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ALMOST OPTIMAL SPARSIFICATION OF
RANDOM GEOMETRIC GRAPHS
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A random geometric irrigation graph �n(rn, ξ) has n vertices identified
by n independent uniformly distributed points X1, . . . ,Xn in the unit square
[0,1]2. Each point Xi selects ξi neighbors at random, without replacement,
among those points Xj (j �= i) for which ‖Xi − Xj‖ < rn, and the selected
vertices are connected to Xi by an edge. The number ξi of the neighbors
is an integer-valued random variable, chosen independently with identical
distribution for each Xi such that ξi satisfies ξi ≥ 1. We prove that when
rn = γn

√
logn/n for γn → ∞ with γn = o(n1/6/ log5/6 n), the random ge-

ometric irrigation graph experiences explosive percolation in the sense that
if Eξi = 1, then the largest connected component has o(n) vertices but if
Eξi > 1, then the number of vertices of the largest connected component is,
with high probability, n − o(n). This offers a natural noncentralized sparsifi-
cation of a random geometric graph that is mostly connected.

1. Introduction. We study the following model of random geometric “irriga-
tion” graphs. Let X = {X1, . . . ,Xn} be a set of uniformly distributed random points
in [0,1]2. Given a positive number rn > 0, we may define the random geometric
graph Gn(rn) with vertex set [n] := {1, . . . , n} in which vertex i and vertex j are
connected if and only if the distance of Xi and Xj does not exceed the threshold
rn [18, 25]. To avoid technicalities arising from irregularities around the borders
of the unit square, we consider [0,1]2 as a torus. Formally, we measure distance
of x = (x1, x2), y = (y1, y2) ∈ [0,1]2 by

d(x, y) =
( 2∑

i=1

min
(|xi − yi |,1 − |xi − yi |)2

)1/2

.

It is well known that the connectivity threshold for the graph Gn(rn) is r�
n =√

logn/(nπ) (see, e.g., Penrose [25]). This means that, for any ε > 0,

lim
n→∞ P

(
Gn(rn) is connected

) =
{

0 if rn ≤ (1 − ε)r�
n,

1 if rn ≥ (1 + ε)r�
n.
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In this paper, we consider values of rn well above the connectivity threshold. So
G(rn) is connected with high probability. In some applications, it is desirable to
obtain, in a decentralized manner, a graph that is connected but sparse. To this aim,
one may sparsify the graph in a distributed way by selecting, randomly and inde-
pendently for each vertex u, a subset of the edges adjacent to u, and then consider
the subgraph containing those edges only. Such random subgraphs are sometimes
called irrigation graphs or Bluetooth networks [9, 12, 13, 16, 28]. A related model
of soft random geometric graphs, resulting from bond percolation on the geomet-
ric graph Gn(rn) is studied by Penrose [27]. In this paper, we study the following
slight generalization of the irrigation graph model.

The irrigation graph. We consider a positive integer-valued random vari-
able ξ . We assume that ξ ≥ 1 with probability one. The random irrigation graph
�n = �n(rn, ξ) is obtained as a random subgraph of Gn(rn) as follows. For ev-
ery x ∈ [0,1]2, define ρ(x) = |B(x, rn) ∩ X| to be the number of points of X that
are visible from x, where B(x, r) = {y ∈ [0,1]2 : d(x, y) ≤ r}. With every point
Xu ∈ X, we associate ξu, an independent copy of the random variable ξ . Then
given that Xu ∈ X and ξu, let Y(Xu) := (Yi(Xu),1 ≤ i ≤ ξu ∧ ρ(Xu)) be a subset
of elements of X ∩ B(Xu, rn) chosen uniformly at random, without replacement.
[Note that this definition allows a vertex to select itself. Such a selection does not
create any edge. In a slight modification of the model, the selection is from the set
X ∩ B(Xu, rn) \ {Xu}. Since self-selection is unlikely, all our asymptotic results
remain unchanged in the modified model.]

We then define �+
n = �+

n (rn, ξ) as the digraph on [n] in which two vertices
u, v ∈ [n] are connected by an oriented edge (u, v) if Xv = Yi(Xu) for some 1 ≤
i ≤ ξu ∧ ρ(Xu). Finally, we define �n = �n(rn, ξ) as the graph on [n] in which
{u, v} is an edge if either (u, v) or (v, u) is an oriented edge of �+

n .
We study the size of the largest connected component of the random graph

�n(rn, ξ) for large values of n. In the entire paper, the size always refers to the
number of vertices. We say that a property of the graph holds with high probabil-
ity (w.h.p.) when the probability that the property does not hold is bounded by a
function of n that goes to zero as n → ∞.

Connectivity of random geometric irrigation graphs. Irrigation subgraphs of
random geometric graphs have some desirable connectivity properties. In partic-
ular, the graph remains connected with a significant reduction of the number of
edges when compared to the underlying random geometric graph. Connectivity
properties of �n(rn, cn) (i.e., when ξ = cn is deterministic, possibly depending
on n) have been studied by various authors. Dubhashi et al. [13] showed that
when rn = r > 0 is independent of n, �n(r,2) is connected with high proba-
bility. In this setting where r is bounded away from zero, the underlying ran-
dom geometric graph G(rn) is an expander; the geometry only comes into play
when rn → 0 as n → ∞. In this regime, Crescenzi et al. [9] proved that there
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exist constants γ1, γ2 such that if rn ≥ γ1
√

logn/n and cn ≥ γ2 log(1/rn), then
�n(rn, cn) is connected with high probability. The correct scaling for the con-
nectivity threshold for rn ∼ γ

√
logn/n for sufficiently large γ was obtained by

Broutin et al. [6] who proved that the connectivity threshold for the irrigation
graphs with rn ∼ γ

√
logn/n is

c�
n :=

√
2 logn

log logn
,

independently of the value of γ . More precisely, for any ε ∈ (0,1), one has

lim
n→∞ P

(
�n(rn, cn) is connected

) =
{

0 if cn ≤ (1 − ε)c�
n,

1 if cn ≥ (1 + ε)c�
n.

(1)

Thus, the irrigation subgraph of a random geometric graph preserves connectivity
with high probability while keeping only O(nc�

n) edges, which is much less than
the 	(n logn) edges of the initial random geometric graph. However, the obtained
random irrigation subgraph is not authentically sparse as the average degree still
grows with n.

One way to obtain connected sparse random geometric irrigation graphs is to
increase the size rn of the “visibility window” slightly. Indeed, we show elsewhere
[7] that by taking rn larger (but still quite small), as rn ∼ n−1/2+ε for some fixed
ε > 0, there exists a constant c = c(ε) such that �n(rn, c) is connected with high
probability.

Otherwise, one needs to relax the constraint of connectivity, and see how this
affects the graph. In this paper we study the emergence of a “giant” component
(i.e., a connected component of linear size) of random geometric irrigation graphs
when rn ∼ γ

√
logn/n for a sufficiently large constant γ [i.e., of the same order as

the connectivity threshold of the underlying random geometric graph Gn(rn)]. The
main result shows that already when Eξ > 1, the graph �n(rn, ξ) has a connected
component containing almost all vertices. Interestingly, there is not only a phase
transition around a critical value in the edge density but the phase transition is
discontinuous. More precisely, we show that when Eξ = 1 (or equivalently ξ = 1,
that is, when the average degree is about 2), the largest component of �n(rn, ξ)

has o(n) vertices, while for any ε > 0, if Eξ = 1 + ε, then with high probability,
�n(rn, ξ) has a component containing n − o(n) vertices. The phenomenon when
there is a discontinuous phase transition was coined “explosive percolation” and
has received quite a lot of attention recently [24]. In explosive percolation, the
size of the largest component, divided by the number of vertices, considered as a
function of the average degree, suffers a discontinuous jump from zero to a pos-
itive value. In the present case, we have even more: the jump is from zero to the
maximal value of one. Therefore, the random graph process experiences a super-
explosive phase transition or instant percolation. The main results of the paper are
summarized in the following theorems.
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THEOREM 1. Assume that Eξ > 1. For every ε ∈ (0,1) there exists a constant
γ > 0 such that for rn ≥ γ

√
logn/n,

P
(
C1

(
�n(rn, ξ)

) ≥ (1 − ε)n
) −→
n→∞ 1,

where C1(�n(rn, ξ)) denotes the number of vertices in the largest connected com-
ponent of the graph �n(rn, ξ).

We observe that, by monotonicity, it suffices to prove Theorem 1 in the case
where ξ ∈ {1,2} with probability one. From now on, we assume that the support
of ξ is {1,2}. We also prove that when ξ = 1, then the largest connected component
of the irrigation graph �n(rn, ξ) is sublinear with probability tending to one:

THEOREM 2. Suppose that rn = o((n logn)−1/3). Then, for any ε > 0

P
(
C1

(
�n(rn,1)

) ≥ εn
) −→
n→∞ 0.

The two theorems may be combined to prove the following “instant-percolation”
result.

COROLLARY 1. Suppose rn/
√

logn/n → ∞ and rn = o((logn/n)1/3). Then
�n(rn, ξ) experiences super-explosive percolation in the sense that:

(i) if Eξ = 1, then C1(�n(rn, ξ)) = o(n) in probability;
(ii) if Eξ > 1, then n − C1(�n(rn, ξ)) = o(n) in probability.

