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ROUGH FRACTIONAL DIFFUSIONS AS SCALING LIMITS OF
NEARLY UNSTABLE HEAVY TAILED HAWKES PROCESSES

BY THIBAULT JAISSON AND MATHIEU ROSENBAUM

École Polytechnique and Université Pierre et Marie Curie

We investigate the asymptotic behavior as time goes to infinity of
Hawkes processes whose regression kernel has L1 norm close to one and
power law tail of the form x−(1+α), with α ∈ (0,1). We in particular prove
that when α ∈ (1/2,1), after suitable rescaling, their law asymptotically be-
haves as a kind of integrated fractional Cox–Ingersoll–Ross process, with
associated Hurst parameter H = α − 1/2. This result is in contrast to the case
of a regression kernel with light tail, where a classical Brownian CIR process
is obtained at the limit. Interestingly, it shows that persistence properties in
the point process can lead to an irregular behavior of the limiting process.
This theoretical result enables us to give an agent-based foundation to some
recent findings about the rough nature of volatility in financial markets.

1. Introduction. A Hawkes process (Nt )t≥0 is a self-exciting point process
whose intensity at time t , denoted by λt , is of the form

λt = μ + ∑
0<Pi<t

φ(t − Pi) = μ +
∫
(0,t)

φ(t − s) dNs,

where μ is a positive real number, φ a nonnegative measurable function and the
Pi are the points of the process before time t (see Section 2 for a more formal def-
inition). These processes have been introduced in the early 1970s by Hawkes (see
[21–23]), in the purpose of modeling earthquakes and their aftershocks; see [1]
for such application. In the last years, the probabilistic and statistical analysis of
Hawkes processes has known several interesting developments, driven by the re-
cent use of Hawkes processes in various applied fields such as neurosciences [13,
33, 34, 36], sociology [9, 28, 41], criminology [30, 31], genome analysis [37] and
mostly finance [2, 4, 7, 10, 12, 14, 15].

Among the probabilistic questions raised by Hawkes processes, particular atten-
tion has been devoted to the study of their long term scaling limits. More precisely,
one wishes to understand the behavior as T tends to infinity of the process

(αT NtT )t∈[0,1],
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where αT is a suitable normalizing factor. In [5], it is shown that under the condi-
tion

‖φ‖1 =
∫ +∞

0
φ(s) ds < 1,

the asymptotic behavior of a Hawkes process is quite similar to that of a Poisson
process. Indeed, as T tends to infinity,

sup
t∈[0,1]

∣∣∣∣NtT

T
−E

[
NtT

T

]∣∣∣∣ → 0,

in probability and(√
T

(
NtT

T
−E

[
NtT

T

]))
t∈[0,1]

→ σ(Wt)t∈[0,1],

in law for the Skorohod topolgy, with σ an explicit constant and (Wt) a Brownian
motion. This result has been extended in [42] to the case of nonlinear Hawkes
processes.

The condition ‖φ‖1 < 1 is essential in order to obtain the preceding result. It is
actually very similar to the assumption |ρ| < 1 one makes on the autoregressive
coefficient ρ when working with a discrete time stationary AR(1) process. In par-
ticular, when starting the Hawkes process at t = −∞, the assumption ‖φ‖1 < 1
is required in order to get a stationary intensity with finite first moment. Also, as
for AR(1) processes, under this condition, Hawkes processes only exhibit weak
dependence properties. Consequently, their asymptotic behavior is in that case no
surprise, close to that of a Poisson process. Hence, this condition is called stability
condition.

In [26], the authors investigate the scaling limit of Hawkes processes when the
stability condition is almost violated. This means that they consider a sequence
of Hawkes processes satisfying the stability condition, but for which the kernel
φ = φT also depends on the observation scale T , such that ‖φT ‖1 tends to 1 as T

goes to infinity. Such a sequence is called the sequence of nearly unstable Hawkes
processes.

Beyond its obvious mathematical interest, considering the case of nearly unsta-
ble Hawkes processes is motivated by empirical studies of financial data. Indeed, it
has become quite standard to model the clustered nature of order flows on financial
markets by means of Hawkes processes. However, one systematically estimates L1

norms for the regression kernels which are smaller but very close to 1; see [16, 17,
19, 27]. Interestingly, this empirical stylized fact that Hawkes processes have to
be nearly unstable to fit the data has a very natural financial interpretation, namely
the high degree of endogeneity of modern markets due to high frequency trading.
This signifies that a large proportion of orders is endogenously triggered by other
orders; see [17, 19, 26] for more details. In this framework, it is proved in [26]
that the limiting law of a sequence of nearly unstable Hawkes processes is that of
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an integrated Cox–Ingersoll–Ross process (CIR process for short). Hence, com-
pared to the case where the stability condition is in force, the asymptotic behavior
at first order is no longer deterministic; see also [42] for the case where ‖φ‖1 is
exactly equal to one and other interesting developments. Note that this CIR scal-
ing limit seems to be very consistent with financial practice. Indeed, it is widely
acknowledged that there exists a linear relationship between the cumulated order
flow and the integrated squared volatility (see, e.g. [40]), and CIR processes are
very classical models for the squared volatility.

Nevertheless, the CIR limit in law of nearly unstable Hawkes processes dis-
cussed above is obtained under the crucial assumption∫ +∞

0
sφ(s) ds < +∞.

