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ARBITRAGE, HEDGING AND UTILITY MAXIMIZATION USING
SEMI-STATIC TRADING STRATEGIES WITH

AMERICAN OPTIONS1

BY ERHAN BAYRAKTAR AND ZHOU ZHOU

University of Michigan and University of Minnesota

We consider a financial market where stocks are available for dynamic
trading, and European and American options are available for static trading
(semi-static trading strategies). We assume that the American options are in-
finitely divisible, and can only be bought but not sold. In the first part of the
paper, we work within the framework without model ambiguity. We first get
the fundamental theorem of asset pricing (FTAP). Using the FTAP, we get the
dualities for the hedging prices of European and American options. Based on
the hedging dualities, we also get the duality for the utility maximization. In
the second part of the paper, we consider the market which admits nondomi-
nated model uncertainty. We first establish the hedging result, and then using
the hedging duality we further get the FTAP. Due to the technical difficulty
stemming from the nondominancy of the probability measure set, we use a
discretization technique and apply the minimax theorem.

1. Introduction. The arbitrage, hedging and utility maximization problems
have been extensively studied in the field of financial mathematics. We refer to
[9, 13] and the references therein. Recently, there has been a lot of work on these
three topics where stocks are traded dynamically and (European-style) options are
traded statically (semi-static strategies, see e.g., [12]). For example, [1, 6, 7, 12]
analyze the arbitrage and/or super-hedging in the setup of model free or model un-
certainty, [19] investigates optimal hedging of barrier options under a given model,
and [22] studies the utility maximization within a given model. It is worth noting
that most of the literature related to semi-static strategies only consider European-
style options as to be liquid options, and there are only a few papers incorporating
American-style options for static trading. In particular, [8] studies the complete-
ness (in some L2 sense) of the market where American put options of all the strike
prices are available for semi-static trading, and [11] studies the no arbitrage condi-
tions on the price function of American put options where European and American
put options are available.
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In this paper, we consider a financial market in discrete time consisting of
stocks, (path-dependent) European options, and (path-dependent) American op-
tions (we also refer to these as hedging options), where the stocks are traded dy-
namically and European and American options are traded statically. We assume
that the American options are infinitely divisible (i.e., we can break each unit
American option into pieces, and exercise each piece separately), and we can only
buy but not sell American options.

In the first part of this paper, we consider the market without model ambiguity.
We obtain the fundamental theorem of asset pricing (FTAP) under the notion of
strict no arbitrage that is slightly stronger than no arbitrage in the usual sense.
Then by the FTAP result, we further get dualities of the sub-hedging prices of
European and American options. Using the duality result, we then study the utility
maximization problem and get the duality of the value function.

In the second part of the paper, we work within the framework of model uncer-
tainty. We use the minimax theorem to prove the sub-hedging results for European
and American options. From the sub-hedging dualities, we further get the FTAP
result. Due to either the nondominancy of the set of martingale measures, or the
discontinuity of the payoff of the American options, we can not directly apply the
minimax theorem in some steps of the proof. To overcome these technical diffi-
culties, we first discretize the path space, and then apply the minimax theorem
within the discretized space, and finally take a limit. A key assumption in this
part is the weak compactness of some set of martingale measures with distribution
constraints. This assumption is satisfied if we consider all the physical measures
on a compact space, or if the liquid European options can compactify the set of
martingale measures (see e.g., [1, 6]).

It is crucial to assume the infinite divisibility of the American options just like
the stocks and European options. From a financial point of view, it is often the case
that we can do strictly better when we break one unit of the American options into
pieces and exercise each piece separately. In Section 2, we provide a motivating
example in which without the divisibility assumption of the American option the
no arbitrage condition holds yet there is no equivalent martingale measure (EMM)
that prices the hedging options correctly. Moreover, we see in this example that the
super-hedging price of the European option is not equal to the supremum of the
expectation over all the EMMs which price the hedging options correctly. Math-
ematically, the infinite divisibility leads to the convexity and closedness of some
related sets of random variables, which enables us either to apply the separating
hyperplane argument to obtain the existence of an EMM that prices the options
correctly in the case without model ambiguity, or to apply minimax theorem to get
the sub-hedging duality in the case of model uncertainty.

The rest of the paper is organized as follows. In the next section, we will provide
a motivating example. In Section 3, we shall introduce the setup and the main
results of FTAP, sub-hedging, and utility maximization duality when there is no
model ambiguity. We give the proof of these results in Section 4. In Section 5,
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Graph 1 Graph 2

FIG. 1. A motivating example.

we state the FTAP and sub-hedging results when the market admits nondominated
model uncertainty. Finally in Section 6, we demonstrate the proof of the model
uncertainty version of the FTAP and sub-hedging results.

2. A motivating example. In this section, we shall look at an example of
super-hedging of a European option using the stock and the American option. This
example will motivate us to consider the divisibility of American options.

Consider a simple model given by Graph 1 in Figure 1. The stock prices
S = (St )t=0,1,2, payoffs of the American option h = (ht )t=0,1,2, and payoffs of
the European option ψ are indicated by the numbers in the circles, squares with
straight corners and squares with rounded corners, respectively. Let (�,B(�)) be
the path space indicated by Graph 1, and let (Ft )t=0,1,2 be the filtration generated
by S. Let P be a probability measure that is supported on �. Hence, any EMM
would be characterized by the pair (p, q) shown in Graph 1 with 0 < p,q < 1/2.

We assume that the American option h can only be bought at time t = 0 with
price h̄ = 0. Then in order to avoid arbitrage involving stock S and American
option h, we expect that the set

Q :=
{
Q is an EMM : sup

τ∈T
EQhτ ≤ 0

}
is not empty, where T represents the set of stopping times. Equivalently, to avoid
arbitrage, the set

A :=
{
(p, q) ∈

(
0,

1

2

)
×

(
0,

1

2

)
:
(

1

2

[
(3p) ∨ 1

]

+ 1

2

[
(10q − 3) ∨ (−2)

]) ∨ (−1) ≤ 0
}

should be nonempty. In Graph 2 above, A is indicated by the shaded area, which
shows that A �= ∅.
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Now consider the super-hedging price π̄(ψ) of the European option ψ using
semi-static trading strategies. That is,

π̄(ψ) := inf
{
x : ∃(H, c, τ ) ∈ H×R+ × T , s.t. x + H · S + chτ ≥ ψ,P-a.s.

}
,

where H is the set of adapted processes, and H · S = ∑1
t=0 Ht(St+1 − St ). One

may expect that the super-hedging duality would be given by

π̄(ψ) = sup
Q∈Q

EQψ.

By calculation,

sup
Q∈Q

EQψ = sup
(p,q)∈A

(
3

4
p + 5q − 5

4

)
=

(
3

4
p + 5q − 5

4

)∣∣∣∣
( 1

3 , 1
5 )

= 0.

On the other hand, it can be shown that

π̄(ψ) = inf
τ∈T inf

c∈R+
inf{x : ∃H ∈ H, s.t. x + H · S ≥ ψ − chτ }

= inf
τ∈T inf

c∈R+
sup
Q∈M

EQ[ψ − chτ ]

= 1

8
,

where M is the set of EMMs. Here, we use the classical result of super-hedging
for the second line, and the value in the third line can be calculated by brute force
since we only have five stopping times.2 Therefore, the super hedging price is
strictly bigger than the sup over the EMMs Q ∈ Q, that is,

π̄(ψ) > sup
Q∈Q

EQψ.

As a consequence, if we add ψ into the market, and assume that we can only sell ψ

at t = 0 with price ψ = 1/16 (> 0 = supQ∈QEQψ), then the market would admit
no arbitrage, yet there is no Q ∈ Q, such that EQ[ψ] ≥ ψ .