Note that for classical models of random graphs, including both random geo-
metric graphs [25] and Erdős–Rényi random graphs [4, 21], the proportion of ver-
tices in the largest connected component is bounded away from one w.h.p. when
the average degree is bounded by a constant. Furthermore, for these graphs, the
size of the largest connected component is continuous in the sense that the (lim-
iting) proportion of vertices in the largest connected component vanishes as the
average degree tends to the threshold value. The behavior of random geometric
irrigation graphs is very different, since the largest connected component contains
n − o(n) vertices as soon as the expected degree is greater than two (Theorem 1).
In particular, from a practical point of view, the irrigation graph provides an almost
optimal and distributed algorithm for sparsification of the underlying graph. (Here
“distributed” refers to the fact that every vertex makes its choices independently,
as in distributed algorithms.) Indeed the largest connected component contains
n− o(n) nodes, and we achieve this level of connectivity with only n(1 + ε) edges
while any such graph must contain at least n − o(n) edges. Note that this relies on
the fact that each node chooses at least one neighbor (ξ ≥ 1), for otherwise there
would be a linear number of isolated nodes. (Indeed, in such a case, there would
clearly be a linear number of vertices of out-degree zero; the concentration of the
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number of vertices in balls of radius rn and a “duality” argument should convince
the reader that any such vertex has constant probability to receive no edge from
another vertex.)

Recall that when the underlying graph is the complete graph Kn (i.e., when
r ≥ √

2), then the irrigation graph model corresponds to the c-out graphs stud-
ied by Fenner and Frieze [15] if ξ = c ∈ N almost surely. With c = 1, a random
1-out subgraph of Kn is a just a random mapping [17, 22] (a uniformly random
function from [n] to [n]). In particular, for c = 1 and with high probability, a ran-
dom 1-out subgraph of Kn contains a connected component of linear size but is
not connected. In particular, this example shows that although the condition that
rn = o((logn/n)1/3) may not be optimal, some upper bound on rn is clearly re-
quired for C1(�n(rn,1)) to be o(n) as n → ∞. For c ≥ 2, a random c-out subgraph
of Kn is 2-vertex and 2-edge connected with high probability [15]. (See also [2, 3]:
although a bit cryptic, Theorem 3 of Bender [2] applies to unions of two random
mappings and shows that such graphs are asymptotically connected.) One may
easily verify that if we write Kn(ξ) for the random irrigation subgraph of Kn in
which vertex i chooses ξi random neighbors and E[ξ ] > 1, then as n → ∞,

P
(
Kn(ξ) is connected

) → 1,

as an easy generalization of Fenner and Frieze [15].

2. Preliminaries: Discretization and regularity of the point set. The proof
relies heavily on different levels of discretization of the torus into smaller sub-
squares, as shown in Figure 1. The largest of these sub-squares are called cells and
have side length about krn/2 where k is a fixed large odd natural number. More
precisely, let k ≥ 1 be odd and define

m :=
⌈

2

krn

⌉
and r ′

n := 2

km
.(2)

The unit square is then partitioned into m2 congruent cells of side length 1/m =
r ′
nk/2. Note that (1 − krn)rn ≤ r ′

n ≤ rn for all n large enough.
A cell Q is further partitioned into k2d2 square boxes, each of side length

1/(mkd) = r ′
n/(2d), for some natural number d ≥ 1. We make d odd, so that kd is

odd as well, and denote by C(Q) the central box of cell Q. A typical square box
is denoted by S, and we let S (Q) be the collection of all boxes in cell Q.

Note that there are two independent sources of randomness in the definition of
the random graph �n(rn, ξ). One comes from the random underlying geometric
graph Gn(rn) (i.e., the collection X of random points), and the other from the
choice of the neighbors of each vertex. We will always work conditionally on the
locations of the points in X. The first step is to guarantee that, with high probability,
the random set X satisfies certain regularity properties. In the rest of the proof, we
assume that the point set X satisfies the required regularity property, fix X and
work conditionally.
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FIG. 1. The different levels of discretization of the torus [0,1]2 are shown here with k = 5, d = 1,
and m = 4. The torus is subdivided into m2 congruent squares, called cells, and each cell is further
divided into k2d2 small squares, called boxes. The central box and the seed boxes of one of the cells
are marked.

In the course of the proofs, we condition on the locations of the points
X1, . . . ,Xn and assume that they are sufficiently regularly distributed. The prob-
ability that this happens is estimated in the following simple lemma that relies on
standard estimates of large deviations for binomial random variables.

Fix odd positive integers k and d and consider the partitioning of [0,1]2 into
cells and boxes as described above. For a cell Q, and a box S ∈ S (Q), we have

E
[|X ∩ S|] = n

(mkd)2 = nr ′2
n

4d2 .

Fix δ ∈ (0,1). A cell Q is called δ-good if for every S ∈ S (Q), one has

(1 − δ)nr ′2
n

4d2 ≤ |X ∩ S| ≤ (1 + δ)nr ′2
n

4d2 .

LEMMA 1. For every δ ∈ (0,1), there exists γ > 0 such that if rn ≥
γ
√

logn/n, then for all n large enough,

inf
Q

P(Q is δ-good) ≥ 1 − 2(mkd)2n−γ 2δ2/(24d2).

In particular, if γ 2 > 24d2/δ2 then

lim
n→∞ P(every cell Q is δ-good) = 1.

See the Appendix for the proof.
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3. An overwhelming giant: Structure of the proof.

3.1. General approach and setting. Our approach consists in exhibiting a
large connected component by exposing the edges, or equivalently the choices of
the points, in a specific order so as to maintain a strong control on what happens.
The general strategy has two phases: first, a push-like phase in which we aim at
exposing edges that form a connected graph that is fairly dense almost everywhere;
we call this subgraph the web. Then, we rely on a pull-like phase in which we ex-
pose edges from the points that are not yet part of the web and are trying to hook
up to it.

The push phase. The design and analysis of the push phase is the most delicate
part of the construction. It is difficult to build a connected component with positive
density while keeping some control on the construction. For instance, following
the directed edges in �+

n from a single point, say x, in a breadth-first manner pro-
duces an exploration of �+

n that resembles a branching process. That exploration
needs to look at neighborhoods of x of radius �(log logn) in order to reach the
ε logn total population necessary to have positive density in at least one ball of ra-
dius rn. However, by the time the 	(log logn) neighborhoods have been explored,
the spread of the cloud of points discovered extends as far as 	(log logn) away
from x in most directions: in other words, doing this would waste many edges, and
make it difficult to control the dependence between the events of reaching positive
density in different regions of the square. An important consequence is that is it not
reasonable to expect that two points that are close are connected locally: we will
prove that points are indeed connected with high probability, but the path linking
them does wander far away from them.

To take this observation into account, in a first stage we only build a sort of
skeleton of what will later be our large connected component. That skeleton, which
we call the web, does not try to connect points locally and its aim is to provide an
almost ubiquitous network to which points will be able to hook up easily. The
construction of this web uses arguments from percolation theory and relies on the
subdivision of the unit square into m2 cells described above. It is crucial to keep in
mind that for the construction we are about to describe to work the web should be
connected in a directed sense.

The cells define naturally an m × m grid as a square portion of Z2, which we
view as a directed graph. To avoid confusion with vertices and edges of the graph
�n(rn, ξ), we call the vertices of the grid graph nodes and its edges links. More pre-
cisely, let [m] := {1, . . . ,m}. We then consider the digraph 
+

m on the node set [m]2

whose links are the pairs (u, v) whose �1 distance equals one; the oriented link
from u to v is denoted by uv. Write E+

m for the link set, so that 
+
m = ([m]2,E+

m).
The construction of the web uses two main building blocks: we define events on

the nodes and the links of 
+
m such that:
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• a node event is the event that, starting from a vertex in the central box of the
cell, if one tracks the selected neighbors of the vertex staying in the cell, then
the selected neighbors of these neighbors in the cell and so on up to a number of
hops k2, then the resulting component populates the cell in a uniform manner—
see Proposition 1 for the precise statement;

• a link event allows the connected component built within the cell to propagate to
a neighboring cell. We show that both node events and link event happen with
high probability. See Lemma 2.

It is important to emphasize that in proving that node and link events occur with
high probability, we make use of a coupling with suitably defined branching ran-
dom walks that are independent of the precise location of the points at which such
events are rooted. Although this does not suffice to make all node and link events
become independent, it helps us control this dependence and allows us to set up
a joint site/bond percolation argument on Z

2 that proves the existence of a di-
rected connected component that covers most cells. The node and link events are
described precisely and the bounds on their probabilities are stated in Sections 3.2
and 3.3, respectively. Finally, in Section 3.4, we show how to combine the node
and link events in order to construct the web using a coupling with a percolation
process. The proofs of the estimates of the probabilities of the node events are
somewhat intricate and we present them in Section 4.

The pull phase. The analysis of the pull phase relies on proving that any vertex
not yet explored in the process of building the web is in the same component as the
web, with high probability. In order to prove this, one may construct another web
starting from such a vertex, which succeeds with high probability by the arguments
of the push phase. Then it is not difficult to show that the two webs are connected
with high probability. The details are developed in Section 3.5.

3.2. Populating a cell: Node events. In proving the existence of the web (i.e.,
a connected component that has vertices in almost every cell), we fix δ > 0 and any
point set X for which every box is δ-good and work conditionally. Thus, the only
randomness comes from the choices of the edges. We reveal edges of the digraph
�+

n in a sequential manner. In order to make sure that certain events are indepen-
dent, once the ξi out-edges of a vertex Xi have been revealed, the vertex becomes
forbidden and excluded from any events considered later. We keep control of the
number and density of forbidden points during the entire process.

