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FROM FEYNMAN–KAC FORMULAE TO NUMERICAL
STOCHASTIC HOMOGENIZATION IN ELECTRICAL

IMPEDANCE TOMOGRAPHY

BY PETTERI PIIROINEN1 AND MARTIN SIMON2

University of Helsinki and University of Mainz

In this paper, we use the theory of symmetric Dirichlet forms to derive
Feynman–Kac formulae for the forward problem of electrical impedance to-
mography with possibly anisotropic, merely measurable conductivities corre-
sponding to different electrode models on bounded Lipschitz domains. Sub-
sequently, we employ these Feynman–Kac formulae to rigorously justify
stochastic homogenization in the case of a stochastic boundary value problem
arising from an inverse anomaly detection problem. Motivated by this theo-
retical result, we prove an estimate for the speed of convergence of the pro-
jected mean-square displacement of the underlying process which may serve
as the theoretical foundation for the development of new scalable stochastic
numerical homogenization schemes.

1. Introduction. Electrical impedance tomography (EIT) aims to reconstruct
the unknown conductivity κ in the conductivity equation

∇ · (κ∇u) = 0 in D(1)

from current and voltage measurements on the boundary of the domain D. This in-
verse conductivity problem is known to be severely ill-posed, that is, its solution is
extremely sensitive with respect to measurement and modeling errors. As a result,
EIT suffers from inherent low resolution and due to this limitation, many practical
applications focus on the detection of conductivity anomalies in a known back-
ground conductivity rather than conductivity imaging. In the mathematical mod-
eling of such inverse anomaly detection problems, randomness typically reflects
a lack of precise information about the meso- and micro-structure of the hetero-
geneous background conductivity, which may fluctuate on many scales. Recently,
the second author has proposed a novel method for the detection of conductivity
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anomalies in a random background conductivity which is based on homogeniza-
tion of the underlying stochastic boundary value problem; cf. [48, 49].

Although the homogenization theory for elliptic divergence form operators is
well-developed (cf., e.g., [6, 28, 41, 42]), the numerical approximation of the effec-
tive conductivity in the random setting still poses major challenges. The commonly
used deterministic methods based on a discretization of the so-called auxiliary
problem have two main drawbacks. First, the auxiliary problem is formulated on
the whole space R

d , and second, it has to be solved for almost every realization of
the random medium. That is, a truncated version of the auxiliary problem has to be
considered and choosing an appropriate spatial truncation with appropriate bound-
ary conditions is a delicate issue; cf. [8]. Moreover, in practically relevant cases,
such as high contrast digitized random media, it is extremely difficult to solve the
corresponding variational problems by usual deterministic methods, such as the
finite element or the finite difference method, due to the behavior of the solutions
near the corner points. Therefore, numerical approximation of the effective con-
ductivity can be prohibitively expensive in terms of computation time. As a matter
of fact, practitioners often choose to avoid these computations at all and rather
content themselves with theoretical bounds; cf., for example, [55]. However, it has
been reported in the physics literature that the shortcomings of the standard de-
terministic methods can be circumvented by using continuum micro-scale Monte
Carlo simulation of certain diffusion processes evolving in random media instead;
cf., for example, [31–33, 50, 56]. In this work, we give a rigorous mathemati-
cal justification for homogenizing the EIT forward problem using such methods
by studying the interconnection between reflecting diffusion processes and certain
boundary value problems for the conductivity equation. More precisely, we derive
Feynman–Kac formulae for solutions of the deterministic conductivity equation (1)
posed on a bounded domain D ⊂Rd, d ≥ 2, with Lipschitz boundary ∂D and pos-
sibly anisotropic uniformly elliptic and uniformly bounded conductivity subject
to different boundary conditions modeling electrode measurements. Subsequently,
we employ these Feynman–Kac formulae to prove a homogenization result for
the corresponding stochastic boundary value problem which justifies the use of
stochastic numerical homogenization schemes based on simulation of the underly-
ing diffusion processes in order to approximate the effective conductivity. Finally,
we prove an estimate for the speed of convergence of the projected mean-square
displacement of the underlying diffusion processes. The main advantage of the
presented approach to numerical homogenization, beside its inherent parallelism,
is that its convergence rate is dimension-independent and its computational cost
grows only linearly with the dimension.

It is well known that reflecting diffusion processes generated by nondivergence
form operators with smooth coefficients on bounded, smooth domains are Feller
processes satisfying Skorohod-type stochastic differential equations. The construc-
tion in the case of divergence form operators with merely measurable coefficients
requires the theory of symmetric Dirichlet forms which has its origin in the energy
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method used by Dirichlet to address the boundary value problem in classical elec-
trostatics that was subsequently named after him. When D is a bounded Lipschitz
domain, Bass and Hsu [4] constructed the reflecting Brownian motion living on
D by showing that the so-called Martin–Kuramochi boundary coincides with the
Euclidean boundary in this case. A general diffusion process on a bounded Lip-
schitz domain, even allowing locally a finite number of Hölder cusps, was first
constructed by Fukushima and Tomisaki [23]. In this work, we use such a Dirich-
let form construction in order to derive Feynman–Kac representation formulae for
the solutions of Neumann, respectively Robin, boundary value problems modeling
EIT measurements. Probabilistic approaches to both parabolic and elliptic bound-
ary value problems for second-order differential operators have been studied by
many authors, starting with Feynman’s Princeton thesis [17] and the article [29]
by Kac. The probabilistic approach to the Dirichlet problem for a general class of
second-order elliptic operators with merely measurable coefficients, even allowing
singularities of a certain type, was elaborated by Chen and Zhang [12]; see also
Zhang’s paper [58]. However, there are only few works that treat Feynman–Kac
representation formulae for Neumann- or Robin-type boundary conditions. More-
over, the approaches existing in the literature consider either the Laplacian; see,
for example, [4, 9, 27], or nondivergence form operators with smooth coefficients,
see, for example, [5, 19, 43]. For the particular case of the conductivity equation
on a bounded Lipschitz domain, we generalize both, the Feynman–Kac formula
for the Robin problem on domains with boundary of class C3 for an isotropic
C2,γ -smooth conductivity, γ > 0, obtained by Papanicolaou [43] as well as the
representation obtained by Benchérif–Madani and Pardoux [5] for the Neumann
problem under similar regularity assumptions. While both of the aforementioned
approaches use stochastic differential equations and Itô calculus, our approach is
based on the theory of symmetric Dirichlet forms, following the pioneering work
[4] for the reflecting Brownian motion by Bass and Hsu. We derive in this work
Feynman–Kac formulae for both the Robin boundary value problem, correspond-
ing to the so-called complete electrode model, as well as the Neumann boundary
value problem, corresponding to the so-called continuum model. Both formulae
are valid for possibly anisotropic, uniformly elliptic and uniformly bounded con-
ductivities with merely measurable coefficients on bounded Lipschitz domains.
During the preparation of this work, we became aware of the paper [13] by Chen
and Zhang, where a probabilistic approach to some mixed boundary value prob-
lems with singular coefficients is derived. In contrast to our setting, however, the
mixed boundary condition studied there results from a singular lower-order term
of the differential operator.

Homogenization of stochastic differential equations with reflection and partial
differential equations with Neumann boundary conditions, respectively, in half-
space type domains have been studied for periodic coefficients in [3, 6, 54] and for
random divergence form operators with smooth coefficients in [46]. In contrast to
boundary value problems with homogeneous Dirichlet boundary conditions, these
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problems are nontranslation invariant, which excludes the standard stochastic ho-
mogenization approach via the so-called environment as viewed from the particle.
Employing the Feynman–Kac formula in conjunction with a recently obtained in-
variance principle for reflecting diffusion processes associated with random diver-
gence form operators with merely measurable coefficients due to Chen, Croydon
and Kumagai [11], we provide a homogenization result for a stochastic forward
problem built on the complete electrode model. Clearly, such a result motivates
the derivation of stochastic numerical homogenization schemes for the approxima-
tion of the effective conductivity which are based on simulation of the underlying
diffusion processes. However, the convergence analysis of such a method requires
a quantitative convergence result that is stronger than the usual qualitative results
obtained from the central limit theorem for martingales. As in the case of a dis-
crete random walk in random environment (cf. Gloria and Mourrat [24]), it turns
out that the behavior at the bottom of the spectrum of the infinitesimal generator
of the environment as viewed from the particle process, projected on a suitably
chosen function, yields bounds on the approximation error. This spectral behav-
ior has been the subject of recent interest. Most notably, Gloria, Neukamm and
Otto [25] have obtained optimal estimates in the discrete case which have been
carried over to the continuum case by Gloria and Otto [26]. The main difficulty in
obtaining such estimates for diffusion processes evolving in random media arises
from the lack of a Poincaré inequality for the horizontal derivative in the space
of square integrable functions on the probability space which corresponds to the
random medium. Therefore, in contrast to the periodic case, where the Poincaré
inequality on the torus is available, one cannot expect a spectral gap in the ran-
dom case. Still, it has been shown that the bottom of the spectrum is sufficiently
“thin.” Using these estimates together with a classical argument due to Kipnis and
Varadhan [34], we obtain an estimate for the speed of convergence of the pro-
jected mean-square displacement of the underlying diffusion process in a random
medium to its limit. Qualitative results of this kind have been obtained by Kipnis
and Varadhan in the case of discrete random walks in random environments and by
De Masi, Ferrari, Goldstein and Wick [14] in the continuum case, whereas quanti-
tative results in the case of discrete random walks have been proved more recently
by Gloria and Mourrat [24] and Egloffe, Gloria, Mourrat and Nguyen [15]. Finally,
we refer to the paper [38] by Mourrat which initiated the idea of using the Kipnis
and Varadhan argument in order to obtain quantitative results.

The rest of the paper is structured as follows: We start in Section 2 by briefly in-
troducing our notation. In Section 3, we recall the modeling of electrode measure-
ments in EIT as well as the modeling of random heterogeneous media. Moreover,
we introduce the stochastic forward problem we are interested in. In Section 4,
we describe the construction of reflecting diffusion processes via Dirichlet form
theory. Subsequently, in Section 5, the Feynman–Kac formulae for the determin-
istic boundary value problems will be derived. Then in Section 6 we study the
interconnection between Feynman–Kac formulae, stochastic homogenization and
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stochastic numerics. Finally, we conclude with a brief summary of our results.
In Appendix A we recall key concepts from the theory of Dirichlet forms and in
Appendix B, we provide Skorohod decompositions for two practically relevant
classes of conductivities.

2. Notation. Let D denote a bounded Lipschitz domain in R
d , d ≥ 2, with

connected complement and Lipschitz parameters (rD, cD), that is, for every x ∈
∂D we have after rotation and translation that ∂D ∩ B(x, rD) is the graph of a
Lipschitz function in the first d − 1 coordinates with Lipschitz constant no larger
than cD and D ∩ B(x, rD) lies above the graph of this function. Moreover, we set
R

d− := {x ∈ R
d : x · ν < 0}, with ν = ed the outward unit normal on R

d−1, where
we identify the boundary of Rd− with R

d−1, with straightforward abuse of notation.
For Lipschitz domains, there exists a unique outward unit normal vector ν a.e.

on ∂D so that the real Lebesgue spaces Lp(D) and Lp(∂D) can be defined in
the standard manner with the usual Lp norms ‖ · ‖p , p = 1,2,∞. The standard
L2 inner-products are denoted by 〈·, ·〉 and 〈·, ·〉∂D , respectively. The (d − 1)-
dimensional Lebesgue surface measure is denoted by σ and | · | denotes the Eu-
clidean norm on R

d .
By (�,G,P), we always mean a complete probability space corresponding to

a random medium. We use the notation ω for an arbitrary element of � and M

for the expectation with respect to the probability measure P . We use bold letters
to denote functions on (�,G,P), while we use italic letters for the corresponding
realizations on R

d ×�. The canonical probability space corresponding to diffusion
processes evolving in a deterministic medium starting in x is denoted (	,F,Px)

and the expectation with respect to Px is denoted Ex . If the process is evolving
in a random medium, we indicate this with a superscript ω for the probability
measure, that is, the measure P

ω
x corresponds to the particular realization ω of

the medium. Finally, the product probability space corresponding to the annealed
measure P := PP

ω
0 on 	 := � × 	, which is obtained by integrating with respect

to the measure P
ω
0 and subsequent averaging over the realizations of the random

medium, is denoted (	,F,P). The expectation with respect to P is denoted E.
All functions in this work will be real-valued and derivatives are understood

in distributional sense. We use a diamond subscript to denote subspaces of the
standard spaces containing functions with vanishing mean and interpret integrals
over ∂D as dual evaluations with a constant function, if necessary. For example,
we will frequently use the spaces

H
±1/2� (∂D) := {

φ ∈ H±1/2(∂D) : 〈φ,1〉∂D = 0
}

and

H 1� (D) := {
φ ∈ H 1(D) : 〈φ,1〉 = 0

}
.

