = e−(max (λ0,λ1)k0T ). Combining (19) and (20) completes the proof of the
first step.

Step 2. Let A be the event defined as

A =
{

lim sup
t→∞

V y(Zt )

t
≤ −αy

}
.

We claim that there exists c1 > 0 such that for all z ∈ M
y
0,ε/2

(21) Pz(A) ≥ c1.

Set Wk = eθV y(ZkT ). By Lemma 3.5(ii), {W
k∧τ

y,Out
ε

} is a nonnegative supermartin-

gale. Thus, for all z ∈ M
y
0,ε/2

Ez(Wk∧τ
y,Out
ε

1
τ

y,Out
ε <∞) ≤ W0 = eθV y(z) ≤

(
ε

2

)θ

.

Hence, letting k → ∞ and using dominated convergence, leads to

εθPz

(
τ y,Out
ε < ∞) ≤ Ez(Wτ

y,Out
ε

1
τ

y,Out
ε <∞) ≤ W0 ≤

(
ε

2

)θ

.

Thus,

(22) Pz

(
τ y,Out
ε = ∞) ≥ 1 − 1

2θ
= c1 > 0.

Let Mn = ∑n
k=1(V

y(ZkT ) − PT V y(Z(k−1)T ). By the strong law of large numbers
for martingales applied to {Mk} and Lemma 3.5(i), it follows that

lim sup
k→∞

V y(ZkT )

kT
≤ −αy

on the event {τ y,Out
ε = ∞}. Let C = sup{βi |1 − cix − diy| : (x, y, i) ∈ M}. It is

easy to check that V y(ZkT +t ) − V y(ZkT ) ≤ Ct . Thus,

lim sup
t→∞

V y(Zt )

t
≤ −αy

almost surely on the event {τ y,Out
ε = ∞}. This later inequality, together with (22)

concludes the proof of step 2.
Step 3. From (18) and (21), we deduce that

(23) Pz(A) ≥ cc1

for all z ∈ M \ Mx
0 . Thus, for all z ∈ M \ Mx

0 ,

1A = lim
t→∞Pz(A|Ft ) = lim

t→∞PZt (A) ≥ cc1,

where the first equality follows from Doob’s martingale convergence theorem, and
the second from the Markov property. This completes the proof.
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Proof of Theorem 3.3. By permuting the roles of species x and y, the proof
amounts to (re)proving Theorem 3.1 under the assumption that E0 and E1 are now
favorable to species y. All the arguments given in the proof of Theorem 3.1 go
through but for the proof of (20) (where we have explicitly used the fact that E0

and E1 are both favorable to species x). In order to prove inequality (20) when
E0,E1 ∈ Envy, we proceed as follows.

By Proposition 2.5 (applied after permutation of x and y) the assumptions
E0,E1 ∈ Envy,�y < 0 and �x > 0 imply that there exists 0 < s < 1 such that
Es ∈ Envx. Thus, there exists k0 ∈ N such that for all z = (x, y, i) ∈ M \ Mx

0,ε and
k ≥ k0

(24) �
Es

kT (x, y) ∈ {
(u, v) ∈ R+ ×R+ : v < ε/2

}
,

where �Es stands for the flow induced by FEs . We claim that there exists c > 0
such that

(25) Pz

(
Zk0T ∈ M

y
0,ε/2

) ≥ c

for all z ∈ M \Mx
0,ε . Suppose to the contrary that for some sequence zn ∈ M \Mx

0,ε

lim
n→∞Pzn

(
Zk0T ∈ M

y
0,ε/2

) = 0.

By compactness of M \ Mx
0,ε , we may assume that zn → z∗ = (x∗, y∗, i∗) ∈ Mx

0,ε .
Thus, by Feller continuity (Proposition 2.1 in [7]) and Portmanteau’s theorem, it
comes that

(26) Pz∗
(
Zk0T ∈ M

y
0,ε/2

) = 0.