In Section 3.4, we describe the order in which cells are examined. In this section,
we look into a single cell Q and describe an event—the so-called “node event”—
that, conditionally on the set of forbidden vertices, only depends on edge choices
of vertices within the cell. All we need is a starting vertex x ∈ X in the central
box C(Q) of the cell and a set F of forbidden vertices. Both x and F may depend
on the evolution of process before the cell is examined. However, by construction
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(detailed below), we guarantee that the set of forbidden vertices F only has a
bounded number of elements in each box and, therefore, does not have a significant
impact on the outcome of the node event. Similarly, the starting vertex x originates
from an earlier stage of the process but its exact location is unimportant, again by
the definition of the node event, as detailed below.

Consider a cell Q and a point x ∈ X ∩Q. For i ≥ 0, let �̃x(i) denote the collec-
tion of points of X ∩ Q that can be reached from x by following i directed edges
of �+

n without ever using a point lying outside of Q. Let F ⊂ X denote the set of
forbidden points containing the y ∈ X whose choices have already been exposed.
Let �x(i) be the subset of points of �̃x(i) that can be reached from x without ever
using a point in F .

Recall that the cell Q is partitioned into k2d2 square boxes of side length
r ′
n/(2d) and that S = S (Q) denotes the collection of boxes of Q. The next

proposition shows that, with high probability, any cell Q with starting point
x ∈ X ∩ Q is such that �x(k

2) populates Q in the following way: for every
S ∈ S (Q), we have |�x(k

2) ∩ S| ≥ E[ξ ]k2/2. We refer to this event as Nx(Q,F)

and the corresponding local connected component is called a bush. The proof is
delayed until Section 4.

PROPOSITION 1. For a cell Q, vertex x ∈ X ∩ C(Q) and a set F of forbidden
vertices, define the node event

Nx(Q,F) = {∀S ∈ S (Q) : ∣∣�x

(
k2) ∩ S

∣∣ ≥ E[ξ ]k2/2}
.

For every η > 0, there exist constants d0, k0 ≥ 1 and δ0 > 0 such that for fixed
d ≥ d0 and k ≥ k0, there exists n0 for which the following holds: for n ≥ n0, pro-
vided that the cell is δ-good and that supS∈S (Q) |F ∩ S| < δ0nr2

n , then for all
x ∈ X ∩ C(Q),

P
(
Nx(Q,F)|X) ≥ 1 − η.

We note that although it may seem that the events Nx(Q,F), for distinct cells
Q would be independent (they depend on the choices of disjoint sets of vertices),
it is not the case. Indeed, the events do interact through the set F , which is random,
but that this dependence can be handled.

3.3. Seeding a new cell: Link events. We define an event that permits us to
extend a bush confined to a cell Q and to find a directed path from it to a point x′
in the central box of a neighboring cell Q′.

For a given cell Q, the set of (kd)2 boxes S (Q) is naturally indexed by{−�kd/2�, . . . , �kd/2�}2
.

Among the boxes S ∈ S (Q), let I(Q) denote the collection of the four boxes
that correspond to the coordinates (−�kd/2�,0), (�kd/2�,0), (0,−�kd/2�) and
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(0, �kd/2�) (Figure 1). It is from points in these boxes that we try to “infect”
neighboring cells, and we refer to these boxes as seed boxes or infection boxes.
For two adjacent cells Q and Q′, we let I (Q,Q′) denote the seed box lying in Q

against the face shared by Q and Q′. Suppose, as before, that there is a set F ⊂ X
of forbidden points. For a point y ∈ X ∩ I (Q,Q′), let �◦

y(i) denote the points of
X that can be reached from y using i directed edges of �+

n without using any point
lying outside of Q′ or in F , except for y itself. Let Jy(Q,Q′) be the event that
�◦

y(�kd/2�) contains a point lying in the central box of Q′:

Jy

(
Q,Q′) = {

�◦
y

(�kd/2�) ∩ C
(
Q′) �= ∅

}
.

Then, for R ⊂ X ∩ I (Q,Q′), we let JR(Q,Q′) = ⋃
y∈R Jy(Q,Q′). The event

JR(Q,Q′) is called a link event.

LEMMA 2. Let Q and Q′ be two adjacent cells. Suppose that Q′ is δ-good
for δ ∈ (0,1/4) and that supS∈S (Q) |F ∩ S| < δ0nr2

n for δ0 < 1/(4d)2. Then, for
every k, and d there exists n0 such that for every n ≥ n0, and for any set R ⊆
X ∩ I (Q,Q′), we have

P
(
JR

(
Q,Q′)|X) ≥ 1 − exp

(
− |R|

(10βd2)kd

)
,

where β = (1 + δ)(1/(2d) + k/(16d2)).

PROOF. Write h = �kd/2�. Let L0 = I (Q,Q′),L1, . . . ,Lh = C(Q′) denote
the sequence of boxes on the straight line from I (Q,Q′) to C(Q′). For JR(Q,Q′)
to occur, it suffices that for some y ∈ R, one has |�◦

y(i) ∩ Li | ≥ 1, for every i =
1, . . . , h; call E◦

y the corresponding event. The E◦
y , y ∈ R, are not independent

because the sets �◦
y(i), i ≥ 1, might not be disjoint. However, on {⋂y∈R �◦

y(i) =
∅}, the events E◦

y , y ∈ R, are independent. Consider the ordering of the points in
R induced by the ordering in X, and write x < x′ if x = Xi and x′ = Xj for i < j .
To simplify the proof, we only consider a single path from any given point y ∈ R.
Consider the path defined by P0(y) = y, and for i ≥ 1, Pi(y) = Y1(Pi−1(y)); this
is well-defined since ξi ≥ 1 with probability one. Let Ey be event that for every
i = 1,2, . . . , h, one has Pi(y) ∈ Li . Then we have Ey ⊂ E◦

y .
Note that since Q′ is δ-good, for any box S ∈ S (Q) we have, for sufficiently

large n,

|X ∩ S| ≥ (1 − δ)nr ′
n

2

4d2 and
∣∣S ∩ X ∩ Fc

∣∣ ≥ nr ′
n

2

8d2

since δ < 1/4 and δ0 < 1/(4d)2. Furthermore, at most |R|h of the points of
X ∩ S ∩ Fc lie in

⋃
y∈R Pi(y), for some i = 1,2, . . . , h. Now, for y ∈ R, let

τy := inf{i ≥ 1 : Pi(y) /∈ Li}. Let G−
y be the sigma-algebra generated by {Pi(y) :
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0 ≤ i < τy}, y′ < y. Since every cell is δ-good, for every x ∈ [0,1]2, we have
|X ∩ B(x, rn)| ≤ βnr2

n . Then, for every y ∈ R, and all n large enough, we have

P
(
Ey |G−

y

) ≥
(

1

10βd2

)h

≥
(

1

10βd2

)kd

=: η,(3)

where the last expression serves as the definition for the constant η. Here, we used
the fact that 10βd2 ≥ 1. It follows that |{y ∈ R : Ey}| dominates a binomial random
variable Bin(|R|;η) with parameters |R| and η:

P
(∃y ∈ R : E◦

y

) ≥ P(∃y ∈ R : Ey) ≥ P
(
Bin

(|R|;η)
> 0

)
≥ 1 − e−η|R|.

Replacing η by its expression in (3) yields the claim. �

3.4. Building the web: The percolation process. In this section, percolation
arguments are used to show how the node and link events can be used to build the
“web”, a connected component that visits most cells. The construction is based
on an algorithm to decide which edges to expose depending on what we have
seen so far. Once again, fix a point set X such that every cell is δ-good and work
conditionally.

Defining a partial percolation configuration on the square grid of cells. We
encode an exploration process on the digraph 
+

m of cells by defining a partial and
joint site/bond percolation process using the node and link events defined above.
At the same time, we keep track of the set of forbidden vertices F discussed in
Sections 3.3 and 4.

For u ∈ [m]2, we let Qu ⊂ [0,1]2 denote the corresponding cell. The nodes of
[m]2 are ordered lexicographically: for u = (u1, u2), v = (v1, v2) we write u � v

if u1 ≤ v1 or if u1 = v1 and u2 ≤ v2. We proceed with an exploration process in
the lexicographic order, maintaining, at every step i = 0,1,2, . . . of the process, a
partition of [m]2 into three sets of nodes [m]2 = Ai ∪ Ei ∪ Ui , where we call the
nodes in Ai active, the ones in Ei explored, and those of Ui unseen. Initially, all the
nodes are unseen and, therefore, U0 = [m]2, A0 =∅, E0 = ∅. The sets Ai,Ei,Ui ,
i ≥ 0, are designed in such a way that:

• at any time i ≥ 0, any node u ∈ Ai has a distinguished vertex xu in the center
box C(Qu) for which we can check if the node event Nxu(Qu,F ) (defined in
Proposition 1) occurs; the set of forbidden vertices that is used to assess this
event is Fi to be defined shortly.

• The nodes u ∈ Ei are the ones that have been active from some time j < i and
for which the node event Nxu(Qu,F ) has already been observed.



ALMOST OPTIMAL SPARSIFICATION OF RANDOM GEOMETRIC GRAPHS 3089

We now move on to the precise description of the algorithm and of the sets
Ai,Ei,Ui ⊂ [m]2, and Fi ⊂ X. Initially, we set F1 = ∅. Then we proceed as fol-
lows, for i ≥ 1. If Ei = [m]2, then we have already “tested” a node event for each
node and we are done, and we now suppose that Ei �= [m]2. Then there must be
some node in either Ai or Ui .

(i) Suppose first that Ai �= ∅. Then let ui be the node of Ai that is lowest in the
lexicographic order. By construction, there is a distinguished vertex xui

∈ C(Qui
).