Moreover, we will frequently assume that ∂D is partitioned into two disjoint
parts, ∂1D and ∂2D. We denote by H 1

0 (D ∪ ∂1D) the closure of C∞
c (D ∪ ∂1D),
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the linear subspace of C∞(D) consisting of functions φ such that supp(φ) is a
compact subset of D ∪ ∂1D, in H 1(D). Moreover, we define the Bochner space

L2(
�;H 1

0 (D ∪ ∂1D)
)

:=
{
φ : � → H 1

0 (D ∪ ∂1D) :
∫
�

∥∥φ(·,ω)
∥∥2
H 1

0 (D∪∂1D) dP(ω) < ∞
}
,

see, for example, [2] for properties of this space.
For the reason of notational compactness, we use the Iverson brackets: Let S be

a mathematical statement, then

[S] =
{

1, if S is true,

0, otherwise.

We also use the Iverson brackets [x ∈ B] to denote the indicator function of a set
B , which we abbreviate by [B] if there is no danger of confusion.

In what follows, all unimportant constants are denoted c, sometimes with addi-
tional subscripts, and they may vary from line to line.

3. Electrical impedance tomography.

3.1. Modeling of electrode measurements. Throughout this work, we assume
that the possibly anisotropic conductivity is defined by a symmetric, matrix-valued
function κ : D → R

d×d with components in L∞(D) such that κ is uniformly
bounded and uniformly elliptic, that is, there exists some constant c > 0 such that

c−1|ξ |2 ≤ ξ · κ(x)ξ ≤ c|ξ |2, for every ξ ∈R
d and a.e. x ∈ D.(2)

The forward problem of electrical impedance tomography can be described by
different measurement models. In the so-called continuum model, the conductivity
equation (1) is equipped with a co-normal boundary condition

∂κνu := κν · ∇u|∂D = f on ∂D,(3)

where f is a measurable function modeling the signed density of the outgoing
current. The boundary value problem (1), (3) has a solution if and only if

〈f,1〉∂D = 0.(4)

Physically speaking, this means that the current must be conserved. Given an
appropriate function f , the solution to (1), (3) is unique up to an additive con-
stant, which physically corresponds to the choice of the ground level of the poten-
tial. If f ∈ H

−1/2� (∂D), then there exists a unique equivalence class of functions
u ∈ H 1(D)/R that satisfies the weak formulation of the boundary value problem∫

D
κ∇u · ∇v dx = 〈f, v|∂D〉∂D for all v ∈ H 1(D)/R,
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where v|∂D := γ v and γ : H 1(D)/R → H 1/2(∂D)/R = (H
−1/2� (∂D))′ is the

standard trace operator. Note that we occasionally write v instead of v|∂D for the
sake of readability.

In practical EIT measurements, a number of electrodes, denoted E1, . . . , EN ⊂
∂D, are attached on the boundary of the object D. These electrodes are modeled
by disjoint surface patches given by simply connected subsets of ∂D, each having
a Lipschitz boundary curve. The most accurate forward model for real-life EIT is
the so-called complete electrode model which takes into account the fact that dur-
ing electrode measurements there is a contact impedance caused by a thin, highly
resistive layer at the electrode object interface. It was demonstrated experimen-
tally that the complete electrode model can correctly predict measurements up to
instrument precision; cf. [51]. For a given voltage pattern U ∈ RN , the boundary
conditions for the complete electrode model are given by

κν · ∇u|∂D + gu|∂D = f on ∂D,(5)

where the functions f,g : ∂D →R are defined by

f (x) := 1

z(x)

N∑
l=1

Ul[El], g(x) := 1

z(x)

N∑
l=1

[El](6)

and the contact impedance z : ∂D → R is assumed to be a piecewise continuous
function, with interfaces that are of zero surface measure, satisfying

0 < c0 ≤ z ≤ c1 a.e. on ∂D.

For a given voltage pattern U ∈R
N satisfying the grounding condition

N∑
l=1

Ul = 0,(7)

equations (1) and (5) define the electric potential u ∈ H 1(D) uniquely (cf. [51]
and the variational form of the boundary value problem), (1), (5) reads as follows:
Given U ∈R

N satisfying (7), find u ∈ H 1(D) such that∫
D

κ∇u · ∇v dx + 〈gu|∂D, v|∂D〉∂D = 〈f, v|∂D〉∂D for all v ∈ H 1(D).(8)

Knowledge of u yields the corresponding electrode current vector J ∈R
N via

Jl =
∫
El

∂κνudσ(x), 1 ≤ l ≤ N.(9)
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3.2. The stochastic problem. The basic geometric setting of the stochastic
problem we are interested in is as follows: Assume that the model domain is given
by the lower hemisphere

D := B(0,R)∩R
d−, R > 0

and that ∂D is partitioned into two disjoint parts, namely the accessible boundary
∂1D := ∂D∩R

d−1 and the inaccessible boundary ∂2D := ∂D \ ∂1D, respectively.
Such a setting is found for instance in geophysical applications, where measure-
ments can only be taken on the surface; cf., for example, [48, 49].

Let (�,G,P) be a probability space and let � : � → � denote an ergodic d-
dimensional dynamical system, that is, a family of automorphisms {�x, x ∈ R

d}
which satisfies the following conditions:

(i) The family {�x, x ∈R
d} is a group, that is, �0 = id and

�x+y = �x�y for all x, y ∈R
d;

(ii) the mappings �x : � → �, x ∈ R
d , preserve the measure P on �, that is,

for every B ∈ G, �xB is P-measurable and

P(�xB) = P(B);
(iii) for every measurable function φ on (�,G,P), the function (x,ω) �→

φ(�xω) is a measurable function on (Rd × �,B(Rd) ⊗ G,Leb×P), where
B(Rd)⊗G denotes the sigma-algebra generated by the measurable rectangles and
Leb is the d-dimensional Lebesgue measure;

(iv) the family {�x, x ∈R
d} is ergodic, that is, φ(�xω) = φ(ω) for all x ∈R

d

and P-a.e. ω ∈ � implies φ = const P-a.e.

Throughout this work, we assume that the conductivity random field{
κ(x,ω), (x,ω) ∈R

d × �
}

is the stationary extension on R
d × � of some function κ ∈ L2(�;Rd×d), that is,

(x,ω) �→ κ(x,ω) = κ(�xω).(10)

Note that if κ can be written in the form (10) with a dynamical system {�x, x ∈
R

d} which satisfies (i)–(iii), then it is automatically stationary with respect to P ,
that is, for every finite collection of points x(i), i = 1, . . . , k, and any h ∈ R

d the
joint distribution of

κ
(
x(1) + h,ω

)
, . . . , κ

(
x(k) + h,ω

)
under P is the same as that of

κ
(
x(1),ω

)
, . . . , κ

(
x(k),ω

)
.

Even if it is not explicitly stated, we always assume that the conductivity random
field may be written in the form (10), where the underlying dynamical system
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{�x, x ∈R
d} satisfies conditions (i)–(iv). Moreover, we will explicitly state if the

conductivity random field {κ(x,ω), (x,ω) ∈R
d ×�} satisfies one of the following

assumptions:

(A1) κ ∈ L2(�;L∞(Rd;Rd×d)) and the random field is strictly positive and
uniformly bounded, that is, there exists a constant c > 0 such that for every ξ ∈R

d

and a.e. x ∈R
d

P
{
ω ∈ � : c−1|ξ |2 ≤ ξ · κ(x,ω)ξ ≤ c|ξ |2} = 1.

(A2) {κ(x,ω), (x,ω) ∈ R
d × �} satisfies the spectral gap property; cf. [26]:

There exist constants ρ > 0 and r < ∞ such that for all measurable functions on
{κ :Rd →{κ0 ∈R

d×d : |κ0ξ | ≤ |ξ |, c|ξ |2 ≤ ξ · κ0ξ for all ξ ∈R
d}} the inequality

Vφ ≤ 1

ρ
M

∫
Rd

(oscκ|B(x,r)
φ)2 dx

holds, where we have set

(oscκ|B(x,r)
φ) := sup

{
φ(κ̃) : κ̃ ∈ 	, κ̃|Rd\B(x,r) = κ|Rd\B(x,r)

}
− inf

{
φ(κ̃) : κ̃ ∈ 	, κ̃|Rd\B(x,r) = κ|Rd\B(x,r)

}
.

To account for the highly heterogeneous properties of the background medium,
the latter is modeled using the conductivity random field with appropriate scaling
by a small parameter ε > 0, that is,

κε(·, ·) :Rd × � →R
d×d, κε(x,ω) := κ(x/ε,ω).

If the correlation length of the conductivity random field κ is, say 1, then the
correlation length of the scaled version κε is of order ε and for ε � 1 we obtain
thus a rapidly oscillating random field.

Let us introduce a stochastic forward model based on the complete electrode
model: We search for a random field {uε(x,ω), (x,ω) ∈ D × �} for the electri-
cal potential with uε ∈ L2(�;H 1

0 (D ∪ ∂1D)) such that the stochastic conductivity
equation

∇ · (κε∇uε) = 0 in D × �(11)

subject to the boundary conditions

κεν · ∇uε|∂1D + guε|∂1D = f on ∂1D × �,
(12)

uε|∂2D = 0 on ∂2D × �

is satisfied P-a.s. The variational formulation of the forward problem is to find
uε ∈ L2(�;H 1

0 (D ∪ ∂1D)) such that

M

{∫
D

κε∇uε · ∇v dx + 〈guε, v〉∂1D

}
=M〈f, v〉∂1D(13)
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for all v ∈ L2(�;H 1
0 (D ∪ ∂1D)). For a given voltage pattern U ∈ R

N , the cor-
responding measurement data is given by the random current pattern J (ε,ω) =
(J1(ε,ω), . . . , JN(ε,ω))T , defined for P-a.e. ω ∈ � by

Jl(ε,ω) = 1

|El|
∫
El

κε(x,ω)ν · ∇uε(x,ω)|∂1D dσ(x), l = 1, . . . ,N.(14)

Due to the assumption (A1), the well-posedness of the variational formulation fol-
lows from a straightforward application of the Lax–Milgram theorem. Moreover,
standard arguments from measure theory show that the solution to the stochastic
forward problem (11), (12) also solves (13); cf. [2].

4. Reflecting diffusion processes. In his seminal paper [20] from 1971,
Fukushima established a one-to-one correspondence between regular symmetric
Dirichlet forms and symmetric Hunt processes, which is the foundation for the
construction of stochastic processes via Dirichlet form techniques. Therefore, we
assume that the reader is familiar with the theory of symmetric Dirichlet forms, as
elaborated for instance in the monograph [22].

Let us consider the following symmetric bilinear forms on L2(D):

E(v,w) :=
∫
D

κ∇v(x) · ∇w(x)dx, v,w ∈D(E) := H 1(D)(15)

and for the particular case κ ≡ 1/2, which is of special importance, we set

EBM(v,w) := 1

2

∫
D
∇v(x) · ∇w(x)dx, v,w ∈D

(
EBM) := H 1(D).(16)

The pair (E,D(E)) defined by (15) is a strongly local, regular symmetric Dirich-
let form on L2(D). In particular, there exist an E-exceptional set N ⊂ D and a con-
servative diffusion process X = (	,F, {Xt, t ≥ 0},Px), starting from x ∈ D \N
such that X is associated with (E,D(E)). Without loss of generality, let us as-
sume that X is defined on the canonical sample space 	 = C([0,∞);D). It is
well known that the symmetric Hunt process associated with (16) is the reflecting
Brownian motion. Therefore, we call the symmetric Hunt process associated with
(15) a reflecting diffusion process.

Let us briefly recall the concept of the boundary local time of reflecting dif-
fusion processes (see, e.g., [5, 27, 43]), which will be crucial for the subsequent
derivation of the Feynman–Kac formulae. If the diffusion process is the solution
to a stochastic differential equation, say the reflecting Brownian motion, then the
boundary local time is given by the one-dimensional process L in the Skorohod
decomposition, which prevents the sample paths from leaving D, that is,

Xt = x +Wt − 1

2

∫ t

0
ν(Xs)dLs,(17)
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Px-a.s. for q.e. x ∈ D. This boundary local time is a continuous nondecreasing
process which increases only when Xt ∈ ∂D, namely for all t ≥ 0 and q.e. x ∈ D

Lt =
∫ t

0
[∂D](Xs)dLs,

Px-a.s. and

Ex

∫ t

0
[∂D](Xs)ds = 0.

Although the reflecting diffusion process associated with (15) does in general not
admit a Skorohod decomposition of the form (17), we may still define a continuous
one-dimensional process having the properties of the local time process mentioned
above. More precisely, we employ the Revuz correspondence from Lemma A.2
to establish a rigorous definition of the boundary local time of X generalizing
the classical definition for solutions to an SDE where a Skorohod decomposition
exists. For convenience and in order to make the text flow more naturally, the
concepts that appear in the following definition are collected in the Appendix A.

DEFINITION 4.1. We call the positive continuous additive functional L of X

whose Revuz measure is the Lebesgue surface measure σ on ∂D the boundary
local time of the reflecting diffusion process X.

