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This paper deals with a parametrized family of partially observed bivari-
ate Markov chains. We establish that, under very mild assumptions, the limit
of the normalized log-likelihood function is maximized when the parameters
belong to the equivalence class of the true parameter, which is a key feature
for obtaining the consistency of the maximum likelihood estimators (MLEs)
in well-specified models. This result is obtained in the general framework
of partially dominated models. We examine two specific cases of interest,
namely, hidden Markov models (HMMs) and observation-driven time series
models. In contrast with previous approaches, the identifiability is addressed
by relying on the uniqueness of the invariant distribution of the Markov chain
associated to the complete data, regardless its rate of convergence to the equi-
librium.

1. Introduction. Maximum likelihood estimation is a widespread method for
identifying a parametric model of a time series from a sample of observations.
Under a well-specified model assumption, it is of prime interest to show the con-
sistency of the estimator, that is, its convergence to the true parameter, say θ�, as
the sample size goes to infinity. The proof generally involves two important steps:
(1) the maximum likelihood estimator (MLE) converges to the maximizing set ��

of the asymptotic normalized log-likelihood, and (2) the maximizing set indeed
reduces to the true parameter. The second step is usually referred to as solving the
identifiability problem but it can actually be split in two sub-problems: (2.1) show
that any parameter in �� yields the same distribution for the observations as for
the true parameter, and (2.2) show that for a sufficiently large sample size, the set
of such parameters reduces to θ�. Problem 2.2 can be difficult to solve; see [2, 18]
and the references therein for recent advances in the case of hidden Markov models
(HMMs). Nevertheless, Problem 2.1 can be solved independently, and with Step 1
above, this directly yields that the MLE is consistent in a weakened sense, namely,
that the estimated parameter converges to the set of all the parameters associated
to the same distribution as the one of the observed sample. This consistency re-
sult is referred to as equivalence-class consistency, as introduced by [23]. In this
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contribution, our goal is to provide a general approach to solve Problem 2.1 in
the general framework of partially observed Markov models. These include many
classes of models of interest; see, for instance, [27] or [16]. The novel aspect of
this work is that the result mainly relies on the uniqueness of the invariant distri-
bution of the Markov chain associated to the complete data, regardless its rate of
convergence to the equilibrium. We then detail how this approach applies in the
context of two important subclasses of partially observed Markov models, namely,
the class of HMMs and the class of observation-driven time series models.

In the context of HMMs, the consistency of the MLE is of primary importance,
either as a subject of study (see [12, 13, 23]) or as a basic assumption (see [4, 21]).
The characterization of the maximizing set �� of the asymptotic log-likelihood
(and thus the equivalence-class consistency of the MLE) remains a delicate ques-
tion for HMMs. As an illustration, we consider the following example. In this
example and throughout the paper, we denote by R+ = [0,∞), R− = (−∞,0],
R

∗+ = (0,∞) and R
∗− = (−∞,0), the sets of nonnegative, nonpositive, (strictly)

positive and (strictly) negative real numbers, respectively. Similarly, we use the
notation Z+, Z−, Z∗+ and Z

∗− for the corresponding subsets of integers. Also,
a+ = max(a,0) denotes the nonnegative part of a.

EXAMPLE 1. Set X = R+, X = B(R+), Y = R and Y = B(R) and define an
HMM on X × Y by the following recursions:

Xk = (Xk−1 + Uk − m)+,
(1.1)

Yk = aXk + Vk,

where (m,a) ∈ R
∗+ × R, and the sequence ((Uk,Vk))k∈Z+ is independent and

identically distributed (i.i.d.) and is independent from X0. This Markov model
(Xk)k∈Z+ was proposed by [29] and further considered by [20] as an example of
polynomially ergodic Markov chain, under specific assumptions made on Uk’s.
Namely, if Uk’s are centered and E[eλU+

k ] = ∞ for any λ > 0, it can be shown that
the chain (Xk)k∈Z+ is not geometrically ergodic (see Lemma 4 below). In such
a situation, the exponential separation of measures condition introduced in [12]
seems difficult to check. We will show, nevertheless, in Proposition 2, that un-
der some mild conditions the chain (Xk)k∈Z+ is ergodic and the equivalence-class
consistency holds.

Observation-driven time series models were introduced by [7] and later consid-
ered, among others, by [8, 15, 17, 25, 28] and [10]. The celebrated GARCH(1,1)

model introduced by [5] is an observation-driven model as well as most of the mod-
els derived from this one; see [6] for a list of some of them. This class of models
has the nice feature that the (conditional) likelihood function and its derivatives are
easy to compute. The consistency of the MLE can however be cumbersome and is
often derived using computations specific to the studied model. When the observed
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variable is discrete, general consistency results have been obtained only recently
in [9] or [10] (see also in [30] for the existence of stationary and ergodic solutions
to some observation-driven time series models). However, in these contributions,
the way of proving that the maximizing set �� reduces to {θ�} requires checking
specific conditions in each given example and seems difficult to assert in a more
general context, for instance when the distribution of the observations given the
hidden variable also depends on an unknown parameter. Let us describe two such
examples. The first one (Example 2) was introduced in [31]. To our knowledge,
the consistency of the MLE has not been treated for this model.

EXAMPLE 2. The negative binomial integer-valued GARCH [NBIN-
GARCH(1,1)] model is defined by

Xk+1 = ω + aXk + bYk,
(1.2)

Yk+1|X0:k+1, Y0:k ∼ NB
(
r,

Xk+1

1 + Xk+1

)
,

where Xk takes values in X = R+, Yk takes values in Z+ and θ = (ω, a, b, r) ∈
(R∗+)4 is an unknown parameter. In (1.2), NB(r,p) denotes the negative binomial
distribution with parameters r > 0 and p ∈ (0,1), whose probability function is
�(k+r)
k!�(r)

pr(1 − p)k for all k ∈ Z+, where � stands for the Gamma function.

The second example, Example 3, proposed by [19] and [1], is a natural exten-
sion of GARCH processes, where the usual Gaussian conditional distribution of
the observations given the hidden volatility variable is replaced by a mixture of
Gaussian distributions given a hidden vector volatility variable. Up to our knowl-
edge, the usual consistency proof of the MLE for the GARCH cannot be directly
adapted to this model.

EXAMPLE 3. The normal mixture GARCH [NM(d)-GARCH(1,1)] model is
defined by:

Xk+1 = ω + AXk + Y 2
k b,

Yk+1|X0:k+1, Y0:k ∼ Gθ(Xk+1; ·),
(1.3)

Gθ(x;dy) =
(

d∑
�=1

γ�

e−y2/2x�

(2πx�)1/2

)
dy,

x = (xi)1≤i≤d ∈ (R∗+)d, y ∈ R,

where d is a positive integer; Xk = [X1,k · · ·Xd,k]T takes values in X = R
d+;

γ = [γ1 · · ·γd ]T is a d-dimensional vector of mixture coefficients belonging to
the d-dimensional simplex Pd = {γ ∈ R

d+ :∑d
�=1 γ� = 1}; ω, b are d-dimensional

vector parameters with positive and nonnegative entries, respectively; A is a d × d

matrix parameter with nonnegative entries; and θ = (γ ,ω,A,b).
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The paper is organized as follows. Section 2 is dedicated to the main result
(Theorem 1) which shows that the argmax of the limiting criterion reduces to the
equivalence class of the true parameter, as defined in [23]. The general setting
is introduced in Section 2.1. The theorem is stated and proved in Section 2.2. In
Section 2.3, we focus on the kernel involved in the assumptions, and explain how
it can be obtained explicitly. Our general assumptions are then shown to hold for
two important classes of partially observed Markov models:

– First, the HMMs described in Section 3, for which the equivalence-class con-
sistency of the MLE is derived under simplified assumptions. The polynomially
ergodic HMM of Example 1 is treated as an application of this result.

– Second, the observation-driven time series models described in Section 4. The
obtained results apply to the models of Examples 2 and 3, where the generating
process of the observations may also depend on the parameter.

The technical proofs are gathered in the Appendix.

2. A general approach to identifiability.

2.1. General setting and notation: partially dominated and partially observed
Markov models. Let (X,X ) and (Y,Y) be two Borel spaces, that is, measurable
spaces that are isomorphic to a Borel subset of [0,1] and let � be a set of parame-
ters. Consider a statistical model determined by a class of Markov kernels (Kθ)θ∈�

on (X×Y)× (X ⊗Y). Throughout the paper, we denote by P
θ
ξ the probability (and

by E
θ
ξ the corresponding expectation) induced on (X × Y)Z+ by a Markov chain

((Xk,Yk))k∈Z+ with transition kernel Kθ and initial distribution ξ on X × Y. In the
case where ξ is a Dirac mass at (x, y), we will simply write P

θ
(x,y).