It is therefore quite natural to try to extend the results of [26] to the case of nearly
unstable heavy tailed Hawkes processes, for which this condition is no longer sat-
isfied. Hence, we consider in this paper the situation where

φ(x) ∼
x→+∞

K

x1+α
,

where α ∈ (0,1) and K is a positive constant. This setting is actually much more in
agreement with financial data, where one not only finds that the function φ has an
L1 norm close to one, but also that it has a power law tail; see [6, 19]. This heavy
tail is quite easy to interpret in practice too: it is related to the persistence of the
signed order flow (the series of +1, −1 where +1 represents a buy order and −1
a sell order). Indeed, the long memory property of this process is well established
and is due to the so-called order splitting phenomenon: most orders are actually
part of large orders (called metaorders), which are split in smaller orders so that
prohibitive execution costs can be avoided. Note that Hawkes processes with L1

norm exactly equal to one have been introduced in [11]. In this work, the authors
show that in order to get a stationary intensity, the parameter μ must be equal to
zero and the regression kernel has to be heavy tailed; see also [42].

Our main result is that for α ∈ (1/2,1), after proper rescaling, the sequence
of nearly unstable heavy tailed Hawkes processes is tight and its limit laws can
be interpreted as integrated fractional diffusions. Loosely speaking, these limiting
distributions can be viewed as the integral of fractional versions of the CIR process,
where a fractional Brownian motion replaces the ordinary Brownian motion. This
result is quite remarkable from a probabilistic point of view. Indeed, assuming fat
tail leads to a limit which is not an integrated semimartingale. This is in strong
contrast to all other scaling limits obtained for Hawkes processes. Technically,
this heavy tail case is of course more subtle than that investigated in [26] where
semimartingale theorems are used in a quite direct manner. Moreover, Gaussian
methods are not easy to apply in our context since the limit is not a simple Gaussian
functional, although it somehow involves a fractional Brownian motion.
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The perhaps most surprising phenomenon obtained in our result is the value of
the Hurst parameter H of the (sort of) fractional Brownian motion appearing in
the limit. Indeed, fat tail meaning persistence, one would expect getting also per-
sistence in the limit and so H > 1/2. This is actually the contrary: an aggregation
phenomenon occurs in the heavy tail case, leading to a very irregular process in the
limit, its derivative behaving as a fractional Brownian motion with Hurst param-
eter H < 1/2. Coming back to financial applications, this means that in practice,
the volatility process should be very irregular, which is perfectly in line with the
recent empirical measures of the volatility smoothness obtained in [18]. Therefore,
our theoretical result shows quite clearly that the rough behavior of the volatility
can be explained by the high degree of endogeneity of financial markets together
with the order splitting phenomenon. This is to our knowledge the first agent-based
explanation for the rough nature of volatility.

The paper is organized as follows. We first give our assumptions together with
some intuitions about the limiting behavior of our processes in Section 2. Section 3
contains our main theorems whose proofs can be found in Section 4. Finally, some
technical results are relegated to an Appendix.

2. Assumptions and intuitions for the results. We describe in this section
our asymptotic framework together with intuitions about our main results which
are given in Section 3.

We consider a sequence of point processes (NT
t )t≥0 indexed by T .1 For a given

T , (NT
t ) satisfies NT

0 = 0 and the process is observed on the time interval [0, T ].
Our asymptotic setting is that the observation scale T goes to infinity. The intensity
process (λT

t ) is defined for t ≥ 0 by

λT
t = μT +

∫ t

0
φT (t − s) dNT

s ,

where μT is a sequence of positive real numbers and the φT are nonnegative mea-
surable functions on R

+ which satisfies ‖φT ‖1 < +∞. For a given T , the process
(NT

t ) is defined on a probability space (�T ,FT ,PT ) equipped with the filtration
(FT

t )t∈[0,T ], where FT
t is the σ -algebra generated by (NT

s )s≤t . Moreover, we as-
sume that for any 0 ≤ a < b ≤ T and A ∈ FT

a

E
[(

NT
b − NT

a

)
1A

] = E

[∫ b

a
λT

s 1A ds

]
,

which sets λT as the intensity of NT . In particular, if we denote by (P T
n )n≥1 the

jump times of (NT
t ), the process

NT
t∧P T

n
−

∫ t∧P T
n

0
λT

s ds

1Of course by T , we implicitly mean Tn with n ∈N tending to infinity.
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is a martingale and the law of NT is characterized by λT . From [24], such a con-
struction can be done and the process NT is called a Hawkes process.

Let us now give more specific assumptions on the functions φT .

ASSUMPTION 1. For t ∈ R
+,

φT (t) = aT φ(t),

where (aT )T ≥0 is a sequence of positive numbers converging to 1 such that for
all T , aT < 1 and φ is a nonnegative measurable function such that ‖φ‖1 = 1.
Furthermore,

lim
x→+∞αxα(

1 − F(x)
) = K,

for some α ∈ (0,1) and some positive constant K , with

F(x) =
∫ x

0
φ(s) ds.

Recall that in [26] it is assumed that∫ +∞
0

tφ(t) dt < +∞(1)

and this condition leads to a CIR-type limit. Considering Assumption 1 instead of
(1) will induce a completely different scaling behavior for the sequence of nearly
unstable Hawkes processes. Nevertheless, in this framework, we still have almost
surely no explosion:2

lim
n→+∞P T

n = +∞.

Remark that we do not work in the stationary setting since our processes start at
time t = 0 and not at t = −∞.