However, observe that ψ = 1
2(hτ12 + h2), where

τ12 =
{

1, S1 = 6,

2, S1 = 2.

2For example, when

τ =
{

2, S1 = 6,

1, S1 = 2,

then

inf
c∈R+

sup
Q∈M

EQ[ψ − chτ ] = inf
c≥0

sup
0<p,q< 1

2

[(
3

4
− 3

2
c

)
p + 5q − 5

4
+ c

]
= 13

8
.
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This suggests that if we assume that h is infinitely divisible, that is, we can break
one unit of h into pieces, and exercise each piece separately, then we can show
that the super-hedging price of ψ is supQ∈QEQψ = 0. Now if we add ψ into the
market with selling price ψ < 0, then we can find Q ∈ Q, such that EQψ > ψ .

3. Setup and main results without model ambiguity. In this section, we
first describe the setup of our financial model (without model uncertainty). In par-
ticular, as suggested by the example in the last section, we shall assume that the
American options are divisible. Then we shall provide the main results, including
Theorem 3.1 for FTAP, Theorem 3.2 for sub-hedging and Theorem 3.3 for utility
maximization.

3.1. Setup. Let (�,F, (Ft )t=0,1,...,T ,P) be a filtered probability space, where
F is assumed to be separable, and T ∈ N represents the time horizon in discrete
time. Let S = (St )t=0,...,T be an adapted process taking values in Rd which repre-
sents the stock price process. Let f i, gj : � �→R be FT -measurable, representing
the payoffs of European options, i = 1, . . . ,L and j = 1, . . . ,M . We assume that
we can buy and sell each f i at time t = 0 at price f̄ i , and we can only buy but
not sell each gj at time t = 0 with price ḡj . Let hk = (hk

t )t=0,...,T be an adapted
process, representing the payoff process of an American option, k = 1, . . . ,N . We
assume that we can only buy but not sell each hk at time t = 0 with price h̄k . De-
note f = (f 1, . . . , f L) and f̄ = (f̄ 1, . . . , f̄ L), and similarly for g, ḡ, h and h̄. For
simplicity, we assume that g and h are bounded.

REMARK 3.1. Here, g may represent the European options whose trade is
quoted with bid-ask spreads. This is without loss of generality, since for any Eu-
ropean option g with bid price g and ask price g, we can treat the option as two
European options g1 = −g and g2 = g which can only be bought at price −g and
g, respectively. As for the American options h, we restrict ourself to only buy h.
This is because if we sell American options, we will confront the risk of not know-
ing when the American options will be exercised. Moreover, if American options
are sold, we need to consider nonanticipating trading strategies, and the problems
will become much more complicated (see, e.g., [2, 4, 5]).

DEFINITION 3.1. An adapted process η = (ηt )t=0,...,T is said to be a liquidat-
ing strategy, if ηt ≥ 0 for t = 0, . . . , T , and

(3.1)
T∑

t=1

ηt = 1, P-a.s.

Denote T as the set of all liquidating strategies.
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REMARK 3.2. Let us also mention the related concept of a randomized
stopping time, which is a random variable γ on the enlarged probability space
(� × [0,1],F ⊗ B,P× λ), such that {γ = t} ∈ Ft ⊗ B for t = 0, . . . , T , where B
is the Borel sigma algebra on [0,1] and λ is the Lebesgue measure. Let T′ be the
set of randomized stopping times. For γ ∈ T′, its ω-distribution ξ = (ξt )t=0,...,T

defined by

ξt (·) = λ
{
v : γ (·, v) = t

}
, t = 0, . . . , T ,

is a member in T. There is one-to-one correspondence between T and T′ (up to a
increasing rearrangement). We refer to [16] for these facts.

In spite of the one-to-one correspondence, the paths of a liquidating strategy
and a randomized stopping time are quite different. A randomized stopping time is
the strategy of flipping a coin to decide which stopping time to use (so the whole
unit is liquidated only once), while a liquidating strategy is an exercising flow (so
different parts of the whole unit are liquidated at different times).

Because of this difference, Theorem 3.1 (FTAP), Theorem 3.2 (hedging dual-
ity) and Theorem 3.3 (utility maximization duality) will not hold if we replace
liquidating strategies with randomized stopping times. (For randomized stopping
times, one may still consider FTAP and hedging on the enlarged probability space,
and the results would be different.) For instance, in the example from last section,
unlike liquidating strategies, we cannot merely use h to super-hedge ψ (on the en-
larged probability space) via any randomized stopping time. See Remark 3.5 for
more explanation for the case of utility maximization.

For each η ∈ T and American option hk , denote η(hk) as the payoff of hk by
using the liquidating strategy η. That is,

η
(
hk) =

T∑
t=0

hk
t ηt .

For μ = (μ1, . . . ,μN) ∈ TN , denote

μ(h) = (
μ1(

h1)
, . . . ,μN (

hN ))
.

Let H be the set of adapted processes which represents the dynamical trading
strategies for stocks. Let (H · S)t := ∑T −1

t=0 Ht(St+1 − St ), and denote H · S for
(H · S)T for short. For a semi-static trading strategy (H,a, b, c,μ) ∈ H × RL ×
RM+ × RN+ × TN , the terminal value of the portfolio starting from initial wealth 0
is given by

�ḡ,h̄(H,a, b, c,μ) := H · S + a(f − f̄ ) + b(g − ḡ) + c
(
μ(h) − h̄

)
,

where f − f̄ := (f 1 − f̄ 1, . . . , f L − f̄ L), and af represents the inner product of
a and f , and similarly for the other related terms. For (H,a) ∈ H ×RL, we shall
also use the notation

�(H,a) := H · S + a(f − f̄ )
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for short. From now on, when we write out the quintuple such as (H,a, b, c,μ),
they are by default in H×RL ×RM+ ×RN+ ×TN unless we specifically point out,
and similarly for (H,a).

3.2. Fundamental theorem of asset pricing.

DEFINITION 3.2. We say no arbitrage (NA) holds w.r.t. ḡ and h̄, if for any
(H,a, b, c,μ),

�ḡ,h̄(H,a, b, c,μ) ≥ 0 P-a.s. =⇒ �ḡ,h̄(H,a, b, c,μ) = 0 P-a.s.

We say strict no arbitrage (SNA) holds, if there exists εg ∈ (0,∞)M and εh ∈
(0,∞)N (from now on we shall use εg, εh > 0 for short), such that NA holds w.r.t.
ḡ − εg and h̄ − εh.

Define

Q :=
{
Q is an EMM : EQf = f̄ ,EQg < ḡ, sup

τ∈T
EQhτ < h̄

}
,

where T is the set of stopping times, supτ∈T EQhτ := (supτ∈T EQh1
τ , . . . ,

supτ∈T EQhN
τ ), and the expectation and equality/inequality above are understood

in a component-wise sense.

THEOREM 3.1 (FTAP). SNA ⇐⇒ Q �=∅.

3.3. Sub-hedging. Let ψ : � �→ R be FT -measurable, which represents the
payoff of a European option. Let φ = (φt )t=0,...,T be an adapted process, repre-
senting the payoff process of an American option. For simplicity, we assume that
ψ and φ are bounded. Define the sub-hedging price of ψ

πeu(ψ) := sup
{
x : ∃(H,a, b, c,μ), s.t. �ḡ,h̄(H,a, b, c,μ) + ψ ≥ x

}
,

and the sub-hedging price of φ

πam(φ) := sup
{
x : ∃(H,a, b, c,μ) and η ∈ T, s.t.

�ḡ,h̄(H,a, b, c,μ) + η(φ) ≥ x
}
.