For partially observed Markov chains, that is, when only a sample Y1:n :=
(Y1, . . . , Yn) ∈ Yn of the second component is observed, it is convenient to write
Kθ as

Kθ ((x, y);dx′ dy′)= Qθ ((x, y);dx′)Gθ ((x, y, x′);dy′),(2.1)

where Qθ and Gθ are probability kernels on (X × Y)×X and on (X × Y × X)×Y ,
respectively.

We now consider the following general setting.

DEFINITION 1. We say that the Markov model (Kθ)θ∈� of the form (2.1)
is partially dominated if there exists a σ -finite measure ν on Y such that for all
(x, y), (x′, y′) ∈ X × Y,

Gθ ((x, y, x′);dy′)= gθ ((x, y, x′);y′)ν(dy′),(2.2)

where the conditional density function gθ moreover satisfies

gθ ((x, y, x′);y′)> 0, for all (x, y),
(
x′, y′) ∈ X × Y.(2.3)
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It follows from (2.2) that, for all (x, y) ∈ X × Y, A ∈ X and B ∈ Y ,

Kθ ((x, y);A × B
)= ∫

B
κθ 〈y, y′〉(x;A)ν

(
dy′),

where, for all y, y′ ∈ Y, κθ 〈y, y′〉 is a kernel defined on (X,X ) by

κθ 〈y, y′〉(x;dx′) := Qθ ((x, y);dx′)gθ ((x, y, x′);y′).(2.4)

REMARK 1. Note that, in general, the kernel κθ 〈y, y′〉 is unnormalized since
κθ 〈y, y′〉(x;X) may be different from one. Moreover, we have for all (x, y, y′) ∈
X × Y × Y,

κθ 〈y, y′〉(x;X) =
∫

X
Qθ ((x, y);dx′)gθ ((x, y, x′);y′)> 0,(2.5)

where the positiveness follows from the fact that Qθ((x, y); ·) is a probability on
(X,X ) and Condition (2.3).

In well-specified models, it is assumed that the observations Y1:n are generated
from a process ((Xk,Yk))k∈Z+ , which follows the distribution P

θ�
ξ�

associated to
an unknown parameter θ� ∈ � and an unknown initial distribution ξ� (usually, ξ�

is such that, under Pθ�
ξ�

, (Yk)k∈Z+ is a stationary sequence). To form a consistent
estimate of θ� on the basis of the observations Y1:n only, that is, without access to
the hidden process (Xk)k∈Z+ , we define the maximum likelihood estimator (MLE)
θ̂ξ,n by

θ̂ξ,n ∈ argmax
θ∈�

Lξ,n(θ),

where Lξ,n(θ) is the (conditional) log-likelihood function of the observations un-
der parameter θ with some arbitrary initial distribution ξ on X × Y, that is,

Lξ,n(θ) := ln
∫ n∏

k=1

Qθ ((xk−1, yk−1);dxk

)
gθ ((xk−1, yk−1, xk);yk

)
ξ(dx0 dy0)

= ln
∫

κθ 〈y0, y1〉κθ 〈y1, y2〉 · · ·κθ 〈yn−1, yn〉(x0;X)ξ(dx0 dy0).

This corresponds to the log of the conditional density of Y1:n given (X0, Y0) with
the latter integrated according to ξ . In practice, ξ is often taken as a Dirac mass
at (x, y) with x arbitrarily chosen and y equal to the observation Y0 when it is
available. In this context, a classical way (see, e.g., [23]) to prove the consistency
of a maximum-likelihood-type estimator θ̂ξ,n may be decomposed in the following
steps. The first step is to show that θ̂ξ,n is, with probability tending to one, in a
neighborhood of the set

�� := argmax
θ∈�

Ẽ
θ�
[
lnpθ,θ�(Y1|Y−∞:0)

]
.(2.6)
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This formula involves two quantities that have not yet been defined since they
may require additional assumptions: first, the expectation Ẽ

θ , which corresponds
to the distribution P̃

θ of a sequence (Yk)k∈Z in accordance with the kernel Kθ , and
second, the density pθ,θ�(·|·), which shows up when taking the limit, under P̃θ� , of
the P̃

θ -conditional density of Y1 given its m-order past, as m goes to infinity. In
many cases, such quantities appear naturally because the model is ergodic and the
normalized log-likelihood n−1Lξ,n(θ) can be approximated by

1

n

n∑
k=1

lnpθ,θ�(Yk|Y−∞:k−1).

We will provide below some general assumptions, Assumptions (K-1) and (K-2),
that yield precise definitions of P̃θ and pθ,θ ′

(·|·).
The second step consists in proving that the set �� in (2.6) is related to the

true parameter θ� in an exploitable way. Ideally, one could have �� = {θ�}, which
would yield the consistency of θ̂ξ,n for estimating θ�. In this work, our first ob-
jective is to provide a set of general assumptions which ensures that �� is exactly
the set of parameters θ such that P̃θ = P̃

θ� . Then this result guarantees that the
estimator converges to the set of parameters compatible with the true stationary
distribution of the observations. If moreover the model (P̃θ )θ∈� is identifiable,
then this set reduces to {θ�} and consistency of θ̂ξ,n directly follows.

To conclude with our general setting, we state the main assumption on the model
and some subsequent notation and definitions used throughout the paper.

(K-1) For all θ ∈ �, the transition kernel Kθ admits a unique invariant probabil-
ity πθ .

We now introduce some important notation used throughout the paper.

DEFINITION 2. Under Assumption (K-1), we denote by πθ
1 and πθ

2 the
marginal distributions of πθ on X and Y, respectively, and by P

θ and P̃
θ the prob-

ability distributions defined respectively as follows:

(a) P
θ denotes the extension of Pθ

πθ on the whole line (X × Y)Z.

(b) P̃
θ is the corresponding projection on the component YZ.

We also use the symbols E
θ and Ẽ

θ to denote the expectations corresponding to
P

θ and P̃
θ , respectively. Moreover, for all θ, θ ′ ∈ �, we write θ ∼ θ ′ if and only

if P̃θ = P̃
θ ′

. This defines an equivalence relation on the parameter set � and the
corresponding equivalence class of θ is denoted by [θ ] := {θ ′ ∈ � : θ ∼ θ ′}.

The equivalence relationship ∼ was introduced by [23] as an alternative to the
classical identifiability condition.
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2.2. Main result. Assumption (K-1) is supposed to hold all along this section
and P

θ , P̃θ and ∼ are given in Definition 2. Our main result is stated under the
following general assumption.

(K-2) For all θ �= θ ′ in �, there exists a probability kernel �θ,θ ′
on YZ− ×X such

that for all A ∈ X ,∫
X �θ,θ ′

(Y−∞:0;dx0)κ
θ 〈Y0, Y1〉(x0;A)∫

X �θ,θ ′
(Y−∞:0;dx0)κθ 〈Y0, Y1〉(x0;X)

= �θ,θ ′
(Y−∞:1;A), P̃

θ ′
-a.s.

REMARK 2. Note that from Remark 1, the denominator in the left-hand side
of the last displayed equation is strictly positive, which ensures that the ratio is
well defined.

REMARK 3. Let us give some insight about the formula appearing in (K-2) and
explain why it is important to consider the cases θ = θ ′ and θ �= θ ′ separately. Since
X is a Borel space, [22], Theorem 6.3, applies and the conditional distribution of
X0 given Y−∞:0 under Pθ defines a probability kernel denoted by �θ . We prove in
Section A.1 of the Appendix that this kernel satisfies, for all A ∈ X ,∫

X �θ(Y−∞:0;dx0)κ
θ 〈Y0, Y1〉(x0;A)∫

X �θ(Y−∞:0;dx0)κθ 〈Y0, Y1〉(x0;X)
= �θ(Y−∞:1;A), P̃

θ -a.s.(2.7)

Assumption (K-2) asserts that the kernel �θ,θ ′
satisfies a similar identity P̃

θ ′
-a.s.

for θ ′ �= θ . It is not necessary at this stage to precise how �θ,θ ′
shows up. This is

done in Section 2.3.