So far, both X and L have been defined up to an E-exceptional set and the rest of
this section is devoted to showing that this set is actually empty. Therefore, let us
consider the nonpositive definite self-adjoint operator (L,D(L)) associated with
the Dirichlet form (E,D(E)). That is, for v ∈D(L) we have

〈−Lv,w〉 = E(v,w) for all w ∈D(E)(18)

and the domain of L is given by

D(L) =
{
v ∈D(E) : ∃φ ∈ L2(D) s.t. E(v,w) =

∫
D

φw dx ∀w ∈D(E)

}
.

In order to refine the reflecting diffusion process X to start from every x ∈ D, we
exploit the connection between the strongly continuous sub-Markovian contrac-
tion semigroup {Tt , t ≥ 0} on L2(D) and the evolution system corresponding to
(L,D(L)); see, for example, the monograph [44]. Namely, for every v0 ∈ L2(D),
the trajectory v : (0, T ) → H 1(D), v(t) = Ttv0 belongs to the function space{

φ ∈ L2(
(0, T );H 1(D)

) : φ̇ ∈ L2(
(0, T );H−1(D)

)}
and is the unique mild solution to the parabolic abstract Cauchy problem

v̇ +Lv = 0 in (0, T ),
(19)

v(0) = v0.
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This is equivalent to the variational formulation

−
∫ T

0

〈
v(t),w

〉
ϕ̇(t)dt +

∫ T

0

〈
Lv(t),w

〉
ϕ(t)dt − 〈v0,w〉ϕ(0) = 0(20)

for all w ∈ H 1(D) and all ϕ ∈ C∞
c ([0, T )). Moreover, Tt is known to be a bounded

operator from L1(D) to L∞(D) for every t > 0. Therefore, by the Dunford–Pettis
theorem, it can be represented as an integral operator for every t > 0,

Ttφ(x) =
∫
D

p(t, x, y)φ(y)dy for every φ ∈ L1(D),(21)

where for all t > 0 we have p(t, ·, ·) ∈ L∞(D × D) and p(t, ·, ·) ≥ 0 a.e. We call
the function p the transition kernel density of X.

The following proposition adapts a well-known result for diffusion processes
on R

d (cf. [52]), which follows from the famous De Giorgi–Nash–Moser theorem,
to the case of reflecting diffusion processes on D. The key idea of the proof is the
following extension by reflection technique from [57], Section 2.4.3: We extend the
solution to a parabolic problem by reflection at the boundary. Then we show that
this extension again solves a parabolic problem so that we can apply the interior
regularity result due to De Giorgi, Nash and Moser. See also the article [40] by
Nittka, where such a technique is applied to elliptic boundary value problems.

PROPOSITION 4.2. p ∈ C0,δ((0, T ] ×D ×D) for some δ ∈ (0,1), that is, for
each fixed 0 < t0 ≤ T , there exists a positive constant c such that∣∣p(t2, x2, y2) − p(t1, x1, y1)

∣∣ ≤ c
(√

t2 − t1 + |x2 − x1| + |y2 − y1|)δ(22)

for all t0 ≤ t1 ≤ t2 ≤ T and all (x1, y1), (x2, y2) ∈ D × D. Moreover, the mapping
t �→ p(t, ·, ·) is analytic from (0,∞) to C0,δ(D ×D).

PROOF. First, note that Nash’s inequality holds for the underlying Dirichlet
form (E,H 1(D)), that is, there exists a constant c1 > 0 such that

‖v‖2+4/d
2 ≤ c1

(
E(v, v) + ‖v‖2

2
)‖v‖4/d

1 for all v ∈ H 1(D).

This is a direct consequence of the uniform ellipticity (2) and [4], Corollary 2.2,
where Nash’s inequality is shown to hold for the Dirichlet form (EBM,H 1(D)) for
a bounded Lipschitz domain D. Analogously to the proof of [4], Theorem 3.1, it
follows thus from [10], Theorem 3.25, that the transition kernel density satisfies
an Aronson-type Gaussian upper bound

p(t, x, y) ≤ c1t
−d/2 exp

(
−|x − y|2

c2t

)
(23)

for all t ≤ 1 and all (x, y) ∈ D × D. In particular, sup0<t≤1 ‖p(t, ·, ·)‖∞ is finite,
and hence by the interior Hölder continuity obtained from the De Giorgi–Nash–
Moser theorem (cf. [39, 52]), the estimate (22) is true for all (x1, y1), (x2, y2)
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satisfying d(xi, ∂D), d(yi, ∂D) > c3, i = 1,2, for some constant c3 > 0 and all
t0 ≤ t1 ≤ t2 ≤ 1. Note that by the semigroup property the Chapman–Kolmogorov
equation holds, that is,

p(t1 + t2, x, y) =
∫
D

p(t1, x, z)p(t2, z, y)dz(24)

for every pair t1, t2 ≥ 0 and a.e. x, y ∈ D. In particular, for fixed y ∈ D the func-
tion v := p(·, ·, y) is the unique solution to (19) with initial value v0 := p(0, ·, y) ∈
L2(D). Now let z ∈ ∂D so that by the Lipschitz property of ∂D we have af-
ter translation and rotation B(z, rD) ∩ D = {(x̃, xd) ∈ B(z, rD) : xd ≥ γ (x̃)} and
B(z, rD) ∩ ∂D = {x̃ ∈ B(z, rD) : xd = γ (x̃)}, where we have introduced the nota-
tion x̃ = (x1, . . . , xd−1)

T . Let us furthermore introduce the one-to-one transforma-
tion �(x) := (x̃, xd − γ (x̃)) which straightens the boundary B(z, rD) ∩ ∂D. � is
a bi-Lipschitz transformation and the Jacobians of both � and �−1 are bounded
with bounds that depend only on the Lipschitz constant cD . Since v is the so-
lution to (19) with appropriate initial condition, the function v̂ := v(·,�−1(·))
must satisfy the variational formulation of the following parabolic problem in
D̂(z, rD) := �(B(z, rD) ∩ D):∫ T

0
ϕ̇(t)

∫
D̂(z,rD)

v̂(t)w dx dt =−
d∑

i,j=1

∫ T

0
ϕ(t)

∫
D̂(z,rD)

κ̂ij ∂i v̂(t)∂jw dx dt

− ϕ(0)

∫
D̂(z,rD)

v̂0w dx

for all w ∈ C∞
c (D̂(z, rD)) and all ϕ ∈ C∞

c ([0, T )). The coefficient κ̂ is obtained
via change of variables and it is bounded and uniformly elliptic by the bound-
edness of the Jacobians of � and �−1, respectively. Now we use reflection at
the hyperplane {(ỹ,0)} via the mapping ρ(x) := (x̃,−xd) which yields that the
function v̂(·, ρ(·)) satisfies the variational formulation of a parabolic problem
on ρ(D̂(z, rD)). Summing up both variational formulations on D̂(z, rD) and on
ρ(D̂(z, rD)), respectively, we obtain that the function

v̌(t, x) :=
{

v̂(t, x), x ∈ D̂(z, rD),

v̂
(
t, ρ(x)

)
, x ∈ ρ

(
D̂(z, rD)

)
satisfies the variational formulation of a parabolic problem in D̂(z, rD) ∪ ρ(D̂(z,

rD)). By the interior Hölder estimate for v̌, together with the fact that we may
choose c3 = rD/4cD , we obtain thus∣∣p(

t2, x2,�
−1(y2)

) − p
(
t1, x1,�

−1(y1)
)∣∣ ≤ c1

(√
t2 − t1 + |y2 − y1|)c2

for all t0 ≤ t1 ≤ t2 ≤ 1 and y1, y2 ∈ {(x̃, xd) : |x̃| < c3, xd ∈ (0, rD/4)}. As � is
bi-Lipschitz, for fixed x, the mapping (t, y) �→ p(t, x, y) is Hölder continuous in
(t0,1] × (B(z, c3)∩D) and by symmetry of the transition kernel density the same
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holds true for the mapping (t, x) �→ p(t, x, y) for fixed y. Finally, the first assertion
on (t0,1] × D × D follows due to compactness of ∂D and its generalization to
arbitrary T > 0 is obtained after repeatedly applying the Chapman–Kolmogorov
equation.

The second assertion follows by the fact that the semigroup {Tt , t ≥ 0} extrap-
olates to a holomorphic semigroup on L2(D). More precisely, the semigroup pos-
sesses a holomorphic extension to the sector �θ := {reiα : r > 0, |α| < θ} for some
θ ∈ (0, π

2 ], cf., for example, [44]. Let 0 < t0 ≤ T and set

�θ(t0, T ) := {
z ∈C : z − t0 ∈ �θ, |z| < T

}
.

By the Hölder continuity of p, the set {p(z, ·, ·) : z ∈ �θ(t0, T )} is a bounded sub-
set of C0,δ(D ×D). Moreover, the family of functionals obtained form integration
against the functions [B1](x)[B2](y) for measurable B1,B2 ⊂ D form a separating
subspace of (C0,δ(D,D))′, that is, for k ∈ C0,δ(D × D)∫

D×D
k(x, y)[B1](x)[B2](y)dx dy = 0 for all measurable B1,B2 ⊂ D

implies that k ≡ 0. As the mapping

z �→ 〈
Tz[B1], [B2]〉 = ∫

D×D
p(z, x, y)[B1](y)[B2](x)dx dy

is holomorphic for all z ∈ �θ , the mapping z �→ p(z, ·, ·) is holomorphic from
�θ(t0, T ) to C0,δ(D ×D) by [1], Theorem 3.1. Since t0 and T were arbitrary, the
assertion is proved. �

By [21], Theorem 2, the existence of a Hölder continuous transition kernel den-
sity ensures that we may refine the process X to start from every x ∈ D by identi-
fying the strongly continuous semigroup {Tt , t ≥ 0} with the transition semigroup
{Pt , t ≥ 0}.

It remains to show that L can be refined as well. Note that by the Lipschitz
property of ∂D, we have that D∩B(x, rD) = {(x̃, xd) : xd > γ (x̃)}∩B(x, rD) and
the Lipschitz function γ is differentiable a.e. with a bounded gradient. In particular,
we have for every Borel set B ⊂ ∂D ∩B(x, rD) that

σ(B) =
∫
{x̃:(x̃,γ (x̃))∈B}

(
1 + ∣∣∇γ (x̃)

∣∣2)1/2 dx̃

and a straightforward computation yields that the Lebesgue surface measure σ is a
smooth measure with respect to (E,D(E)) having finite energy. Thus, by the Revuz
correspondence from Lemma A.2 the boundary local time L exists as a positive
continuous additive functional in the strict sense, that is, without an exceptional
set.
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5. Feynman–Kac formulae. In this section, we derive the Feynman–Kac for-
mulae for both the continuum model and the complete electrode model. Afterward,
we will obtain, as a corollary, a Feynman–Kac formula for the mixed boundary
value problem corresponding to the stochastic problem introduced in Section 3.2.
Compared to the earlier works [5, 27, 43] on Feynman–Kac formulae, the main
difficulty in deriving these formulae in our particular setting comes from the lack
of Itô’s formula for general reflecting diffusion processes.

The rest of this subsection is devoted to providing some auxiliary lemmata.

LEMMA 5.1. The transition kernel density p approaches the stationary dis-
tribution uniformly and exponentially fast, that is, there exist positive constants c1

and c2 such that for all (x, y) ∈ D ×D and every t ≥ 0,∣∣p(t, x, y)− |D|−1∣∣ ≤ c1 exp(−c2t).(25)

For the proof of this lemma, we refer to the monograph [49].

LEMMA 5.2. Let κ ∈ C∞(D;Rd×d). Then the set

Vκ(D) := {
φ ∈ H 1(D) ∩C2(D) : ∂κνφ(x) = 0 for σ -a.e. x ∈ ∂D

}
(26)

is dense in H 1(D).

PROOF. Diagonalizing the operator (L,D(L)) corresponding to the conduc-
tivity κ , we obtain an orthonormal basis {φk, k ∈ N} of L2(D) and an increasing
sequence of real numbers (λk)k∈N such that λk ↑∞ and for every k ∈N, the func-
tion φk ∈ H 1(D) satisfies E(φk,ψ) = λk〈φk,ψ〉 for every ψ ∈ H 1(D). Note that
the inner product E1(·, ·) := E(·, ·)+ 〈·, ·〉 is equivalent to the standard inner prod-
uct on H 1(D) and by interior elliptic regularity theorem [16], Theorems 6.1–6.3,
we have φk ∈ Vκ(D) for every k ∈ N. In particular, it is enough to show the den-
sity of the linear span of {φk} in H 1(D). Therefore, let ψ ∈ H 1(D) such that
E1(φk,ψ) = 0 for every k ∈N, then

0 = E1(φk,ψ) = E(φk,ψ)+ 〈φk,ψ〉 = (λk + 1)〈φk,ψ〉.
Hence, it follows 〈φk,ψ〉 = 0 for every k ∈ N and the fact that {φk, k ∈ N} is an
orthonormal basis of L2(D) implies ψ ≡ 0 which proves the assertion. �

LEMMA 5.3. For every x ∈ D and every bounded Borel function φ on ∂D, we
have

Ex

∫ t

0
φ(Xs)dLs =

∫ t

0

∫
∂D

p(s, x, y)φ(y)dσ(y)ds for all t ≥ 0.(27)
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PROOF. First, the expression (27) is well-defined since the boundary local
time of X exists as a positive continuous additive functional in the strict sense.
Without loss of generality, we may assume that φ is nonnegative. It follows from
[22], Theorem 5.1.3, that the Revuz correspondence (66) is equivalent to∫

D
ψ(x)Ex

∫ t

0
φ(Xs)dLs dx =

∫ t

0

∫
∂D

φ(y)Tsψ(y)dσ(y)ds

=
∫
D

ψ(x)

∫ t

0

∫
∂D

p(s, y, x)φ(y)dσ(y)ds dx

for every t > 0 and all nonnegative Borel functions ψ and φ, where we have used
Fubini’s theorem in the second line. As this holds for every nonnegative Borel
function ψ , we deduce

Ex

∫ t

0
φ(Xs)dLs =

∫ t

0

∫
∂D

p(s, x, y)φ(y)dσ(y)ds a.e. in D.