Now, by the support theorem (Theorem 3.4 in [7]), the deterministic orbit
{�Es

t (x∗, y∗) : t ≥ 0} lies in the topological support of the law of {Xt,Yt }. This
shows that (26) is in contradiction with (24).

Proof of Theorem 3.4. The proof is similar to the proof of Theorem 3.1, so we
only give a sketch of it. Reasoning like in Theorem 3.1, we show that there exists
c, c1 > 0 such that for all z ∈ Mh

0,ε,Pz(Extincth) ≥ c1 and for all z ∈ M \ Mx
0,ε

Pz({Zt } enters M
y
0,ε/2) ≥ c.

Thus, for all z ∈ M \ M0,Pz(Extincty) +Pz(Extinctx) ≥ c1 + cc1. Hence, by the
martingale argument used in the last step of the proof of Theorem 3.1, we get that
Pz(Extincty) + Pz(Extinctx) = 1. Since (1/ai,0) is a linearly stable equilibrium
for FEi

whose basin contains R∗+ × R∗+, Pz({Zt } enters M
y
0,ε/2) > 0 for all z ∈

M \M0 and, consequently, Pz(Extincty) > 0. If furthermore there is some s ∈ I ∩J

(0,1/ds) is a linearly stable equilibrium for FEs whose basin contains R∗+ × R∗+
and, by the same argument, Pz(Extincty) > 0.
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4. Persistence. Here, we assume that the invasion rates are positive and show
that this implies a form of “stochastic coexistence”.

THEOREM 4.1. Suppose that �x > 0,�y > 0 Then there exists a unique in-
variant probability measure (for the process {Zt }) � on M \ M0, that is, �(M \
M0) = 1. Furthermore:

(i) � is absolutely continuous with respect to the Lebesgue measure dx dy ⊗
(δ0 + δ1).

(ii) There exists θ > 0 such that∫ (
1

xθ
+ 1

yθ

)
d� < ∞.

(iii) For every initial condition z = (x, y, i) ∈ M \ M0

lim
t→∞�t = �

weakly, with probability one.
(iv) Suppose that β0α1

α0β1
	= a0c1

a1c0
or β0α1

α0β1
	= b0d1

b1d0
. Then there exist constants C,λ >

0 such that for every Borel set A ⊂ M \ M0 and every z = (x, y, i) ∈ M \ M0∣∣P(Zt ∈ A|Z0 = z) − �(A)
∣∣ ≤ C

(
1 + 1

xθ
+ 1

yθ

)
e−λt .

Theorem 4.1 has several consequences which express that, whenever the inva-
sion rates are positive, species abundances tend to stay away from the extinction
set. Recall that the ε-boundary of the extinction set is the set

M0,ε = {
z = (x, y, i) ∈ M : min(x, y) ≤ ε

}
.

Using the terminology introduced in Chesson [9], the process is called persistent
in probability if, in the long run, densities are very likely to remain bounded away
from zero. That is,

lim
ε→0

lim sup
t→∞

P(Zt ∈ M0,ε|Z0 = z) = 0

for all z ∈ M \ M0. Similarly, it is called persistent almost surely (Schreiber [30])
if the fraction of time a typical population trajectory spends near the extinction set
is very small. That is,

lim
ε→0

lim sup
t→∞

�t(M0,ε) = 0

for all z ∈ M \ M0.
By assertion (ii) of Theorem 4.1 and Markov’s inequality,

�(M0,ε) = O
(
εθ )

.

Thus, assertion (iii) implies almost sure persistence and assertion (iv) persistence
in probability.
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4.1. Proof of Theorem 4.1.

Proof of assertions (i), (ii), (iii). By Feller continuity of {Zt } and compact-
ness of M , the sequence {�t } is relatively compact (for the weak convergence)
and every limit point of {�t } is an invariant probability measure (see, e.g., [7],
Proposition 2.4 and Lemma 2.5).

Now, the assumption that �x and �y are positive, ensure that the persistence
condition given in ([4] Sections 5 and 5.2) is satisfied. Then by the persistence
Theorem 5.1 in [4] (generalizing previous results in [5] and [31]), every limit point
of {�t } is a probability over M \M0 provided Z0 = z ∈ M \M0. By Lemma 3.5(ii),
every such limit point satisfies the integrability condition (ii).