Let MT denote the martingale process associated to NT , that is, for t ≥ 0,

MT
t = NT

t −
∫ t

0
λT

s ds.

We also set ψT as the function defined on R
+ by

ψT (t) =
∞∑

k=1

(
φT )∗k

(t),(2)

where (φT )∗1 = φT and for k ≥ 2, (φT )∗k denotes the convolution product of
(φT )∗(k−1) with the function φT . Note that ψT (t) is well defined since ‖φT ‖1 < 1.

2In fact, for a Hawkes process, the no explosion property can be obtained under weaker conditions,
for example

∫ t
0 φ(s) ds < ∞ for any t > 0; see [5].
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This function plays an important role in the study of Hawkes processes; see [3]. In
particular, it is proved in [26] that the intensity process, rescaled on [0,1], can be
rewritten

λT
tT = μT +

∫ tT

0
ψT (T t − s)μT ds +

∫ tT

0
ψT (T t − s) dMT

s .

In term of scaling in space, a natural multiplicative factor is (1 − aT )/μT . Indeed,
in the stationary case, the expectation of λT

t is μT /(1 − ‖φT ‖1). Thus, the order
of magnitude of the intensity is μT (1 − aT )−1. This is why we define

CT
t = (1 − aT )

μT
λT

tT .

Then we easily get

CT
t = (1 − aT ) +

∫ t

0
T (1 − aT )ψT (T s) ds

(3)

+
√

T (1 − aT )

μT

∫ t

0
ψT (

T (t − s)
)√

CT
s dBT

s ,

with

BT
t = 1√

T

∫ tT

0

dMT
s√

λT
s

.

From (3), we see that the asymptotic behavior of the intensity is closely related
to that of x �→ ψT (T x). To analyze the limiting behavior of this function, let us
remark that for x ≥ 0,

ρT (x) = T
ψT (T x)

‖ψT ‖1
(4)

is the density of the random variable

JT = 1

T

IT∑
i=1

Xi,

where the (Xi) are i.i.d. random variables with density φ and IT is a geometric
random variable with parameter 1 − aT .3 The Laplace transform of the random
variable JT , denoted by ρ̂T , satisfies for z ≥ 0

ρ̂T (z) = E
[
e−zJ T ] =

∞∑
k=1

(1 − aT )(aT )k−1
E

[
e−(z/T )

∑k
i=1 Xi

]

=
∞∑

k=1

(1 − aT )(aT )k−1
(
φ̂

(
z

T

))k

= φ̂(z/T )

1 − (aT /(1 − aT ))(φ̂(z/T ) − 1)
,

3∀k > 0,P[IT = k] = (1 − aT )(aT )k−1.
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where φ̂ denotes the Laplace of φ. We now need to compute an expansion for φ̂(z).
Using integration by parts, we get

φ̂(z) = z

∫ +∞
0

e−ztF (t) dt = 1 − z

∫ +∞
0

e−zt (1 − F(t)
)
dt.

Then using Assumption 1 together with Karamata–Tauberian theorem (see, e.g.,
Theorem 17.6 in [8]), we get

φ̂(z) = 1 − K
	(1 − α)

α
zα + o

(
zα)

,

with 	 the gamma function. Set δ = K 	(1−α)
α

and vT = δ−1T α(1 − aT ). As T

goes to infinity, ρ̂T (z) is thus equivalent to
vT

vT + zα
.(5)

The function whose Laplace transform is equal to this last quantity is given by

x �→ vT xα−1Eα,α

(−vT xα)
,

with Eα,β the (α,β) Mittag–Leffler function, that is,

Eα,β(z) =
∞∑

n=0

zn

	(αn + β)
,

see [20]. Putting this together with (3) and (4), we can expect (for α > 1/2)

CT
t ∼ vT

∫ t

0
sα−1Eα,α

(−vT sα)
ds

+ γT vT

∫ t

0
(t − s)α−1Eα,α

(−vT (t − s)α
)√

CT
s dBT

s ,

with

γT = 1√
μT T (1 − aT )

.

The process BT can be shown to converge to a Brownian motion B . Thus, denoting
by v∞ and γ∞ the limits of vT and γT , passing (nonrigorously) to the limit, we
obtain (for α > 1/2)

C∞
t ∼ v∞

∫ t

0
sα−1Eα,α

(−v∞sα)
ds

(6)

+ γ∞v∞
∫ t

0
(t − s)α−1Eα,α

(−v∞(t − s)α
)√

C∞
s dBs.

From (6), we see that in order to get a nondeterministic asymptotic behavior for
CT

t , we need that both v∞ and γ∞ are positive constants or v∞ is equal to zero
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and γ∞v∞ is positive. However, in the last situation, the expectation of CT
t would

tend to zero (recall that we are not in the stationary case here) which is of course
not desirable. Therefore, only one regime seems to be natural and this leads us to
the following assumption.

ASSUMPTION 2. There are two positive constants λ and μ∗ such that

lim
T →+∞T α(1 − aT ) = λδ

and

lim
T →+∞T 1−αμT = μ∗δ−1.

In particular, Assumption 2 implies that vT converges to λ and therefore the
sequence of random variables (J T ) converges in law toward the random variable
whose density on R

+ is given by

x �→ λxα−1Eα,α

(−λxα)
.