THEOREM 3.2 (Sub-hedging). Let SNA hold. Then

(3.2) πeu(ψ) = inf
Q∈QEQψ,

and

(3.3) πam(φ) = inf
Q∈Q sup

τ∈T
EQφτ .
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Moreover, there exists (H ∗, a∗, b∗, c∗,μ∗) such that

�ḡ,h̄

(
H ∗, a∗, b∗, c∗,μ∗) + ψ ≥ πeu(ψ),

and there exists (H ∗∗, a∗∗, b∗∗, c∗∗,μ∗∗) and η∗∗ ∈ T such that

(3.4) �ḡ,h̄

(
H ∗∗, a∗∗, b∗∗, c∗∗,μ∗∗) + η∗∗(φ) ≥ πam(φ).

REMARK 3.3. In fact, from the proof of Theorem 3.2 we have that

πam(φ) = sup
η∈T

inf
Q∈QEQ

[
η(φ)

] = inf
Q∈Q sup

η∈T
EQ

[
η(φ)

] = inf
Q∈Q sup

τ∈T
EQφτ .

However, the order of “sup” and “inf” in the duality (3.3) cannot be exchanged.
That is, it is possible that

inf
Q∈Q sup

τ∈T
EQφτ > sup

τ∈T
inf
Q∈QEQφτ .

We refer to [2], Example 2.1, for such an example. In fact, the right-hand side
above is the sub-hedging price of φ (even with model uncertainty) if φ is not
divisible and only S and f are used for hedging. We refer to [2], Theorem 2.1,
regarding this point.

3.4. Utility maximization. Let U : (0,∞) �→ R be a utility function, which is
strictly increasing, strictly concave, continuously differentiable, and satisfies the
Inada condition

lim
x→0+U ′(x) = ∞ and lim

x→∞U ′(x) = 0.

Consider the utility maximization problem

u(x) := sup
(H,a,b,c,μ)∈A(x)

EP

[
U

(
�ḡ,h̄(H,a, b, c,μ)

)]
, x > 0,

where

A(x) := {
(H,a, b, c,μ) : x + �ḡ,h̄(H,a, b, c,μ) > 0,P-a.s.

}
, x > 0.

REMARK 3.4. Henderson and Hobson [18] also studies the utility maximiza-
tion problem involving the liquidation of a given amount of infinitely divisible
American options. Unlike the problem in [18], here we also incorporate the stocks
and European options, and we need to decide how many shares of American op-
tions we need to buy at time t = 0. Another difference is that [18] focuses on the
primary problem of the utility maximization, while we shall mainly find the duality
of the value function u.
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Let us define

V (y) := sup
x>0

[
U(x) − xy

]
, y > 0,

I := −V ′ = (
U ′)−1

,

and for x, y > 0,

X (x) := {
X adapted : X0 = x,XT = x + �ḡ,h̄(H,a, b, c,μ) ≥ 0

for some (H,a, b, c,μ)
}
,

Y(y) := {
Y ≥ 0 adapted : Y0 = y,

((
1 + (H · S)t

)
Yt

)
t=0,...,T is

a P-super-martingale for any H ∈ H satisfying 1 + H · S ≥ 0,

EPXT YT ≤ xy for any X ∈X (x)
}
,

C(x) := {
p ∈ L0+ : p ≤ XT for some X ∈ X (x)

}
,(3.5)

D(y) := {
q ∈ L0+ : q ≤ YT for some Y ∈ Y(y)

}
,(3.6)

where L0+ is the set of random variables that are nonnegative P-a.s. Then we have
that

u(x) = sup
p∈C(x)

EP

[
U(p)

]
, x > 0.

Let us also define

v(y) := inf
q∈D(y)

EP

[
V (q)

]
, y > 0.

Below is the main result of utility maximization.

THEOREM 3.3 (Utility maximization duality). Let SNA hold. Then we have
the following:

(i) u(x) < ∞ for any x > 0, and there exists y0 > 0 such that v(y) < ∞ for
any y > y0. Moreover, u and v are conjugate:

v(y) = sup
x>0

[
u(x) − xy

]
, y > 0 and u(x) = inf

y>0

[
v(y) + xy

]
, x > 0.

Furthermore, u is continuous differentiable on (0,∞), v is strictly convex on {v <

∞}, and

lim
x→0+u′(x) = ∞ and lim

y→∞v′(y) = 0.

(ii) If v(y) < ∞, then there exists a unique q̂(y) ∈ D(y) that is optimal for
v(y).
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(iii) If U has asymptotic elasticity strictly less than 1, that is,

AE(U) := lim sup
x→∞

xU ′(x)

U(x)
< 1.

Then we have the following:

(a) v(y) < ∞ for any y > 0, and v is continuously differentiable on (0,∞). u′
and v′ are strictly decreasing, and satisfy

lim
x→∞u′(x) = 0 and lim

y→0+v′(y) = −∞.

Besides, |AE(u)| ≤ |AE(U)| < 1.
(b) There exists a unique p̂(x) ∈ C(x) that is optimal for u(x). If q̂(y) ∈ D(y)

is optimal for v(y), where y = u′(x), then

p̂(x) = I
(
q̂(y)

)
,

and

EP

[
p̂(x)q̂(y)

] = xy.

(c) We have that

u′(x) = EP

[
p̂(x)U ′(p̂(x))

x

]
and v′(y) = EP

[
q̂(y)V ′(q̂(y))

y

]
.

REMARK 3.5. We cannot replace the liquidating strategies with randomized
stopping times since the two types of strategies yield to very different optimization
problems:

EPU
(
η(φ)

) = EP

[
U

(
T∑

t=0

φtηt

)]
, if η is a liquidating strategy,

EP×λU(φγ ) = EP

[
T∑

t=0

U(φt )ηt

]
, if η is the ω-distribution of γ ∈ T′.

4. Proof of Theorems 3.1–3.3.

PROOF OF THEOREM 3.1. “⇐=”: Let Q ∈ Q. Then there exists εg, εh > 0,
such that

EQg < ḡ − εg and sup
τ∈T

EQhτ < h̄ − εh.

Thanks to the one-to-one correspondence between T and T′, we have that for any
Q ∈ Q,

sup
η∈T

EQ

[
η
(
hi)] = sup

τ∈T
EQhi

τ , i = 1, . . . ,N,
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see, for example, [16], Proposition 1.5. Then it is easy to see that NA w.r.t. ḡ −
εg, h̄ − εh holds, and thus SNA holds.

“=⇒”: We shall proceed in three steps.

Step 1. Define

I := {
�(H,a) − W : for some (H,a) and W ∈ L0+

} ∩L∞,

where L∞ is the set of bounded random variables. We shall show that I is sequen-
tially closed under weak star topology in this step.

Let (Xn)∞n=1 ⊂ I such that

Xn = �
(
Hn,an) − Wn w∗−→ X ∈ L∞,

where the notation “
w∗−→” represents the convergence under the weak star topol-

ogy. Then there exist (Ym)∞m=1 which are convex combinations of (Xn)n, such that
Ym → X a.s. (see, e.g., the argument regarding passing from weak star conver-
gence to almost sure convergence below Definition 3.1 on page 35 in [21]). Since
I is convex, (Ym)m ⊂ I . By [7], Theorem 2.2, I is closed under P-a.s. conver-
gence. This implies X ∈ I .

Step 2. By SNA, there exist εg, εh > 0, such that NA holds w.r.t. ḡ − εg and
h̄ − εh. Then NA also holds w.r.t. ḡ − εg/2 and h̄ − εh/2. Define

J := {
�

ḡ− 1
2 εg,h̄− 1

2 εh
(H,a, b, c,μ) − W : for some

(H,a, b, c,μ) and W ∈ L0+
} ∩L∞.

We shall show that J is sequentially closed under weak star topology.
Let (Xn)∞n=1 ⊂ J such that

Xn = �
ḡ− 1

2 εg,h̄− 1
2 εh

(
Hn,an, bn, cn,μn) − Wn w∗−→ X ∈ L∞.