Say that the node ui is open and set σ̃ (ui) = 1 if the node event Nxui
(Qi,Fi)

succeeds. If this is the case, all four seed boxes in Qui
contain a set of points of

the bush constructed in Qui
of cardinality at least E[ξ ]k2/2 that are all connected to

xui
within Qui

. Consider all the oriented links uiv, where v ∈ Ui , and let Ruiv be
the set of points that are lying in the seed box S(Qui

,Qv) of Qui
that is adjacent

to Qv . For any such link uiv, we declare the oriented link open and set σ̃ (uiv) = 1
if the link event JRuiv

(Qui
,Qv) (defined just before Lemma 2) succeeds. [Note

that we liberally use the notation σ̃ (·) to indicate either openness of a node u by
σ̃ (u) or the openness of an oriented link uv by σ̃ (uv)].

Let Vi = {v ∈ Ui : σ̃ (uiv) = 1}. For every v ∈ Vi , since JRuiv
(Qui

,Qv) suc-
ceeds, we have, by construction, a nonempty set of points of the center box
C(Qv) that are connected to Rui,v by directed links in �+

n ; we let xv be the one
of these points that has the lowest index in X. Then update the sets by putting
Ei+1 = Ei ∪ {ui}, Ai+1 = Ai ∪ Vi \ {ui}, Ui+1 = Ui \ Vi . As for the set of forbid-
den vertices, let fi+1 be the collection of points Xu ∈ X whose choices Yj (Xu),
1 ≤ j ≤ ξu, have been exposed when determining the node event Gxui

(Qui
) and

the potential following link events. Then let Fi+1 = Fi ∪ fi+1.
(ii) If, on the other hand, Ai = ∅, then Ui �= ∅. Note that if this happens, it

means that we have not succeeded in finding a point x ∈ C(Qui
) that is connected

to the points previously explored and we need to start the exploration of a new
connected component of �+

n . Let ui ∈ Ui be the node with lowest lexicographic
order. Then set Ai+1 = {ui}, Ei+1 = Ei and Ui+1 = Ui \ {ui}. We then let xui

be
the point of X ∩ C(Qui

) that has the lowest index in X. Such a point exists by the
assumption of δ-goodness and because the number of forbidden points in each cell
is bounded (see Lemma 3 below).

Note that the distinguished point xu of a cell Qu is chosen when the corre-
sponding vertex is activated, which happens once and only once for every node
u ∈ [m]2.

In order to use Proposition 1 and Lemma 2 for estimating the probability of
node events and link events, we need to make sure that the number of forbidden
points stays under control.

LEMMA 3. If k is sufficiently large, then for every cell Q, during the entire
process, we have

|F ∩ Q| ≤ 22k2
.
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PROOF. To reveal a node event Nx(Q,F), one only needs to expose �x(k
2)

for a single point x ∈ Q. This requires to look at the edge choices of at most k22k2

vertices, all of which lie in Q. The points exposed during the evaluation of a link
event account for a total of at most 4 · k22k2 · kd2kd . The claim follows easily. �

Completing the percolation configuration. Once the exploration process is fin-
ished, every node has been declared open or not, and we have assigned a value to
every σ̃ (u), u ∈ [m]2. However, we have not defined the status of all the oriented
links uv. See Figure 2. In particular, σ̃ (uv) has only been defined if σ̃ (u) = 1 and
if σ̃ (v) had not been set to one before. For every oriented link uv, let θ(uv) be
the indicator that a link event has been observed for uv. Let H+

m denote the open
subgraph of 
+

m, that consists of nodes u and directed links uv for which σ̃ (u) = 1
and σ̃ (uv) = 1, respectively. A subset K of nodes in [m]2 is called an oriented
connected component of H+

m if σ̃ (u) = 1 for all u ∈ K and for all u, v ∈ K there is
an oriented open path between u and v, that is, a sequence u = u1, u2, . . . , u� = v

of nodes in K such that σ̃ (uiui+1) = 1 for all i = 1, . . . , � − 1.
In order to prove that H+

m contains an oriented connected component contain-
ing most nodes—and, therefore, proving the existence of the web—we embed H+

m

in an unoriented complete mixed site/bond percolation configuration on the di-
graph 
+

m. Then we use results from the theory of percolation to assert the exis-
tence of a connected component containing most vertices.

In a general mixed site/bond percolation configuration, every node is open in-
dependently with a certain probability p, and every undirected link is also open
independently with probability q . Fix η ∈ (0,1) and choose the parameters k, d, λ

FIG. 2. The partial percolation configuration after exploring all node and link events with the
obtained oriented connected components. White nodes are those for which the node event Nx(Q,F )

succeeds. Crossed arrows represent failed link events. The numbers near the nodes indicate the order
in which the node events are tested.
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and δ such that each node event occurs with probability at least 1 − η and each
(oriented) link event occurs with probability at least 1 − η/2. In order to define
the mixed site/bond percolation configuration, we first assign states to the oriented
links uv for which θ(uv) = 0. Let (σ̃ (uv) : uv ∈ E+

m, θ(uv) = 0) be a collection
of i.i.d. Bernoulli random variables with success probability 1 − η/2. Now we de-
clare an unoriented link uv open if σ̃ (uv) = σ̃ (vu) = 1. Observe that although we
have assigned a configuration (σ̃ (u), u ∈ [m]2; σ̃ (e), e ∈ E+

m) to the digraph 
+
m,

this collection of random variables is not independent. For instance, for any two
nodes, the σ̃ (u) and σ̃ (v) are dependent for they interact through the set of F of
forbidden nodes which is random. However,

inf
1≤i≤m2

P
(
σ̃ (ui) = 1|X,Fi

) ≥ 1 − η and

inf
1≤i≤m2

inf
uiv∈E+

m

P
(
σ̃ (uiv) = 1|X,Fi

) ≥ 1 − η/2,

which implies that there exist two independent collections of i.i.d. Bernoulli ran-
dom variables (σ (u), u ∈ [m]2) and (σ (uv), uv ∈ E+

m) with success probabilities
1 − η and 1 − η/2, respectively, such that almost surely σ̃ (u) ≥ σ(u) for u ∈ [m]2

and σ̃ (uv) ≥ σ(uv) for uv ∈ E+
m . The configuration defined by σ is a proper mixed

site-bond percolation configuration.
By construction, in the configuration σ , every node and every unoriented link

of [m]2 is equipped with an independent Bernoulli random variable with success
probability at least 1 − η. Each node and each link is open if the correspond-
ing Bernoulli variable equals 1. This is the mixed site/bond percolation model
considered, for example, by [20]. In such a configuration, we say that two nodes
u, v ∈ [m]2 are bond-connected in the configuration if there exists a sequence of
open nodes u = u1, u2, . . . , u� = v for which every link uiui+1, 1 ≤ i < � is also
open. This equivalence relation naturally defines bond-connected components.
Clearly, each bond connected component is also an oriented open component in
H+

m and, therefore, it suffices to show that the mixed site/bond percolation config-
uration has a bond-connected component containing almost all nodes, with high
probability.

In order to prove this, we use results of [11] for high-density site percolation
by reducing the mixed site/bond percolation problem to pure site percolation as
follows.

LEMMA 4. Consider mixed site/bond percolation on [m]2 as defined above
where each node is open with probability p and each link is open with proba-
bility q , independently. The number of nodes of the largest bond-connected com-
ponent is stochastically dominated by the number of nodes of the largest open
component in site percolation on [m]2 where each node is open with probabil-
ity pq2.
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PROOF. Split each link in the mixed model into two half-links, and let each
half-link be independently open with probability

√
q . We say that a link is open if

both half-links are open.
Next, for a node v in the mixed model, we call event D(v) the event that the node

and its four adjacent half-links are open. This occurs with probability r := pq2.
Now, consider a coupled site percolation model, also on the m×m torus, in which
the node v is open if D(v) occurs. These are independent events. So, we have a site
percolation model with node probability r = pq2. It is clear that if a path exists
in the site percolation model then a path exists in the mixed model, so the mixed
model percolates (strictly) better. �

Now it follows from [11] that in our mixed site/bond percolation model where
nodes and links are open with probability at least 1 − η, the following holds: for
every ε > 0 there exists η > 0 such that for all m large enough,

P
(
there exists a bond-connected component of size > (1 − ε)m2)

> 1 − ε.

Now, for us the constant η is controlled by k, d, δ and γ . Putting everything to-
gether, we have proved the existence of the web.

PROPOSITION 2. Let ε > 0. There exist k0, d0, δ, γ such that if k > k0, d > d0
and rn > γ

√
logn/n, then for all n large enough, if all cells are δ-good, then, with

probability (conditional on X) at least 1 − ε, there exists a connected component
of �(rn, ξ) such that at least (1 − ε)-fraction of all boxes contain at least E[ξ ]k2/2

vertices of the component.

3.5. Finale: Gathering most remaining points. In the previous sections, we
saw that after exploring only a constant number of points per cell [at most
m222k2 ≤ 22k2+2/(k2r2

n) in total by Lemma 3] with high probability, we can con-
struct a connected component—the so-called web—of the graph �(rn, ξ) that con-
tains at least E[ξ ]k2/2 points in a vast majority of boxes. Recall that each box is a
square of side length r ′

n/(2d) where d is a fixed but large odd integer.
It remains to prove that most other vertices belong to the same component as

the web, with high probability. To this end, first we show that any not yet explored
vertex is contained in the same component as the web, with high probability. As
before, we fix a sufficiently small δ > 0 and fix a point set X such that every cell
is δ-good. Suppose that the exploration process of the previous sections has been
carried out, revealing the edge choices of at most 22k2

points per cell (and thus
also at most this many per box). If n is so large that δ2γ logn/(4d2) > 22k2

, then
even after removing all vertices whose choices have already been exposed, every
cell remains 2δ-good. Let xi ∈ X be one of the still unseen vertices. We shift the
coordinate system so that the box containing xi becomes the central box of the first
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cell. Since the boxes in the new coordinate system were also boxes in the original
coordinates, every cell is still 2δ-good in the new system.