Beyond giving the suitable asymptotic regimes for aT and μT , the heuristic
derivation leading to (6) provides us an expression for the limiting law of the
rescaled intensities of our sequence of nearly unstable heavy tailed Hawkes pro-
cesses. In (6), this law appears under the form of a nonclassic stochastic integral
equation. Indeed, it is of Volterra-type and is therefore (a priori) neither a diffusion
nor a semimartingale. Furthermore, the main term of the Volterra kernel xα−1 ex-
hibits a singularity at point 0, of the same kind as that of the fractional Brownian
motion (BH

t ) when expressed under the form

BH
t = 1

	(H + 1/2)
(7)

×
(∫ t

0
(t − s)H−1/2 dWs +

∫ 0

−∞
(t − s)H−1/2 − (−s)H−1/2 dWs

)
,

with (Wt) a Brownian motion; see [29].
The preceding computations suggest a possible approach to derive the limiting

behavior of our sequence of Hawkes processes: studying the intensity of the pro-
cesses. Indeed the intensities can be rewritten under the form of stochastic integral
equations as (3). Consequently, one can try to pass to the limit in the coefficients of
the equation to obtain the limiting law, as we (nonrigorously) did to get (6). This
is exactly the approach used in [26]. However, in this more intricate heavy tail
case, it seems very hard to use. In particular, the sequence (CT

t ) is typically not
tight. Thus, instead of considering the intensities, we directly work on the Hawkes
processes themselves, more in the spirit of [42].
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3. Main results. We rigorously state in this section our theorems on the limit-
ing behavior of nearly unstable heavy tailed Hawkes processes. We start with some
technical results about the function appearing as the inverse Laplace transform of
(5) in Section 2.

3.1. The function f α,λ. As shown by the derivations in the previous section,
the function

f α,λ(x) = λxα−1Eα,α

(−λxα)
plays a crucial role in our analysis. We give here some elements about the regular-
ity of this function which will be useful in the sequel. We denote by Iαf and Dαf

the fractional integration and derivation operators, which are defined for a suitable
measurable function f by

Iαf (x) = 1

	(α)

∫ x

0

f (t)

(x − t)1−α
dt

and

Dαf (x) = 1

	(1 − α)

d

dx

∫ x

0

f (t)

(x − t)α
dt.

The following lemma is a direct consequence of the definition of f α,λ and Sec-
tion 11 in [20].

PROPOSITION 3.1. The function f α,λ is C∞ on (0,1] and

f α,λ(x) ∼
x→0+

λ

	(α)
xα−1,

(
f α,λ)′

(x) ∼
x→0+

λ(α − 1)

	(α)
xα−2.

Furthermore, the function x �→ f α,λ(x)x1−α has Hölder regularity α on (0,1].
For r < 1/(1 − α), f α,λ ∈ Lr(]0,1]).
For ν < α, f α,λ is ν fractionally differentiable and

Dνf α,λ(x) = λxα−1−νEα,α−ν

(−λxα)
.

Therefore,

Dνf α,λ(x) ∼
x→0+

λ

	(α − ν)

1

x1−α+ν

and (
Dνf α,λ)′

(x) ∼
x→0+

λ(α − 1 − ν)

	(α − ν)

1

x2−α+ν
.
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For ν′ > 0, f α,λ is ν′ fractionally integrable and

I ν′
f α,λ(x) = λ

1

x1−α−ν′ Eα,α+ν′
(−λxα)

.

Therefore,

I ν′
f α,λ(x) ∼

x→0+
λ

	(α + ν′)
1

x1−α−ν′

and for α + ν′ �= 1,

(
I ν′

f α,λ)′
(x) ∼

x→0+
λ(α − 1 + ν′)

	(α + ν′)
1

x2−α−ν′ .

Proposition 3.1 will be a key tool in the proofs of the main results.

3.2. The limiting behavior of nearly unstable heavy tailed Hawkes processes.
Let us first give some notation. We consider for t ∈ [0,1] the renormalized Hawkes
process

XT
t = 1 − aT

T αμ∗δ−1 NT
T t

and its associated integrated intensity

�T
t = 1 − aT

T αμ∗δ−1

∫ tT

0
λT

s ds.

As explained in Section 2, the space renormalization is chosen so that the processes
have an expectation of order one. We also introduce the spatial renormalization of
the martingale MT defined on [0,1] as

ZT
t =

√
T αμ∗δ−1

1 − aT

(
XT

t − �T
t

)
.

We are now ready to give our results about the convergence in distribution of
(ZT ,XT ) for the Skorohod topology.

PROPOSITION 3.2. Under Assumptions 1 and 2, the sequence (ZT ,XT ) is
tight. Furthermore, if (Z,X) is a limit point of (ZT ,XT ), then Z is a continuous
martingale and [Z,Z] = X.

Now let (Z,X) be a couple of processes defined on some probability space
(�,A,P) with law being one of the possible limit points of the sequence of dis-
tributions associated to the sequence (ZT ,XT ). From Proposition 3.2, we are able
to obtain the following theorem which is one of our main results.
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THEOREM 3.1. For any limit point (Z,X) defined in Proposition 3.2, there
exists a Brownian motion B on (�,A,P) (up to extension of the space) such that
for t ∈ [0,1], Zt = BXt . Furthermore, for any ε > 0, X is continuous with Hölder
regularity (1 ∧ 2α) − ε on [0,1] and satisfies

Xt =
∫ t

0
sf α,λ(t − s) ds + 1√

μ∗λ

∫ t

0
f α,λ(t − s)BXs ds.(8)

Hence, the limiting process in Theorem 3.1 has a quite original form, which can
actually be interpreted more easily by looking at its derivative (when it exists).