To obtain the assertion everywhere in D, fix an arbitrary x0 ∈ D and consider for
t0 > 0 the integral

Ex0

∫ t

t0

φ(Xs)dLs =
∫
D

p(t0, x0, x)Ex

{∫ t−t0

0
φ(Xs)dLs

}
dx

=
∫
D

p(t0, x0, x)

(∫ t−t0

0

∫
∂D

p(s, x, y)φ(y)dσ(y)ds

)
dx

=
∫ t

t0

∫
∂D

p(s, x0, y)φ(z)dσ(y)ds,

where we have used the Markov property of X. Now let (tk)k∈N denote a positive
sequence which monotonically decreases to zero as k → ∞. By the computation
from above, we have for every x ∈ D

Ex

∫ t

0
φ(Xs)dLs =

∫ t

tk

∫
∂D

p(s, x, y)φ(y)dσ(y)ds +Ex

∫ tk

0
φ(Xs)dLs.

The claim follows by the facts that φ is bounded and ExLtk goes to zero as k →∞
which follows from monotonicity and continuity of the local time and the property
L0 = 0 Px-a.s. for every x ∈ D. �

5.1. Continuum model. The main result for the continuum model (1), (3) is
the following theorem.

THEOREM 5.4. Let f be a bounded Borel function satisfying 〈f,1〉∂D = 0.
Then there is a unique weak solution u ∈ C(D) ∩ H 1� (D) to the boundary value
problem (1), (3). This solution admits the Feynman–Kac representation

u(x) = lim
t→∞Ex

∫ t

0
f (Xs)dLs for all x ∈ D.(28)
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PROOF. The existence of a unique normalized weak solution u to (1), (3) is
guaranteed by the standard theory of linear elliptic boundary value problems. Let
us set

ut (x) := Ex

∫ t

0
f (Xs)dLs and u∞(x) := lim

t→∞ut (x), x ∈ D,

respectively. Note that u∞ represents the right-hand side of (28) and proving the
claim is equivalent to verifying that u = u∞ with the required properties.

The proof consists of four steps. First, we verify that u∞ ∈ C�(D). Then
we show the claim for smooth approximations κ(k) of κ that yield a sequence
(u(k))k∈N ⊂ H 1� (D)∩C(D). In the third step, we show that u(k) → u in H 1(D) as
k →∞. The last step is to show that u(k) → u∞ uniformly on compact sets which
yields the claim.

From the occupation formula (27) and the compatibility condition (4), we ob-
tain an integral representation of ut for every t > 0 and since the convergence to-
ward the stationary distribution is uniform over D, by Lemma 5.1, we may deduce
that

u∞(x) =
∫ ∞

0

∫
∂D

(
p(s, x, y)− |D|−1)

f (y)dσ(y)ds for all x ∈ D.(29)

The first step follows from (29) together with the Hölder continuity shown in
Proposition 4.2 and the Aronson-type upper bound (23), which give that u∞ ∈
C(D). Moreover, Fubini’s theorem yields that u∞ has zero mean, that is, u∞ ∈
C�(D).

Next, we show the claim for an approximative sequence (κ(k))k∈N of conduc-
tivities with components in C∞(D) such that κ(k) → κ componentwise a.e. as
k →∞. Let us consider the Dirichlet forms (E (k),H 1(D)), k ∈N, with

E (k)(v,w) :=
∫
D

κ(k)∇v · ∇w dx

and the associated reflecting diffusion processes X(k). By Proposition B.1, we ob-
tain the Skorohod decomposition

X
(k)
t = x +

∫ t

0
a(k)(X(k)

s

)
ds +

∫ t

0
B(k)(X(k)

s

)
dWs −

∫ t

0
κ(k)(X(k)

s

)
ν
(
X(k)

s

)
dL(k)

s ,

where W is a standard d-dimensional Brownian motion, a
(k)
i := ∑d

j=1 ∂jκ
(k)
ij , i =

1, . . . , d , and the matrix B(k) satisfies 2κ(k) = (B(k))2. Let us define u
(k)
t in the

same manner as ut and u(k)(x) := limt→∞ u
(k)
t (x), x ∈ D.

The second step follows, therefore, after we have shown that u(k) is the unique
weak solution [in the Sobolev space H 1� (D)] of the elliptic boundary value prob-
lem obtained from (1) and (3) by replacing κ with κ(k) which, by Lemma 5.2, is
equivalent to

∀v ∈ Vκ(k)(D):
〈
u(k),∇ · (κ(k)∇v

)〉 =−〈f, v〉∂D.(30)
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For v ∈ Vκ(k)(D) we may apply Itô’s formula for semimartingales to obtain

Exv
(
X

(k)
t

) = v(x) +Ex

∫ t

0
∇ · (κ(k)∇v

(
X(k)

s

))
ds.

By Fubini’s theorem, this is equivalent to

T
(k)
t v(x) − v(x) =

∫ t

0

∫
D

p(k)(s, x, y)∇ · (κ(k)∇v(y)
)

dy ds,

where we have used the superscript “(k)” for the semigroup and transition kernel
density, respectively, corresponding to κ(k). Multiplication with f , integration over
∂D and another change of the orders of integration finally yield∫

∂D
f (y)

(
T

(k)
t v(y) − v(y)

)
dσ(y) = 〈

u
(k)
t ,∇ · (κ(k)∇v

)〉
.

Since u
(k)
t → u(k) and T

(k)
t v → |D|−1 ∫

D v dx, both uniformly on D, as t → ∞,
we obtain (30).

Let us prove the third step, that is, the convergence of the sequence (u(k))k∈N as
k →∞ toward u ∈ H 1� (D), the unique solution to (1), (3). Consider the variational
form of the Neumann problem for u(k) ∈ H 1� (D), that is, E (k)(u(k), v) = 〈f, v〉∂D

for all v ∈ H 1� (D). As u(k) ∈ H 1� (D) for all k ∈ N, we have by the Poincaré in-
equality that the sequence (u(k))k∈N is bounded in H 1� (D). Therefore, by weak
compactness, we may without loss of generality assume that u(k) ⇀ ũ in H 1� (D),
as k →∞. Hence, it remains to show the convergence of the flows

κ(k)∇u(k) ⇀ κ∇ũ in L2(
D;Rd)

, as k →∞.

Since u(k) ⇀ ũ, this is equivalent to showing that

lim
k→∞

〈(
κ(k) − κ

)∇u(k), φ
〉 = 0

for every φ ∈ L2(D;Rd). By Egorov’s theorem, we have for every ε > 0 a set
Dε ⊂ D such that κ(k) converges uniformly to κ on Dε and the Lebesgue measure
of the complement is |D \ Dε| < ε. Since ‖∇u(k)‖2 ≤ M is uniformly bounded by
the Poincaré inequality, we obtain with the Cauchy–Schwarz inequality that∣∣〈(κ(k) − κ

)∇u(k), φ
〉∣∣ ≤ 2M‖φ‖2

√
ε

for large enough k. Hence, we deduce the convergence of the flows and we may
pass to the limit in the variational formulation to see that ũ ≡ u is the unique
solution to the Neumann problem.

The last step follows by [47], Lemma 2.2, together with the Hölder continuity
up to the boundary of both p(k), k ∈ N, and p. These imply that for fixed x ∈ D,
p(k)(·, x, ·) → p(·, x, ·), as k → ∞, uniformly on compacts in (0, T ] × D for all
T > 0. Therefore, by (29) we have that u(k) → u∞ pointwise, as k →∞, and the
claim follows. �
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REMARK 5.5. Note that the regularization technique we employed in the
proof of Theorem 5.4 may be easily modified to prove the Feynman–Kac formula

u(x) = Exφ(Xτ(D)), x ∈ D

for the conductivity equation (1) with Dirichlet boundary condition u|∂D = φ,
where φ ∈ H 1/2(D) and

τ(D) := inf
{
t ≥ 0 : Xt ∈R

d \ D
}

denotes the first exit time from the domain D. Such a proof requires the fact that

X
(k)

·∧τ (k)(D)
→ X·∧τ(D) in law on C

([0,∞);D)
as k → ∞ for every x ∈ D. This follows from the Lipschitz property of ∂D, im-
plying that all points of ∂D are regular for the reflecting diffusion process X in the
sense of [30], Chapter 4.2. Indeed, it is well known that every Lipschitz domain
is regular for standard Brownian motion; this property holds more generally for
domains that satisfy the exterior cone condition at every point. For the reflecting
diffusion process, an analogous result follows from a reflection argument (as in
proof of Proposition 4.2) in the neighborhood of a given point x ∈ ∂D to extend
the process to a small neighborhood which now contains x as an interior point.
We may then use an Aronson-type lower bound for the so-obtained transition ker-
nel density p̂ which is similar to the upper bound we deduced in Proposition 4.2;
see [53], Chapter 4.2. This allows transferring the usual proof for sufficiency of
the cone condition for regularity of Brownian motion to the extended process X.
Therefore, x ∈ ∂D is regular for X, and hence also for the original reflecting dif-
fusion.

A slight modification of the arguments from above yields the following result
which is in fact a corollary rather to the proof of Theorem 5.4 than to its actual
statement.

COROLLARY 5.6. Let f be a bounded Borel function and let α > 0. Then
there is a unique weak solution u ∈ C(D)∩H 1� (D) to the boundary value problem

∇ · (κ∇u)− αu = 0 in D

subject to the boundary condition (3). This solution admits the Feynman–Kac rep-
resentation

u(x) = Ex

∫ ∞
0

e−αtf (Xt)dLt for all x ∈ D.(31)

PROOF. Repeat the proof of Theorem 5.4, however, substituting {Tt , t ≥ 0}
with the Feynman–Kac semigroup {T̃t , t ≥ 0}, T̃t v(x) := Exe

−αtv(Xt ). Note that
in contrast to the Neumann problem without the zero-order term, the gauge
Ex

∫ ∞
0 e−t dLt is finite Px-a.s. for every x ∈ D. �
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5.2. Complete electrode model. The main result for the complete electrode
model (1), (5) is the following theorem.

THEOREM 5.7. For given functions f,g defined by (6) and a voltage pattern
U ∈ R

N satisfying (7), there is a unique weak solution u ∈ C(D) ∩ H 1(D) to the
boundary value problem (1), (5). This solution admits the Feynman–Kac represen-
tation

u(x) = Ex

∫ ∞
0

eg(t)f (Xt)dLt for all x ∈ D,(32)

with the gauge function

eg(t) := exp
(
−

∫ t

0
g(Xs)dLs

)
, t ≥ 0.(33)

Before we are ready to give a proof of Theorem 5.7, let us introduce the
Feynman–Kac semigroup of the complete electrode model, that is, the one-parame-
ter family of operators {T g

t , t ≥ 0} defined by

T
g
t v(x) := Exeg(t)v(Xt ), x ∈ D and t ≥ 0.(34)

Moreover, let us define the perturbed Dirichlet form (Eg,D(Eg)) by a perturbation
of (E,D(E)) with the measure g · σ , that is,

Eg(v,w) := E(v,w) + 〈gv,w〉∂D, v,w ∈D
(
Eg)

,(35)

where D(Eg) = H 1(D) by the standard trace theorem.
The following lemma yields a continuity result up to the boundary which is not

so easy to obtain by standard regularity arguments using Sobolev embeddings.

LEMMA 5.8. Let the function u be defined by the Feynman–Kac formula (32),
then u ∈ C(D).