To conclude, it then suffices to show that {Zt } has a unique invariant probability
measure on M \M0, � and that � is absolutely continuous with respect to dx dy⊗
(δ0 + δ1).

We rely on Theorem 1 in [2] (see also [7], Theorem 4.4 and the discussion
following Theorem 4.5). According to this theorem, a sufficient condition ensuring
both uniqueness and absolute continuity of � is that:

(i) There exists an accessible point m ∈ R∗+ ×R∗+.
(ii) The Lie algebra generated by (FE0,FE1) has full rank at point m.

There are several equivalent formulations of accessibility (called D-approachabi-
lity in [2]). One of them (see Section 3 in [7]) is that for every neighborhood U of
m and every (x, y) ∈ R∗+ ×R∗+ there is a solution η to the differential inclusion

η̇ ∈ conv(FE0,FE1)(η),

η(0) = (x, y)

which meet U (i.e., η(t) ∈ U for some t > 0). Here, conv(FE0,FE1) stands for the
convex hull of FE0 and FE1 .

REMARK 5. Note that here, accessible points are defined as points which are
accessible from every point (x, y) ∈ R∗+ × R∗+. By invariance of the boundaries,
there is no point in R∗+ ×R∗+ which is accessible from a boundary point.

For any environment E , let (�E
t ) denote the flow induced by FE and let

γ +
E (m) = {

�E
t (m) : t ≥ 0

}
, γ −

E (m) = {
�E

t (m) : t ≤ 0
}
.

Since �y > 0, I 	= ∅ by Proposition 2.3. Choose s ∈ I . Then, point ms = (1/as,0)

is a hyperbolic saddle equilibrium for FEs [as defined by equation (12)] which
stable manifold is the x-axis and which unstable manifold, denoted Wu

ms
(FEs ), is

transverse to the x-axis at ms .



LOTKA–VOLTERRA WITH RANDOMLY FLUCTUATING ENVIRONMENTS 3773

Now, choose an arbitrary point m ∈ Wu
ms

(FEs ) ∩ R∗+ × R∗+. We claim that m

is accessible. A standard Poincaré section argument shows that there exists an
arc L transverse to Wu

ms
(FEs ) at m and a continuous maps P : ]p0 − η0,p0 +

η0[× ]0, η0[ �→ L such that for all (x, y) ∈]p0 − η0,p0 + η0[× ]0, η0[
γ +
Es

(x, y) ∩ L = {
P(x, y)

}
and limy→0 P(x, y) = m∗. On the other hand, for all x > 0, y > 0,

γ +
E0

(x, y)∩]p0 − η0,p0 + η0[× ]0, η0[ 	=∅

because E0 ∈ Envx. This proves the claim. Now there must be some m ∈
Wu

ms
(FEs ) \ {ms} at which FE0(m) and FE1(m) span R2. For otherwise Wu

ms
(FEs ) \

{ms} would be an invariant curve for the flows �E0 and �E1 implying that
ms = m0 = m1, hence a0 = a1 and I = ∅.

REMARK 6. The proof above shows that the set of accessible points has
nonempty interior. This will be used later in the proofs of Theorem 4.1(iv) and 4.5.

Proof of assertion (iii). The cornerstone of the proof is the following lemma
which shows that the process satisfies a certain Doeblin’s condition. We call a point
z0 ∈ M a Doeblin point provided there exist a neighborhood U0 of z0, positive
numbers t0, r0, c0 and a probability measure ν0 on M such that for all z ∈ U0 and
t ∈ [t0, t0 + r0]
(27) Pt(z, ·) ≥ c0ν0(·).

LEMMA 4.2. (i) There exists an accessible point m0 = (x0, y0) ∈ R∗+ × R∗+,
such that z0 = (m0,0) [or (m0,1)] is a Doeblin point.