We consider the following two cases:

lim inf
n→∞

∥∥(
bn, cn)∥∥ < ∞ and lim inf

n→∞
∥∥(

bn, cn)∥∥ = ∞,

where ‖ · ‖ represents the sup norm.

Case (i) lim infn→∞ ‖(bn, cn)‖ < ∞. Without loss of generality, assume that
(bn, cn) → (b, c) ∈ RM ×RN . As F is separable, L1 is also separable. Then by the
sequential Banach–Alaoglu theorem, there exists μ = (μ0, . . . ,μT ) ∈ TN , such

that up to a subsequence μn
t

w∗−→ μt for t = 0, . . . , T . Since h is bounded,

μn(h)
w∗−→ μ(h).
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Then we have that

bn

(
g −

(
ḡ − 1

2
εg

))
+ cn

(
μn(h) −

(
h̄ − 1

2
εh

))

w∗−→ b

(
g −

(
ḡ − 1

2
εg

))
+ c

(
μ(h) −

(
h̄ − 1

2
εh

))
.

Hence,

�
(
Hn,an) − Wn w∗−→ X − b

(
g −

(
ḡ − 1

2
εg

))
− c

(
μ(h) −

(
h̄ − 1

2
εh

))
∈ L∞.

Then by Step 1, there exists (H,a) and W ∈ L0+ such that

�(H,a) − W = X − b

(
g −

(
ḡ − 1

2
εg

))
− c

(
μ(h) −

(
h̄ − 1

2
εh

))
.

Therefore,

X = �
ḡ− 1

2 εg,h̄− 1
2 εh

(H,a, b, c,μ) − W ∈ J .

Case (ii) lim infn→∞ ‖(bn, cn)‖ = ∞. Without loss of generality, assume that
dn := ‖(bn, cn)‖ > 0 for any n. We have that

Xn

dn
= �

ḡ− 1
2 εg,h̄− 1

2 εh

(
Hn

dn
,
an

dn
,
bn

dn
,
cn

dn
,μn

)
− Wn

dn

w∗−→ 0.

Then by Case (i), there exist (H ′, a′, b′, c′,μ′) and W ′ ∈ L0+, such that

�
ḡ− 1

2 εg,h̄− 1
2 εh

(
H ′, a′, b′, c′,μ′) − W ′ = 0.

Moreover, b′, c′ ≥ 0 and at least one component of (b′, c′) equals 1. Hence,

�ḡ−εg,h̄−εh

(
H ′, a′, b′, c′,μ′) > 0, P-a.s.,

which contradicts NA w.r.t. ḡ − εg and h̄ − εh.

Step 3. Since J is convex and sequentially closed under the weak star topology,
it is weak star closed by [10], Corollary 5.12.7. Moreover, because NA holds w.r.t.
ḡ−εg/2 and h̄−εh/2, J ∩L∞+ = {0}. Then by the abstract version of Theorem 1.1
in [21] as formulated below Remark 3.1 in the same paper, there exists q ∈ L1

such that q is a.s. strictly positive, and EP[qX] ≤ 0 for any X ∈ J . Now define the
measure Q by the Radon–Nikodym derivative dQ/dP := q/EP[q]. Then it can be
seen that Q is an EMM satisfying

EQf = f̄ , EQg ≤ ḡ − εg, and sup
τ∈T

EQhτ ≤ h̄ − εh.

In particular, Q �= ∅. �
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PROOF OF THEOREM 3.2. We shall only prove the results for φ. The case for
ψ is similar, and in fact simpler. Let us first prove (3.3). It can be shown that

πam(φ) ≤ sup
η∈T

inf
Q∈QEQ

[
η(φ)

] ≤ inf
Q∈Q sup

η∈T
EQ

[
η(φ)

] = inf
Q∈Q sup

τ∈T
EQφτ .

If πam(φ) < infQ∈Q supτ∈T EQφτ , then take φ̄ ∈ R such that

(4.1) πam(φ) < φ̄ < inf
Q∈Q sup

τ∈T
EQφτ .

Now we add φ into the market, and we assume that φ can only be bought at time
t = 0 with price φ̄. Then since φ̄ > πam(φ), SNA also holds when φ is involved
(i.e., when the market consists of S traded dynamically, and f,g,h,φ traded stati-
cally). As a consequence, there exists Q ∈ Q such that supτ∈T EQφτ < φ̄ by The-
orem 3.1, which contradicts (4.1). Therefore, we have that (3.3) holds. Similarly,
we can show that (3.2) holds.

Next, let us prove the existence of an optimal sub-hedging strategy for φ. It can
be shown that

πam(φ) = sup
b∈RM+ ,c∈RN+

sup
μ∈TN ,η∈T

sup
{
x : ∃(H,a), s.t.�ḡ,h̄(H,a, b, c,μ) + η(φ) ≥ x

}

= sup
b∈RM+ ,c∈RN+

sup
μ∈TN ,η∈T

inf
Q∈Qf

EQ

[
b(g − ḡ) + c

(
μ(h) − h̄

) + η(φ)
]
,

where

Qf := {Q is an EMM : EQf = f̄ },
and we apply the super-hedging theorem on page 828 in [7] for the second line.
We shall proceed in three steps to show the existence of (H ∗∗, a∗∗, b∗∗, c∗∗,μ∗∗)
and η∗∗ for (3.4).

Step 1. Consider the map F :RM+ ×RN+ �→R,

F(b, c) := sup
μ∈TN ,η∈T

inf
Q∈Qf

EQ

[
b(g − ḡ) + c

(
μ(h) − h̄

) + η(φ)
]
.

For (b, c), (b′, c′) ∈ RM+ ×RN+ ,∣∣F(b, c) − F
(
b′, c′)∣∣

≤ sup
μ∈TN ,η∈T

∣∣∣ inf
Q∈Qf

EQ

[
b(g − ḡ) + c

(
μ(h) − h̄

) + η(φ)
]

− inf
Q∈Qf

EQ

[
b′(g − ḡ) + c′(μ(h) − h̄

) + η(φ)
]∣∣∣

≤ sup
μ∈TN ,η∈T

sup
Q∈Qf

∣∣EQ

[
b(g − ḡ) + c

(
μ(h) − h̄

) + η(φ)
]
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−EQ

[
b′(g − ḡ) + c′(μ(h) − h̄

) + η(φ)
]∣∣

≤ sup
μ∈TN ,η∈T

sup
Q∈Qf

EQ

[∣∣b − b′∣∣|g − ḡ| + ∣∣c − c′∣∣∣∣μ(h) − h̄
∣∣]

≤ K(M + N)
∥∥(b, c) − (

b′, c′)∥∥,
where |b − b′| := (|b1 − b′1|, . . . , |bM − b′M |) and similar for the other related
terms, and K > 0 is a constant such that∥∥g(·) − ḡ

∥∥,∥∥ht (·) − h̄
∥∥,∥∥φt(·)

∥∥ ≤ K, ∀(t,ω) ∈ {0, . . . , T } × �.

Hence, F is continuous.
Step 2. Now take Q ∈ Q ⊂ Qf . Let

ε := min
1≤i≤M

{
ḡi −EQgi} ∧ min

1≤i≤N

{
h̄i − sup

τ∈T
EQhi

τ

}
> 0.

Then

sup
b∈RM+ ,c∈RN+

F(b, c) ≥ F(0,0) ≥ −K > −2K ≥ sup
‖(b,c)‖> 3K

ε

F (b, c).

As a consequence,

sup
b∈RM+ ,c∈RN+

F(b, c) = sup
‖(b,c)‖≤ 3K

ε

F (b, c).