REMARK 4. The denominator in the ratio displayed in (K-2) can be written as
pθ,θ ′

(Y1|Y−∞:0), where, for all y ∈ Y and y−∞:0 ∈ YZ− ,

pθ,θ ′
(y|y−∞:0) :=

∫
X
�θ,θ ′

(y−∞:0;dx0)κ
θ 〈y0, y〉(x0;X)(2.8)

is a conditional density with respect to the measure ν, since for all (x, y) ∈ X × Y,∫
κθ 〈y, y′〉(x;X)ν(dy′) = 1.

Since Y is a Borel space, [22], Theorem 6.3, applies and the conditional dis-
tribution of Y1:n given Y−∞:0 defines a probability kernel. Since P̃

θ (Y1:n ∈ ·) is
dominated by ν⊗n, this in turns defines a conditional density with respect to ν⊗n,
which we denote by pθ

n(·|·), so that for all B ∈ Y⊗n,

P̃
θ (Y1:n ∈ B|Y−∞:0) =

∫
B

pθ
n(y1:n|Y−∞:0)ν(dy1) · · ·ν(dyn), P̃

θ -a.s.(2.9)

Let us now state the main result.
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THEOREM 1. Assume that (K-1) holds and define P
θ , P̃

θ and [θ ] as in
Definition 2. Suppose that Assumption (K-2) holds. For all θ, θ ′ ∈ �, define
pθ,θ ′

(Y1|Y−∞:0) by (2.8) if θ �= θ ′ and by pθ,θ (Y1|Y−∞:0) = pθ
1(Y1|Y−∞:0) as

in (2.9) otherwise. Then for all θ� ∈ �, we have

argmax
θ∈�

Ẽ
θ�
[
lnpθ,θ�(Y1|Y−∞:0)

]= [θ�].(2.10)

Before proving Theorem 1, we first extend the definition of the conditional den-
sity on Y in (2.8) to a conditional density on Yn.

DEFINITION 3. For every positive integer n and θ �= θ ′ ∈ �, define the func-
tion pθ,θ ′

n (·|·) on Yn × YZ− by

pθ,θ ′
n (y1:n|y−∞:0)

(2.11)

:=
∫

Xn
�θ,θ ′

(y−∞:0;dx0)

n−1∏
k=0

κθ 〈yk, yk+1〉(xk;dxk+1).

Again, it is easy to check that each pθ,θ ′
n (·|y−∞:0) is indeed a density on Yn.

Assumption (K-2) ensures that these density functions moreover satisfy the suc-
cessive conditional formula, as for conditional densities, provided that we restrict
ourselves to sequences in a set of P̃θ ′

-probability one, as stated in the following
lemma.

LEMMA 1. Suppose that Assumption (K-2) holds and let pθ,θ ′
n (·|·) be as de-

fined in Definition 3. Then for all θ, θ ′ ∈ � and n ≥ 2, we have

pθ,θ ′
n (Y1:n|Y−∞:0) = p

θ,θ ′
1 (Yn|Y−∞:n−1)p

θ,θ ′
n−1(Y1:n−1|Y−∞:0),

(2.12)
P̃

θ ′
-a.s.

The proof of this lemma is postponed to Section A.2 in the Appendix. We now
have all the tools for proving the main result.

PROOF OF THEOREM 1. Within this proof section, we will drop the sub-
script n and respectively write pθ,θ ′

(y1:n|y−∞:0) and pθ(y1:n|y−∞:0) instead of
pθ,θ ′

n (y1:n|y−∞:0) and pθ
n(y1:n|y−∞:0) when no ambiguity occurs.

For all θ ∈ �, we have by conditioning on Y−∞:0 and by using (2.9),

Ẽ
θ�
[
lnpθ�(Y1|Y−∞:0)

]− Ẽ
θ�
[
lnpθ,θ�(Y1|Y−∞:0)

]
= Ẽ

θ�

[
Ẽ

θ�

[
ln

pθ�(Y1|Y−∞:0)
pθ,θ�(Y1|Y−∞:0)

∣∣∣Y−∞:0
]]

(2.13)

= Ẽ
θ�
[
KL

(
p

θ�

1 (·|Y−∞:0)‖pθ,θ�

1 (·|Y−∞:0)
)]

,
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where KL(p‖q) denotes the Kullback–Leibler divergence between the densities
p and q . The nonnegativity of the Kullback–Leibler divergence shows that θ� be-
longs to the maximizing set on the left-hand side of (2.10). This implies

argmax
θ∈�

Ẽ
θ�
[
lnpθ,θ�(Y1|Y−∞:0)

]⊇ [θ�],(2.14)

where we have used the following lemma.

LEMMA 2. Assume that (K-1) holds and define Ẽ
θ and [θ ] as in Definition 2.

Suppose that for all θ ∈ �, G(θ) is a σ(Y−∞:∞)-measurable random variable
such that, for all θ� ∈ �,

sup
θ∈�

Ẽ
θ�
[
G(θ)

]= Ẽ
θ�
[
G(θ�)

]
.

Then for all θ� ∈ � and θ ′ ∈ [θ�], we have

Ẽ
θ�
[
G
(
θ ′)]= sup

θ∈�

Ẽ
θ�
[
G(θ)

]
.

PROOF. Take θ� ∈ � and θ ′ ∈ [θ�]. Then we have, for all θ ∈ �, Ẽθ�[G(θ)] =
Ẽ

θ ′ [G(θ)], and it follows that

Ẽ
θ�
[
G
(
θ ′)]= Ẽ

θ ′[
G
(
θ ′)]= sup

θ∈�

Ẽ
θ ′[

G(θ)
]= sup

θ∈�

Ẽ
θ�
[
G(θ)

]
,

which completes the proof. �

The proof of the reverse inclusion of (2.14) is more tricky. Let us take θ ∈ ��

such that θ �= θ� and show that it implies θ ∼ θ�. By (2.13), we have

Ẽ
θ�
[
KL

(
p

θ�

1 (·|Y−∞:0)‖pθ,θ�

1 (·|Y−∞:0)
)]= 0.

Consequently,

pθ�(Y1|Y−∞:0) = pθ,θ�(Y1|Y−∞:0), P̃
θ�-a.s.

Applying Lemma 1 and using that P̃θ� is shift-invariant, this relation propagates to
all n ≥ 2, so that

pθ�(Y1:n|Y−∞:0) = pθ,θ�(Y1:n|Y−∞:0), P̃
θ�-a.s.(2.15)

For any measurable function H : Yn →R+, we get

Ẽ
θ�
[
H(Y1:n)

]= Ẽ
θ�

{
Ẽ

θ�

[
H(Y1:n)

pθ,θ�(Y1:n|Y−∞:0)
pθ�(Y1:n|Y−∞:0)

∣∣∣Y−∞:0
]}

= Ẽ
θ�

[∫
H(y1:n)pθ,θ�(y1:n|Y−∞:0)ν⊗n(dy1:n)

]
,



2366 R. DOUC, F. ROUEFF AND T. SIM

where the last equality follows from (2.9). Using Definition 3 and Tonelli’s theo-
rem, we obtain

Ẽ
θ�
[
H(Y1:n)

]= Ẽ
θ�

∫
H(y1:n)

∫
�θ,θ�(Y−∞:0;dx0)κ

θ 〈Y0, y1〉(x0;dx1)

×
n−1∏
k=1

κθ 〈yk, yk+1〉(xk;dxk+1)ν
⊗n(dy1:n)

= Ẽ
θ�

∫
�θ,θ�(Y−∞:0;dx0)

∫
H(y1:n)κθ 〈Y0, y1〉(x0;dx1)

×
n−1∏
k=1

κθ 〈yk, yk+1〉(xk;dxk+1)ν
⊗n(dy1:n)

= Ẽ
θ�

∫
�θ,θ�(Y−∞:0;dx0)E

θ
(x0,Y0)

[
H(Y1:n)

]
= E

θ
πθ,θ�

[
H(Y1:n)

]
,

where πθ,θ� is a probability on X × Y defined by

πθ,θ�(A × B) := Ẽ
θ�
[
�θ,θ�(Y−∞:0;A)1B(Y0)

]
,

for all (A,B) ∈ X ×Y . Consequently, for all B ∈ Y⊗Z
∗+ ,

P̃
θ�
(
YZ− × B

)= P
θ
πθ,θ�

(
XZ+ × (Y × B)

)
.(2.16)

If we had πθ = πθ,θ� , then we could conclude that the two shift-invariant distribu-
tions P̃

θ� and P̃
θ are the same and thus θ ∼ θ�. Therefore, to complete the proof,

it only remains to show that πθ = πθ,θ� , which by (K-1) is equivalent to showing
that πθ,θ� is an invariant distribution for Kθ .