(ii) Let ν0 be the measure associated to z0 given by (27). Let K ⊂ M \ M0 be
a compact set. There exist positive numbers tK, rK, cK such that for all z ∈ K and
t ∈ [tK, tK + rK ]

Pt(z, ·) ≥ cKν0(·).

PROOF. Let {Gk, k ∈ N} be the family of vector fields defined recursively by
G0 = {FE1 − FE0} and

Gk+1 = Gk ∪ {[G,FE0], [G,FE1] : G ∈ Gk

}
.

For m ∈R+ ×R+, let Gk(m) = {G(m) : G ∈ Gk}.
By Theorem 4.4 in [7], a sufficient condition ensuring that a point z =

(x, y, i) ∈ M is a Doeblin point is that Gk(m) spans R2 for some k. Since G1 =
{(FE1 − FE0), [FE1,FE0]}, it then suffices to find an accessible point m0 at which
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(FE1 − FE0)(m0) and [FE1,FE0](m0) are independent. Let

P(x, y) = Det
(
(FE1 − FE0)(x, y), [FE1,FE0](x, y)

)
= ∑

{i,j≥1,3≤i+j≤5}
cij x

iyj .

Since the set � of accessible points has nonempty interior (see Remark 6), either
P(m0) 	= 0 for some m0 ∈ � or all the cij are identically 0. A direct computation
(performed with the formal calculus program Macaulay2) leads to

c41 −BFH + B2L

c32 −2CFH − F 2I + BFK + 2BCL − BEL + CFL

c23 −CEH + BEI − CFI − 2EFI + 2CFK + C2L

c14 −E2I + CEK

c31 −2AFH + 2ABL

c22 BEG − CFG − CDH − AEH + BDI − AFI − 2DFI − BEJ+
CFJ + BDK + AFK + 2ACL + CDL − AEL

c13 −2DEI + 2CDK

c21 BDG − AFG − ADH + A2L

c12 −D2I + CDJ − AEJ + ADK

where

A = α1 − α0, B = α0a0 − α1a1, C = α0b0 − α1b1,

D = β1 − β0, E = β0d0 − β1d1,

F = β0c0 − β1c1, G = α0, H = −α0a0, I = −α0b0,

J = β0, K = −β0d0, L = −β0c0.

Under the assumption of Theorem 4.1 a0 	= a1 so that A and B cannot be simulta-
neously null. Thus, c41 = c31 = 0 if and only if FH = BL. That is,

β0α1

α0β1
= a0c1

a1c0
.

Similarly, c14 = c13 = 0 if and only if

β0α1

α0β1
= b0d1

b1d0
.

This proves that the conclusion of Lemma (i) holds as long as one of these two
latter equalities is not satisfied.

We now prove the second assertion. Let z0 = (m0,0) be the Doeblin point given
by (i), and let U0, t0, r0, c0, ν0 be as in the definition of such a point. Choose p
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in the support of ν0. Without loss of generality, we can assume that p ∈ K (for
otherwise it suffices to enlarge K). For all t ≥ 0 and δ > 0 let

O(t, δ) = {
z ∈ M : Pt(z,U0) > δ

}
.

By Feller continuity and Portmanteau theorem, O(t, δ) is open. Because m0 is
accessible, it follows from the support theorem (Theorem 3.4 in [7]) that

M \ M0 = ⋃
t≥0,δ>0

O(t, δ).

Thus, by compactness, there exist δ > 0 and 0 ≤ t1 ≤ · · · ≤ tm such that

K ⊂
m⋃

i=1

Vi,

where Vi = O(ti, δ). Let l ∈ {1, . . . ,m} be such that p ∈ Vl . Choose an integer
N > tm−t1

r0
and set ri = ti−t1

N
. Then τ = ti + N(t0 + ri) + Ntl is independent of i

and for all z ∈ Vi and t0 ≤ t ≤ t0 + r0

Pτ+t (z, ·) ≥
∫
U0

Pti (z, dz1)

∫
Vl

Pt0+ri

(
z1, dz′

1
) ∫

U0

Ptl

(
z′

1, dz2
) · · ·

×
∫
Vl

Pt0+ri

(
zN, dz′

N

) ∫
U0

Ptl

(
z′
N,dzN+1

)
Pt(zN+1, ·)

≥ δ
(
c0ν0(Vl)δ

)N
c0ν0(·). �

LEMMA 4.3. There exist positive numbers θ, T , C̃ and 0 < ρ < 1 such that
the map W : M \ M0 �→R+ defined by

W(x,y, i) = 1

xθ
+ 1

yθ

verifies

PnT W ≤ ρnW + C̃

for all n ≥ 1.