Now we build a second web, with the aim that it contains xi with probability
close to one. We start the same exploration process from the vertex xi as in the
construction of the web but now we place all vertices of the first web in the set
of forbidden points. If δ is sufficiently small, then Proposition 2 applies and, with
probability at least 1 − ε, we obtain another web that has at least E[ξ ]k2/2 vertices
in at least (1 − ε)-fraction of the boxes. The newly built web may not contain
the vertex xi . However, by the homogeneity of the mixed site/bond percolation
process, each cell is equally likely to be contained in the newly built web and,
therefore, with probability at least (1 − ε)2 vertex xi is contained in a component
that has at least E[ξ ]k2/2 vertices in at least a (1 − ε)-fraction of the boxes. It is
clear from the proof of Proposition 1 that, in fact, each of these boxes contains at
least E[ξ ]k2/2 points whose edge choices have not been revealed in the process of
building the second web. Thus, with probability at least (1 − ε)3, at least (1 − 2ε)-
fraction of the boxes contain at least E[ξ ]k2/2 points of the first web and at least
E[ξ ]k2/2 points of the second web that contains the vertex xi . Now we may reveal
the edge choices of the vertices of the second web that have not been explored.
Since the diameter of a box is less than rn, the probability that the two webs do not
connect—if they have not been connected already—is at most

(
1 − E[ξ ]k2/2

(1 − 2δ)nr2
n/(4d2)

)m2(1−2ε)

= o(1)(4)

whenever rn = o(n−1/4).
Recall that F denotes the number of forbidden vertices, that is, the vertices that

have been seen at some point in the process of constructing the first web. Let B be
the “bad” event that some cell is not δ-good. Then

P
(
C1

(
�n(rn, ξ)

)
< (1 − ε)n

) ≤ P
(
C1

(
�n(rn, ξ)

)
< (1 − ε)n|Bc) + P(B).(5)

Writing W for the set of points of X that eventually lie within the connected com-
ponent of the first web we constructed, we have

P
(
C1

(
�n(rn, ξ)

)
< (1 − ε)n|Bc) ≤ P

(
n∑

i=1

1{Xi /∈ W,Xi /∈ F } + |F | > εn
∣∣∣Bc

)

≤ n

nε + m222k2 P
(
X1 /∈ W|X1 /∈ F,Bc),

where the last line follows from Markov’s inequality and Lemma 3. Together with
(4), (5) and Lemma 1, this proves that for any ε > 0, the largest connected com-
ponent of �n(rn, ξ) contains at least (1 − ε)n vertices for all n large enough and,
therefore, completes the proof of Theorem 1. Notice that the gathering of most
remaining points given the existence of the web is extremely likely to happen,
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and that the constraints on parameters are essentially the ones required to prove
existence of the web (Proposition 2).

4. Getting out of the central box: Proof of Proposition 1.

4.1. Constructing a branching random walk. Most of the work consists in
estimating the probability of the local events, while ensuring independence. In
this section, we consider a single cell Q of side length kr ′

n/2. As we have already
explained, the local bushes are constructed by a process that resembles a branching
random walk in the underlying geometric graph. The main differences with an
actual branching random walk are that:

• the potential individuals are the elements of X, and so they are fixed condition-
ally on X,

• an element of X only gets to choose its neighbors once; in particular, if a vertex
Xi is chosen that has already used up its ξi choices, the corresponding branch of
the exploration must stop (if we were to continue the exploration, it would trace
steps that have already been discovered).

We note that closely related arguments relying on the comparison with branch-
ing random walks have been used by Penrose [26] in the context of continuum
percolation in high dimension and by Häggström and Meester [19] to treat the
case of nearest neighbor graphs and hard sphere models. For these two cases,
the branching random walk approximation becomes relevant as the dimension in-
creases; here, the dimension remains fixed and equal to two, but the parameter
that allows us to take advantage of the approximation is the large number of boxes
(kd)2 per cell.

The entire argument in this section is conditional on the location of the points,
assuming the regularity property that the cell Q is δ-good. Recall that a cell Q

of side-length kr ′
n/2 is called δ-good if the number of points within every box S

lies within a multiplicative [1 − δ,1 + δ] range of its expected value E|X ∩ S|.
By Lemma 1, for any ε > 0, the probability that every cell is δ-good is at least
1 − ε for all n large enough (provided the constant γ in rn = γ

√
logn/n is large

enough).
Fix a cell Q, in which we want to analyze the node event. Then, for every

i ∈ [n] such that Xi /∈ Q, we work with an independent copy ξ ′
i of ξi . (That is,

we resample ξi for every point that is used outside of the cell Q; this way, we are
certain that the outcome does not depend on the actual values of ξi .) Since such
points Xi are not considered when analyzing the node event on X, this has no
effect on the event Nx(Q,F), for x ∈ X ∩ C(Q). However, this makes the proofs
a little smoother since we can look at all k2 neighborhoods without worrying (at
least in a first stage) whether the points are in Q or not. Note the important fact
that this is only used for the analysis, and that the actual exploration is not carried
out when the points leave the cell Q. In particular, this thought experiment does
not affect the number of forbidden vertices.
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Discretizing the steps. We define a skimmed version of the neighborhood ex-
ploration in which we drop some of the points in order to guarantee simplified dy-
namics. The simplification uses the refined discretization of the space into boxes.
Let S denote the collection of all boxes (open squares). For a point x ∈ [0,1]2, we
let S(x) ⊂ Q denote the box containing the point x (this is well-defined for every
point of Q ∩ X with probability one).

For a given point x ∈ Q ⊆ [0,1]2, let A◦
x denote the union of the boxes that are

fully contained in the ball of radius rn centered at x. (Note that although x ∈ Q,
A◦

x may contain boxes lying outside of Q.) Then, for any box S ∈ S and x ∈ S

define

Ax = ⋂
y∈S

A◦
y

(Figure 3). Write Ax for the collection of boxes whose union is Ax , and let a

denote the number of boxes that compose Ax , for x ∈ [0,1]2.

LEMMA 5. For any δ ∈ (0,1/4) there exist constants k0, d0 and n0 such that
for all k ≥ k0, d ≥ d0 and n ≥ n0, we have∣∣a − 4πd2∣∣ ≤ δd2.

PROOF. First, every box that is fully contained in B(x, rn) accounts for an
area of (r ′

n/(2d))2, so we must have a(r ′
n/(2d))2 ≤ πr2

n . Now, since (1 − krn)rn ≤

FIG. 3. Any circle of radius rn centered at x fully contains Ax which is a copy of a fixed collection
of boxes.
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r ′
n ≤ rn [see just below the definition in (2)], it follows that

a ≤ 4πd2
(

rn

r ′
n

)2

≤ 4πd2 · 1

1 − krn
≤ 4πd2(1 + δ),

provided that krn ≤ δ/2 < 1/4.
On the other hand, the boxes that intersect the ball B(x, rn) but are not fully con-

tained in it must touch the boundary of B(x, rn). So any such box must lie entirely
inside the annulus B(x, rn + r ′

n

√
2/(2d)) \ B(x, rn − r ′

n

√
2/(2d)). In particular,

the number of these boxes is at most

π

(r ′
n/(2d))2

{(
rn + r ′

n

√
2

d
√

2

)2

−
(
rn − r ′

n

d
√

2

)2}
≤ 8π

√
2d

rn

r ′
n

.

Since (1 − krn)rn ≤ r ′
n ≤ rn, it follows that

a ≥ 4πd2
(

rn

r ′
n

)2

− 8πd
√

2
rn

r ′
n

≥ 4πd2 − 16πd
√

2,

for all k and rn such that 2krn ≤ 1. The result follows readily. �

Extracting a discrete branching random walk. Next, we obtain lower bounds
for the sizes of neighborhoods of points x in the irrigation graph. It is here that the
discretization in boxes is important since it ensures that the process S(y), y ∈ �x ,
of boxes containing the points which may be reached from x using directed edges
dominates a branching random walk. In order to properly extract this branching
random walk on the set of boxes:

(a) we artificially reduce the number of points in each box so that the distributions
of the number of offspring of the spatial increments are homogeneous, which
fixes the spatial component; this has to be done dynamically, since each time
a point is discovered, one extra point should be removed in every other box to
maintain this property;

(b) we then kill some more branches of the process to ensure that the offspring of
every individual has the same distribution, so that the underlying genealogy is
a Galton–Watson tree.

We now define the discrete branching random walk as a process indexed by the
infinite plane tree

U = ⋃
n≥0

{1,2,3, . . .}n,

where the individuals in the nth generation are represented by a word of length n

on the alphabet {1,2, . . .}. The tree U is seen as rooted at the empty word ∅. The
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descendants of an individual u are represented by the words have u as a prefix.
The children of u ∈ U are ui, i ≥ 1. If v = ui for some u ∈ U and i ≥ 1, u is the
parent of v and is denoted by p(v) = u. For u, v ∈ U , we write u � v if u is an
ancestor of v, potentially u = v. Consider any δ-good cell Q, and a point x ∈ Q.
The construction is done in stages:

• we first define (Z•
u, u ∈ U), corresponding to the points in X that can be reached

from x;
• then we define (Z◦

u, u ∈ U), as a subset of (Z•
u, u ∈ U) for which all the Z◦

u are
distinct and the spatial increments are homogeneous [see (a) above];

• finally, we define (Zu,u ∈ U) which is a subset of (Z◦
u, u ∈ U) for which the

progenies of all nodes are identically distributed [see (b) above].