PROOF. Let us define a Px-martingale by

Ex

{∫ ∞
0

eg(s)f (Xs)dLs

∣∣∣Ft

}
=

∫ t

0
eg(s)f (Xs)dLs + eg(t)u(Xt),

where the right-hand side is obtained using the Markov property of X together with
the fact that the gauge function eg is a multiplicative functional of X. Obviously,

eg(t)u(Xt)− u(x)+
∫ t

0
eg(s)f (Xs)dLs

is a Px-martingale as well, and hence we have for all 0 ≤ s ≤ t

eg(s)u(Xs) = eg(s)EXseg(t − s)u(Xt−s)+ eg(s)EXs

∫ t−s

0
eg(r)f (Xr)dLr.
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Setting s = 0 thus yields

u(x) = T
g
t u(x)+Ex

∫ t

0
eg(r)f (Xr)dLr for all t ≥ 0.(36)

One can prove that the Feynman–Kac semigroup {T g
t , t ≥ 0} is a strong Feller

semigroup on L2(D) (see, e.g., [49], Proposition 2.17), in particular T
g
t u is con-

tinuous on D. To prove that u is continuous on D, it is sufficient to show that the
second term on the right-hand side of (36) tends to zero uniformly in x, as t → 0.
This is, however, clear since we may estimate

sup
x∈D

{
Ex

∫ t

0
eg(s)f (Xs)dLs

}
≤ z−1 max

l=1,...,N
{Ul} sup

x∈D

{ExLt },

where the right-hand side tends to zero as t → 0 by Lemma 5.3. �

The following lemma yields a semimartingale decomposition for the composite
process u(Xt) which compensates for the lack of Itô’s formula in the proof of
Theorem 5.7.

LEMMA 5.9. Let u ∈ H 1(D) denote the weak solution of the boundary value
problem (1), (5). Then for all t ≥ 0

u(Xt) = u(x) +Mu −
∫ t

0
f (Xs)dLs +

∫ t

0
g(Xs)u(Xs)dLs,(37)

Px-a.s. for q.e. x ∈ D, where Mu is the martingale additive functional given by
Lemma A.3.

PROOF. The Fukushima decomposition from Lemma A.3 gives

u(Xt) = u(x)+Mu
t +Nu

t

Px-a.s. for q.e. x ∈ D. Therefore, we only need to show that Nu has the claimed
representation. We exploit the fact that the identity (34) implies that there exists a
nonconservative Hunt process Xg associated with (Eg,H 1(D)) which is related to
X by a random time change, namely

Xg
s =

{
Xs, s < ζg,

∂, s ≥ ζ g,

where the lifetime ζ g is given by

ζ g := ζ g,Z, where ζ g,α := inf
{
t :

∫ t

0
g(Xs)dLs > α

}
and the random variable Z is exponentially distributed with parameter 1 and is
independent of the σ -algebra generated by the process X. The Fukushima decom-
position from Lemma A.3 applied to Xg gives

u
(
X

g
t

) = u(x)+M
g,u
t +N

g,u
t

Px-a.s. for q.e. x ∈ D.
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In order to prove the claim, we study the relation between the continuous addi-
tive functionals Nv and Ng,v . We will first show that the identity

Nv
t = N

g,v
t +

∫ t

0
v
(
Xg

s

)
g
(
Xg

s

)
dLs for all t < ζg(38)

holds for every v ∈ H 1(D) Px-a.s. for q.e. x ∈ D. Then we verify that

N
g,u
t =−

∫ t

0
f

(
Xg

s

)
dLs, Px-a.s. for q.e. x ∈ D(39)

for the weak solution u ∈ H 1(D) to the boundary value problem (1), (5). There-
fore,

Nu
t =−

∫ t

0
f (Xs)dLs +

∫ t

0
u(Xs)g(Xs)dLs for all t < ζg(40)

holds Px-a.s. for q.e. x ∈ D. All in all, after showing (38) and (39) we have[
t < ζg](

u(Xt) − u(x)− Mu
t +

∫ t

0

(
f (Xs)− g(Xs)u(Xs)

)
dLs

)
= 0(41)

for every t ≥ 0 Px-a.s. for q.e. x ∈ D. By independence of Z and Ft , we obtain
that Px-a.s. it holds that

Ex

{[
t < ζg]|Ft

} =
∫ ∞

0
e−α[

t < ζg,α]
dα ≥

∫ ∞
c(t,ω)

e−α dα > 0,

where the existence of c(t,ω) < ∞ follows from the fact that ζ g,α ↑∞ for fixed ω.
This implies that the claim follows by taking the conditional expectation of the
identity (41) with respect to Ft .

Let {Gα,α > 0} denote the resolvent on L2(D) corresponding to (E,D(E))

given by the Laplace transform

Gαv =
∫ ∞

0
e−αtTtv dt,

and let {Gg
α,α > 0} be defined analogously for the perturbed Dirichlet form

(Eg,D(Eg)). We will verify the identity (38) by first showing it for every v ∈
G

g
1(L2(D)) ⊂ H 1(D) and then for every v ∈ H 1(D).
When v ∈ G

g
1(L2(D)), say, when v = G

g
1(φ) for some φ ∈ L2(D), then by the

resolvent property (cf. [22], Lemma 1.3.3), and the definition of Eg
1 we have that

Eg(v,w) = Eg
1

(
G

g
1φ,w

) − 〈v,w〉 = 〈φ,w〉 − 〈v,w〉.(42)

Thus, the Fukushima decomposition from Lemma A.3 and the Revuz correspon-
dence from Lemma A.2 imply that

N
g,v
t =−

∫ t

0

(
φ

(
Xg

s

) − v
(
Xg

s

))
ds
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Px-a.s. for q.e. x ∈ D. Similarly,

E(G1φ,w) = 〈φ − G1φ,w〉 and N
G1φ
t =−

∫ t

0

(
φ(Xs) −G1φ(Xs)

)
ds

holds Px-a.s. for q.e. x ∈ D. The resolvent property [22], Lemma 1.3.3, and the
definition of the perturbed Dirichlet form give that

E1
(
G1φ −G

g
1φ,w

) = E1(G1φ,w)− Eg
1

(
G

g
1φ,w

) + 〈
gG

g
1φ,w

〉
∂D = 〈gv,w〉∂D.

Moreover, the previous identity is equivalent to

E(G1φ − v,w) = 〈gv,w〉∂D − 〈G1φ − v,w〉
and by linearity, we obtain thus

E(v,w) = E(G1φ,w) − E(G1φ − v,w) = 〈φ − v,w〉 + 〈gv,w〉∂D.

Invoking both the Revuz correspondence and the Fukushima decomposition once
more, we see that

Nv
t =−

∫ t

0

(
φ(Xs) − v(Xs)

)
ds +

∫ t

0
v(Xs)g(Xs)dLs(43)

and since Xg is related to X by a random time change we obtain the identity (38)
for v ∈ G

g
1(L2(D)). This equality may be generalized to the case of an arbitrary

v ∈ H 1(D) not necessarily in the range of the resolvent using an approximation
argument. Namely, we consider the sequence (v(k))k∈N with v(k) := kG

g
k+1v =

G
g
1φ(k), φ(k) := k(v − kG

g
k+1v). Then v(k) ∈ G

g
1(L2(D)) for all k ∈ N and the

sequence (v(k))k∈N satisfies both,

lim
k→∞Eg(

v(k) − v, v(k) − v
) = 0 and lim

k→∞E
(
v(k) − v, v(k) − v

) = 0

so that by [22], Corollary 5.2.1, there exists a subsequence, for convenience still

denoted (v(k))k∈N, such that v(k)(X
g
t ) → v(X

g
t ), N

g,v(k)

t → N
g,v
t and Nv(k)

t → Nv
t

uniformly on each finite time interval, Px-a.s. for q.e. x ∈ D. In particular, it fol-
lows that (38) holds for arbitrary v ∈ H 1(D).

The last step is to verify the identity (39). Since u solves the boundary value
problem (1), (5) we have that

Eg(u, v) = 〈f, v〉∂D for all v ∈ H 1(D) ∩C(D).

Since the perturbed Dirichlet form (Eg,H 1(D)) is regular, we may apply Lem-
mata A.3 and A.2 and then the identity (39) follows. This proves the claim. �

PROOF OF THEOREM 5.7. There exists a weak solution u ∈ H 1(D) of the
boundary value problem (1), (5) so that with regard to Lemma 5.8, it remains to
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show that this weak solution u admits the Feynman–Kac representation (32). Note
first that the gauge

Ex

∫ ∞
0

eg(t)dLt(44)

is finite Px-a.s. for every x ∈ D, hence the expression on the right-hand side of (32)
is well-defined. The finiteness of the gauge follows along the lines of Papanico-
laou [43]. Indeed, it is not difficult to verify that a version of the gauge theorem
developed there also holds in our situation, that is, either the gauge is infinite or it
is bounded a.s. If it is infinite, then T

g
t 1 = 1 for every t > 0 which in turn means

that

0 =
∫ t

0
g(Xs)dLs ≥ c−1

1

∫ t

0

[
Xs ∈

⋃
El

]
dLs

for every t > 0 almost surely. However, this would only be possible if the elec-
trodes were polar for the reflecting diffusion process X for a.e. x ∈ D.

Lemma 5.9 yields the semimartingale decomposition

u(Xt) = u(x)+Mu
t −

∫ t

0
f (Xs)dLs +

∫ t

0
g(Xs)u(Xs)dLs,

Px -a.s. for q.e. x ∈ D. Since the gauge function eg is continuous, adapted to
{Ft , t ≥ 0} and of bounded variation we may use integration by parts and we thus
obtain for q.e. x ∈ D the identity

u(Xt)eg(t) = u(x)+Mt +
∫ t

0
eg(s)f (Xs)dLs,

Px -a.s., where M is a local Px-martingale. That is, there exists a sequence (τk)k∈N
of stopping times such that τk ↑∞ and that Mτk∧· is a Px-martingale. Hence, by
taking expectations and letting k →∞ we get

u(x) = Ex

∫ t

0
eg(s)f (Xs)dLs +Exu(Xt)eg(t) for q.e. x ∈ D.

Fatou’s lemma implies that T
g
1 u is essentially bounded, and hence, the finiteness

of the gauge implies that ‖T g
t+1u‖∞ = ‖T g

t T
g
1 u‖∞ → 0, as t → ∞. Therefore,

together with dominated convergence, the boundedness of f and the finiteness of
the gauge imply that

u(x) = Ex

∫ ∞
0

eg(t)f (Xt)dLt for q.e. x ∈ D.

The right-hand side is continuous in C(D) by Lemma 5.8 and, therefore, the claim
follows. �
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REMARK 5.10. Note that the technique we used to prove Theorem 5.7 fails
for the Neumann problem corresponding to the continuum model. This comes from
the fact that in this case the gauge (44) becomes infinite. For the same reason
Theorem 1.2 from [12], specialized to a zero lower-order term, does not yield the
desired Feynman–Kac formula for the continuum model either.

5.3. Mixed boundary value problem. Now we can directly deduce the desired
Feynman–Kac formula for the mixed boundary value problem corresponding to
the stochastic problem introduced in Section 3.2. Recall that in this setting ∂D

consists of two disjoint parts ∂1D and ∂2D and that measurements can be taken
only on the accessible boundary ∂1D while the electric potential vanishes on the
inaccessible boundary ∂2D. The deterministic EIT forward problem for the com-
plete electrode model is then given by the conductivity equation (1) subject to the
mixed boundary conditions

κν · ∇u|∂D + gu|∂D = f on ∂1D,
(45)

u|∂D = 0 on ∂2D.

The following result is a corollary to the line of arguments that led to the proof of
Theorem 5.7 rather than to its actual statement.

COROLLARY 5.11. For given functions f,g defined by (6) and a voltage pat-
tern U ∈ R

N satisfying (7), there is a unique weak solution u ∈ C(D) ∩ H 1(D)

to the boundary value problem (1), (45). This solution admits the Feynman–Kac
representation

u(x) = Ex

∫ τ

0
eg(t)f (Xt)dLt for all x ∈ D,(46)

where τ := inf{t ≥ 0 : Xt ∈ ∂2D} denotes the first hitting time of ∂2D.

PROOF. Repeat the computations from Section 5.2 with the Feynman–
Kac semigroup {T̃ g

t , t ≥ 0}, where T̃
g
t v(x) := Ex{[t ≤ τ ]eg(t)v(Xt )} instead of

{T g
t , t ≥ 0}. �

6. Stochastic homogenization. In this section, we are going to employ the
Feynman–Kac formula from Corollary 5.11 to show that the stochastic EIT for-
ward problem may be homogenized both theoretically and numerically by homog-
enization of the underlying diffusion process on the whole space Rd . Moreover, we
provide a continuum version of a quantitative estimate which has been obtained re-
cently for the discrete random walk in random environment in [15, 24].
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6.1. Preliminaries. For convenience of the reader, let us recall some standard
concepts from homogenization theory. Let φ := (φ1, . . . , φd), φi ∈ L2

loc(R
d), i =

1, . . . , d , denote a vector field. We say that φ is a gradient field if for every ψ ∈
C∞

c (Rd), ∫
Rd

φi∂jψ − φj∂iψ dx = 0, i, j = 1, . . . , d.

Moreover, we say that φ is divergence-free if for every ψ ∈ C∞
c (Rd),

d∑
i=1

∫
Rd

φi∂iψ dx = 0.