PROOF. By Lemma 3.5(ii), there exist 0 < ρ < 1 and θ, T > 0 such that

(28) PT W ≤ ρW + C̃,

where

C̃ = sup
z∈M\M0,ε

PT (W) − W
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is finite by continuity of W on M \ M0 and compactness of M \ M0,ε . So that by
iterating,

PnT W ≤ ρnW + C̃

n−1∑
k=1

ρk ≤ ρnW + ρ

1 − ρ
C̃.

Replacing C̃ by ρ
1−ρ

C̃ proves the result. �

To conclude the proof of assertion (iii), we then use from the classical Harris’s
ergodic theorem. Here, we rely on the following version given (an proved) in [18].

THEOREM 4.4 (Harris’s theorem). Let P be a Markov kernel on a measurable
space E assume that:

(i) There exists a map W : E �→ [0,∞[ and constants 0 < γ < 1, K̃ such that
PW ≤ γW + C̃.

(ii) For some R > 2C̃
1−γ

, there exists a probability measure ν and a constant c

such that P(x, ·) ≥ cν(·) whenever W(x) ≤ R.

Then there exists a unique invariant probability π for P and constants C ≥ 0,0 ≤
γ̃ < 1 such that for every bounded measurable map f : E �→R and all x ∈ E∣∣Pnf (x) − πf

∣∣ ≤ Cγ̃ n(
1 + W(x)

)‖f ‖∞.

To apply this result, set E = M \ M0,W(x, y, i) = 1
xθ + 1

yθ ,P = PnT , and
γ = ρn, where θ and T are given by Lemma 4.3 and n ∈ N∗ remains to be cho-

sen. Choose R > 2C̃
1−ρ

and set K = {z ∈ M \ M0 : W(z) ≤ R}. By Lemma 4.2,
Pmt(z, ·) ≥ cm

Kν0 for all t ∈ [tK, tK + rK ] and z ∈ K . Choose t ∈ [tK, tK + rK ]
such that t/T is rational, and positive integers m,n such that m/n = t/T . Thus,
PnT = Pmt = P verifies conditions (i), (ii) above of Harris’s theorem.

Let π be the invariant probability of P . For all t ≥ 0 πPtP = πPPt = πPt

showing that πPt is invariant for P . Thus, π = πPt so that π = �. Now for all
t > nT t = k(nT ) + r with k ∈N and 0 ≤ r < nT . Thus,∣∣Ptf (x) − �f

∣∣ = ∣∣PkPrf − �(Prf )
∣∣ ≤ Cγ̃ k‖f − �f ‖∞

(
1 + W(x)

)
.

This completes the proof.

4.2. The support of the invariant measure. We conclude this section with a
theorem describing certain properties of the topological support of �. Consider
again the differential inclusion induced by FE0,FE1 :

(29) η̇(t) ∈ conv(FE0,FE1)
(
η(t)

)
.

A solution to (29) with initial condition (x, y) is an absolutely continuous function
η : R �→R2 such that η(0) = (x, y) and (29) holds for almost every t ∈ R.
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Differential inclusion (29) induces a set valued dynamical system � = {�t }
defined by

�t(x, y) = {
η(t) : η is solution to (29) with initial condition η(0) = (x, y)

}
.

A set A ⊂ R2 is called strongly positively invariant under (29) if �t(A) ⊂ A for
all t ≥ 0. It is called invariant if for every point (x, y) ∈ A there exists a solution
η to (29) with initial condition (x, y) such that η(R) ⊂ A.