3.3. The limiting volatility process. As explained in the Introduction, when it
exists, the derivative of the limiting process X in Theorem 3.1 can be interpreted
as a volatility function. Actually, if the tail of the function φ is not too heavy, X is
indeed differentiable. Let us write

Fα,λ(t) =
∫ t

0
f α,λ(s) ds.

The following result holds.

THEOREM 3.2. Let (Xt) be a process satisfying (8) for t ∈ [0,1] and assume
α > 1/2. Then X is differentiable on [0,1] and its derivative Y satisfies

Yt = Fα,λ(t) + 1√
μ∗λ

∫ t

0
f α,λ(t − s)

√
Ys dB1

s ,(9)

with B1 a Brownian motion. Furthermore, for any ε > 0, Y has Hölder regularity
α − 1/2 − ε.

3.4. Discussion. We now comment on the results given in Theorems 3.1
and 3.2.

The singularity at zero of the function f α,λ appearing in our two theorems is of
order xα−1. Making an analogy with the Volterra representation of the fractional
Brownian motion (7), this corresponds to a Hurst parameter H equal to α − 1/2.
Thus, in the case α > 1/2 where our volatility process is well defined, because of
the square root term in front of the Brownian motion, we can somehow interpret (9)
as a fractional CIR process with Hurst parameter equal to α − 1/2. This dynamics
leads to a very rough process, with Hölder regularity close to zero when α is close
to 1/2. As mentioned in the Introduction, this is perfectly consistent with recent
empirical measures of the volatility smoothness on financial data; see [18].

A practical consequence of the preceding point is the following: When observ-
ing on a time interval of order

1

(1 − ‖φ‖1)1/α
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a Hawkes process with kernel φ with L1 norm close to one and power law tail with
index 1 + α, then after rescaling, a fractional-like behavior is obtained.

Theorem 3.2 relates the smoothness of the volatility process to the tail param-
eter α. This is particularly interesting for financial applications. Indeed, the pa-
rameter α is usually considered very hard to measure. Our theorem provides an
approach where it can be obtained relying on the smoothness of the volatility,
which is much easier to estimate; see [18].

The irregular volatility appearing at the limit arises because our Hawkes pro-
cesses are nearly unstable with heavy tailed kernels. As explained in the Introduc-
tion, in financial terms, it means that the rough behavior of the volatility can be
explained by the high degree of endogeneity of modern markets combined with
the persistent nature of the order flows.

A natural question is that of the uniqueness of the solution of equation (9). Be-
cause of the singular Volterra kernel and of the square root term, it is probably
quite difficult to answer. Actually, in the very recent paper [32], using SPDE tech-
niques, the authors show weak uniqueness for the solutions of an equation which
is quite similar to (9). However, they use the specific form of their equation and
their approach cannot be adapted to our case in an obvious way.

Compared to the approach in [26], it is important to remark that our volatility
process is simply the derivative of the limit of the sequence of nearly unstable
heavy-tailed Hawkes processes. Contrary to what is done in [26], we do not pro-
vide any result about the convergence of the sequence of intensities of the Hawkes
processes. In particular, the sequence of intensities is not shown to converge to-
ward the volatility.4 Note also that our assumptions are slightly weaker than those
in [26]. In particular, we do not require the function φ to be bounded. Again, this
is relevant for financial applications where φ(t) becomes typically very large as t

tends to zero; see [6].

4. Proofs. We give in this section the proofs of Proposition 3.2, Theorems 3.1
and 3.2. In the sequel, c denotes a positive constant which may vary from line to
line (and even within the same line if no ambiguity).

4.1. Proof of Proposition 3.2. We show here the tightness of (ZT ,XT ). We
start with the following lemma.

LEMMA 4.1. The sequences (XT ) and (�T ) are C-tight.5

4Actually it can be shown that for some reasonable functions φ, the sequence of intensities does
not converge, at least in the Skorohod topology.

5That is they are tight and their limits are continuous.
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PROOF. From [5], we get that the expectation of the Hawkes process NT
t sat-

isfies

E
[
NT

t

] = μT t + μT

∫ t

0
ψT (t − s)s ds ≤ tμT

(
1 + ∥∥ψT

∥∥
1

)
.

Therefore, since ∥∥ψT
∥∥

1 = aT

1 − aT

≤ c

1 − aT

and

μT ≤ c
1 − aT

T
,

we get

E
[
XT

1
] = E

[
�T

1
] ≤ c.

The tightnesses of XT and �T then follow, using the fact that both processes are
increasing.

Moreover, since (1 − aT )/T α tends to zero, the maximum jump size of XT and
�T (which is continuous) goes to zero as T tends to infinity. From Proposition VI-
3.26 in [25], this implies the C-tightness of XT and �T . �

We now give the proof of Proposition 3.2. It is easy to get that the angle bracket
of ZT is �T . From Lemma 4.1, it is C-tight. Thus, from Theorem VI-4.13 in [25],
the sequence (ZT ) is tight. Finally, marginal tightnesses imply the joint tightness
of (ZT ,XT ).

Let us now consider a subsequence (ZTn,XTn) converging toward a process that
we denote by (Z,X). Using Proposition VI-6.26 in [25] together with the fact that
the bracket of (ZTn) is (XTn), we get that X = [Z,Z].