Now let us consider a conductivity random field {κ(x,ω), (x,ω) ∈R
d ×�} and

let {�x, x ∈ R
d} denote the underlying dynamical system which is assumed to

satisfy the assumptions (i)–(iv) from Section 3.2. A vector field φ ∈ L2(�;Rd)

is called a gradient field, respectively divergence-free, if its realizations φ(·,ω) :
R

d �→ R
d , x �→ φ(�xω) are gradient fields, respectively divergence-free, for P-

a.e. ω ∈ �. We define the function spaces

L2
pot(�) := {

φ ∈ L2(
�;Rd) : φ(·,ω) is a gradient field P-a.s.

}
,

L2
sol(�) := {

φ ∈ L2(
�;Rd) : φ(·,ω) is divergence-free P-a.s.

}
.

If φ ∈ L2
pot(�), we can find a function η :Rd ×� →R such that η(·,ω) ∈ H 1

loc(R
d)

and

∇η(·,ω) = φ(�·ω) a.e. in R
d for P-a.e. ω ∈ �.(47)

In particular, (47) defines a stationary random field with respect to the measure P .
We call η the potential corresponding to φ.

REMARK 6.1. Note that while φ ∈ L2
pot(�) implies that ∇η is a stationary

random field, it does not imply that η is a stationary random field with respect
to P . In fact, it can be shown that this is not true for d = 1. For example, consider
� = [0,1] with Borel sets and P as the Lebesgue measure. Then φ(x) = [x ∈
(0, 1

2)] is in L2
pot(�) and the corresponding ∇η = η′ is a stationary random field,

while η which is an integral function of η′ is not.

We define another function space

V2
pot :=

{
φ ∈ L2

pot(�) :Mφ = 0
}
,

so that one obtains an orthogonal Weyl decomposition of L2(�;Rd), namely

L2(
�;Rd) = V2

pot(�) ⊕ L2
sol(�);
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cf., for example, [28]. Let ξ ∈ R
d denote a direction vector, that is, |ξ | = 1. The

so-called auxiliary problem for the direction ξ reads as follows: Find χ ξ ∈ V2
pot(�)

such that κ(ξ + χ ξ ) ∈ L2
sol(�) or equivalently,

M
{
κ
(
ξ + χ ξ ) · φ} = 0 for all φ ∈ V2

pot(�).(48)

For a proof of existence and uniqueness of the solution to the auxiliary problem,
we refer the reader to the seminal paper [42] by Papanicolaou and Varadhan.

We can now bring the underlying diffusion processes evolving in the random
medium into play by recalling a stochastic homogenization result which was ob-
tained by Lejay [36]. Let {κε(x,ω), (x,ω) ∈R

d ×�} denote the scaled conductiv-
ity random field (see Section 3.2) and let Xω,ε denote the diffusion process on R

d

which is associated with the regular symmetric Dirichlet form

Eω,ε(v,w) :=
∫
Rd

κε(·,ω)∇v · ∇w dx, v,w ∈D
(
Eω,ε) := H 1(

R
d)

on L2(Rd). It has been shown in [36] that, under assumption (A1) from Sec-
tion 3.2, for P-a.e. ω ∈ �

Xω,ε· → X∗· in law on C
([0,∞);Rd)

as ε → 0,(49)

where X∗ denotes the diffusion process on R
d which is associated with the ho-

mogenized Dirichlet form

E∗(v,w) :=
∫
Rd

κ∗∇v · ∇w dx, v,w ∈D
(
E∗) := H 1(

R
d)

on L2(Rd) and the constant, symmetric and positive definite matrix κ∗ satisfies the
equation

ξ · κ∗ξ =M
{(

ξ + χ ξ ) · κ(
ξ + χ ξ )}

,(50)

where χ ξ ∈ V2
pot(�) denotes the solution to the auxiliary problem (48) for the di-

rection ξ ∈R
d .

6.2. Homogenization of the EIT forward problem. The following theorem is
our main result. Its proof relies on an invariance principle for reflecting diffu-
sion processes obtained recently by Chen, Croydon and Kumagai [11] and the
Feynman–Kac formula (46) from Corollary 5.11.

THEOREM 6.2. Let {κε(x,ω), (x,ω) ∈R
d × �} be a stationary random field

satisfying assumption (A1) from Section 3.2 and assume that the trajectories sat-
isfy κ(·,ω) ∈ C

0,1
loc (D;Rd×d) or κ(·,ω) piecewise constant for P-a.e. ω ∈ �; let

� = ∅. Then, for a given voltage pattern U ∈ R
N , we have for the potentials in

the stochastic boundary value problem (11), (12)

uε(x,ω) → u∗(x), x ∈ D for P-a.e. ω ∈ �, as ε → 0,(51)



3028 P. PIIROINEN AND M. SIMON

and the corresponding electrode currents satisfy

lim
ε→0

Jl(ε,ω) = 1

|El|
∫
El

κ∗ν · ∇u∗(x)|∂1D dσ(x) for P-a.e. ω ∈ �,(52)

l = 1, . . . ,N , where the function u∗ ∈ H 1
0 (D∪∂1D)∩C(D) is the unique solution

to the deterministic forward problem

∇ · (κ∗∇u∗) = 0 in D(53)

subject to the boundary conditions

κ∗ν · ∇u∗|∂1D + gu∗|∂1D = f on ∂1D,
(54)

u∗|∂2D = 0 on ∂2D

with a constant, symmetric and positive definite matrix κ∗ given by (50).

PROOF. The proof consists of two top level parts, namely the proofs of the
limit relations (51) and (52). Let us subdivide the first part into the following steps:
Let X∗ denote the reflecting diffusion process on the half-space associated with the
homogenized regular symmetric Dirichlet form (E∗,H 1(Rd−∪R

d−1)) on L2(Rd−∪
R

d−1). The constant, symmetric and positive definite matrix κ∗ is given by (50).
Moreover, let (εk)k∈N be an arbitrary monotone decreasing null sequence and let
Xω,ε denote the reflecting diffusion process on the half-space corresponding to the
regular symmetric Dirichlet form (Eω,ε,H 1(Rd− ∪R

d−1)) on L2(Rd− ∪R
d−1). We

show that for P-a.e. ω ∈ � and for a.e. x ∈ D we have for k →∞:

(i) Xω,εk → X∗ in law in C([0,∞);Rd− ∪R
d−1),

(ii) X
ω,εk

·∧τω,εk → X∗·∧τ∗ in law in C([0,∞);Rd− ∪R
d−1),

(iii) (X
ω,εk

·∧τω,εk ,L
ω,εk

·∧τω,εk ) → (X∗·∧τ∗,L∗·∧τ∗) in law in C([0,∞);Rd− ∪ R
d−1 ×

R+),
(iv)

lim sup
j→∞

∣∣∣∣∣Ex

∫ τ
ω,εj

0
e
ω,εj
g (t)f

(
X

ω,εj

t

)
dL

ω,εj

t −Ex

∫ τ∗

0
e∗g(t)f

(
X∗

t

)
dL∗

t

∣∣∣∣∣ = 0,

(v) uεk
(x,ω) → u∗(x).

By assumption (A1) from Section 3.2, we can deduce (i) directly from [11], Sec-
tion 4. In order to prove (ii), let us consider the functional F : C([0,∞);Rd− ∪
R

d−1) →[0,∞] and a related mapping � on continuous functions, namely

F(φ) := inf
{
t ≥ 0 : ∣∣φ(t)

∣∣ = R
}

and �(φ) := t �→ φ
(
t ∧ F(φ)

)
.

Note that � maps the process without stopping to the stopped variant. Moreover,
note that the part (ii) of the claim follows from the continuous mapping theorem,
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cf. [7] if � is continuous up to a negligible set with respect to the measures Pω,εk
x

and P
∗
x . This, in turn, follows if F is continuous up to a negligible set.

Let φ be a fixed continuous function and let (φk)k∈N be a sequence of con-
tinuous functions that converges uniformly toward φ on compacts in [0,∞). If
F(φ) = ∞, the continuity of F at φ follows by compactness. Without a loss of
generality, we may therefore assume that F(φ) < ∞ and supF(φk) < ∞. We have∣∣φ(λ)− φk

(
F(φk)

)∣∣ ≤ ∣∣φ(λ)− φ
(
F(φk)

)∣∣ + ∣∣φ(
F(φk)

) − φk

(
F(φk)

)∣∣
for every k ∈ N where we denoted λ := lim infj→∞ F(φj ). Note that the right-
hand side vanishes as k → ∞ for a suitable subsequence and, therefore, by
closedness of ∂2D, we have that φ(λ) is on ∂2D which implies that F is lower
semi-continuous. Note further that semi-continuity of F implies that if φ is a
discontinuity point of F , then there exists a δ > 0 such that φ(t) ∈ D for all
t ∈ [F(φ), lim infk→∞ F(φk)). However, the boundary ∂D is regular in the sense
of [30], Chapter 4.23 for X∗ as well as for all Xω,εk and, therefore, the part (ii)
follows.

In order to prove (iii), we employ the fact that for every y ∈ D and every ρ > 0
the transition kernel densities corresponding to the processes X

ω,εk

·∧τω,εk and X∗·∧τ∗ ,
respectively, satisfy for k →∞

p(k)(·, ·, y) → p∗(·, ·, y) uniformly on compact subsets in (0, ρ] × D.

This is a consequence of the convergence (ii), a reflection argument, the De Giorgi–
Nash–Moser theorem and the Arzela–Ascoli theorem: Let p̂(k) and p̂∗ denote the
transition kernel densities that are obtained by reflection with respect to xd -axis.
That is, they are defined in B(0,R) with killing boundary on the sphere S(0,R).
Let δ > 0, then p̂(k)(·, x, ·) [resp., p̂∗(·, x, ·)] as mappings on (δ, ρ] × B(0,R)

are solutions to heat equations equipped with Dirichlet boundary conditions corre-
sponding to the extended coefficients κ̂ω

εk
(resp., κ̂∗) and initial values p̂(k)(·, δ, ·)

[resp., p̂∗(·, δ, ·)].
Therefore, by the De Giorgi–Nash–Moser theorem {p̂(k)(·, x, ·)} is equicon-

tinuous and uniformly bounded in the open ball B(0, r) for r < R, since we
know that the conductivities satisfy assumption (A1). Hence, by Arzela–Ascoli,
every subsequence of (p̂(k)(·, x, ·))k∈N has a subsequence, say, (q(k))k∈N that con-
verges uniformly on compact subsets of (δ, ρ] × B(0, r), say, to some continu-
ous function q . On the other hand, since we have proved (ii), we may deduce
that for the transition kernel densities it holds that p(k)(t, x, y) → p∗(t, x, y) as
k → ∞ for every t > 0, for every x ∈ D and a.e. y ∈ D. This implies, how-
ever, that q(t, x, y) = p̂∗(t, x, y) for every t > δ, for every x ∈ B(0, r) and for
a.e. y ∈ B(0, r). Since both functions p̂∗ and q are continuous, we have ob-
tained that p̂(k)(·, x, ·) → p̂∗(·, x, ·), as k → ∞, uniformly on compact subsets

3See Remark 5.5.
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(δ, ρ] × B(0, r). Since δ > 0 is arbitrary and r < R is arbitrary, the convergence
extends to compact subsets of (0, ρ] ×B(0,R). Moreover, we can extend the con-
vergence to the boundary by the compactness of the closed ball B(0,R) and the
fact that p̂(k)(·, x, y) = p̂∗(·, x, y) = 0 for every y ∈ S(0,R). Therefore, we obtain
that for the original transition kernel densities the required convergence holds on
compact subsets of (δ, ρ] × D since p(k) and p∗ are symmetric with respect to x

and y.
Now, notice that for every finite collection of times t (1) < t(2) < · · · < t(n) the

finite dimensional marginals satisfy(
L

ω,εk

t1∧τω,εk , . . . ,L
ω,εk

tn∧τω,εk

) → (
L∗

t1∧τ∗, . . . ,L∗
tn∧τ∗

)
as k →∞(55)

which follows by induction from the special case L
ω,εk

t∧τω,εk → L∗
t∧τ∗ weakly, (i) and

the Markov property. This special case in turn follows by the convergence of all
the moments Ex(L

ω,εk

t∧τω,εk )
m → Ex(L

∗
t∧τ∗)m as k →∞.