The omega limit set of (x, y) under � is the set

ω�(x, y) = ⋂
t≥0

�[t,∞[(x, y).

As shown in ([7], Lemma 3.9) ω�(x, y) is compact, connected, invariant and
strongly positively invariant under � .

THEOREM 4.5. Under the assumptions of Theorem 4.1, the topological sup-
port of � writes supp(�) = � × {0,1} where:

(i) � = ω�(x, y) for all (x, y) ∈ R∗+ × R∗+. In particular, � is compact con-
nected strongly positively invariant and invariant under �;

(ii) � equates the closure of its interior;
(iii) � ∩R+ × {0} = [p0,p1] × {0};
(iv) If I ∩ J 	= ∅ then � ∩ {0} ×R+ = {0} × [p̂0, p̂1];
(v) � \ {0} × [p̂0, p̂1] is contractible (hence simply connected).

PROOF. (i) Let (m, i) ∈ supp(�). By Theorem 4.1, for every neighborhood
U of m and every initial condition z = (x, y, i) ∈ M \ M0 lim inft→∞ �t(U) > 0.
This implies that m ∈ ω�(x, y) (compare to Proposition 3.17(iii) in [7]). Con-
versely, let m ∈ ω�(x, y) for some (x, y) ∈ R∗+ ×R∗+ and let U be a neighborhood
of m. Then

�
(
U × {i}) =

∫
Pz

(
Zz ∈ U × {i})�(dz) =

∫
Qz

(
U × {i})�(dz),

where Qz(·) = ∫ ∞
0 Pz(Zt ∈ ·)e−t dt . Suppose �(U × {i}) = 0. Then for some

z0 ∈ supp(�) \ M0 (recall that �(M0) = 0) Qz0(U × {i}) = 0. Thus Pz0(Zt ∈
U × {i}) = 0 for almost all t ≥ 0. On the other hand, because z0 ∈ supp(�) ⊂
ω�(x, y) there exists a solution η to (29) with initial condition (x, y) and some
nonempty interval ]t1, t2[ such that for all t ∈]t1, t2[ η(t) ∈ U . This later property
combined with the support theorem (Theorem 3.4 and Lemma 3.2 in [7]) implies
that Pz0(Zt ∈ U × {i}) > 0 for all t ∈]t1, t2[, a contradiction.

(ii) By Proposition 3.11 in [7] (or more precisely the proof of this proposition),
either � has empty interior or it equates the closure of its interior. In the proof of
Theorem 4.1, we have shown that there exists a point m in the interior of �.

(iii) Point (pi,0) lies in � as a linearly stable equilibrium of FEi
. By strong

invariance, [p0,p1] × {0} ⊂ �. On the other hand, by invariance, � ∩R+ × {0} is
compact and invariant but every compact invariant set for � contained in R+ ×{0}
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either equals [p0,p1] × {0} or contains the origin (0,0). Since the origin is an
hyperbolic linearly unstable equilibrium for FE0 and FE1 , it cannot belong to �.

(iv) If I ∩ J 	= ∅, then for any s ∈ I ∩ J FEs has a linearly stable equilibrium
ms ∈ {0} × [p̂0, p̂1] which basin of attraction contains R∗+ × R∗+. Thus, ms ∈ �

proving that � ∩ {0} × R+ is nonempty. The proof that � ∩ {0} × R+ = {0} ×
[p̂0, p̂1] is similar to the proof of assertion (iii).

(v) Since � is positively invariant under �E0 and (p0,0) is a linearly stable equi-
librium which basin contains R∗+ ×R+, � \ ({0} ×R+) is contractible to (p0,0).

�

5. Illustrations. We present some numerical simulations illustrating the re-
sults of the preceding sections. We consider the environments

(30) A0 =
(

1 1
2 2

)
, B0 =

(
1
5

)
,

and

(31) A1 =
(

3 3
4 4 + ρ

)
, B1 =

(
5
1

)
.