Since
√

1−aT
T α goes to 0, the maximum jump size of ZTn tends to zero. Therefore,

ZTn is C-tight and so the limit Z is continuous. It remains to show that Z is a
martingale. Using Corollary IX.1.19 in [25], Z is a local martingale. Moreover,
the expectation of its bracket being finite, it is a martingale.

4.2. Proof of equation (8) in Theorem 3.1. We start with the following lemma
which shows that we can somehow work with �T rather than with XT .

LEMMA 4.2. The sequence of martingales XT − �T tends to zero in proba-
bility, uniformly on [0,1].

PROOF. We have

XT
t − �T

t = 1 − aT

T αμ∗δ−1 MT
tT .
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Applying Doob’s inequality to the martingale MT , we get

E

[
sup

t∈[0,1]
{(

XT
t − �T

t

)2}] ≤ c

(
1 − aT

T α

)2

E
[(

MT
T

)2]
.

Then the bracket of MT being NT , we deduce

E

[
sup

t∈[0,1]
{(

XT
t − �T

t

)2}] ≤ c

(
1 − aT

T α

)2

E
[
NT

T

] ≤ c
μT (1 − aT )

T 2α−1 ≤ c
1 − aT

T α
,

which completes the proof. �

We now state a lemma which will be useful in the proof of equation (8).

LEMMA 4.3. The sequence of measures with density ρT (x) defined by equa-
tion (4) converges weakly toward the measure with density λxα−1Eα,α(−λxα). In
particular, over [0,1],

FT (t) =
∫ t

0
ρT (x) dx

converges uniformly toward

Fα,λ(t) =
∫ t

0
f α,λ(x) dx.

PROOF. The proof of this result is obtained by showing that the Laplace trans-
form of the measure with density ρT (x) converges toward the Laplace transform
of the measure with density λxα−1Eα,α(−λxα). This has already been done in
Section 2. �

We now give the proof of equation (8). Let us consider a converging subse-
quence (ZTn,XTn) and write (Z,X) its limit. Abusing notation slightly, we write
(ZT ,XT ) instead of (ZTn,XTn). Using Skorokhod’s representation theorem, there
exists a probability space on which one can define copies in law of the (ZT ,XT )

converging almost surely for the Skorohod topology to a random variable with
the same law as (Z,X). We now work with this sequence of variables converging
almost surely and their limit. The processes Z and X being continuous, we have

sup
t∈[0,1]

∣∣XT
t − Xt

∣∣ → 0, sup
t∈[0,1]

∣∣ZT
t − Zt

∣∣ → 0.(10)

Let us now rewrite the cumulated intensity. For all t ≥ 0, we have∫ t

0
λT

s ds = tμT +
∫ t

0
φT (t − s)

(∫ s

0
λT

u du

)
ds +

∫ t

0
φT (t − s)MT

s ds.
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Then, using that ψT ∗φT = ψT −φT , where ψT is defined in equation (2), remark
that using Fubini’s theorem and a substitution,∫ t

0
ψT (t − s)

∫ s

0
φT (s − r)MT

r dr ds

=
∫ t

0

∫ t

0
1r≤sψ

T (t − s)φT (s − r) dsMT
r dr

=
∫ t

0

∫ t−r

0
ψT (t − r − s)φT (s) dsMT

r dr

=
∫ t

0
ψT ∗ φT (t − r)MT

r dr

=
∫ t

0
ψT (t − r)MT

r dr −
∫ t

0
φT (t − r)MT

r dr.

This together with Lemma 3 in [5] yields∫ t

0
λT

s ds = tμT +
∫ t

0
ψT (t − s)sμT ds +

∫ t

0
ψT (t − s)MT

s ds.

Therefore, replacing t by T t , multiplying by (1 − aT )/(T αμ∗δ−1), and writing

uT = μT

μ∗δ−1T α−1 ,

we get �T
t = T1 + T2 + T3, with

T1 = (1 − aT )tuT ,

T2 = T (1 − aT )uT

∫ t

0
ψT (

T (t − s)
)
s ds,

T3 = T 1−α/2

√
(1 − aT )

μ∗δ−1

∫ t

0
ψT (

T (t − s)
)
ZT

s ds.

Since uT converges to 1, we get that T1 goes to zero. Integrating by parts, we can
rewrite T2 in term of ρT defined in equation (4) or FT defined in Lemma 4.3:

T2 = aT uT

∫ t

0
ρT (t − s)s ds = aT uT

∫ t

0
FT (t − s) ds.

Using Lemma 4.3 and integrating by parts again, we obtain that T2 tends uniformly
to ∫ t

0
Fα,λ(t − s) ds =

∫ t

0
f α,λ(t − s)s ds.

We now turn to T3. Remark that

T3 = aT√
T α(1 − aT )μ∗δ−1

∫ t

0
ρT (t − s)ZT

s ds
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and recall that

ZT
t =

√
T αμ∗δ−1

1 − aT

(
XT

t − �T
t

)
.

Thus, using that XT is piecewise constant, applying Stieltjes integration by parts,
we get (pathwise) ∫ t

0
ρT (t − s)ZT

s ds =
∫ t

0
FT (t − s) dZT

s

and in the same way∫ t

0
f α,λ(t − s)ZT

s ds =
∫ t

0
Fα,λ(t − s) dZT

s .