Moreover, for every monotone null sequence (εk)k∈N and P-a.e. ω ∈ �, for
a.e. x ∈ D and for every φ ∈ C2(D) we have that(

X
ω,εk

·∧τω,εk ,M
(k),φ,N(k),φ) → (

X∗·∧τ∗,M∗,φ,N∗,φ)
in law, as k →∞

in C([0,∞); (Rd−∪R
d−1)3), where (M(k),φ,N(k),φ) and (M∗,φ,N∗,φ) correspond

to the Fukushima decomposition of φ(X
ω,εk

·∧τω,εk ) and φ(X∗·∧τ∗), respectively; see
Lemma A.3. This follows from combining the Fukushima decomposition and the
convergence result for the transition kernel densities with a result by Rozkosz and
Słomiński [47], Theorem 6.1. To be precise, with the Fukushima decompositions

φ
(
X

ω,εk

t∧τω,εk

) = φ
(
X

ω,εk

0∧τω,εk

) +M
(k),φ
t +N

(k),φ
t ,

φ
(
X∗

t∧τ∗
) = φ

(
X∗

0∧τ∗
) + M

∗,φ
t +N

∗,φ
t

corresponding to φ we have fulfilled all the assumptions of [47], Theorem 6.1,
once we have also verified that {φ(X

ω,εk

·∧τω,εk )} satisfies UTD; see [47], page 170,
for the definition of this property. That is, once we have verified that{

sup
0≤t≤ρ

N
(k),φ
t

}
is tight

and for every ε > 0 it holds that

lim
m→∞ sup

k≥1
P

k
x

( ∑
tn,m∈�m

(
N

(k),φ
tn+1,m

−N
(k),φ
tn,m

)2
> ε

)
= 0,

where �m is an increasing partition of [0, ρ) such that the maximum distance
between consecutive points in �m goes to zero as m → ∞. It is straightforward
to check that (55) and (ii) imply the UTD property. The claim (iii) finally fol-
lows since we may first marginalize the martingale part away, and thus,(

X
ω,εk

·∧τω,εk ,N
(k),φ) → (

X∗·∧τ∗,N∗,φ)
in law, as k →∞
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in C([0,∞); (Rd− ∪R
d−1)2). With partition of unity, we can localize the problem

to a small neighborhood of a point x ∈ R
d × {0} ∩ D and by approximating the

renormalized indicator function of the ε-neighborhood of the boundary close to
the point x with ∇φ the claim (iii) follows.

With regard to the Feynman–Kac formula (46), the claim (v) follows from claim
(iv). We first verify the assertion (iv) for continuous f . We estimate the left-hand
side of (iv) with a difference of truncated Riemann sums∣∣∣∣∣

�N/h ∑
k=0

Ex

∫ tk+1

tk

e
ω,εj
g (tk)f

(
X

ω,εj

tk

)[tk+1 < τj ]dL
ω,εj

t

−Ex

∫ tk+1

tk

eg(tk)f (Xtk )[tk+1 < τ ]dLt

∣∣∣∣∣,
where tk = kh and h is a step size. The difference SN,h of truncated Riemann sums
for fixed N and h goes to zero as j →∞ if we assume that (Xω,εj ,Lω,εj ,Aω,εj )

converge weakly to (X,L,A), where Aω,εj := log e
ω,εj
g and A := log eg . The error

terms for Xω,εj and X are nearly analogous, so it is enough to consider just Xω,εj

in detail. The increments4 are of the following form:∫ tk+1

tk

(
e
ω,εj
g (t)f

(
X

ω,εj

t

) − e
ω,εj
g (tk)f

(
X

ω,εj

tk

))
dL

ω,εj

t

=
∫ tk+1

tk

(
e
ω,εj
g (t)− e

ω,εj
g (tk)

)
f

(
X

ω,εj

t

)
dL

ω,εj

t

+ e
ω,εj
g (tk)

∫ tk+1

tk

(
f

(
X

ω,εj

t

) − f
(
X

ω,εj

tk

))
dL

ω,εj

t .

The latter term can be handled with the continuity of the paths of X together with
the uniform continuity of f on the compact set D. This is since∣∣∣∣eω,εj

g (tk)

∫ tk+1

tk

(
f

(
X

ω,εj

t

) − f
(
X

ω,εj

tk

))
dL

ω,εj

t

∣∣∣∣
≤ (

2
(
1 − ψδ

(
θh

(
Xω,εj

)))‖f ‖∞ + θ2δ(f )ψδ

(
θh

(
Xω,εj

)))(
L

ω,εj

tk+1
−L

ω,εj

tk

)
,

where θδ(x) is the maximum variation of the function x on the interval [0,N]
θδ(x) := sup

{∣∣x(t) − x(s)
∣∣;0 ≤ t, s ≤ N, |t − s| < δ

}
and ψδ(t) is the continuous approximation of the indicator function [|t | < δ] with
support in [−2δ,2δ]. Therefore, after taking the limit j →∞, the latter terms give
that the corresponding total approximation error can be bounded by

4‖f ‖∞Ex

{[
θh(X) ≥ δ

]
Lτ∧N

} + 2θ2δ(f )Ex{Lτ∧N }
4Excluding the edge case where tk < τj < tk+1 which we will omit but which can be treated in

the same way.
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which goes to zero for fixed N if we first let h → 0 and then let δ → 0.
The first terms can be estimated by∫ tk+1

tk

(
e
ω,εj
g (t)− e

ω,εj
g (tk)

)
f

(
X

ω,εj

t

)
dL

ω,εj

t ≤ ‖f ‖∞‖g‖∞
(
L

ω,εj

tk+1
−L

ω,εj

tk

)2

since g ≥ 0. Therefore, after taking j → ∞ the first terms give the total approxi-
mation error that is bounded by

2‖f ‖∞‖g‖∞
(
Ex

{[
θh(L) ≥ δ

]
Lτ∧N

} + 2δEx{Lτ∧N })
which goes to zero for fixed N if we first let h → 0 and then let δ → 0.

We are still left with the truncation which can, however, be removed since τj

and τ are a.s. finite and moreover, L
ω,εj
τj converges weakly to Lτ as j → ∞ and

thus, we get a uniform estimate

lim sup
j→∞

∣∣∣∣Ex

∫ τj

0
e
ω,εj
g (t)f

(
X

ω,εj

t

)
dL

ω,εj

t −
∫ τ

0
eg(t)f (Xt)dLt

∣∣∣∣
≤ 2‖f ‖∞Ex{Lτ −Lτ∧N }

which gives the claimed convergence for continuous f by the assumption of weak
convergence of Aω,εj toward A as j →∞.

We will next verify the joint weak convergence of the family Aω,εj together with
(Xω,εj ,Lω,εj ). We can assume that Xω,εj → X and Lω,εj → L almost surely in
C(0, T ). Suppose that g = ∑n

l=1 gl[El] where gl ≥ 0 and continuous, El ∩Ek =∅

and σ(∂El) = 0. Therefore, it is enough to show the convergence for g = [El] for
El open in ∂D. Since El is open, it can be approximated from below by an increas-
ing sequence of continuous functions converging pointwise to g. Moreover, since
Xω,εj and X will not hit ∂Ek in [0, T ] almost surely, we can similarly approximate
from above by approximating 1 − g from below. This implies pointwise conver-
gence Aω,εj → A as j → ∞ on a countable dense set almost surely and with
monotonicity we deduce the almost sure convergence of Aω,εj to A in C(0, T ),
and hence the weak convergence of the original versions follows. The same tech-
nique allows us to extend the assertion to the case of discontinuous f . Therefore,
we have shown (iv) and since (v) follows from (iv) with the Feynman–Kac formula
(46), we have shown (51).

For the proof of (52), note that the boundary condition (12) allows us to write

Jl(εk,ω) = 1

|El|
∫
El

(
f − guεk

(·,ω)|∂1D

)
dσ(x) for P-a.e. ω ∈ �(56)

and that (12) may be written in the form (�κε + gI)uε = f . We deduce from the
well-posedness of the forward problem that (�κε + gI)−1, L2(∂D) → L2(∂D),
is bounded. Since, due to assumption (A1), the corresponding constant does not
depend on ε, the sequence (uεk

)k∈N is bounded in L2(∂D) for P-a.e. ω ∈ � im-
plying its uniform integrability; see, for example, [35]. As we already know the
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pointwise convergence uεk
(x,ω) → u∗(x), x ∈ D, as k → ∞, an application of

Egorov’s theorem yields convergence in L1(∂D) so that the assertion follows by
the triangle inequality and taking the limit k →∞ in (56). �

REMARK 6.3. We would like to point out that the effective conductivity κ∗ is
determined by the invariance principle on the whole space R

d .

6.3. Continuum approximation of the effective conductivity. In this subsection,
we provide the theoretical foundation for the convergence analysis of numerical
homogenization methods based on simulation of the underlying diffusion process.
More precisely, a rigorous convergence analysis of such a method requires a quan-
titative estimate that is stronger than the qualitative result (49), which was obtained
in [36] using merely the central limit theorem for martingales. We provide such a
quantitative result in the following theorem by generalizing a classical argument
due to Kipnis and Varadhan [34]. The proof relies on new spectral bounds which
were obtained recently by Gloria and Otto [26]. We refer the reader to the recent
papers [15, 24] for an analogous estimate for the discrete lattice random walk in
random environment as well as to the paper [38] which was the first one to use the
Kipnis and Varadhan argument in order to obtain quantitative results.

THEOREM 6.4. Let {κε(x,ω), (x,ω) ∈R
d × �} be a stationary random field

satisfying assumptions (A1) and (A2) from Section 3.2. Then for every direction
vector ξ ∈R

d there exist positive constants c1, c2 such that∣∣∣∣E(X·
t · ξ)2

2t
− ξ · κ∗ξ

∣∣∣∣ ≤ c1

{
| log t |c2 t−1, d = 2,

t−1, d ≥ 3.
(57)

PROOF. For fixed ω ∈ �, let us consider the diffusion process Xω on R
d which

is associated with the symmetric regular Dirichlet form (Eω,1,H 1(Rd)) on L2(Rd)

under the measure P
ω
0 . Following [34], we search for a decomposition of the form

Xω
t = Mω

t + Rω
t ,(58)

where Mω
t is a Pω

0 -martingale and for every direction ξ ∈R
d the projected remain-

der Rω
t · ξ converges to zero in L2(�) as t →∞.

Once we have found a suitable decomposition (58), we first show that

t−1
E

{(
X·

t · ξ
)2 − (

M ·
t · ξ

)2} = t−1
E

(
R·

t · ξ
)2

.(59)

Then we will use spectral calculus to estimate the right-hand side of (59) in order
to obtain the claimed inequality (57). More precisely, we show that the right-hand
side of (59) admits a spectral representation

t−1
E

(
R·

t · ξ
)2 = 2t−1

∫ ∞
0

(
1 − e−λt )λ−2 dμ(λ),(60)
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with a positive Radon measure μ which we will specify later. By combining the
representations (60), (59) with the estimates from [25, 26], we will then deduce
the claimed estimate (57).

In order to obtain the decomposition (58), we recall that the auxiliary problem
(48) is equivalent to the following stochastic elliptic equation in the physical space
R

d : Find χ ξ ∈ V2
pot(�) such that for P-a.e. ω ∈ �, the corresponding potential

ηξ :Rd ×� →R is in C(Rd)∩H 1
loc(R

d) as a function of x, satisfies ηξ (0,ω) = 0
and

−∇ · κ(·,ω)
(
ξ +∇ηξ (·,ω)

) = 0 in R
d(61)

for P-a.e. ω ∈ �. Let us define the function

φ :Rd × � →R
d, φ(x,ω) := x + η(x,ω)− η(0,ω),

where η := (ηe1, . . . , ηed )T and ηei , i = 1, . . . , d , denotes the potential correspond-
ing to the solution to the auxiliary problems for the coordinate directions. As
the transition density kernel of Xω is jointly Hölder-continuous and φi(·,ω) ∈
C(Rd) ∩ H 1

loc(R
d), i = 1, . . . , d , for P-a.e. ω ∈ �, the Fukushima decomposi-

tion of φi(X
ω
t ,ω) holds for every starting point x ∈ R

d rather than quasi-every
x ∈R

d . A straightforward computation using the fact that η is defined via the aux-
iliary problem yields that the continuous additive functional of zero energy in the
Fukushima decomposition vanishes so that

φi

(
Xω

t ,ω
) = M

φi(·,ω)
t , i = 1, . . . , d.

We set

Mω
t := (

M
φ1(·,ω)
t , . . . ,M

φd(·,ω)
t

)T and Rω
t := −η

(
Xω

t ,ω
) + η(0,ω)

which therefore provides the decomposition (58) we were searching for. In order
to prove (59), we consider the quantity

E
(
X·

t · ξ
)2 = E

(
M ·

t · ξ
)2 +E

(
R·

t · ξ
)2 + 2E

(
M ·

t · ξ
)(

R·
t · ξ

)
.(62)

By computing the predictable quadratic variation of the martingale additive func-
tional, we obtain for all t ≥ 0 and a.e. x ∈R

d

E
ω
x

(
Mω

t · ξ )2 = E
ω
x

(∫ t

0
2
(
ξ +∇ηξ (Xs,ω)

) · κ(Xs,ω)
(
ξ +∇ηξ (Xs,ω)

)
ds

)
.

By the stationarity of ∇ηξ with respect to P, we have thus

E
(
M ·

t · ξ
)2 = 2ξ · κ∗ξ t for all t ≥ 0.