The simulations below are obtained with

λ0 = st, λ1 = (1 − s)t

for different values of s ∈]0,1[, t > 0 and ρ ∈ {0,1,3}. Let S(u) = u
5(1−u)+u

. Us-
ing Remark 1, it is easy to check that:

(a) I = S(]3
4 − 1

2
√

6
, 3

4 + 1
2
√

6
[),

(b) J = I for ρ = 0,
(c) J = S(]71

96 −
√

241
96 , 71

96 +
√

241
96 [⊂ I for ρ = 1,

(d) J = ∅ for ρ = 3.

The phase portraits of FE0 and FE1 are given in Figure 3 with ρ = 3.

FIG. 3. Phase portraits of FE0
and FE1

.
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FIG. 4. ρ = 3, u = 0.4, t = 100 (extinction of species y).

Figure 4 and 5 are obtained with ρ = 3 (so that J = ∅). Figure 4 with s /∈ I and
t “large” illustrates Theorems 3.1 (extinction of species y). Figure 5 with s ∈ I

illustrates Theorems 4.1 and 4.5 (persistence).

FIG. 5. ρ = 3, u = 0.75, t = 12 (persistence).
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FIG. 6. ρ = 1, u = 0.75, t = 10 (persistence).

Figures 6 and 7 are obtained with ρ = 1. Figure 6 with s ∈ I ∩ J, t = 10 il-
lustrates Theorems 4.1 and 4.5 (persistence) in case I ∩ J 	= ∅. Figure 7 with
s ∈ I ∩ J and “large” t illustrates Theorem 3.3.

FIG. 7. ρ = 1, u = 0.75, t = 100 (extinction of species x).
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FIG. 8. ρ = 0, u = 0.75, t = 1/0.15 (extinction of species x or y).

Figures 8 is obtained with ρ = 0 s ∈ I ∩ J and t conveniently chosen. It illus-
trates Theorem 3.4.

REMARK 7. The transitions from extinction of species y to extinction of
species x when the jump rate parameter t increases is reminiscent of the transi-
tion occurring with linear systems analyzed in [6] and [26].

6. Proofs of Propositions 2.1 and 2.3.

6.1. Proof of Proposition 2.1. The process {Xt,Yt , It } restricted to M
y
0 is de-

fined by Yt = 0 and the one dimensional dynamics

(32) Ẋ = αIt X(1 − aIt X).

The invariant probability measure of the chain (It ) is given by

ν = λ0

λ1 + λ0
δ1 + λ1

λ1 + λ0
δ0.

If a0 = a1 = a,Xt → 1/a = p. Thus, (Xt , It ) converges weakly to δp ⊗ ν and the
result is proved.

Suppose now that 0 < a0 < a1.
By Proposition 3.17 in [7] and Theorem 1 in [2] ( or Theorem 4.4 in [7]), there

exists a unique invariant probability measure μ on R∗+ × {0,1} for (Xt , It ) which
furthermore is supported by [p1,p0]. A recent result by [3] also proves that such
a measure has a smooth density (in the x-variable) on ]p1,p0[.
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Let � : R × {0,1} �→ R, (x, i) �→ �(x, i) be smooth in the x variable. Set
� ′(x, i) = ∂�(x,i)

∂x
, and fi(x) = αix(1 − x

pi
). The infinitesimal generator of

(x(t), It ) acts on � as follows:

L�(x,1) = 〈
f1(x),� ′(x,1)

〉 + λ1
(
�(x,0) − �(x,1)

)
,

L�(x,0) = 〈
f0(x),� ′(x,0)

〉 + λ0
(
�(x,1) − �(x,0)

)
.

Write μ(dx,1) = h1(x) dx and μ(dx,0) = h0(x) dx. Then

∑
i=0,1

∫
L�(x, i)hi(x) dx = 0.