Exploring the neighborhoods in �+
n . Let us now proceed with the details of the

definition of the tree-indexed process (Z•
u, u ∈ U) corresponding to the exploration

of the neighborhoods of x in the directed irrigation graphs �+
n . To properly prune

the tree, we introduce a cemetery state ∂ , that is assigned to the words of U that do
not correspond to a vertex of X. We set Z•

∅
= x; then if Z•

u = z ∈ X for some u ∈ U ,
we define Z•

ui = Yi(z), for 1 ≤ i ≤ ξz, and Z•
ui = ∂ for i > ξz and similarly for any

word w with ui as a prefix. Then, for an integer m ≥ 0, {Z•
u : |u| = m,Z•

u �= ∂} is
precisely the set of points of X that can be reached from x using a path of length
exactly m. However, some points may appear more than once in the process.

Getting each point only once and the spatial components. We now skim the
process (Z•

u, u ∈ U) in order to extract a subprocess (Z◦
u, u ∈ U) for which all the

points are distinct, and for which we can guarantee that the process induced on the
set of boxes visited by the points is a branching random walk. Although it is not
crucial, it is natural to skim the tree in lexicographic order on U .

The skimming is done by maintaining a set of valid points, which ensures that
a point chosen at random among the valid points in a certain subset of the boxes
is contained in a uniformly random box in that subset. Initially, we have a set of
valid points V ⊆ X \ F , that consists of points whose choices have not yet been
exposed, but maybe not all such points. We choose V in such a way that for every
box S ∈ S , the number of elements of V ∩ S is the same, and we denote by c

this the common cardinality. We do this in such a way that the set V has maximal
cardinality. We observe that, as the new points are discovered and assigned to
(Z◦

u, u ∈ U), the set of valid points have to be updated to maintain the property
that each box contains the same number of them.

Let (wi, i ≥ 0) be the breadth-first ordering of the elements of the set {u :
Z•

u �= ∂, |u| ≤ k2}. Set Vw0 = V∅ = V . If x /∈ V∅, we kill the entire tree by set-
ting Z◦

∅
= ∂ as well as for all the words u ∈ U . Otherwise, x ∈ V∅, and we set

Z◦
∅

= x. Then we update the set of valid points: for each box that does not contain
x, one valid point must be removed. More precisely, for each box S ∈ S \ {S(x)},
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let X(0)(S) be the point of V∅ ∩ S which has minimum index in X, if such a point
exists, or X(∅)(S) = ∂ otherwise. Then we let Vw1 be obtained from V∅ = Vw0 by
removing x together with all the points X∅(S), S ∈ S :

Vw1 := V∅ \ ({
X(∅)(S) : S ∈ S

} ∪ {x}).
This ensures that the number of points in Vw1 ∩S is the same for every box S ∈ S ,
and equal to c − 1, since precisely one point has been removed from every box.

For all the subsequent steps, we only keep a point z if (1) it is in the current
set of valid points, and (2) it falls in the region Ay , where y ∈ X denotes the
point from which we arrive at z. So suppose now that we have defined Z◦

wj
for

all j < i, and Vwj
for j ≤ i. Suppose also that, for every S ∈ S , Vwi

∩ S has
cardinality exactly c − i. Recall that p(u) denotes the parent of a node u ∈ U .
Then, if Z•

wi
∈ Vwi

∩ AZp(wi )
, we set Z◦

wi
= Z◦

wi
. Otherwise, that steps fails, and

we define Z◦
wi

= ∂ , as well as for all the nodes in the subtree of U rooted at wi .
Now, regardless of the success/failure of this step (i.e., if Z◦

wi
�= ∂ or Z◦

wi
= ∂), we

update the set of valid points so that Vwi+1 has exactly c − (i + 1) points in every
box S ∈ S . Let Si ∈ S be the box containing Z•

wi
. Then, for every box S ∈ S ,

let X(i)(S) be the point in Vwi
∩ S which has minimum index in X. Let Vwi+1 be

obtained from Vwi
by removing all the X(i)(S), for the boxes S �= Si , and either

X(i)(Si) or Z•
wi

itself according to whether Z◦
wi

= ∂ or not. More formally, we
have

Vwi+1 = Vwi
\ {

X(i)(S) : S ∈ S , S �= Si

} \
{{

X(i)(Si)
}

if Z◦
wi

= ∂ ,{
Z◦

wi

}
if Z◦

wi
�= ∂ .

This way, we have that for every S ∈ S , Vwi+1 ∩ S has cardinality precisely c −
(i + 1).

Skimming the underlying genealogy. The process of interest is the tree-indexed
process of boxes containing the points discovered by the exploration of increasing
neighborhoods in �+

n , (S(Z◦
u), u ∈ U). Note that for u, v ∈ U , with u the parent

of v in U , u = p(v), conditional on Z◦
u,Z

◦
v �= ∂ , and say S(Z◦

u) = s, the dy-
namic updates in the set of valid points and the pruning of branches imply that
the box S(Z◦

v) which contains Zv is uniformly random in As . So for every se-
quence of words (vi, i ≥ 0) in U with |vi | = i, conditional on Zv�

�= ∂ , the process
(S(Z◦

vi
))0≤i≤� is a random walk with i.i.d. increments. The only reason why the

entire process (S(Z◦
u), u ∈ U) is not a branching random walk is that the individu-

als do not all jump to ∂ with the same probability (in other words the individuals
do not all have the same offspring distribution) either because of the inhomogene-
ity of the point set X, or because of the changing number of valid points. We
now construct the process (Zu, |u| ≤ k2) by homogenizing the offspring distribu-
tion; this is simply done by (1) proving that the progeny distributions of the nodes
in (Z◦

u, |u| ≤ k2) all stochastically dominate a common progeny distribution ν,
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(2) killing extra branches at random for all the offspring to be distributed as ν. Re-
call that a is the number of boxes in the collection Az, for every point z, and that
ρ(z) denotes the number of points of X lying within distance rn of z. For u ∈ U ,
and s ≥ 0, define

αi := a(c − i)

ρ(Z◦
p(wi)

)
;(6)

then αi is the probability that Z◦
wi

�= ∂ conditional on the event that for the parent
p(wi) of wi in U , Z◦

p(wi)
�= ∂ . Let also α := inf{αi : 1 ≤ i ≤ im}, where im :=

#{u : Z•
u �= ∂, |u| ≤ k2}. Let Ui , i ≥ 1, be a collection of i.i.d. random variables

uniformly distributed on [0,1], and finally define

Zwi
=

{
Z◦

wi
if Ui ≤ (1 − α)/(1 − αi),

∂ otherwise.

Then, for every u, |u| < k2, writing ζu := #{ui : Zui �= ∂} for the number of off-
spring of u, (ζu : |u| < k2) is a collection of i.i.d. random variables; write ζ for
the typical copy of this random variable. More precisely, ζu is distributed like a
binomial random variable with parameters ξu and α. Now, of special interest is the
mean of the offspring distribution, which is controlled by the value of α ∈ (0,1),
and we must ensure that it can be made close enough to one by choice of the
parameters. By (6), Lemma 3, Lemma 5 and the fact that all cells are assumed
δ-good, we have

α ≥ (4π − δ)d2(η − δ) logn − 22k2

(4π + δ)d2(η + δ) logn
.(7)

It follows that, if we write E[ξ ] = 1 + ε for ε > 0, it is possible to choose δ, d1, n1
large enough such that for d ≥ d1 and n ≥ n1, we have

E[ζ ] ≥ 1 + ε/2,

so that the underlying Galton–Watson process is supercritical.

4.2. Analyzing the discrete branching random walk. In this section, we
slightly abuse notation and identify the set of boxes and their representation as
the discrete torus. Furthermore, since for n large enough, the difference between
the torus and Z2 cannot be felt by a walk of k2 steps, we talk about Z2. In partic-
ular, we let A denote the subset of Z2 corresponding to the boxes in A0, which is
the set of potential spatial increments of our walks.

We now consider the (truncated) branching random walk (Zu, |u| ≤ k2) taking
values in Z

2, that we complete into a branching random walk by generating the
missing individuals using an independent family of random variables for the off-
spring and the spatial displacements. By definition, an individual u located at Zu

gives birth to ζu individuals, such that the displacements are i.i.d. uniform in A.
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Furthermore, every individual behaves in the same way and independently of the
others. For S ∈ S and i ≥ 0, define

Mi(S) := #
{
u ∈ U : |u| = i,Zu ∈ S

}
,

the number of individuals u ∈ U in generation i such that Zu ∈ S.

LEMMA 6. Let q > 0 be the extinction probability of the Galton–Watson pro-
cess underlying the branching random walk (Zu)u∈U . Then, for all k large enough,
we have

P
(
#
{
v ∈ U : |v| = k2,Zv ∈ S

} ≤ E[ζ ]2k2/3) ≤ 2q.

Before proving Lemma 6, we show that the extinction probability q in the bound
may be made as small as we want by choice of the constants. By the bound in (7),
this reduces to showing that the extinction probability goes to zero as α → 1.