Then, since 〈ZT 〉 = �T ,

E

[(∫ t

0

(
Fα,λ(t − s) − FT (t − s)

)
dZT

s

)2]
≤ E

[∫ t

0

(
Fα,λ(t − s) − FT (t − s)

)2
d�T

s

]
≤ c

∫ t

0

(
Fα,λ(t − s) − FT (t − s)

)2
ds,

which tends to zero thanks to Lemma 4.3. Furthermore, using (10), we get that∫ t

0
λ(t − s)α−1Eα,α

(−λ(t − s)α
)∣∣Zs − ZT

s

∣∣ds

also tends to zero. Consequently, we finally obtain that for any t , T3 converges to

1√
μ∗λ

∫ t

0
λ(t − s)α−1Eα,α

(−λ(t − s)α
)
Zs ds.

Since Z is a continuous martingale, the fact that Zt = BXt is a consequence of
the Dambis–Dubin–Schwarz theorem; see, for example, Theorem V-1.6 in [35].

4.3. Proof of the Hölder property for X in Theorem 3.1. We start with the
following lemma.

LEMMA 4.4. Let B be a Brownian motion and X a solution of (8) associated
to B . Let H in (0,1). If X has Hölder regularity H on [0,1], then for any ε > 0,
X has also Hölder regularity ((α + H/2) ∧ 1) − ε on [0,1].

PROOF. Let ε > 0 and Zt = BXt . The function

t →
∫ t

0
sf α,λ(t − s) ds
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being C1, it is enough to show that

t →
∫ t

0
f α,λ(t − s)Zs ds

has Hölder regularity ((α + H/2) ∧ 1) − ε. Since for any ε′ > 0, Z has Hölder
regularity (H/2−ε′), by Proposition A.1, it is (H/2−ε) fractionally differentiable
and DH/2−εZ is continuous. Using the fact that f α,λ is fractionally integrable,
from Corollary A.1, we get∫ t

0
f α,λ(t − s)Zs ds =

∫ t

0
IH/2−εf α,λ(t − s)DH/2−εZs ds.

Finally, the properties of IH/2−εf α,λ stated in Proposition 3.1 together with
Proposition A.3 give the result. �

We now show that for B a Brownian motion and X a solution of (8) associated
to B , then, for any ε > 0, almost surely, the process X has Hölder regularity (1 ∧
2α) − ε on [0,1].

Let M be the supremum of the Hölder exponents of X. From Proposition 3.1
together with Proposition A.3, we get that M ≥ α.

Let us now assume that M < (1 ∧ 2α). Then we can find some H < M and
some ε > 0 such that

M <
(
(α + H/2) ∧ 1

) − ε.

Thus, since X has Hölder regularity H , Lemma 4.4 implies that X has also Hölder
regularity (

(α + H/2) ∧ 1
) − ε,

which is a contradiction. Therefore, M ≥ (1 ∧ 2α), which completes the proof.

4.4. Proof of Theorem 3.2. First, remark that thanks to the Hölder property of
the Brownian motion together with that of the process X, we immediately deduce
the following lemma.

LEMMA 4.5. Let B be a Brownian motion, X a solution of (8) associated to
B and Zt = BXt . Then, for any ε > 0, almost surely, the process Z has Hölder
regularity (1/2 ∧ α) − ε on [0,1].

We now give the proof of Theorem 3.2. Using Proposition 3.1, Lemma 4.5 and
Corollary A.2, for any ν ∈ (0, α), we can rewrite equation (8) as

Xt =
∫ t

0
sf α,λ(t − s) ds + 1√

μ∗λ

∫ t

0
Dνf α,λ(t − s)I νZs ds.
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Moreover, taking ν > 1/2, since Z is 1 − ν fractionally differentiable, we get

I νZs =
∫ s

0
D1−νZu du.

Thus, using Fubini’s theorem and substitution, we obtain∫ t

0
Dνf α,λ(t − s)I νZs ds =

∫ t

0

∫ s

0
Dνf α,λ(t − s)D1−νZu duds

=
∫ t

0

∫ t

u
Dνf α,λ(t − s)D1−νZu ds du

=
∫ t

0

∫ t

u
Dνf α,λ(s − u)D1−νZu ds du

=
∫ t

0

∫ s

0
Dνf α,λ(s − u)D1−νZu duds.

Hence, using integration by parts, we get

Xt =
∫ t

0
Ys ds,

with

Ys = Fα,λ(s) + 1√
μ∗λ

∫ s

0
Dνf α,λ(s − u)D1−νZu du.

From Proposition 3.1 together with Proposition A.3, we have that Y has Hölder
regularity (α − ν). Thus, taking ν close enough to 1/2, we get that for any ε > 0,
Y has Hölder regularity (α − 1/2 − ε). This implies that X is differentiable with
derivative Y .

Now, since Z is a continuous martingale with bracket X and because ν > 1/2,
we can use the stochastic Fubini theorem (see, e.g., [39]) to obtain

D1−νZs = 1

	(ν)

d

ds

∫ s

0

Zv

(s − v)1−ν
dv

= 1

	(ν)

d

ds

∫ s

0

∫ v

0

1

(s − v)1−ν
dZu dv

= 1

	(ν)

d

ds

∫ s

0

∫ s

u

1

(s − v)1−ν
dv dZu

= 1

	(ν + 1)

d

ds

∫ s

0
(s − u)ν dZu.