By the continuity of F from Step 1, there exists (b∗∗, c∗∗) ∈RM+ ×RN+ , such that

πam(φ) = sup
b∈RM+ ,c∈RN+

F(b, c) = F
(
b∗∗, c∗∗)

= sup
μ∈TN ,η∈T

inf
Q∈Qf

EQ

[
b∗∗(g − ḡ) + c∗∗(

μ(h) − h̄
) + η(φ)

]
.

Step 3. For any Q ∈ Qf , the map

(μ,η) �→ EQ

[
b∗∗(g − ḡ) + c∗∗(

μ(h) − h̄
) + η(φ)

]
= EP

[
dQ

dP

(
b∗∗(g − ḡ) + c∗∗(

μ(h) − h̄
) + η(φ)

)]

is continuous under the Baxter–Chacon topology.3 Then the map

(μ,η) �→ inf
Q∈Qf

EQ

[
b∗∗(g − ḡ) + c∗∗(

μ(h) − h̄
) + η(φ)

]

3The sequence {ηn = (ηn
0 , . . . , ηn

T ) : n ∈N} ⊂ T is said to converge to η ∈ T in the Baxter–Chacon

topology, if for any Y ∈ L1,

lim
n→∞EP

[
Yηn

t

] = EP

[
Yηn

t

]
, t = 0, . . . , T .

That is, the Baxter–Chacon topology is induced by the weak-star topology. We refer this to, for
example, [16].
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is upper semi-continuous under the Baxter–Chacon topology. By [16], Theo-
rem 1.1, the set TN × T is compact under the Baxter–Chacon topology. Hence,
there exists (μ∗∗, η∗∗) ∈ TN ×T, such that

πam(φ) = sup
μ∈TN ,η∈T

inf
Q∈Qf

EQ

[
b∗∗(g − ḡ) + c∗∗(

μ(h) − h̄
) + η(φ)

]

= inf
Q∈Qf

EQ

[
b∗∗(g − ḡ) + c∗∗(

μ∗∗(h) − h̄
) + η∗∗(φ)

]
= sup

{
x : ∃(H,a), s.t. �ḡ,h̄

(
H,a, b∗∗, c∗∗,μ∗∗) + η∗∗(φ) ≥ x

}
,

where we apply the super-hedging theorem in [7] for the third line. By the same
theorem in [7], there exists (H ∗∗, a∗∗) such that

�ḡ,h̄

(
H ∗∗, a∗∗, b∗∗, c∗∗,μ∗∗) + η∗∗(φ) ≥ πam(φ). �

PROOF OF THEOREM 3.3. Recall C(x) defined in (3.5) and D(x) defined in
(3.6), and denote C := C(1) and D := D(1). By Theorems 3.1 and 3.2 in [20], it
suffices to show that C and D have the following properties:

(1) C(1) and cD(1) are convex, solid and closed in the topology of convergence
in measure.

(2) For p ∈ L0+,

p ∈ C ⇐⇒ EP[pq] ≤ 1 for ∀q ∈D.

For q ∈ L0+,

q ∈ D ⇐⇒ EP[pq] ≤ 1 for ∀p ∈ C.

(3) C is bounded in probability and contains the identity function 1.

It is easy to see that C and D are convex and solid, EP[pq] ≤ 1 for any p ∈ C and
q ∈ D, and C contains the function 1. We shall prove the rest of the properties in
three parts.

Part 1. We shall show C is bounded in probability. Take Q ∈ Q. Then dQ/dP ∈
D, and

sup
p∈C

EP

[
dQ

dP
p

]
= sup

p∈C
EQp ≤ 1.

Therefore, we have that

sup
p∈C

P(p > C) = sup
p∈C

P

(
dQ

dP
p >

dQ

dP
C

)

= sup
p∈C

[
P

(
dQ

dP
p >

dQ

dP
C,

dQ

dP
≤ 1√

C

)
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+ P

(
dQ

dP
p >

dQ

dP
C,

dQ

dP
>

1√
C

)]

≤ P

(
dQ

dP
≤ 1√

C

)
+ sup

p∈C
P

(
dQ

dP
p >

√
C

)

≤ P

(
dQ

dP
≤ 1√

C

)
+ 1√

C

→ 0, C → ∞.

Part 2. We shall show that for p ∈ L0+, if EP[pq] ≤ 1 for any q ∈D, then p ∈ C,
and as a consequence, C is closed under the topology of convergence in measure.
Take p ∈ L0+ satisfying EP[pq] ≤ 1 for any q ∈ D. It is easy to see that for any
Q ∈ Q, the process (dQ

dP
|Ft )t=0,...,T is in Y(1). Therefore,

sup
Q∈Q

EQp = sup
Q∈Q

EP

[
dQ

dP
p

]
≤ 1.

Thanks to Theorem 3.2, there exists (H,a, b, c,μ) such that

1 + �ḡ,h̄(H,a, b, c,μ) ≥ p,

which implies that p ∈ C.

Now let (pn)∞n=1 ⊂ C such that pn P−→ p. Then without loss of generality, we
assume that pn → p a.s. For any q ∈ D, we have that

EP[pq] ≤ lim inf
n→∞ EP

[
pnq

] ≤ 1.

This implies p ∈ C.
Part 3. We shall show that for q ∈ L0+, if EP[pq] ≤ 1 for any p ∈ C, then q ∈ D,

and as a consequence, D is closed under the topology of convergence in measure.
Take q ∈ L0+ satisfying EP[pq] ≤ 1 for any p ∈ C. Since

C ⊃ {
p′ ∈ L0+ : p′ ≤ 1 + H · S, for some H ∈ H

}
,

by [20], Proposition 3.1, there exists a nonnegative adapted process Y ′ =
(Y ′

t )t=0,...,T , such that q ≤ Y ′
T , and for any H ∈ H with 1 + H · S ≥ 0,

((1 + (H · S)t )Y
′
t )t=0,...,T is a P-super-martingale. Now define

Yt =
{
Y ′

t , t = 0, . . . , T − 1,

q, t = T .

Then it can be shown that Y = (Yt )t=0,...,T ∈ Y(1). Since q = YT , q ∈ D. Similar
to the argument in Part 2, we can show that D is closed under the topology of
convergence in measure. �
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5. Arbitrage and hedging under model uncertainty. In this section, we ex-
tend the FTAP and sub-hedging results to the case of nondominated model uncer-
tainty. The main difficulty for the proof lies in the lack of a dominating measure.
The main idea for the proof is to discretize the path space and also to apply the
minimax theorem. Theorems 5.1 and 5.2 are the main results of the model uncer-
tainty case.

The notation in this and the next sections will be independent of the previous
sections, yet we will borrow some concepts from Section 3 when there is no con-
fusion. We follow the set-up in [7]. Let � be a complete separable metric space
and T ∈ N be the time horizon. Let �t := �t be the t-fold Cartesian product for
t = 1, . . . , T (with convention �0 is a singleton). We denote by Ft the univer-
sal completion of B(�t). For each t ∈ {0, . . . , T − 1} and ω ∈ �t , we are given a
nonempty convex set Pt (ω) ⊂ P(�1) of probability measures. Here, Pt represents
the possible models for the t th period, given state ω at time t . We assume that for
each t , the graph of Pt is analytic, which ensures that Pt admits a universally mea-
surable selector, that is, a universally measurable kernel Pt : �t → P(�t) such
that Pt(ω) ∈ Pt (ω) for all ω ∈ �t . Let

(5.1) P := {
P0 ⊗ . . . ⊗ PT −1 : Pt(·) ∈ Pt (·), t = 0, . . . , T − 1

}
,

where each Pt is a universally measurable selector of Pt , and

P0 ⊗ . . . ⊗ PT −1(A)

=
∫
�1

. . .

∫
�1

1A(ω1, . . . ,ωT )PT −1(ω1, . . . ,ωT −1;dωT ) · · ·P0(dω1),

A ∈ �T .