Let us now prove this latter fact. Using that P̃θ� is shift-invariant and then con-
ditioning on Y−∞:0, we have, for any (A,B) ∈ X ×Y ,

πθ,θ�(A × B) = Ẽ
θ�
[
�θ,θ�(Y−∞:1;A)1B(Y1)

]
= Ẽ

θ�

∫
�θ,θ�(Y−∞:0, y1;A)1B(y1)p

θ�(y1|Y−∞:0)ν(dy1)

= Ẽ
θ�

∫
�θ,θ�(Y−∞:0, y1;A)1B(y1)p

θ,θ�(y1|Y−∞:0)ν(dy1),

where in the last equality we have used (2.15). Using (K-2), we then get

πθ,θ�(A × B)

= Ẽ
θ�

∫
�θ,θ�(Y−∞:0;dx0)κ

θ 〈Y0, y1〉(x0;dx1)1A(x1)1B(y1)ν(dy1)

= Ẽ
θ�

∫
�θ,θ�(Y−∞:0;dx0)K

θ ((x0, Y0);A × B
)

= πθ,θ�Kθ(A × B).
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Thus, πθ,θ� is an invariant distribution for Kθ , which completes the proof. �

2.3. Construction of the kernel �θ,θ ′
as a backward limit. Again, all along this

section, Assumption (K-1) is supposed to hold and the symbols P
θ and P̃

θ refer
to the probabilities introduced in Definition 2. In addition to Assumption (K-1),
Theorem 1 fundamentally relies on Assumption (K-2). These assumptions ensure
the existence of the probability kernel �θ,θ ′

that yields the definition of p
θ,θ ′
1 (·|·).

We now explain how the kernel �θ,θ ′
may arise as a limit under Pθ ′

of explicit
kernels derived from Kθ . It will generally apply to observation-driven models,
treated in Section 4, but also in the more classical case of HMMs, as explained in
Section 3. A natural approach is to define the kernel �θ,θ ′

as the weak limit of the
following ones.

DEFINITION 4. Let n be a positive integer. For all θ ∈ � and x ∈ X, we define
the probability kernel �θ

x,n on Yn+1 ×X by, for all y0:n ∈ Yn+1 and A ∈ X ,

�θ
x,n(y0:n;A) :=

∫
Xn−1×A

∏n−1
k=0 κθ 〈yk, yk+1〉(xk;dxk+1)∫

Xn

∏n−1
k=0 κθ 〈yk, yk+1〉(xk;dxk+1)

with x0 = x.

We will drop the subscript n when no ambiguity occurs.

It is worth noting that �θ
x,n(Y0:n; ·) is the conditional distribution of Xn given

Y1:n under Pθ
(x,Y0)

. To derive the desired �θ,θ ′
we take, for a well-chosen x, the

limit of �θ
x,n(y0:n; ·) as n → ∞ for a sequence y0:n corresponding to a path un-

der P̃θ ′
. The precise statement is provided in Assumption (K-3) below, which re-

quires the following definition. For all θ ∈ � and for all nonnegative measurable
functions f defined on X, we set

Fθ
f := {

x �→ κθ 〈y, y′〉(x;f ) : (y, y′) ∈ Y2}.
We can now state the assumption as follows:

(K-3) For all θ �= θ ′ ∈ �, there exist x ∈ X, a probability kernel �θ,θ ′
on YZ− ×X

and a countable class F of X → R+ measurable functions such that for all
f ∈ F ,

P̃
θ ′(∀f ′ ∈ Fθ

f ∪ {f }, lim
m→∞�θ

x,m

(
Y−m:0;f ′)= �θ,θ ′(

Y−∞:0;f ′)< ∞
)

= 1.

The next lemma shows that, provided that F is rich enough, Assumption (K-3)
can be directly used to obtain Assumption (K-2). In what follows, we say that a
class of X →R functions is separating if, for any two probability measures μ1 and
μ2 on (X,X ), the equality of μ1(f ) and μ2(f ) over f in the class implies the
equality of the two measures.
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LEMMA 3. Suppose that Assumption (K-3) holds and that F is a separating
class of functions containing 1X. Then the kernel �θ,θ ′

satisfies Assumption (K-2).

PROOF. Let x ∈ X be given in Assumption (K-3). From Definition 4, we may
write, for all f ∈F , setting x−m = x,

�θ
x,m(Y−m:0;f ) =

∫
f (x0)

∏−1
k=−m κθ 〈Yk,Yk+1〉(xk;dxk+1)∫ ∏−1

k=−m κθ 〈Yk,Yk+1〉(xk;dxk+1)

and, similarly,

�θ
x,m+1(Y−m:1;f ) =

∫
f (x1)

∏0
k=−m κθ 〈Yk,Yk+1〉(xk;dxk+1)∫ ∏0

k=−m κθ 〈Yk,Yk+1〉(xk;dxk+1)
.(2.17)

Dividing both numerator and denominator of (2.17) by

∫ −1∏
k=−m

κθ 〈Yk,Yk+1〉(xk;dxk+1),

which is strictly positive by Remark 1, then (2.17) can be rewritten as

�θ
x,m+1(Y−m:1;f ) = �θ

x,m(Y−m:0;κθ 〈Y0, Y1〉(·;f ))

�θ
x,m(Y−m:0;κθ 〈Y0, Y1〉(·;1X))

.(2.18)

Letting m → ∞ and applying Assumption (K-3), then P̃
θ ′

-a.s.,

�θ,θ ′
(Y−∞:1;f ) = �θ,θ ′

(Y−∞:0;κθ 〈Y0, Y1〉(·;f ))

�θ,θ ′
(Y−∞:0;κθ 〈Y0, Y1〉(·;1X))

=
∫

�θ,θ ′
(Y−∞:0;dx0)κ

θ 〈Y0, Y1〉(x0;f )∫
�θ,θ ′

(Y−∞:0;dx0)κθ 〈Y0, Y1〉(x0;1X)
.

Since F is a separating class, the proof is complete. �

3. Application to hidden Markov models.

3.1. Definitions and assumptions. Hidden Markov models belong to a sub-
class of partially observed Markov models defined as follows.

DEFINITION 5. Consider a partially observed and partially dominated Markov
model given in Definition 1 with Markov kernels (Kθ)θ∈�. We will say that this
model is a hidden Markov model if the kernel Kθ satisfies

Kθ ((x, y);dx′ dy′)= Qθ (x;dx′)Gθ (x′;dy′).(3.1)

Moreover, in this context, we always assume that (X,dX) is a complete separable
metric space and X denotes the associated Borel σ -field.
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In (3.1), Qθ and Gθ are transition kernels on X × X and X × Y , respectively.
Since the model is partially dominated, we denote by gθ the corresponding Radon–
Nikodym derivative of Gθ(x; ·) with respect to the dominating measure ν: for all
(x, y) ∈ X × Y,

dGθ(x; ·)
dν

(y) = gθ (x;y).

One can directly observe that the unnormalized kernel κθ 〈y, y′〉 defined in (2.4)
does no longer depend on y, and in this case, one can write

κθ 〈y, y′〉(x;dx′)= κθ 〈y′〉(x;dx′)= Qθ (x;dx′)gθ (x′;y′).(3.2)

For any integer n ≥ 1, θ ∈ � and sequence y0:n−1 ∈ Yn, consider the unnormalized
kernel Lθ 〈y0:n−1〉 on X ×X defined by, for all x0 ∈ X and A ∈ X ,

Lθ 〈y0:n−1〉(x0;A) =
∫

· · ·
∫ [n−1∏

k=0

gθ (xk;yk)Q
θ(xk;dxk+1)

]
1A(xn),(3.3)

so that the MLE θ̂ξ,n, associated to the observations Y0:n−1 with an arbitrary initial
distribution ξ on X is defined by

θ̂ξ,n ∈ argmax
θ∈�

ξLθ 〈Y0:n−1〉1X.

We now follow the approach taken by [11] in misspecified models and show that
in the context of well-specified models, the maximizing set of the asymptotic nor-
malized log-likelihood can be identified by relying neither on the exponential sep-
aration of measures, nor on the rates of convergence to the equilibrium, but only
on the uniqueness of the invariant probability. We note the following fact which
can be used to check (K-1).

REMARK 5. In the HMM context, πθ is an invariant distribution of Kθ if and
only if πθ

1 is an invariant distribution of Qθ and πθ(dx dy) = πθ
1 (dx)Gθ(x;dy).