LEMMA 7. Let q be the extinction probability of a Galton–Watson process
with offspring distribution ζ = Bin(ξ, α) such that E[ξ ]α > 1 and ξ ≥ 1. Then

q ≤ 1 − α

1 − E[(1 − α)ξ ] − E[ξα(1 − α)ξ−1] .

PROOF. To prove this, we use the standard fact that q is the smallest x ∈ [0,1]
such that x = E[xζ ] [1]. Note the simple fact that if f (x) and g(x) are probabil-
ity generating functions, then if f (x) ≤ g(x) for all x ∈ [0,1] the corresponding
extinction probabilities qf and qg satisfy qf ≤ qg . So it suffices to find an upper
bound on E[xζ ], which gives us a computable (and small) extinction probability.
Writing pi = P(ζ = i), and p≥2 = 1 − p0 − p1, we have, for every x ∈ [0,1],

E
[
xζ ] ≤ p0 + (1 − p0 − p≥2)x + p≥2x

2.

It follows readily that

q ≤ (p0 + p≥2) − |p0 − p≥2|
2p≥2

= min{p0,p≥2}
p≥2

≤ p0

p≥2
.

Here, p≥2 = 1 − E[(1 − α)ξ ] − E[ξα(1 − α)ξ−1] and since ξ ≥ 1, we have p0 ≤
1 − α, which completes the proof. �

The proof of Lemma 6 goes in two steps. First, one shows that for some δ > 0,
the branching random walk has at least (1 + ε/2)δk individuals in the δkth gen-
eration, that all lie within distance k/4 of the center of the cell. We call such
individuals decent. The decent individuals are the starting points of independent
branching random walks. In order to prove the claim, we show that, with prob-
ability no smaller than a polynomial in 1/k, a single of these decent individuals
produces enough descendants for #{v ∈ U : |v| = k2,Zu ∈ S} ≥ E[ζ ]2k2/3 to occur.
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PROOF OF LEMMA 6. Consider the genealogical tree of the branching random
walk (Zu)u∈U , and write (Mi)i≥0, for the associated Galton–Watson process. So
we have

Mi = #
{
Zu : u ∈ U, |u| = i

}
.

As we already mentioned, we have E[ζ ] > 1 and the process is supercritical. Fur-
thermore, the offspring distribution is bounded (ζ ≤ 2) so that Doob’s limit law [1]
implies that, as m → ∞, we have as � → ∞,

M�

E[M1]� → W

in distribution, for some random variable W that is absolutely continuous, ex-
cept possibly at 0. Furthermore, the limit random variable satisfies P(W = 0) = q ,
where q is the extinction probability of the Galton–Watson process (Mi)i≥0.

Since q ∈ (0,1), we can find a β > 0 such that P(2β < W < 1/(2β)|W > 0) >

1 − q . It follows that

lim inf
�→∞ P

(
M�

E[M1]� ∈
[
β,

1

β

])
≥ P

(
W ∈

[
2β,

1

2β

])
> (1 − q)2,

and in particular, for any μ ∈ (0,1/2) and k large enough,

P
(
M�μk� ≥ βE[M1]μk−1) ≥ (1 − q)2.

Recall that an individual v is decent if ‖Zv‖ ≤ k/4, where ‖ · ‖ denotes the
Euclidean distance. However, the spatial increments are bounded, and for every v

such that |v| = �μk�, we have

‖Zv‖ ≤ μ ≤ μk2d.

It follows that for μ ∈ (0,1/(8d)), every individual v with |v| = �μk� is decent.
Fix now such a μ. Writing Dm for the number of decent individuals at level m, we
have

P
(
D�μk� < βE[M1]μk−1) ≤ 1 − (1 − q)2.(8)

For every decent individual at depth �μk�, there is a subtree that might well
give us enough individuals at generation k2 all lying in S. In order to ensure some
level of concentration, we only consider the individuals u, |u| = �μk�, for which
the corresponding Doob limit Wu in the subtree rooted at u satisfies 2β < Wu <

1/(2β). For � ≥ 0 and u such that |u| ≤ � write

M�(u) := #
{
v : u � v, |v| = �

}
.

Then, for all k large enough,

E
[
Mk2(u)|2β < Wu < 1/(2β),u decent

] ≥ βE[M1]k2−�μk� · k−c
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for some c > 0 whose existence is guaranteed by Lemma 8 below. However, for
every such individual u, on the event {2β < Wu < 1/(2β)}, we have for all k large
enough

Mk2(u, S) := #
{
v : u � v, |v| = k2,Zv ∈ S

} ≤ β−1E[M1]k2−�μk�.

It follows that

P
(
Mk2(u, S) ≥ β

2
E[M1]k2−�μk�k−c

∣∣∣2β < Wu < 1/(2β),u decent
)

≥ β

2
· k−c,

hence

P
(
Mk2(u, S) ≥ β

2
E[M1]k2−�μk�k−c

∣∣∣u decent
)

≥ β

2
k−c(1 − q)2.(9)

Finally, combining (8) and (9), we see that, for k large enough, the probability
that we do not have at least E[M1]2k2/3 individuals of the k2th generation that lie
in B is at most

P
(
D�μk� < βE[M1]μk−1) + P

(
Mk2(u, S) < E[M1]2k2/3|u decent

)βE[M1]μk−1

≤ 1 − (1 − q)2 + 2−kμ +
(

1 − β

2
k−c(1 − q)2

)βE[M1]μk

≤ 2q,

for k sufficiently large. �

It remains to prove the following key ingredient of the proof of Lemma 6.

LEMMA 8. Let (Ri)i≥0 be a random walk on Z
2 where the increments are

i.i.d. uniformly random in A (where A is defined above just before Lemma 6).
Then, for any μ ∈ (0,1/2), there exists a constant c > 0, such that for any x ∈
{−�kd/4�, . . . , �kd/4�}2 and y ∈ {−�kd/2�, . . . , �kd/2�}2,

P
(
Rk2−μk = y;Ri ∈ S ,0 ≤ i ≤ k2 − μk|R0 = x

) ≥ k−c,

for all k large enough.

PROOF. Let S = [−�kd/2�, �kd/2�]2 be the scaled version of the cell. The
argument relies on the strong embedding theorem of Komlós et al. [23] or, more
precisely, its multidimensional version by Zaitsev [29] (see also [14]): there exists
a coupling of (Ri)0≤i≤k2 with a Brownian motion (�t)0≤t≤k2 such that for every
c2 > 0 there exists a c1 > 0 such that, for every k large enough,

P
(

max
0≤i≤k2

‖Ri − �i‖ ≥ c1 log k
)

≤ k−c2,(10)
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where ‖ · ‖ denotes Euclidean norm in R
2. We now consider such a coupling, and

for a constant c1 to be chosen later, let E = E(c1) be the event that ‖Ri − �i‖ ≤
c1 log k for every 0 ≤ i ≤ k2. Let y ∈ {−�kd/2�, . . . , �kd/2�}2, and recall that
S(y) denotes the corresponding box in S . On E, if it turns out that �k2−μk−m ∈
S(y), then Rk2−μk−m is reasonably close to y and there is a decent chance that it
ends up at y at time k2 − μk. More precisely, if for some integer m ≤ k we have
�k2−μk−m ∈ S(y), then ‖Rk2−μk−m − y‖ ≤ c1 log k, and we let H = H(c1,m)

denote the latter event. Then we have

P
(
H,Ri ∈ S ,0 ≤ i ≤ k2 − μk − m

)
≥ P

(
H,Ri ∈ S ,0 ≤ i ≤ k2 − μk − m,E

)
≥ P

(
�k2−μk−m = S(y),�i ∈ S ,0 ≤ i ≤ k2 − μk − m,E

)
≥ P

(
�k2−μk−m = S(y),�i ∈ S ,0 ≤ i ≤ k2 − μk − m

) − P
(
Ec).

Now, by the local limit theorem, for all k large enough, one has

inf
0≤m≤k

P
(
�k2−μk−m ∈ S(y); inf

1≤i≤k2
d
(
�i,S

c) ≤ c1 log k
)

≥ k−2,

where d(x,S c) denotes the distance from x ∈ R
2 to the set S c. Choosing c1 be

the constant such that c2 = 3 in (10), we obtain

inf
0≤m≤k

P
(
H,Ri ∈ S ,0 ≤ i ≤ k2 − μk − m

) ≥ k−3,(11)

for all k large enough. In particular, with m = �c1 log k/(2d)� it is possible for the
random walk to go to y within the m steps, while staying within S . It follows that,
with a := |A| the number of potential increments at every step,

P
(
Rk2−μk = y,Rk2−μk−i ∈ S ,0 ≤ i ≤ m|H(c1,m)

) ≥ a−m.(12)

Putting (11) and (12) together completes the proof for c = 3 + c1 loga. �

5. An upper bound on the size of the largest component for c = 1. In this
section, we prove Theorem 2 about the size of the largest component of �n(rn,1).
Write C1 = C1(�n(rn,1)) for the number of vertices of the largest connected com-
ponent. Although Theorem 2 is suboptimal, the condition on rn cannot be replaced
altogether, because it is easy to show that for fixed rn > 0 large enough, C1 = 	(n)

with high probability when ξ = 1 almost surely. Indeed, as we already mentioned,
if rn ≥ √

2, the underlying random geometric graph is the complete graph, so that
�+

n is the graph of a random mapping. Such a random mapping has a largest con-
nected component of linear size; see Theorem 3 in [17]. This is also the case for
sequences rn that tend to 0 slowly with n.