The concepts S,f, g,h, f̄ , ḡ, h̄,T ,T,H,�ḡ,h̄(H,a, b, c,μ),�(H,a) (and re-
lated notation) are defined similar to those in Section 3, except that here we require
S,h and η ∈ T to be (B(�t))t -adapted, f and g to be B(�T )-measurable, τ ∈ T
to be an (B(�t ))t -stopping time, H ∈ H to be (Ft )t -adapted, and the summation
in (3.1) holds for every ω ∈ �T . We assume that g is bounded from below.

REMARK 5.1. In order to apply the results in [3] (the results in [3] is based
on those in [7]), we require that H ∈ H to be (Ft )t -adapted, while S,h and η ∈ T

to be (B(�t))t -adapted, and f and g to be B(�T )-measurable. In [7], such dif-
ferent kinds of measurability is chosen for H, S and f because of the measurable
selection argument.

Recall the definition of (strict) no arbitrage in the quasi-surely sense (see, e.g.,
[3, 7]).
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DEFINITION 5.1. We say NA(P) holds w.r.t. ḡ and h̄, if for any (H,a, b,

c,μ),

if �ḡ,h̄(H,a, b, c,μ) ≥ 0 P-q.s.,4 then �ḡ,h̄(H,a, b, c,μ) = 0 P-q.s.

We say SNA(P) (w.r.t. ḡ and h̄), if there exists εg, εh > 0, such that NA(P) holds
w.r.t. ḡ − εg and h̄ − εh.

Given B(�T )-measurable European option ψ and (B(�t))t -adapted American
option φ, let us define the sub-hedging prices:

πeu(ψ) := sup
{
x : ∃(H,a, b, c,μ), s.t. �ḡ,h̄(H,a, b, c,μ) + ψ ≥ x,P-q.s.

}
,

and

πam(φ) := sup
{
x : ∃(H,a, b, c,μ) and η ∈ T,

s.t. �ḡ,h̄(H,a, b, c,μ) + η(φ) ≥ x,P-q.s.
}
.

For g̃ ∈ RM and h̃ ∈ RN , define the set of martingale measures (MMs)

(5.2) Q
g̃,h̃

:=
{
Q≪ P :5Q is an MM, EQf = f̄ ,EQg ≤ g̃, sup

τ∈T
EQhτ ≤ h̃

}
.

We will make the following standing assumption.

ASSUMPTION 5.1. (1) The set

Qḡ := {Q ≪ P : Q is an MM,EQf = f̄ ,EQg ≤ ḡ}
is weakly compact.

(2) g is bounded from below, and ψ is bounded and continuous.
(3) For k = 1, . . . ,N and t = 1, . . . , T , hk

t and φt are bounded and uniformly
continuous.

REMARK 5.2. The weak compactness of Qḡ is used twice in the proof of the
sub-hedging duality [see (6.4) and (6.5) in the next section]. In particular, in (6.4)
to show the exchangeability of the sup over Qḡ and the inf over TN+1, we use
a discretization argument, in which the weak compactness guarantees the desired
limiting property (see Step 3 in the proof of Lemma 6.1). It can also be found in,
for example, [14, 15], that the weak compactness of related probability measure
set plays a crucial role in the limiting argument. In (6.5), we directly apply the
minimax theorem which requires the weak compactness of Qḡ .

4We say a property holds P-q.s., if the property holds P -a.s. for any P ∈P .
5We say Q≪P , if ∃P ∈P , such that Q � P .



SEMI-STATIC TRADING USING AMERICAN OPTIONS 3549

REMARK 5.3. What we have in mind is a tree/lattice model in which the
location of the nodes are unknown but are believed to reside in certain intervals.
(This is a discrete-time version of the volatility uncertainty.) It is natural in fact
to assume in these tree models that the stock price is bounded, and the set of
martingale measures with “bounded volatility” is weakly compact. In general, Qḡ

is tight by the martingale property (when S is the canonical process). Therefore,
our assumption is actually just weak closedness.

EXAMPLE 5.1. If P is the set of probability measures on a compact set
�̃ ⊂ RT , S is the canonical process on �̃, f is continuous, and g is lower semi-
continuous, then Qḡ is weakly compact. In this case, we are in the flavor of the
model independent setup; see, for example, [1]. That is, every scenario is possible
within the path space �̃. Note that the notion of arbitrage in this case is different
from that in [1].

EXAMPLE 5.2. Similar to [1], the existence of a European option with a
super-linear grow condition (w.r.t. stock) may compactify Qḡ . To be more spe-
cific, let � be a Banach space, and P be the set of probability measures on some
closed subset of �T . Let g : � �→R be lower semi-continuous satisfying

(5.3) lim inf‖α‖→∞
g(α)

‖α‖ ∈ (0,∞].

We assume that one of the European options g takes the form g, that is, g1(ω) =
g(ωt ′) for some t ′ ∈ {1, . . . , T }. Assume that for l = 1, . . . , d , t = 1, . . . , T ,
i = 1, . . . ,L, and j = 2, . . . ,M , Sl

t and f i are continuous, and gj is lower semi-
continuous, and

(5.4) lim‖ω‖→∞
Sl

t (ω)

γ (ω)
= lim‖ω‖→∞

f i(ω)

γ (ω)
= lim‖ω‖→∞

gj (ω)−

γ (ω)
= 0,

where γ (ω) := ∑T
t=1 g(ωt ), and gj −

is the negative part of gj . Using an argument
similar to the proof of Theorem 1.3 on page 9 in [1], we can show that Qḡ is
weakly compact. Indeed, (5.3) implies that Qḡ is tight, and thus pre-compact, and
(5.4) is some boundedness condition for S,f, g when ‖ω‖ → ∞, which enables
us to apply the properties of weak convergence to show the closedness of Qḡ .

Below are the main results for sub-hedging and FTAP under model uncertainty.

THEOREM 5.1 (Sub-hedging). Assume SNA(P) holds when only S,f and g

are involved. Then under Assumption 5.1 we have that

πeu(ψ) = inf
Q∈Qḡ,h̄

EQψ,
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and

(5.5) πam(φ) = inf
Q∈Qḡ,h̄

sup
τ∈T

EQφτ ,

where if Qḡ,h̄ = ∅, then πeu(ψ) = πam(φ) = ∞. Moreover, if Qḡ,h̄ �=∅, then there
exist Qeu,Qam ∈ Qḡ,h̄ such that

πeu(ψ) = EQeuψ and πam(φ) = sup
τ∈T

EQamφτ .

THEOREM 5.2 (FTAP). Let Assumption 5.1 hold. Then SNA(P) holds, if and
only if there exist g̃ ∈ RM and h̃ ∈ RN with g̃ < ḡ and h̃ < h̄, such that for any
P ∈ P , there exists Q ∈ Q

g̃,h̃
dominating P .

REMARK 5.4. If SNA(P) holds, then SNA(P) also holds when only S,f and
g are involved, and Qḡ,h̄ �= ∅ by Theorem 5.2.

6. Proof of Theorems 5.1 and 5.2.

LEMMA 6.1. Let R be a convex, weakly compact set of probability measures
on (�T ,B(�T )). Let Assumption 5.1(3) hold. Then

sup
μk∈T

k=1,...,N

inf
R∈RER

[
N∑

k=1

μk(hk)] = inf
R∈R sup

μk∈T
k=1,...,N

ER

[
N∑

k=1

μk(hk)]

(6.1)

= inf
R∈R sup

τ k∈T
k=1,...,N

ER

[
N∑

k=1

hk
τk

]
.

Moreover, the infimum in the third term above is attained.

PROOF. For μk ∈ T, μk(hk) may not be (semi-)continuous. Therefore, we
cannot directly apply the minimax theorem for the first equality in (6.1). To over-
come the difficulties coming from both the discontinuity of μk(hk) and the non-
dominancy of R, we will discretize �T first and then take a limit.