We illustrate the application of the main result (Theorem 1) in the context of
HMMs by considering the assumptions of [11] in the particular case of blocks of
size 1 (r = 1). Of course, general assumptions with arbitrary sizes of blocks could
also be used but this complicates significantly the expressions and may confine the
attention of the reader to unnecessary technicalities. To keep the discussion simple,
we only consider blocks of size 1, which already covers many cases of interest.

Before listing the main assumptions, we recall the definition of a so-called local
Doeblin set (in the particular case where r = 1) as introduced in [11], Definition 1.

DEFINITION 6. A set C is local Doeblin with respect to the family of ker-
nels (Qθ)θ∈� if there exist positive constants ε−

C , ε+
C and a family of probability
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measures (λθ
C)θ∈� such that, for any θ ∈ �, λθ

C(C) = 1, and, for any A ∈ X and
x ∈ C,

ε−
Cλθ

C(A) ≤ Qθ(x;A ∩ C) ≤ ε+
Cλθ

C(A).

Consider now the following set of assumptions.

(D-1) There exists a σ -finite measure μ on (X,X ) that dominates Qθ(x; ·) for all

(x, θ) ∈ X × �. Moreover, denoting qθ (x;x′) := dQθ(x;·)
dμ

(x′), we have

qθ (x;x′)> 0, for all
(
x, x′, θ

) ∈ X × X × �.

(D-2) For all y ∈ Y, we have supθ∈� supx∈X gθ (x;y) < ∞.
(D-3) (a) For all θ� ∈ �, there exists a set K ∈ Y with P̃

θ�(Y0 ∈ K) > 2/3 such
that for all η > 0, there exists a local Doeblin set C ∈ X with respect to
(Qθ)θ∈� satisfying, for all θ ∈ � and all y ∈ K ,

sup
x∈Cc

gθ (x;y) ≤ η sup
x∈X

gθ (x;y) < ∞.(3.4)

(b) For all θ� ∈ �, there exists a set D ∈ X satisfying

inf
θ∈�

inf
x∈D

Qθ(x;D) > 0 and Ẽ
θ�

[
ln− inf

θ∈�
inf
x∈D

gθ(x;Y0)
]
< ∞.

(D-4) For all θ� ∈ �, Ẽθ�[ln+ supθ∈� supx∈X gθ (x;Y0)] < ∞.
(D-5) There exists p ∈ Z+ such that for any x ∈ X and n ≥ p, the function θ �→

Lθ 〈Y0:n〉(x;X) is P̃θ�-a.s. continuous on �.

REMARK 6. Under (D-1), for all θ ∈ �, the Markov kernel Qθ is μ-irreducib-
le, so that, using Remark 5, (K-1) reduces to the existence of a stationary distribu-
tion for Qθ .

REMARK 7. Assumptions (D-3), (D-4) and (D-5) and (2.3) in Definition 1
correspond to (A1), (A2) and (A3) in [11], where the blocks are of size r = 1.

REMARK 8. Assumption (D-4) implies (D-2) up to a modification of gθ (x;y)

on ν-negligible set of y ∈ Y for all x ∈ X. Indeed, (D-4) implies that supθ supx gθ (x;
Y0) < ∞, P̃θ�-a.s., and it can be shown that under (D-1), π

θ�

2 = πθ�(X×·) is equiv-
alent to ν for all θ ∈ �.

In these models, the kernel �θ
x,n introduced in Definition 4 writes

�θ
x,n(y0:n;A) =

∫
Xn−1×A

∏n−1
k=0 Qθ(xk;dxk+1)g

θ (xk+1;yk+1)∫
Xn

∏n−1
k=0 Qθ(xk;dxk+1)gθ (xk+1;yk+1)

with x0 = x.

The distribution �θ
x,n(Y0:n; ·) is usually referred to as the filter distribution. Propo-

sition 1 (below) can be derived from [11], Proposition 1. For blocks of size 1,
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the initial distributions in [11] are constrained to belong to the set Mθ�(D) of all
probability distributions ξ defined on (X,X ) such that

Ẽ
θ�

[
ln− inf

θ∈�

∫
ξ(dx)gθ (x;Y0)Q

θ(x;D)

]
< ∞,(3.5)

where D ∈ X is the set appearing in (D-3). It turns out that under (D-3)(b), all
probability distributions ξ satisfy (3.5), so the constraint on the initial distribution
vanishes in our case.

PROPOSITION 1. Assume (D-3) and (D-4). Then the following assertions
hold:

(i) For any θ, θ� ∈ �, there exists a probability kernel �θ,θ� on YZ− × X such
that for any x ∈ X,

P̃
θ�

(
for all bounded f , lim

m→∞�θ
x,m(Y−m:0;f ) = �θ,θ�(Y−∞:0;f )

)
= 1.

(ii) For any θ, θ� ∈ � and probability measure ξ ,

lim
n→∞n−1 ln ξLθ 〈Y0:n−1〉1X = �(θ, θ�), P̃

θ�-a.s.,

where

�(θ, θ�) := Ẽ
θ�

[
ln
∫

�θ,θ�(Y−∞:0;dx0)κ
θ 〈Y1〉(x0;X)

]
.(3.6)

3.2. Equivalence-class consistency. We can now state the main result on the
consistency of the MLE for HMMs.

THEOREM 2. Assume that (K-1) holds and define P
θ , P̃θ and the equivalence

class [θ ] as in Definition 2. Moreover, suppose that (�,�) is a compact metric
space and that Assumptions (D-1)–(D-5) hold. Then, for any probability measure ξ ,

lim
n→∞�

(
θ̂ξ,n, [θ�])= 0, P̃

θ�-a.s.

PROOF. According to [11], Theorem 2, θ �→ �(θ, θ�) defined by (3.6) is upper
semi-continuous [so that �� := argmaxθ∈� �(θ, θ�) is nonempty] and moreover

lim
n→∞�(θ̂ξ,n,��) = 0, P̃

θ�-a.s.

The proof then follows from Theorem 1, provided that �(θ, θ�) can be expressed as
in the statement of Theorem 1 and that (K-2) is satisfied. First note that, for θ �= θ�,
the integral appearing within the logarithm in (3.6) corresponds to pθ,θ�(Y1|Y−∞:0)
with pθ,θ� as defined in (2.8).

Let F be a countable separating class of nonnegative bounded functions con-
taining 1X; see [26], Theorem 6.6, Chapter 6, for the existence of such a class.
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By Lemma 3, we check (K-2) by showing that (K-3) is satisfied. Condition (D-2)
and (3.2) imply that for all bounded functions f , Fθ

f is a class of bounded func-
tions, and this in turn implies (K-3) by applying Proposition 1(i) to all x. Thus,
(K-2) is satisfied, and for θ �= θ�, �(θ, θ�) can be expressed as in the statement
of Theorem 1. To complete the proof, it only remains to consider the case where
θ = θ� and to show that �(θ�, θ�) can be written as

�(θ�, θ�) = Ẽ
θ�
[
lnp

θ�

1 (Y1|Y−∞:0)
]
,(3.7)

where p
θ�

1 (·|·) is the conditional density given in (2.9). According to [3], Theo-
rem 1, we have

Ẽ
θ�
[
lnp

θ�

1 (Y1|Y−∞:0)
]= lim

n→∞n−1 lnπ
θ�

1 Lθ�〈Y0:n−1〉1X, P̃
θ�-a.s.(3.8)

On the other hand, applying Proposition 1(ii) yields

�(θ�, θ�) = lim
n→∞n−1 ln ξLθ�〈Y0:n−1〉1X, P̃

θ�-a.s.(3.9)

Observe that, by using (D-1), the probability measure ξLθ�〈y0〉 admits a density
with respect to μ given by

dξLθ�〈y0〉
dμ

(x1) =
∫

ξ(dx0)g
θ�(x0;y0)q

θ�(x0;x1).(3.10)

We further get, for all y0:n−1 ∈ Yn,

ξLθ�〈y0:n−1〉1X =
∫ dξLθ�〈y0〉

dμ
(x1) × (

δx1Lθ�〈y1:n−1〉1X
)
μ(dx1),

and under Pθ� , the joint density of (X1, Y0:n−1) with respect to μ ⊗ ν⊗n is given
by

p
θ�

1,n(x1, y0:n−1) := dπ
θ�

1 Lθ�〈y0〉
dμ

(x1) × (
δx1Lθ�〈y1:n−1〉1X

)
.