The main technical result is the following tail bound on the size of the largest
connected component.
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LEMMA 9. Let rn > 0, t ≥ 1, ε > 0. Then

P
(
C1 ≥ 2 + (

1 + tnr2
n

)3
(1 + ε)2 log2 n

) ≤ n−ε+1/(1+tnr2
n) +n2e(n−2)πr2

n(t−1−t log t).

PROOF. For ξ = 1, the structure of the graph is that of a mapping and �n is
of a collection of connected components each of which consist of either a tree or
a unique cycle from which some trees are pending. In order to bound the number
of vertices C1 of the largest connected component, we first bound the length of the
longest directed path in �+

n . Since the edges bind vertices that are at most rn apart,
this bounds the extent of the connected components hence their sizes.

Recall that ρrn(x) = |B(x, rn) ∩ X| denotes the number of Xi’s in B(x, rn). We
first show that for t > 1 (and thus, t − 1 − t log t < 0), we have

P
(

max
1≤i≤n

sup
s≥rn

ρs(Xi) − 2

ns2 ≥ t

)
≤ n2e(n−2)πr2

n(t−1−t log t).

Observe that the supremum in this inequality is reached for ρs(Xi) for some
s = ‖Xi − Xj‖. Also, ρs(x) is distributed as a binomial random variable with
parameters n and πs2 (we are in the torus), and ρ‖Xi−Xj‖(Xi) is approximately
equal to 2 + Bin(n − 2;π‖Xi − Xj‖2). By Chernoff’s bound [8] (see also [10,
21]), for u > 1,

P
(
Bin(k;p) ≥ ukp

) ≤ ekp(u−1−u logu),

so that here, we have

P
(
Bin

(
n − 2, πs2) ≥ 2 + u(n − 2)πs2) ≤ e(n−2)πs2(u−1−u logu).

Thus,

P
(

max
1≤i≤n

sup
s≥rn

ρs(Xi) − 2

ns2 ≥ t

)
≤

(
n

2

)
sup
s≥rn

e(n−2)πs2(t−1−t log t)

≤ n2e(n−2)πr2
n(t−1−t log t).

Introduce the event

A :=
{

max
1≤i≤n

sup
s≥rn

ρs(Xi) − 2

ns2 < t

}
.

Starting from a vertex i, we can follow the directed links in �+
n , forming a maximal

path Pi of distinct vertices. The last vertex j in this path must be pointing toward a
vertex k of Pi (potentially itself). From each vertex in Pi the probability of linking
to a k higher up in the path is at least

1

ρrn(Xi) − 1
≥ 1

1 + tnr2
n
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if A occurs. Writing |Pi | for the number of vertices of Pi , we see that, since the
choices of links are independent,

P
(|Pi | > �

) ≤
(

1 − 1

1 + tnr2
n

)�

.

By the union bound, conditional on X1, . . . ,Xn such that A holds,

P
(

max
1≤i≤n

|Pi | > �
)

≤ n

(
1 − 1

1 + tnr2
n

)�

≤ n exp
(
− �

1 + tnr2
n

)
.

Now, if the maximum length of a directed path maxi |Pi | is no more than �, then
every vertex is within � edges of any vertex of the unique cycle of the connected
component. Thus, if this occurs, then every connected component is contained
within a ball B(Xj , rn�) for some 1 ≤ j ≤ n. It follows that

P
(
C1 ≥ 2 + n(rn�)

2t
) ≤ P

(
Ac) + P

(
A,C1 ≥ 2 + n(rn�)

2t
)

≤ P
(
Ac) + P

(
A, max

1≤i≤n
|Pi | > �

)

≤ n2e(n−2)πr2
n(t−1−t log t) + ne−�/(1+tnr2

n).

For fixed ε > 0, take � = �(1 + tnr2
n)(1 + ε) logn�. We conclude that

P
(
C1 ≥ 2 + (

1 + tnr2
n

)3
(1 + ε)2 log2 n

) ≤ n−ε+1/(1+tnr2
n) +n2e(n−2)πr2

n(t−1−t log t),

which completes the proof of the lemma. �

PROOF OF THEOREM 2. Lemma 9 can be used for various ranges of rn. In
the entire proof, we use it with ε = 2 to ensure that the first term in the upper
bound there is o(1). We split the region rn ∈ [0, o((n logn)−1/3)] into two, and
first consider

rn ≤
√

logn

πn
.

In this range, we define t as the solution of

t log t + 1 − t = 3 logn

πnr2
n

.

Observe that since the right-hand side is at least 3 > 1, there is indeed a unique
solution. Note that this solution could have an infinite limit supremum, but its
limit infimum is larger than one (so that one can use Lemma 9 with this value
for t). Moreover, one has

t = 	

(
3 logn

πnr2
n log((3 logn)/(πnr2

n))

)
,
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so that

(
1 + tnr2

n

)3
(logn)2 = 	

(
log5 n

log3((3 logn)/(πnr2
n))

)
≤ 	

(
log5 n

)
.

By Lemma 9, in this range of rn, we have C1 ≤ C log5 n with probability tending
to one as n → ∞, where C is a fixed constant (uniform over all sequences rn in
this range).

Next, consider

rn ≥
√

logn

πn
.

Define t0 = 3.59112167 . . . as the unique solution greater than one of t0 log t0 =
t0 + 1. With this choice, if t > t0, the upper bound in the inequality of Lemma 9 is
o(1). Note that (

1 + tnr2
n

)3
(logn)2 = 	

(
n3(logn)2r6

n

)
,

which is o(n) if rn = o((n logn)−1/3). Overall, we have proved that C1 = o(n) as
long as rn = o((n logn)−1/3). �

6. Concluding remarks and open questions. From a practical point of view,
the sparsification done via irrigation graphs is especially interesting since an av-
erage degree of (1 + ε) guarantees that the majority of the nodes are part of the
network. It is proved in [6] that catching all the outsiders would require an average
degree of about 	(

√
logn/ log logn), so that it might not be worth the cost.

Theorem 2 is suboptimal in the range it allows for r , and it would be interesting
to find a wider range of r for which one does not have a connected component
of linear size. It is not quite clear that there is a threshold since the property that
there exists a connected component of size at least cn is not clearly monotonic
in r for fixed ξ . It would be of interest to know whether the property that a giant
exists with high probability is monotonic in rn (for fixed ξ ): is it the case that if
a giant exists w.h.p. for a given rn and fixed ξ , then a giant also exists w.h.p. for
any sequence r ′

n with r ′
n ≥ rn and the same fixed ξ? Assuming this is the case, it

would be interesting to study where the threshold r� = r�(ξ) is for the existence
of a giant when ξ = 1, but also for other (constant) values.

The question of the spanning ratio of the giant component is another interesting
one. Of course, for ξ such that Eξ ≥ 1 + ε, the largest connected component has
unbounded spanning ratio if we consider the definition

max
1≤i,j≤n

‖Xi − Xj‖
d�(i, j)

,

where d� denotes the graph distance in �n(rn, ξ). However, even if we disallow
the pairs of points that are either disconnected or too close, that is, for which
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‖Xi − Xj‖ ≤ r , it is not clear that the ratio becomes bounded. Indeed, our con-
struction only guarantees that most points in the same cells get connected via two
webs that hook up potentially far from that cell. In [6], it is shown that the span-
ning ratio of �(rn, cn) is bounded w.h.p. when rn ≥ γ

√
logn/n and cn ≥ μ

√
logn

for sufficiently large constants γ and μ.
Our techniques only show that when E[ξ ] > 1 the largest connected component

spans most of the vertices, but we have no control on the number of vertices that
are left over. The question of the size of the second largest connected component
may possibly be tackled by guessing which configurations are most “economical”
in terms of avoiding to connect to the outside world, as in [6].

Finally, in order for X to be sufficiently regular, we assume that nr2
n ≥ γ logn

for γ sufficiently large. Our techniques would fail for values of rn that are closer
to the connectivity threshold of the random geometric graph. However, this regime
is especially intriguing and it would be interesting to see what happens for the
size of the largest component of the irrigation graph for such values of rn. Also,
there is also no fundamental reason why one should restrict oneself to values of rn
above the connectivity threshold: what happens even for rn below the connectivity
threshold. Of course, one cannot expect anymore that for E[ξ ] > 1, the size of
the largest connected component is almost n: does it span almost the entire giant
component of the random geometric graph or is it asymptotically smaller?

APPENDIX: PROOF OF UNIFORMITY LEMMA

PROOF OF LEMMA 1. For any box S, the number points |X ∩S| is distributed
like a binomial random variable with parameters n and r ′2/(4d2). By a classical
concentration bound for binomial random variables (see, e.g., [5, 21]), we have for
δ ∈ (0,1) and p ∈ (0,1),

P
(∣∣Bin(n,p) − np

∣∣ ≥ δnp
) ≤ 2e−npδ2/3.(13)

Now, every cell Q contains k2d2 boxes, and by the union bound we have, for all n

large enough,

P(Q is not δ-good) ≤ 2k2d2e−nr ′2
n δ2/(3·4d2)

≤ 2k2d2n−γ 2δ2/(24d2),

since
√

2r ′
n ≥ rn for any k ≥ 1 and all n large enough. Furthermore, if there exists

one cell that is not δ-good, then one of the (mkd)2 boxes has a number of points
that is out of range, so that as n → ∞,

P(∃Q : Q is not δ-good) ≤ 2(mkd)2n−γ 2δ2/(24d2)

≤ n1−γ 2δ2/(24d2)+o(1),

which tends to zero provided that γ 2 ≥ 24d2/δ2. �
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