To this end, for n = 1,2, . . . , let (An
i )i∈N ⊂ B(�) be a countable partition of �,

such that the diameter of each An
i is less than 1/n. Take αn

i ∈ An
i for i ∈ N, and

define the map θn : � �→ �,

θn(β) = αn
j if β ∈ An

j for some j.

Let ξn : �T �→ �T , such that each component of ξn(ω) is given by(
ξn(ω)

)
t = θn(ωt ), t = 1, . . . , T , ω = (ω1, . . . ,ωT ) ∈ �T .

[Then ξn can also be treated as an (B(�t))t -adapted process.] Let

Rn := {
R ◦ (

ξn)−1 : R ∈ R
}
.

We shall proceed in four steps to show (6.1).
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Step 1. We show that

(6.2) lim sup
n→∞

sup
μk∈T

k=1,...,N

inf
R∈Rn

ER

[
N∑

k=1

μk(hk)] ≤ sup
μk∈T

k=1,...,N

inf
R∈RER

[
N∑

k=1

μk(hk)].

Fix ε > 0. Let (μ1
n, . . . ,μ

N
n ) ∈ TN be such that

inf
R∈Rn

ER

[
N∑

k=1

μk
n

(
hk)] ≥ sup

μk∈T
k=1,...,N

inf
R∈Rn

ER

[
N∑

k=1

μk(hk)] − ε.

Define (μ̃1
n, . . . , μ̃

N
n ) by (μ̃k

n)t = (μk
n)t ◦ ξn, for t = 0, . . . , T and k = 1, . . . ,N .

Then it is easy to show that (μ̃1
n, . . . , μ̃

N
n ) ∈ TN . For any R̃ ∈ R, let R̃n := R̃ ◦

(ξn)−1 ∈ Rn. Then

E
R̃n

[
N∑

k=1

μk
n

(
hk)] = E

R̃

[
N∑

k=1

T∑
t=0

((
μk

n

)
t ◦ ξn)(

hk
t ◦ ξn)]

= E
R̃

[
N∑

k=1

T∑
t=0

(
μ̃k

n

)
t

(
hk

t ◦ ξn)]
.

Therefore,∣∣∣∣∣ER̃n

[
N∑

k=1

μk
n

(
hk)] −E

R̃

[
N∑

k=1

μ̃k
n

(
hk)]∣∣∣∣∣ ≤ E

R̃

[
N∑

k=1

T∑
t=0

(
μ̃k

n

)
t

∣∣(hk
t ◦ ξ

) − hk
t

∣∣]

≤ Nρ(1/n),

where ρ is the modulus of continuity for h, that is, for t = 1, . . . , T and k =
1, . . . ,N ,∣∣hk

t

(
ω1)−hk

t

(
ω2)∣∣ ≤ ρ

(
max

s=1,...,t

∣∣ω1
s −ω2

s

∣∣), ωi = (
ωi

1, . . . ,ω
i
T

) ∈ �T , i = 1,2.

Hence, we have that

sup
μk∈T

k=1,...,N

inf
R∈Rn

ER

[
N∑

k=1

μk(hk)] − ε ≤ inf
R∈Rn

ER

[
N∑

k=1

μk
n

(
hk)]

≤ E
R̃n

[
N∑

k=1

μk
n

(
hk)]

≤ E
R̃

[
N∑

k=1

μ̃k
n

(
hk)] + Nρ(1/n).
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By the arbitrariness of R̃, we have that

sup
μk∈T

k=1,...,N

inf
R∈Rn

ER

[
N∑

k=1

μk(hk)] − ε ≤ inf
R∈RER

[
N∑

k=1

μ̃k
n

(
hk)] + Nρ(1/n).

Taking limsup on both sides above and then sending ε ↘ 0, we have (6.2) holds.
Step 2. We show that

sup
μk∈T

k=1,...,N

inf
R∈Rn

ER

[
N∑

k=1

μk(hk)] = inf
R∈Rn

sup
μk∈T

k=1,...,N

ER

[
N∑

k=1

μk(hk)].

As the domain of (ξn) is countable, there exists a probability measure R∗ on the
domain of (ξn) that dominates Rn. Then we have that

sup
μk∈T

k=1,...,N

inf
R∈Rn

ER

[
N∑

k=1

μk(hk)] = sup
μk∈T

k=1,...,N

inf
R∈Rn

ER∗

[
dR

dR∗
N∑

k=1

μk(hk)]

= inf
R∈Rn

sup
μk∈T

k=1,...,N

ER∗

[
dR

dR∗
N∑

k=1

μk(hk)]

= inf
R∈Rn

sup
μk∈T

k=1,...,N

ER

[
N∑

k=1

μk(hk)],

where we apply the minimax theorem (see, e.g., [23], Corollary 2) for the second
equality, and use the fact that T is compact and the map

(
μ1, . . . ,μN ) �→ ER∗

[
dR

dR∗
N∑

k=1

μk(hk)]

is continuous under the Baxter–Chacon topology (see, e.g., [16]) w.r.t. R∗.
Step 3. We show that

(6.3) inf
R∈R sup

τ k∈T
k=1,...,N

ER

[
N∑

k=1

hk
τk

]
≤ lim inf

n→∞ inf
R∈Rn

sup
τ k∈T

k=1,...,N

ER

[
N∑

k=1

hk
τk

]
.

By extracting a subsequence for the lower limit, we assume without loss of gener-
ality that the sequence {infR∈Rn sup τ k∈T

k=1,...,N

ER[∑N
k=1 hk

τk ]} converges. Fix ε > 0.

Take Rn ∈ Rn such that

sup
τ k∈T

k=1,...,N

ERn

[
N∑

k=1

hk
τk

]
≤ inf

R∈Rn

sup
τ k∈T

k=1,...,N

ER

[
N∑

k=1

hk
τk

]
+ ε.
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Let R̃n ∈ R be such that Rn = R̃n ◦ (ξn)−1. As R is weakly compact, there exists
R̃ ∈ R such that up to a subsequence R̃n

w−→ R̃. Then for any bounded uniformly
continuous function f ∈ B(�T ),

|ERnf−E
R̃
f| ≤ |ERnf−E

R̃n
f| + |E

R̃n
f−E

R̃
f|

= ∣∣E
R̃n

(
f ◦ ξn) −E

R̃n
f
∣∣ + |E

R̃n
f−E

R̃
f|

≤ E
R̃n

∣∣(f ◦ ξn) − f
∣∣ + |E

R̃n
f−E

R̃
f|

≤ ρf(1/n) + |E
R̃n
f−E

R̃
f|

→ 0, n → ∞,

where ρf is the modulus of continuity of f. Hence, Rn
w−→ R̃. Since the map

R �→ sup
τ k∈T

ER

[
hk

τk

]
is lower semi-continuous under weak topology (see, e.g., [17], Theorem 1.1), the
map

R �→
N∑

k=1

sup
τ k∈T

ER

[
hk

τk

] = sup
τ k∈T

k=1,...,N

ER

[
N∑

k=1

hk
τk

]

is also lower semi-continuous. Therefore,

lim
n→∞ inf

R∈Rn

sup
τ k∈T

k=1,...,N

ER

[
N∑

k=1

hk
τk

]
+ ε ≥ lim inf

n→∞ sup
τ k∈T

k=1,...,N

ERn

[
N∑

k=1

hk
τk

]

≥ sup
τ k∈T

k=1,...,N

E
R̃

[
N∑

k=1

hk
τk

]

≥ inf
R∈R sup

τ k∈T
k=1,...,N

ER

[
N∑

k=1

hk
τk

]
.