Note that we similarly have, for all y0 ∈ Y and x1 ∈ X,

dπ
θ�

1 Lθ�〈y0〉
dμ

(x1) =
∫

π
θ�

1 (dx0)g
θ�(x0;y0)q

θ�(x0;x1).(3.11)

The four previous displays yield, for all y0:n−1 ∈ Yn,

ξLθ�〈y0:n−1〉1X

=
∫ ∫

ξ(dx0)g
θ�(x0;y0)q

θ�(x0;x1)∫
π

θ�

1 (dx0)gθ�(x0;y0)qθ�(x0;x1)
p

θ�

1,n(x1, y0:n−1)μ(dx1).

Dividing by the density of Y0:n−1 with respect to ν⊗n under Pθ� , we get

ξLθ�〈Y0:n−1〉1X

π
θ�

1 Lθ�〈Y0:n−1〉1X

= E
θ�
[
R(X1, Y0)|Y0:n−1

]
, P̃

θ�-a.s.,
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where R(x1, y0) is the ratio between (3.10) and (3.11), which are positive densities
with respect to μ⊗ν. Since the denominator (3.11) is the density of (X1, Y0) under
P

θ� , we then have

E
θ�
[
R(X1, Y0)

]= 1.

By Lévy’s zero-one law, we thus get that

lim
n→∞

ξLθ�〈Y0:n−1〉1X

π
θ�

1 Lθ�〈Y0:n−1〉1X

= E
θ�
[
R(X1, Y0)|Y0:∞

]
, P̃

θ�-a.s.,

and since by (D-1), R(x1, y0) takes only positive values, this limit is thus positive.
This implies

lim
n→∞n−1 ln

ξLθ�〈Y0:n−1〉1X

π
θ�

1 Lθ�〈Y0:n−1〉1X

= 0, P̃
θ�-a.s.

Combining with (3.8) and (3.9), we finally obtain (3.7), which completes the proof.
�

3.3. A polynomially ergodic example. As an application of Theorem 2, we
consider the HMM model described in Example 1. In addition to the assumptions
introduced in Example 1, we assume that U0 and V0 are independent and centered
and they both admit densities with respect to the Lebesgue measure λ over R,
denoted by r and h, respectively, and

(E-1) the density r satisfies:
(a) r is continuous and positive over R,
(b) there exists α > 2 such that r(u)|u|α+1 is bounded away from ∞ as

|u| → ∞ and from 0 as u → ∞,

(E-2) the density h satisfies:
(a) h is continuous and positive over R, and lim|v|→∞ h(v) = 0,
(b) there exist β ∈ [1, α − 1) [where α is given in (E-1)] and b, c > 0 such

that E(|V0|β) < ∞ and h(v) ≥ be−c|v|β for all v ∈ R.

For example, a symmetric Pareto distribution with a parameter strictly larger than 2
satisfies (E-1) and provided that α > 3, (E-2) holds with a centered Gaussian dis-
tribution. The model is parameterized by θ = (m,a) ∈ � := [m,m]× [a, a] where
0 < m < m and a < a. In this model, the Markov transition Qθ of (Xk)k∈Z+
has a transition density qθ with respect to the dominating measure μ(dx) =
λ(dx) + δ0(dx), which can be written as follows: for all (x, x′) ∈ R

2+,

qθ (x;x′)= r
(
x′ − x + m

)
1
{
x′ > 0

}+
(∫ m−x

−∞
r(u)du

)
1
{
x′ = 0

}
.(3.12)

Moreover, (1.1) implies

gθ (x;y) = h(y − ax).(3.13)

Following [20], we have the following lemma.
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LEMMA 4. Assume (E-1) and (E-2). For all θ ∈ �, the Markov kernel Qθ is
not geometrically ergodic. Moreover, Qθ is polynomially ergodic and its (unique)
stationary distribution πθ

1 , defined on X = R+, satisfies
∫

πθ
1 (dx)xβ < ∞, for all

β ∈ [1, α − 1).

The proof of this lemma is postponed to Section A.3 in the Appendix.

PROPOSITION 2. Consider the HMM of Example 1 under Assumptions (E-1)
and (E-2). Then (K-1) holds and we define P

θ , P̃θ and the equivalence class [θ ]
as in Definition 2. Moreover, for any probability measure ξ , the MLE θ̂ξ,n is
equivalence-class consistent, that is, for any θ� ∈ �,

lim
n→∞�

(
θ̂ξ,n, [θ�])= 0, P̃

θ�-a.s.

PROOF. To apply Theorem 2, we need to check (K-1) and (D-1)–(D-5). First
observe that Assumption (K-1) immediately follows from Remark 5 and Lemma 4,
and Assumptions (D-1) and (D-2) directly follow from the positiveness of the den-
sity r and the boundedness of the density h, respectively. Now, using (E-1)(a), it
can be easily shown that all compact sets are local Doeblin sets and this in turn
implies, via lim|x|→∞ h(x) = 0, that Assumption (D-3)(a) is satisfied. We now
check (D-3)(b). By (E-1)(a), we have for all compact sets D, inf{r(x′ − x + m) :
(x, x′,m) ∈ D2 × [m,m]} > 0, which by (3.12) implies

inf
θ∈�

inf
x∈D

Qθ(x;D) > 0.

To obtain (D-3)(b), it thus remains to show

Ẽ
θ�

[
ln− inf

θ∈�
inf
x∈D

gθ(x;Y0)
]
< ∞.

By (E-2)(b), there exist positive constants b and c such that h(v) ≥ be−c|v|β . Plug-
ging this into (3.13) yields

Ẽ
θ�

[
ln− inf

θ∈�
inf
x∈D

gθ(x;Y0)
]
≤ Ẽ

θ�

[
| lnb| + c

(
|Y0| + a sup

x∈D

|x|
)β]

= E
θ�

[
| lnb| + c

(
|aX0 + V0| + a sup

x∈D

|x|
)β]

< ∞,

where the finiteness follows from (E-2)(b) and Lemma 4. Finally, (D-3) is satisfied.
(D-4) is checked by writing

Ẽ
θ�

[
ln+ sup

θ∈�

sup
x∈X

gθ (x;Y0)
]
≤ ln+ sup

x∈R
h(x) < ∞.

To obtain (D-5), we show by induction on n that for all n ≥ 1, y0:n−1 ∈ R
n and

x0 ∈ R+, the function θ �→ Lθ 〈y0:n−1〉(x0;X) is continuous on �. The case where
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n = 1 is obvious since Lθ 〈y0〉(x0;X) = gθ (x0;y0) = h(y0 −ax0). We next assume
the induction hypothesis on n and note that

Lθ 〈y0:n〉(x0;X) = gθ (x0;y0)

∫
μ(dx1)q

θ (x0;x1)Lθ 〈y1:n〉(x1;X).

The continuity of θ �→ gθ (x0;y0) follows from (3.13) and the continuity of h.
Similarly, the continuity of θ �→ qθ (x0;x1) follows from (3.12) and the continuity
of r . Moreover, θ �→ Lθ 〈y1:n〉(x1;X) is continuous by the induction assumption.
The continuity of θ �→ ∫

μ(dx1)q
θ (x0;x1)Lθ 〈y1:n〉(x1;X) then follows from the

Lebesgue convergence theorem provided that∫
μ(dx1) sup

θ∈�

qθ(x0;x1)Lθ 〈y1:n〉(x1;X) < ∞(3.14)

holds. Note further that by the expression of qθ (x0;x1) given in (3.12) and the tail
assumption (E-1)(b), we obtain for all x0 ∈ X,∫

μ(dx1) sup
θ∈�

qθ(x0;x1) < ∞.

Combining with that Lθ 〈y1:n〉(x1;X) ≤ (supx∈R h(x))n yields (3.14). Finally, we
have (D-5), and thus Theorem 2 holds under (E-1) and (E-2). �

4. Application to observation-driven models. Observation-driven models
are a subclass of partially dominated and partially observed Markov models.

We split our study of the observation-driven model into several parts. Specific
definitions and notation are introduced in Section 4.1. Then we provide sufficient
conditions that allow to apply our general result Theorem 1, that is, �� = [θ�].
This is done in Section 4.2.