Moreover, as in [14], it follows that the last term on the right-hand side of (62) van-
ishes. This can be seen by studying the so-called environment seen by the particle
process, that is, the stochastic process defined by

Yω
t := [t > 0]�Xω

t
ω + [t = 0]ω.
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The process Y · is a stationary process with respect to the annealed measure
P, that is, for every finite collection of times t (i), i = 1, . . . , k, the joint dis-
tribution of Yt(1)+h, . . . , Yt(k)+h under P does not depend on h ≥ 0. It is well
known that the underlying dynamical system {�x, x ∈ R

d} defines a d-parameter
group {Sx, x ∈ R

d} of unitary operators on L2(�) by Sxψ(ω) := ψ(�xω)

and this group is strongly continuous; cf. [36]. Its d infinitesimal generators
(D1,D(D1)), . . . , (Dd,D(Dd)) are given by

Diψ = lim
h→0+

Shei
ψ −ψ

h
, i = 1, . . . , d,

for all ψ ∈ L2(�) such that the limit exists. These operators are closed and densely
defined. We denote D := (D1, . . . ,Dd)T and introduce the infinitesimal generator
(L,D(L)) on L2(�) of the environment viewed by the particle process, that is,
the nonnegative definite self-adjoint operator L := −D · κD on L2(�). By the
self-adjoinedness of L, the law of the environment as viewed from the particle
process under P is invariant with respect to time reversal and Mω is odd by [18],
Corollary 2.1, that is, it changes its sign under time reversal, whereas Rω, which
is the zero energy part of the Fukushima decomposition (58), is even by [18],
Theorem 2.1. Thus, we notice that the identity (59) holds, as claimed.

Before showing the identity (60) with measure μ given by the nondecreasing
function λ �→ M(vξEλvξ ) where {Eλ,λ ∈ R} is the unique spectral family given
by the spectral theorem such that L= ∫ ∞

0 λdEλ (see [37], theorem, page 199) and
the function vξ := D · κξ ∈ L2(�), we show that the estimate (57) follows from
the spectral representation (60). Indeed, given the formula (60) for the projected
remainder and due to the assumption (A2), we can now exploit the following op-
timal estimate from [25, 26]: For all 0 < γ ≤ 1, there exists a positive constant c

such that ∫ γ

0
dμ(λ) =

∫ γ

0
d
(
Eλvξ ,vξ )

� ≤ cγ d/2+1,

where we denoted the inner product (v,w)� :=M(vw).
More precisely, we split the integral (60) into three parts, the first ranging from

0 to t−1, the second from t−1 to 1 and the third from 1 to ∞, respectively when
t > 1. For the latter, we have the trivial estimate∫ ∞

1
dμ(λ) ≤

∫ ∞
0

dμ(λ) =M
{(

vξ )2}
,

where the last equality follows by the spectral theorem [37], theorem, page 199.
The first part is bounded by a positive constant as well, namely by∫ t−1

0
tλ−1 dμ(λ) = t

∫ t−1

0

∫ ∞
λ

α−2 dα dμ(λ)

= t

∫ ∞
0

α−2
∫ α∧t−1

0
dμ(λ)dα ≤ ct

∫ ∞
0

α−2(
α ∧ t−1)d/2+1 dα.
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Similarly, the second part can be estimated by∫ 1

t−1
λ−2 dμ(λ) = 2

∫ 1

t−1

∫ ∞
λ

α−3 dα dμ(λ) ≤ 2c

∫ ∞
t−1

α−3(α ∧ 1)d/2+1 dα,

which diverges logarithmically for d = 2 and is bounded by a positive constant for
d ≥ 3. Therefore, combining these computations with the identities (59) and (60),
the estimate (57) follows.

It remains to prove the spectral representation (60). In order to take advantage of
the spectral theorem, we would like to express the projected remainder in the form
Mψ1(L)vξψ2(L)vξ for some bounded continuous functions ψ1 and ψ2. This is
desirable since by spectral theorem

Mψ1(L)vξψ2(L)vξ = (
ψ1(L)vξ ,ψ2(L)vξ )

� =
∫ ∞

0
ψ1(λ)ψ2(λ)μ(dλ)(63)

for every bounded continuous functions ψ1 and ψ2. Because of the nonstationarity
of η and inspiration we got from the computations in [42], we consider a modified
function

R
ω,δ
t := −ηδ

(
Xω

t ,ω
) + ηδ(0,ω),

where ηδ is defined in analogy to η with the difference that it corresponds to a
different auxiliary problem, modified by a zero-order term. This modified auxil-
iary problem reads as follows: Find η

ξ
δ (·,ω) ∈ C(Rd) ∩ H 1

loc(R
d), δ > 0 such that

for P-a.e. ω ∈ �, the random field {ηξ
δ (x,ω), (x,ω) ∈ R

d × �} is stationary with

respect to P with Mη
ξ
δ (x, ·) = 0 for every x ∈R

d and satisfies

δη
ξ
δ (·,ω)−∇ · κ(·,ω)

(
ξ +∇η

ξ
δ (·,ω)

) = 0 in R
d

for P-a.e. ω ∈ �. We refer to [42] for the proof of existence and uniqueness of η
ξ
δ ,

δ > 0. Note that η
ξ
δ (0,ω) != 0 in general so that we have for the projected modified

remainder the expression

E
(
R

·,δ
t · ξ )2 = E

(
η

ξ
δ

(
X·

t , ·
))2 − 2Eη

ξ
δ

(
X·

t , ·
)
η

ξ
δ (0, ·)+E

(
η

ξ
δ (0, ·))2

.(64)

The equivalent formulation on L2(�) of the modified auxiliary problem for the
direction ξ ∈ R

d reads as follows: Find the unique solution η
ξ
δ ∈ L2(�) of the

elliptic equation

δη
ξ
δ − D · κ(

ξ + Dη
ξ
δ

) = 0 in �.

In particular, the function vξ was chosen such that vξ = (δ +L)η
ξ
δ =Lηξ .

We will now only need to show that the modified remainder for fixed δ and fixed
t can be written in the form Mψ1(L)vξψ2(L)vξ , where ψ1(x) = 2(x + δ)−1 and
ψ2(x) = 2e−tx(x + δ)−1. In fact, the introduction of the zero-order perturbation
removes the singularity coming from the term x−1.
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The first term on the right-hand side of (64) may equivalently be written as

E
(
η

ξ
δ

(
X·

t , ·
))2 = E

(
η

ξ
δ

(
0, Y ·

t

))2 =M
(
η

ξ
δ (0, ·))2

,

where we have used the stationarity of the environment as viewed from the particle
with respect to P and the stationarity of the random field {ηξ

δ (x,ω), (x,ω) ∈R
d ×

�} with respect to P , respectively. Therefore, treating the second term on the right-
hand side of (64) we obtain

E
(
R

·,δ
t · ξ )2 = 2M

(
η

ξ
δ (0, ·))2 − 2Mη

ξ
δ (0, ·)T ·

t η
ξ
δ (0, ·),(65)

where {T ω
t , t ≥ 0} denotes the strongly continuous semigroup on L2(Rd) associ-

ated with (Eω,1,H 1(Rd)) which satisfies

E
ω
0 η

ξ
δ

(
Xω

t ,ω
) = T ω

t η
ξ
δ (0,ω).

Going back to (65), respectively the corresponding identity on L2(�), we have
thus for the first term on the right-hand side

2M
(
η

ξ
δ

)2 = 2M(δ +L)−1vξ (δ +L)−1vξ = 2
∫ ∞

0
(δ + λ)−2 dμ(λ),

whereas the second term may be written in the form

2M(δ +L)−1vξ e−tL(δ +L)−1vξ = 2
∫ ∞

0
(δ + λ)−2e−tλ dμ(λ),

where we used (63) with corresponding ψ1 and ψ2. Altogether we have obtained

t−1
E

(
R

·,δ
t · ξ )2 = 2t−1

∫ ∞
0

(
1 − e−λt )(δ + λ)−2 dμ(λ)

and by letting δ → 0 the spectral representation (60) follows. �

7. Conclusion. We have derived Feynman–Kac formulae for the forward
problem of electrical impedance tomography and studied the interconnection be-
tween these formulae and stochastic homogenization. Using the properties of the
underlying diffusion processes and some new spectral estimates from [24, 25], we
have then obtained a bound on the speed of convergence of the projected mean-
square displacement of the processes. These results provide the theoretical founda-
tion for the development of new scalable continuum Monte Carlo homogenization
schemes.

Both the homogenization of the forward model for the complete electrode model
and the stochastic numerical approximation of the effective conductivity have di-
rect applications in EIT anomaly detection problems for random heterogeneous
background media; cf. [48, 49].
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APPENDIX A: REVUZ CORRESPONDENCE AND
FUKUSHIMA DECOMPOSITION

For the convenience of the reader, we recall definitions, results and notation
relating to the Revuz correspondence and to the Fukushima decomposition.

DEFINITION A.1 ([22], pages 74–79). We say that a Radon measure μ is of
finite energy with respect to (E,D(E)), if there exists a constant c > 0 such that∫

D

∣∣v(x)
∣∣ dμ(x) ≤ c‖v‖E1 for all v ∈D(E)∩C(D),

where the norm ‖ · ‖E1 is induced by the inner product E1(·, ·) = E(·, ·) + 〈·, ·〉.
LEMMA A.2 ([22], Theorem 5.1.3(iii), Theorem 5.1.7(ii)). Let X be associ-

ated with (E,D(E)). Then there is a one-to-one correspondence between the family
of all equivalence classes of positive continuous additive functionals of X and the
family of all smooth measures with respect to (E,D(E)),5 say between A ↔ μ,
given by

lim
t→0+

1

t

∫
D
Ex

{∫ t

0
φ(Xs)dAs

}
ψ(x)dx =

∫
D

φ(x)ψ(x)dμ(x)(66)

for all nonnegative Borel functions φ and all α-excessive functions ψ . In this case,
we say that A admits the Revuz measure μ. Furthermore, every smooth measure
μ with respect to (E,D(E)) having finite energy is the Revuz measure of a positive
continuous additive functional A in strict sense, that is, without an exceptional set.

LEMMA A.3. Let X be associated with (E,D(E)) and suppose u ∈ H 1(D).
Then there is a unique Fukushima decomposition into a martingale additive func-
tional Mu and a continuous additive functional Nu of X having zero energy such
that

u(Xt) − u(X0) = Mu
t +Nu

t

for every t ≥ 0 Px-a.s. for q.e. x ∈ D. Moreover, if there are Revuz measures μ1
and μ2 such that

E(u, v) =−
∫
D

v(x)(μ1 −μ2)(dx)

for every v ∈ H 1(D), then Nu = A(1) −A(2) where A(j) admits the Revuz measure
μj , j = 1,2.

PROOF. This follows from [22], Theorem 5.2.2, Theorem 5.2.4 and Revuz
correspondence Lemma A.2. �

5Cf. [22], page 80 for the definition.
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APPENDIX B: SKOROHOD DECOMPOSITIONS

For convenience of the reader, let us state Skorohod decompositions of the re-
flecting diffusion process X for two practically relevant special cases, namely local
Lipschitz conductivities and isotropic piecewise constant conductivities.

The assertion of the following proposition is covered by [23], Theorem 2.3.

PROPOSITION B.1. Let κ ∈ C
0,1
loc (D;Rd×d) be a symmetric, uniformly

bounded and uniformly elliptic conductivity. Then the reflecting diffusion process
X admits the following Skorohod decomposition:

Xt = x +
∫ t

0
B(Xs)dWs +

∫ t

0
∇κ(Xs)ds −

∫ t

0
κ(Xs)ν(Xs)dLs,(67)

Px-a.s., where B : D → R
d×d denotes the positive definite diffusion matrix sat-

isfying B2 = 2κ , W is a standard d-dimensional Brownian motion and L is the
boundary local time of X.

Now let us turn to the case of isotropic piecewise constant conductivities and
for simplicity of the presentation let us consider a simplistic two-phase medium,
where

κ(x) =
{

κ1, x ∈ D1,

κ2, x ∈ D2,
(68)

with constants κ1, κ2 > 0 and D is a simply connected bounded Lipschitz domain
which consists of two disjoint subdomains such that D1 = D \D2. We assume that
D2 is a simply connected Lipschitz domain. ν is the outer unit normal vector on
∂D and the outer unit normal vector on ∂D2 with respect to D2. The positive con-
tinuous additive functional L0 of X whose Revuz measure is given by the scaled
Lebesgue surface measure (κ1 + κ2)σ on ∂D2 is called the symmetric local time
of the reflecting diffusion process X at ∂D2. The term “symmetric” comes from
the fact that in the one-dimensional case L0 is the local time defined by the Tanaka
formula with the convention sign(0) = 0, which is called the symmetric local time;
see [45]. In this case, we have

L0
t = lim

ε→0

1

2ε

∫ t

0
[[−ε, ε]](Xs)ds.

For the proof of the following result, we refer to [49].

PROPOSITION B.2. Let κ be given by (68). Then the reflecting diffusion pro-
cess X admits the following Skorohod decomposition:

Xt = x +
∫ t

0

√
2κ(Xs)dWs + κ1 − κ2

κ1 + κ2

∫ t

0
ν(Xs)dL0

s − κ1

∫ t

0
ν(Xs)dLs,(69)

Px-a.s., where W is a standard d-dimensional Brownian motion, L0 is the sym-
metric local time of X at ∂D2 and L is the boundary local time.
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