Choose �(x, i) = g(x)+ c and �(x,1 − i) = 0 where g is an arbitrary compactly
supported smooth function and c an arbitrary constant. Then an easy integration
by part leads to the differential equation

(33)

{
λ0h0(x) − λ1h1(x) = −(f0h0)

′(x),

λ0h0(x) − λ1h1(x) = (f1h1)
′(x)

and the condition

(34)
∫ p0

p1

λ0h0(x) − λ1h1(x) dx = 0.

The maps

h1(x) = C
p1(x − p1)

γ1−1(p0 − x)γ0

α1x1+γ1+γ0
,(35)

h0(x) = C
p0(x − p1)

γ1(p0 − x)γ0−1

α0x1+γ1+γ0
(36)

are solutions, where C is a normalization constant given by∫ p0

p1

h0(x) + h1(x) dx = 1.

Note that h1 and h0 satisfy the equalities∫ p0

p1

h0(x) dx = λ1

λ0 + λ1
,

∫ p0

p1

h1(x) dx = λ0

λ0 + λ1
.

This completes the proof of Proposition 2.1.
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6.2. Proof of Proposition 2.3. (i) We assume that I = ∅. If p0 = p1 then �y <

0. Suppose that a0 < a1 (i.e., p0 > p1) (the proof is similar for p0 < p1). Let
ps = 1

as
with as being given in the definition of As . The function s �→ ps maps

]0,1[ homeomorphically onto ]p0,p1[ and by definition of Es

sα1(1 − a1ps) + (1 − s)α0(1 − a0ps) = 0.

Thus, (1 − a1ps) = − (1−s)α0
sα1

(1 − a0ps). Hence,

P(ps) = (1 − a0ps)

α1s
βs(1 − csps) = βs

α1s
(1 − a0/as)(1 − cs/as).

This proves that P(x) ≤ 0 for all x ∈]p0,p1[. Since P is a nonzero polynomial of
degree 2, P(x) < 0 for all, but possibly one, points in ]p0,p1[. Thus, �y < 0.

(ii) If a0 = a1 the result is obvious. Thus, we can assume (without loss of
generality) that a0 < a1. Fix s ∈]0,1[ and let for all t > 0 νt

1 (resp., y νt
0)

be the probability measure defined as νt
1(dx) = 1

s
ht

1(x)1]p1,p0[(x) dx (νt
0(dx) =

1
1−s

ht
0(x)1]p1,p0[(x) dx) where ht

1 (resp., ht
0) is the map defined by equation (35)

[resp., (36)] with λ0 = st and λ1 = (1 − s)t . We shall prove that

(37) νt
i ⇒ δps as t → ∞

and

(38) νt
i ⇒ δpi

as t → 0,

where ⇒ denotes the weak convergence. The result to be proved follows.
Let us prove (37). For all x ∈]p0,p1[, νt

i (dx) = Ct
i e

tW(x)[x|x − pi |]−1 ×
1]p1,p0[(x) dx where Ct

i is a normalization constant and

W(x) = s

α0
log(p0 − x) + 1 − s

α1
log(x − p1) − αs

α0α1
log(x).

We claim that

(39) argmax
]p0,p1[

W = ps = 1

as

.

Indeed, set Q(x) = W ′(x)(α0α1x(x − p0)(p1 − x)). It is easy to verify that

Q(x) = sα1(p1 − x)x − (1 − s)α0(x − p0)x − αs(p0 − x)(x − p1).

Thus, Q(p0) < 0,Q(p1) > 0 and since Q is a second degree polynomial, it suf-
fices to show that Q(ps) = 0 to conclude that ps is the global minimum of W . By
definition of ps ,

sα1(1 − a1ps) + (1 − s)α0(1 − a0ps) = 0.

Thus,

(1 − s)α0(ps − p0) = sα1a1

a0
(p1 − ps).
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Plugging this equality in the expression of Q(ps) leads to Q(ps) = 0. This proves
the claim. Now, from equation (39) and the Laplace principle we deduce (37).

We now turn to the proof of (38). It suffices to show that νt
i converges in prob-

ability to pi , meaning that νt
i {x : |x − pi | ≥ ε} → 0 as t → 0. This easily follows

from the shape of ht
i and elementary estimates.
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