4.1. Definitions and notation. Observation-driven models are formally de-
fined as follows.

DEFINITION 7. Consider a partially observed and partially dominated Markov
model given in Definition 1 with Markov kernels (Kθ)θ∈�. We say that this model
is an observation-driven model if the kernel Kθ satisfies

Kθ ((x, y);dx′ dy′)= δψθ
y (x)

(
dx′)Gθ (x′;dy′),(4.1)

where δa denotes the Dirac mass at point a, Gθ is a probability kernel on X × Y
and ((x, y) �→ ψθ

y (x))θ∈� is a family of measurable functions from (X×Y,X ⊗Y)

to (X,X ). Moreover, in this context, we always assume that (X,dX) is a complete
separable metric space and X denotes the associated Borel σ -field.
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Note that a Markov chain ((Xk,Yk))k∈Z+ with probability kernel given by (4.1)
can be equivalently defined by the following recursions:

Xk+1 = ψθ
Yk

(Xk),
(4.2)

Yk+1|X0:k+1, Y0:k ∼ Gθ(Xk+1; ·).
The most celebrated example is the GARCH(1,1) process, where Gθ(x; ·) is a
centered (say Gaussian) distribution with variance x and ψθ

y (x) is an affine func-
tion of x and y2.

As a special case of Definition 1, for all x ∈ X, Gθ(x; ·) is dominated by some
σ -finite measure ν on (Y,Y) and we denote by gθ (x; ·) its Radon–Nikodym

derivative, gθ (x;y) = dGθ(x;·)
dν

(y). A dominated parametric observation-driven
model is thus defined by the collection ((gθ ,ψθ))θ∈�. Moreover, (2.3) may be
rewritten in this case: for all (x, y) ∈ X × Y and for all θ ∈ �,

gθ (x;y) > 0.

Under (K-1), we assume that the model is well specified, that is, the observation
sample (Y1, . . . , Yn) is distributed according to P̃

θ� for some unknown parame-
ter θ�. The inference of θ� is based on the conditional likelihood of (Y1, . . . , Yn)

given X1 = x for an arbitrary x ∈ X. The corresponding density function with re-
spect to ν⊗n is, under parameter θ ,

y1:n �→
n∏

k=1

gθ (ψθ 〈y1:k−1〉(x);yk

)
,(4.3)

where, for any vector y1:p = (y1, . . . , yp) ∈ Yp , ψθ 〈y1:p〉 is the X → X function
defined as the successive composition of ψθ

y1
, ψθ

y2
, . . . , and ψθ

yp
,

ψθ 〈y1:p〉 = ψθ
yp

◦ ψθ
yp−1

◦ · · · ◦ ψθ
y1

,(4.4)

with the convention ψθ 〈ys:t 〉(x) = x for s > t . Then the corresponding (condi-
tional) MLE θ̂x,n of the parameter θ is defined by

θ̂x,n ∈ argmax
θ∈�

Lθ
x,n〈Y1:n〉,(4.5)

where

Lθ
x,n〈y1:n〉 := n−1 ln

(
n∏

k=1

gθ (ψθ 〈y1:k−1〉(x);yk

))
.(4.6)

We will provide simple conditions for the consistency of θ̂x,n in the sense that,
with probability tending to one, for a well-chosen x, θ̂x,n belongs to a neighbor-
hood of the equivalence class [θ�] of θ�, as given by Definition 2.
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4.2. Identifiability. Let us consider the following assumptions.

(C-1) For all θ �= θ� ∈ �, there exist x ∈ X and a measurable function ψθ,θ�〈·〉
defined on YZ− such that

lim
m→∞ψθ 〈Y−m:0〉(x) = ψθ,θ�〈Y−∞:0〉, P̃

θ�-a.s.(4.7)

(C-2) For all θ ∈ � and y ∈ Y, the function x �→ gθ (x;y) is continuous on X.
(C-3) For all θ ∈ � and y ∈ Y, the function x �→ ψθ

y (x) is continuous on X.

In observation-driven models, the kernel κθ defined in (2.4) reads

κθ 〈y, y′〉(x;dx′)= gθ (x′;y′)δψθ
y (x)

(
dx′)

(4.8)
= gθ (ψθ

y (x);y′)δψθ
y (x)

(
dx′),

and the probability kernel �θ
x,n in Definition 4 reads, for all x ∈ X and y0:n ∈ Yn+1,

�θ
x,n(y0:n; ·) = δψθ 〈y0:n−1〉(x)(4.9)

[the Dirac point mass at ψθ 〈y0:n−1〉(x)]. Using these expressions, we get the fol-
lowing result which is a special case of Theorem 1.

THEOREM 3. Assume that (K-1) holds in the observation-driven model setting
and define Pθ , P̃θ and [θ ] as in Definition 2. Suppose that Assumptions (C-1), (C-2)
and (C-3) hold and define pθ,θ�(·|·) by setting, for P̃θ�-a.e. y−∞:0 ∈ YZ− ,

pθ,θ�(y1|y−∞:0) =
{

gθ (ψθ,θ�〈y−∞:0〉;y1
)
, if θ �= θ�,

pθ
1(y1|y−∞:0) as defined by (2.9), otherwise.

(4.10)

Then, for all θ� ∈ �, we have

argmax
θ∈�

Ẽ
θ�
[
lnpθ,θ�(Y1|Y−∞:0)

]= [θ�].(4.11)

PROOF. We apply Theorem 1. It is thus sufficient to show that (C-1), (C-2)
and (C-3) implies (K-2) with

�θ,θ�(y−∞:0; ·) = δψθ,θ� 〈y−∞:−1〉, for all y−∞:0 ∈ YZ−,(4.12)

and that for θ �= θ�, the conditional density pθ,θ� defined by (2.8) satisfies

pθ,θ�(y|Y−∞:0) = gθ (ψθ,θ�〈Y−∞:0〉;y), P̃
θ�-a.s.(4.13)

By Lemma 3, it is sufficient to prove that Assumption (K-3) holds for the kernel
�θ,θ� defined above. Denote by C(X) the set of continuous functions on X, and by
Cb(X) the set of bounded functions in C(X). By [26], Theorem 6.6, Chapter 6, there
is a countable and separating subclass F of nonnegative functions in Cb(X) such
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that 1X ∈ F . Now, let us take θ, θ� ∈ � and f ∈ F . Then, by (C-2), (C-3) and (4.8),
we have

Fθ
f = {

x �→ κθ 〈y, y′〉(x;f ) : (y, y′) ∈ Y2}⊂ C(X).

By (4.9), (C-1) and (4.12), we obtain (K-3) with x chosen as in (C-1).
To conclude, we need to show (4.13). Note that (4.12) together with (4.8) and

the usual definition (2.8) of pθ,θ� yields

pθ,θ�(y|y−∞:0) = gθ (ψθ
y0

(
ψθ,θ�〈y−∞:−1〉);y).

By Assumption (C-3) and the definition of ψθ,θ�〈·〉 in (C-1), we get (4.13). �

4.3. Examples. In the context of observation-driven time series, easy-to-check
conditions are derived in [14] in order to establish the convergence of the MLE θ̂x,n

defined by (4.5) to the maximizing set of the asymptotic normalized log-likelihood.
It turns out that the conditions of Theorem 1, [14], also imply the conditions of
Theorem 3. More precisely, the assumptions (B-2) and (B-3) of [14], Theorem 1,
are stronger than (C-2) and (C-3) used in Theorem 3 above, and it is shown that the
assumptions of Theorem 1, [14], imply (C-1) (see the proof of Lemma 2 in Sec-
tion 6.3 of [14]). Moreover, the conditions of Theorem 1 are shown to be satisfied
in the context of Examples 2 and 3 (see [14], Theorems 3 and 4), provided that �

in (4.5) is a compact metric space such that:

1. in the case of Example 2, all θ = (ω, a, b, r) ∈ � satisfy rb + a < 1;
2. in the case of Example 3, all θ = (γ ,ω,A,b) ∈ � are such that the spectral

radius of A + bγ T is strictly less than 1.

Under these assumptions, we conclude that the MLE is equivalence-class consis-
tent for both examples, which up to our best knowledge had not been proven so
far.

APPENDIX: POSTPONED PROOFS

A.1. Proof of equation (2.7). Let θ ∈ �. Recall that in Remark 3, �θ is de-
fined as the probability kernel of the conditional distribution of X0 given Y−∞:0
under Pθ , that is, for all A ∈ X ,

�θ(Y−∞:0;A) = P
θ (X0 ∈ A|Y−∞:0), P̃

θ -a.s.