Therefore,

Yt = Fα,λ(t) + 1√
μ∗λ

∫ t

0
Dνf α,λ(t − s)

1

	(ν + 1)

d

ds

∫ s

0
(s − u)ν dZu ds.
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Using Fubini’s theorem twice and the fact that f ∗ (g′) = (f ∗ g)′, we derive

Yt = Fα,λ(t) + 1√
μ∗λ

d

dt

∫ t

0

1

	(ν + 1)

∫ t

u
Dνf α,λ(t − s)(s − u)ν ds dZu

= Fα,λ(t) + 1√
μ∗λ

d

dt

∫ t

0
I ν+1Dνf α,λ(t − u)dZu

= Fα,λ(t) + 1√
μ∗λ

d

dt

∫ t

0

∫ v

0
I νDνf α,λ(v − u)dZu dv

= Fα,λ(t) + 1√
μ∗λ

∫ t

0
f α,λ(t − u)dZu.

Moreover, using Theorem V-3.8 of [35], there exists a Brownian motion B1 such
that

Zt =
∫ t

0

√
Ys dB1

s .

Then, in order to formally show that we can replace dZu by
√

Yu dB1
u in the equa-

tion for Yt , we consider now the process (Ỹt ) defined by

Ỹt = Fα,λ(t) + 1√
μ∗λ

∫ t

0
f α,λ(t − u)

√
Ys dB1

s .

Going backward in the previous computations for Yt and D1−νZs , we remark that

Ỹt = Fα,λ(t) + 1√
μ∗λ

∫ t

0
Dνf α,λ(t − s)

1

	(ν + 1)

d

ds

∫ s

0
(s − u)ν

√
Yu dB1

u ds

and
1

	(ν + 1)

d

ds

∫ s

0
(s − u)ν

√
Yu dB1

u = 1

	(ν)

∫ s

0

∫ v

0

1

(s − v)1−ν

√
Yu dB1

u dv

= 1

	(ν)

d

ds

∫ s

0

1

(s − v)1−ν

(∫ v

0

√
Yu dB1

u

)
dv

= 1

	(ν)

d

ds

∫ s

0

Zv

(s − v)1−ν
dv

= D1−νZs.

Therefore,

Ỹt = Fα,λ(t) + 1√
μ∗λ

∫ t

0
Dνf α,λ(t − s)D1−νZs ds = Yt .

Consequently,

Yt = Fα,λ(t) + 1√
μ∗λ

∫ t

0
f α,λ(t − u)

√
Yu dB1

u.
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TECHNICAL APPENDIX

In this section, we gather some useful results from [38] and recall a theorem on
the regularity of the convolution product. We denote by Hλ the set of functions on
[0,1] with Hölder regularity λ.

A.1. Fractional integrals and derivatives. Lemma 13.1 in [38] relates the
Hölder exponent of a function and the Hölder exponent of its fractional derivatives.

PROPOSITION A.1. If f ∈ Hλ and f (0) = 0, then for any α < λ, f admits a
fractional derivative of order α and Dαf ∈ Hλ−α .

Equation (2.20) in [38] is a fractional integration by parts formula which can be
written as follows.

PROPOSITION A.2. If φ ∈ Lp and ψ ∈ Lq with 1/p + 1/q ≤ 1 + α, then φ

and ψ have an integral of order α and∫ t

0
φ(t − s)Iαψ(s) ds =

∫ t

0
Iαφ(t − s)ψ(s) ds.

In this work, we mainly use the two following corollaries of Proposition A.2.

COROLLARY A.1. Let φ ∈ Lr , with r > 1 and ψ ∈ Hβ . Then, for any α < β ,
Dαψ exists, belongs to Hβ−α and∫ t

0
φ(t − s)ψ(s) ds =

∫ t

0
Iαφ(t − s)Dαψ(s) ds.

COROLLARY A.2. Let φ be continuous and ψ such that xμψ(x) ∈ Hλ for
some μ > 0. Then, for any α < min(1−μ,λ), Dαψ exists, belongs to Lr for some
r > 1 and ∫ t

0
φ(t − s)ψ(s) ds =

∫ t

0
Iαφ(t − s)Dαψ(s) ds.

A.2. Convolution. Finally, the next result is about the smoothness of the con-
volution of a power type function with a continuous function.

PROPOSITION A.3. Let f be a differentiable function on (0,1] such that for
some K > 0, 0 < β < 1 and any x in (0,1],∣∣f (x)

∣∣ ≤ K

xβ
and

∣∣f ′(x)
∣∣ ≤ K

xβ+1 ,

and g a continuous function on [0,1]. Then the convolution

f ∗ g(t) =
∫ t

0
f (t − s)g(s) ds

has Hölder regularity (1 − β).
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PROOF. We write G for the supremum of |g| and we split f ∗ g(t + h) − f ∗
g(t) into the three following terms:

f ∗ g(t + h) − f ∗ g(t) =
∫ t+h

t
f (t + h − s)g(s) ds

+
∫ t

t−h

(
f (t + h − s) − f (t − s)

)
g(s) ds

+
∫ t−h

0

(
f (t + h − s) − f (t − s)

)
g(s) ds.

The first term is bounded by KGh1−β

1−β
, the second by KG(1 + 1

1−β
)h1−β and the

third by

G

∫ t−h

0

∫ t+h−s

t−s

∣∣f ′(u)
∣∣duds ≤ GK

∫ t−h

0
h

1

(t − s)1+β
ds ≤ 2

β
GKh1−β. �
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