Letting ε ↘ 0, we have that (6.3) holds.
Step 4. By steps 1–3, we have that

sup
μk∈T

k=1,...,N

inf
R∈RER

[
N∑

k=1

μk(hk)] ≤ inf
R∈R sup

μk∈T
k=1,...,N

ER

[
N∑

k=1

μk(hk)]

= inf
R∈R sup

τ k∈T
k=1,...,N

ER

[
N∑

k=1

hk
τk

]



3554 E. BAYRAKTAR AND Z. ZHOU

≤ lim inf
n→∞ inf

R∈Rn

sup
τ k∈T

k=1,...,N

ER

[
N∑

k=1

hk
τk

]

= lim inf
n→∞ inf

R∈Rn

sup
μk∈T

k=1,...,N

ER

[
N∑

k=1

μk(hk)]

= lim inf
n→∞ sup

μk∈T
k=1,...,N

inf
R∈Rn

ER

[
N∑

k=1

μk(hk)]

≤ lim sup
n→∞

sup
μk∈T

k=1,...,N

inf
R∈Rn

ER

[
N∑

k=1

μk(hk)]

≤ sup
μk∈T

k=1,...,N

inf
R∈RER

[
N∑

k=1

μk(hk)],

where the second and the fourth (in)equalities follows from [16], Proposition 1.5.
Therefore, (6.1) follows.

Finally, since the map

R �→ sup
τ k∈T

k=1,...,N

ER

[
N∑

k=1

hk
τk

]

is lower semi-continuous, and R is weakly compact, there exists R∗ ∈ R that at-
tains the infimum of the third term in (6.1). �

PROOF OF THEOREM 5.1. We will only prove the conclusions for American
option φ (the case for European option ψ is similar, and in fact slightly easier).

We have that

πam(φ) = sup
c∈RN+

sup
μ∈TN ,η∈T

sup
{
x ∈ R : ∃(H,a, b), s.t. �ḡ,h̄(H,a, b, c,μ)

+ η(φ) ≥ x,P-q.s.
}

(6.4)
= sup

c∈RN+
sup

μ∈TN ,η∈T
inf

Q∈Qḡ

EQ

[
c
(
μ(h) − h̄

) + η(φ)
]

= sup
c∈RN+

inf
Q∈Qḡ

sup
τ∈T ,τ k∈T
k=1,...,N

EQ

[
N∑

k=1

ck(hk
τk − h̄k) + φτ

]
,
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where we apply [3], Theorem 2.1(b), for the second equality, and Lemma 6.1 for
the third equality. [Note that this is where we use the assumption that SNA(P)

holds when only S,f and g are involved.]
Now the map

c �→ sup
τ∈T ,τ k∈T
k=1,...,N

EQ

[
N∑

k=1

ck(hk
τk − h̄k) + φτ

]
,

is linear, and the map

Q �→ sup
τ∈T ,τ k∈T
k=1,...,N

EQ

[
N∑

k=1

ck(hk
τk − h̄k) + φτ

]
,

is lower semi-continuous (see step 3 in the proof of Lemma 6.1) and convex.
Thanks to the weak compactness of Qḡ , we can apply the minimax theorem (see,
e.g., [23], Corollary 2) for (6.4) and get that

πam(φ) = inf
Q∈Qḡ

sup
c∈RN+

sup
τ∈T ,τ k∈T
k=1,...,N

EQ

[
N∑

k=1

ck(hk
τk − h̄k) + φτ

]

= inf
Q∈Qḡ,h̄

sup
c∈RN+

sup
τ∈T ,τ k∈T
k=1,...,N

EQ

[
N∑

k=1

ck(hk
τk − h̄k) + φτ

]

= inf
Q∈Qḡ,h̄

sup
τ∈T

EQ[φτ ].

Finally, we have that Qḡ,h̄ is weakly compact, which implies the last state-
ment of Theorem 5.1 by Lemma 6.1. Indeed, for (Qn)n∈N ⊂ Qḡ,h̄ ⊂ Qḡ , since
Qḡ is weakly compact by Assumption 5.1(1), there exist Q ∈ Qḡ and (Qni

)i∈N ⊂
(Qn)n∈N, such that Qni

w−→ Q. By Assumption 5.1(3) and for example, [17], Theo-
rem 1.1, the map R �→ supτ∈T ER[hk

τ ] is lower semi-continuous for k = 1, . . . ,N .
Therefore,

EQ

[
hk

τ

] ≤ lim inf
i→∞ EQni

[
hk

τ

] ≤ h̄k, k = 1, . . . ,N.

Hence, Q ∈ Qḡ,h̄. �

PROOF OF THEOREM 5.2. Sufficiency. Assume that there exist g̃ < ḡ and h̃ <

h̄, such that for any P ∈ P , there exists Q ∈ Q
g̃,h̃

dominating P . Then it is easy to

show that NA(P) holds w.r.t. g̃ and h̃, and thus SNA(P) holds.
Necessity. We will prove this by an induction on the number of liquid American

options N . For N = 0, the result follows from [3], Theorem 2.1(a). Now suppose
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the result holds for N = n − 1 ∈ N. Let us consider N = n. For k ∈ {n − 1, n}
denote NAk , SNAk , πk(·) and Qk·,· as the NA, SNA, sub-hedging price and martin-
gale measure set defined in (5.2) in terms of S,f, g and h1, . . . , hk , respectively.

By SNAn(P), there exists ĥn < h̄n, such that NAn(P) holds w.r.t. ḡ and
(h̄1, . . . , h̄n−1, ĥn). It follows that

πn−1(
hn) ≤ ĥn,

for otherwise, one would create an arbitrage by paying ĥn to buy one unit of hn

and getting (πn−1(hn) + ĥn)/2 via some trading strategy. As SNAn(P) holds, it
can be seen that SNAn−1(P) also holds. Hence, by the induction hypothesis as
well as Theorem 5.1 and Remark 5.4, we have that

(6.5) πn−1(
hn) = inf

Q∈Qn−1
ḡ,(h̄1,...,h̄n−1)

sup
τ∈T

EQ

[
hn

τ

] ≤ ĥn < h̄n.

Moreover, there exists g∗ ∈ RM and h∗ ∈ Rn−1 with g∗ < ḡ and h∗ < (h̄1, . . . ,

h̄n−1), such that for any P ∈ P , there exists Q ∈ Qn−1
g∗,h∗ dominating P .

By Assumption 5.1(3), there exists C > 0 such that |hn
t | < C for t = 0, . . . , T .

Choose λ ∈ (0,1) such that

h̃n := λC + (1 − λ)
ĥn + h̄n

2
< h̄n.

Now let

g̃ := λg∗ + (1 − λ)ḡ,

and

h̃ := (
λh1∗ + (1 − λ)h̄1, . . . , λhn−1∗ + (1 − λ)h̄n−1, h̃n)

.

Let P ∈ P . We will show that there exists some Q ∈ Qn

g̃,h̃
dominating P . Indeed,

take Q∗ ∈ Qn−1
g∗,h̃∗

dominating P . By (6.5), there exists Q̂ ∈ Qn−1
ḡ,(h̄1,...,h̄n−1)

, such

that

sup
τ∈T

E
Q̂

[
hn

τ

]
<

h̄n + ĥn

2
.

Let

Qλ := λQ∗ + (1 − λ)Q̂ � P.

Obviously, Qλ ≪ P , Qλ is an MM, EQλf = f̄ , EQλg ≤ g̃, and supτ∈T EQλ[hk
τ ]≤

h̃k for k = 1, . . . , n − 1. Furthermore,

sup
τ∈T

EQλ

[
hn

τ

] = sup
τ∈T

(
λEQ∗

[
hn

τ

]+(1−λ)E
Q̂

[
hn

τ

]) ≤ λC+(1−λ) sup
τ∈T

E
Q̂

[
hn

τ

] ≤ h̃n.

This implies Qλ ∈ Qn

g̃,h̃
. �
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