Conditioning on X0, Y0 and using the definition of κθ in (2.4), we get that, for all
A ∈ X ,B ∈ Y and C ∈ Y⊗Z− ,

P
θ (X1 ∈ A,Y1 ∈ B,Y−∞:0 ∈ C)

= E
θ

[∫
B

κθ 〈Y0, y1〉(X0;A)1C(Y−∞:0)ν(dy1)

]
(A.1)

= Ẽ
θ

[∫
X×B

�θ(Y−∞:0;dx0)κ
θ 〈Y0, y1〉(x0;A)1C(Y−∞:0)ν(dy1)

]
.
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Let us denote

�̂θ (Y−∞:0, y1;A) =
∫

�θ(Y−∞:0;dx0)κ
θ 〈Y0, y1〉(x0;A)∫

�θ(Y−∞:0;dx0)κθ 〈Y0, y1〉(x0;X)
,

which is always defined since the denominator does not vanish by Remark 1. With
this notation, we deduce from (A.1) that

P
θ (X1 ∈ A,Y1 ∈ B,Y−∞:0 ∈ C)

= Ẽ
θ

[∫
B

�̂θ (Y−∞:0, y1;A)

(∫
�θ(Y−∞:0;dx0)κ

θ 〈Y0, y1〉(x0;X)

)

× 1C(Y−∞:0)ν(dy1)

]
.

This can be more compactly written as

P
θ (X1 ∈ A,Y1 ∈ B,Y−∞:0 ∈ C)

= Ẽ
θ

[∫
�̂θ (Y−∞:0, y1;A)(A.2)

× 1B(y1)1C(Y−∞:0)�θ(Y−∞:0;dx0)κ
θ 〈Y0, y1〉(x0;X)ν(dy1)

]
.

Observe that (A.1) with A = X provides a way to write Ẽ
θ [g(Y−∞:0, Y1)] for g =

1C×B that can be extended to any nonnegative measurable function g defined on
YZ− × Y as

Ẽ
θ [g(Y−∞:0, Y1)

]
= Ẽ

θ

[∫
g(Y−∞:0, y1)�

θ(Y−∞:0;dx0)κ
θ 〈Y0, y1〉(x0;X)ν(dy1)

]
.

Now, we observe that the right-hand side of (A.2) can be interpreted as the right-
hand side of the previous display with g(Y−∞:0, y1) = �̂θ (Y−∞:0, y1;A)1B(y1) ×
1C(Y−∞:0). Hence, we conclude that, for all A ∈ X and C ∈ Y⊗Z− ,

P
θ (X1 ∈ A,Y1 ∈ B,Y−∞:0 ∈ C) = E

θ [�̂θ (Y−∞:0, Y1;A)1B(Y1)1C(Y−∞:0)
]
.

Notice that �̂θ (Y−∞:0, Y1;A) precisely is the probability kernel on (YZ− ×Y)×X
appearing on the left-hand side of (2.7). The last display implies that this proba-
bility kernel is the conditional distribution of X1 given Y−∞:1 under P

θ , which
concludes the proof of (2.7).

A.2. Proof of Lemma 1. First observe that, by induction on n, having (2.12)
for all n ≥ 2 is equivalent to having, for all n ≥ 2,

pθ,θ�(Y1:n|Y−∞:0)
= pθ,θ�(Yn|Y−∞:n−1)p

θ,θ�(Yn−1|Y−∞:n−2) · · ·pθ,θ�(Y1|Y−∞:0), P̃
θ�-a.s.,
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which, using that P̃θ� is shift-invariant, is in turn equivalent to having that, for all
n ≥ 2,

pθ,θ�(Y1:n|Y−∞:0) = pθ,θ�(Y2:n|Y−∞:1)pθ,θ�(Y1|Y−∞:0), P̃
θ�-a.s.(A.3)

Thus to conclude the proof, we only need to show that (A.3) holds for all n ≥ 2.
By Definition 3, we have, for all n ≥ 2 and y−∞:n ∈ YZ− ,

pθ,θ�(y2:n|y−∞:1)pθ,θ�(y1|y−∞:0)

=
∫

�θ,θ�(y−∞:1;dx1)p
θ,θ�(y1|y−∞:0)

n−1∏
k=1

κθ 〈yk, yk+1〉(xk;dxk+1).

Using (K-2) we now get, for all n ≥ 2,

pθ,θ�(Y2:n|Y−∞:1)pθ,θ�(Y1|Y−∞:0)

=
∫

�θ,θ�(Y−∞:0;dx0)

n−1∏
k=0

κθ 〈Yk,Yk+1〉(xk;dxk+1), P̃
θ�-a.s.

We conclude (A.3) by observing that, according to Definition 3, the second line of
the last display is pθ,θ�(Y1:n|Y−∞:0).

A.3. Proof of Lemma 4. Let β ∈ [1, α −1). Since 1+β < α and by (E-1)(b),
we obtain E[(U+

0 )1+β] < ∞. Combining this with E[U0 −m] = −m < 0, we may
apply [20], Proposition 5.1, so that the Markov kernel Qθ is polynomially ergodic,
and thus admits a unique stationary distribution πθ

1 , which is well defined on X =
R+. Moreover, [20], Proposition 5.1, also shows that there exist a finite interval
C = [0, x0] and some constants �,�′ ∈ (0,∞) such that

QθV ≤ V − �W + �′1C,

where V (x) = (1 + x)1+β and W(x) = (1 + x)β . Applying [24], Theorem 14.0.1,
yields ∫

πθ
1 (dx)xβ ≤ πθ

1 W < ∞.

It remains to show that the kernel Qθ is not geometrically ergodic for all θ ∈ �

and this will be done by contradiction.
Now suppose on the contrary that the kernel Qθ is geometrically ergodic for

some θ ∈ �. Since the singleton {0} is an accessible atom (for Qθ ), then there
exists some ρ > 1 such that

∞∑
k=0

ρk
∣∣(Qθ )k(0, {0})− πθ

1
({0})∣∣< ∞.
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Hence, the atom {0} is geometrically ergodic as defined in [24], Section 15.1.3. Ap-
plying [24], Theorem 15.1.5, then there exists some κ > 1 such that E0[κτ0] < ∞,
where τ0 = inf{n ≥ 1 : Xn = 0} is the first return time to {0}.

Recall that the i.i.d. sequence (Uk)k∈Z+ is linked to (Xk)k∈Z+ through (1.1), and
note that E0[κτ0] = E[κτ(0)], where we have set for all u ∈R,

τ(u) := inf

{
n ≥ 1 :

n∑
k=1

(Uk − m) < u

}
.

Now, denote

τ̃ (u) := inf

{
n ≥ 1 :

n∑
k=1

(Uk+1 − m) < u

}
.

To arrive at the contradiction, it is finally sufficient to show that for all κ > 1,
E[κτ(0)] = ∞. Actually, we will show that there exists a constant γ > 0 such that

lim inf
u→∞ κ−γ u

E
[
κτ(−u+m)]> 0.(A.4)

This will indeed imply E[κτ(0)] = ∞ by writing

E
[
κτ(0)] ≥ E

[
κτ(0)1{U1 ≥ m}]= E

[
κ1+τ̃ (−U1+m)1{U1 ≥ m}]

= E

[∫ ∞
m

κ1+τ̃ (−u+m)r(u)du

]
(A.5)

= κ

∫ ∞
m

E
[
κτ(−u+m)]r(u)du,

where the last equality follows from τ
d= τ̃ . Provided that (A.4) holds, the right-

hand side of (A.5) is infinite since r(u)� u−α−1 as u → ∞ by (E-1)(b).
We now turn to the proof of (A.4). By Markov’s inequality, we have for any

γ > 0,

κ−γ u
E
[
κτ(−u+m)]≥ P

(
τ(−u + m) > γu

)
.(A.6)

Now, let Mn =∑n
k=1 Ui , n ≥ 1, and note that for all nonnegative u,{(

inf
1≤k≤γ u

Mk

)
− γ um ≥ −u + m

}
⊂
{

inf
1≤k≤γ u

(Mk − km) ≥ −u + m
}

(A.7)
= {

τ(−u + m) > γu
}
.

Moreover, since (Uk)k∈Z∗+ is i.i.d. and centered, Doob’s maximal inequality im-
plies, for all γ̃ > 0,

P

(
inf

1≤k≤γ u
Mk < −γ̃

)
≤ P

(
sup

1≤k≤γ u

|Mk| > γ̃
)

(A.8)

≤ E[|M�γ u�|]
γ̃

≤ �γ u�E[|U1|]
γ̃

.
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Now, pick γ > 0 sufficiently small so that γE[|U1|]/(1 − γm) < 1. Observe that
for this γ , γ̃ = (1−γm)u−m is positive for u sufficiently large, so that combining
(A.8) with (A.7) and (A.6) yields

lim inf
u→∞ κ−γ u

E
[
κτ(−u+m)]≥ 1 − lim sup

u→∞
�γ u�E[|U1|]

(1 − γm)u − m
= 1 − γE[|U1|]

1 − γm
> 0.

This shows (A.4) and the proof is complete.
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